WO2005096678A1 - 照明制御回路 - Google Patents

照明制御回路 Download PDF

Info

Publication number
WO2005096678A1
WO2005096678A1 PCT/JP2005/005948 JP2005005948W WO2005096678A1 WO 2005096678 A1 WO2005096678 A1 WO 2005096678A1 JP 2005005948 W JP2005005948 W JP 2005005948W WO 2005096678 A1 WO2005096678 A1 WO 2005096678A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
vcc
detection
supply voltage
Prior art date
Application number
PCT/JP2005/005948
Other languages
English (en)
French (fr)
Inventor
Takao Inoue
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2006511688A priority Critical patent/JP4332177B2/ja
Priority to US10/594,677 priority patent/US7355353B2/en
Publication of WO2005096678A1 publication Critical patent/WO2005096678A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • H05B39/047Controlling the light-intensity of the source continuously with pulse width modulation from a DC power source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an illumination control circuit that controls so-called brightness such as illuminance and luminous intensity of an illumination lamp, a light-emitting lamp, a light-emitting element, and the like.
  • the illumination adjustment circuit is configured to connect a resistor (R1) and a Zener diode (D1) connected in series to a power supply (Vcc) and a PWM signal (P).
  • a switching circuit (Q2) that performs switching operation, a filter circuit composed of resistors (Rl, R2) and a capacitor (C1), and a drive for supplying drive power from a power supply (Vcc) to an illumination lamp (FL) And a drive transistor (Q1) as an element.
  • the switching transistor (Q2) is a PWM signal.
  • the driving power to the illumination lamp (FL) can be adjusted, and the illuminance of the illumination lamp (FL) can be adjusted.
  • the pulse width (W) of the PWM signal (P) is maintained at a predetermined width
  • the base potential of the driving transistor (Q1) is maintained at a constant level by the DC voltage (VB).
  • the lighting lamp (FL) can be maintained at a constant illuminance.
  • Patent Document 1 JP-A-11 233276
  • the present invention has been made in view of such conventional problems, and is an illumination control circuit having a driving element for driving an illumination lamp, a light-emitting lamp, a light-emitting element, and the like. It is an object of the present invention to provide an illumination control circuit that can reduce the load on the driving element even when it occurs.
  • an object of the present invention is to provide an illumination control circuit capable of stabilizing so-called brightness such as illuminance and luminous intensity of, for example, an illumination lamp, a light-emitting lamp, and a light-emitting element even when a power supply voltage fluctuation or the like occurs. Aim.
  • the invention according to claim 1 is an illumination control circuit that controls the driving of a light emitting element, and detects a power supply voltage of the power supply and outputs a detection voltage according to a change in the power supply voltage.
  • a driving element connected in series to the power supply together with the light emitting element, the driving element driving the light emitting element, and a compensation means for generating a compensation voltage that follows the detection voltage, wherein the compensation means follows the detection voltage.
  • the invention according to claim 7 is an illumination control circuit that controls the driving of the light emitting element, wherein the driving element is connected in series to a power supply together with the light emitting element and drives the light emitting element; Compensation means for providing a signal for
  • Detecting the power supply voltage of the power supply outputting a detection voltage corresponding to the change in the power supply voltage, and adjusting the compensation means with the detection voltage, thereby suppressing a level change of the control signal. Means.
  • FIG. 1 is a circuit diagram showing a configuration of a lighting control circuit according to a first embodiment of the present invention.
  • FIG. 2 is a characteristic diagram for explaining basic characteristics of the lighting control circuit shown in FIG. 1.
  • FIG. 3 is a circuit diagram illustrating a configuration of a lighting control circuit according to a second embodiment of the present invention.
  • FIG. 4 is a circuit diagram illustrating a configuration of a lighting control circuit according to a first embodiment.
  • FIG. 5 is a circuit diagram illustrating a configuration of a lighting control circuit according to a second embodiment.
  • FIG. 1 is a circuit diagram illustrating a configuration of a lighting control circuit 1 according to the first embodiment.
  • the illumination control circuit 1 includes a control signal source 2, a switching element 3 as a control element, a smoothing section 4, a driving element 5, a reference section 6, a detection section 7, and a compensation section 8.
  • a control signal source 2 such as a vehicle-mounted battery mounted on an automobile
  • a switching element 3 such as a control element
  • a smoothing section 4 such as a vehicle-mounted battery mounted on an automobile
  • a driving element 5 such as a vehicle-mounted battery mounted on an automobile
  • a light-emitting lamp such as a vehicle-mounted battery mounted on an automobile
  • a light-emitting lamp such as a vehicle-mounted battery mounted on an automobile
  • a light-emitting lamp such as a vehicle-mounted lamp mounted on an automobile
  • a light-emitting lamp such as a vehicle-mounted lamp mounted on an automobile
  • a light-emitting lamp such as a vehicle-
  • FL such as an illumination lamp, a light-emitting lamp, and a light-emitting element
  • FL such as an illumination lamp, a light-emitting lamp, and a light-emitting element
  • the control signal source 2 is formed of an oscillation circuit or the like that outputs the PWM signal S1, and the pulse width of the PWM signal S1 (the pulse width when the signal becomes logic "H") is input by an external operation input. W can be variably adjusted. In other words, the duty of the PWM signal S1 can be variably adjusted by an external operation.
  • the switching element 3 performs a switching operation according to the PWM signal S1, and outputs the PWM signal S1 A switching signal S2 in the form of a rectangular wave that is logically inverted.
  • the smoothing unit 4 is formed of a low-noise filter or the like, and outputs a DC voltage V4 as a control signal by smoothing the switching signal S2.
  • the driving element 5 is connected between the light emitting element FL and the compensation circuit 8, and sets driving power for causing the light emitting element FL to emit light according to the DC voltage V4.
  • a PNP transistor is used as the driving element 5
  • a DC voltage V4 is applied to its base
  • a compensator 8 is connected to the collector
  • one of the light emitting elements FL is connected to the emitter. Is connected to the other input terminal of the light emitting element FL and the power supply P
  • the driving element 5 reduces the driving power for causing the light emitting element FL to emit light, and conversely, the PWM Since the DC voltage V4 decreases as the pulse width W of the signal S1 increases, the driving element 5 increases the driving power for causing the light emitting element FL to emit light.
  • the reference unit 6 and the detection unit 7 are connected to the negative output terminal (-) and the positive output terminal (-) of the power supply PWR.
  • the reference portion 6 is formed of an electronic element or an electronic circuit that generates a constant voltage Vz such as a Zener diode and a constant voltage circuit.
  • the detection unit 7 detects a difference voltage (Vcc-Vz) between the power supply voltage Vcc higher than the constant voltage Vz output from the power supply PWR and the constant voltage Vz, and detects the difference voltage (Vcc-Vz).
  • a detection voltage V2 represented by the following equation (1), which is equivalent to a product value of a predetermined coefficient ex, is generated.
  • the coefficient ⁇ is a positive constant value greater than 0 and less than 1.
  • V2 ⁇ X (Vcc -Vz) '
  • the negative output terminal (1) of the power supply PWR is the ground (GND) terminal
  • the voltage VI generated at the connection point between the reference unit 6 and the detection unit 7 is positive with respect to the GND terminal.
  • the difference voltage (Vcc-Vz) is obtained, and the detection unit 7 detects the difference voltage (Vcc-Vz), and generates a detection voltage V2 represented by the above equation (1).
  • the compensating unit 8 is formed of an active element or an active circuit such as a transistor or an amplifier circuit.
  • the compensating unit 8 amplifies the detection voltage V2 by power to generate a compensation voltage V3 that follows the detection voltage V2, and compensates for the compensation voltage V3.
  • the potential at the connection point P between the driving element 5 and the compensator 8 is set by the voltage V3.
  • the compensating unit 8 is configured such that the impedance Z8 when the driving element 5 side force is viewed from the compensating unit 8 is lower than the impedance Z5 when the driving element 5 is viewed from the compensating unit 8 side.
  • the potential formed at the connection point P between the drive element 5 and the compensation unit 8 can be set by the low impedance side compensation voltage V3 by being formed by the above-described active element and active circuit.
  • the compensator 8 of the present embodiment is configured to generate a compensation voltage V3 that is higher than the detection voltage V2 by power-amplifying the detection voltage V2.
  • the same voltage or a compensation voltage V3 lower than the detection voltage V2 may be generated. That is, the compensator 8 outputs the compensation voltage V3 so that the compensation voltage V3 rises following the rise of the detection voltage V2, and the compensation voltage V3 also falls following the fall of the detection voltage V2. Become.
  • FIG. 2 shows the characteristics when the power supply voltage Vcc is gradually increased by 0 (Volt) force in order to explain the basic characteristics of the present lighting control circuit 1, and FIG.
  • Vz generated at both ends of the reference unit 6
  • VI generated at both ends of the detection unit 7, that is, the difference voltage (Vcc-Vz)
  • Vcc-Vz the difference voltage
  • Vcc-Vz the difference voltage
  • the reference section 6 formed of a Zener diode or the like causes the power supply voltage Vcc to reach a predetermined voltage ( Since it does not operate within the range below the zener voltage Vzg, the constant voltage Vz is not generated, and when the power supply voltage Vcc becomes equal to or higher than the voltage Vzg, the constant voltage Vz substantially equal to the voltage Vzg is generated.
  • the voltage VI is a difference voltage (Vcc ⁇ Vz) between the power supply voltage Vcc and the constant voltage Vz, the voltage VI follows a change in the power supply voltage Vcc within a range where the power supply voltage Vcc is equal to or higher than the voltage Vzg. change To do.
  • the detection voltage V2 changes according to the voltage VI within a range where the power supply voltage Vcc is equal to or higher than the voltage Vzg, and the compensation voltage V3 similarly changes according to the voltage VI and the detection voltage V2.
  • the detection voltage V2 changes according to the relationship of the above equation (1), the detection voltage V2 changes at a slower rate of change than the voltage change rate of the voltage VI, and the compensation voltage V3 also changes gradually according to the detection voltage V2. Changes at a high voltage change rate.
  • the drive voltage Vx corresponds to the voltage (Vcc ⁇ V3) of the difference between the power supply voltage Vcc and the compensation voltage V3.
  • the drive voltage Vx follows the change in the power supply voltage Vcc as shown in FIG. 2 (b). Change.
  • the drive voltage Vx changes following the power supply voltage Vcc within a range where the power supply voltage Vcc is equal to or higher than the voltage Vzg.
  • the compensation voltage V3 also rises, so the drive voltage Vx changes at a slower (smaller) voltage change rate than the power supply voltage Vcc.
  • the voltage change rate of the detection voltage V2 changes according to the change of the power supply voltage Vcc.
  • the voltage change rate of the drive voltage Vx that changes following the power supply voltage Vcc also changes.
  • the lighting control circuit 1 operates by being connected to a power supply PWR that outputs a power supply voltage Vcc of a higher voltage (for example, the voltage Vccg) than the constant voltage Vz (that is, the voltage Vzg) generated in the reference unit 6. .
  • the light emission occurs when the coefficient ⁇ in the above equation (1) is set to a predetermined value.
  • the drive voltage Vx applied to both ends of the element FL and the drive element 5 is maintained at a voltage Vxs corresponding to the voltage Vccg shown in FIG.
  • the control signal source 2 In a state where the drive voltage Vx is maintained at a constant voltage, when a user or the like externally operates the control signal source 2 to output a PWM signal S1 having an appropriate pulse width W, switching is performed.
  • the element 3 generates a switching signal S2 in accordance with the PWM signal S1, and the smoothing section 4 smoothes the switching signal S2, so that the switching signal S2 is proportional to the pulse width W of the PWM signal S1.
  • DC voltage V4 is generated.
  • the driving element 5 sets a predetermined driving power according to the DC voltage V4, so that the illuminance and the luminous intensity (so-called brightness) of the light emitting element FL are adjusted to the brightness corresponding to the pulse width W of the PWM signal S1. adjust.
  • the user or the like externally operates the control signal source 2 to determine the pulse width of the PWM signal S1.
  • the illuminance and luminous intensity (so-called brightness) of the light emitting element FL can be adjusted to a desired brightness.
  • the DC voltage V4 also remains at a voltage corresponding to the pulse width W.
  • the light emitting element FL can be maintained at the illuminance or luminous intensity (so-called brightness) desired by the user or the like.
  • the drive voltage Vx is also maintained at the predetermined voltage (ie, the voltage Vxs). It is possible to maintain the brightness specified by the user or the like without changing the illuminance or luminous intensity (so-called brightness) of the light emitting element FL without applying a large load.
  • the power supply PWR is a vehicle-mounted battery mounted on an automobile, it will be charged by the generator, causing fluctuations such as an increase in the power supply voltage Vcc.
  • the driving element 5 does not exert a large load force, and can emit light without changing the illuminance or luminous intensity (so-called brightness) of the light emitting element FL. it can.
  • the driving element 5 causes the light emitting element FL to emit light with the illuminance and luminous intensity (, so-called brightness) adjusted by the user or the like. Light can be emitted without causing flicker in brightness.
  • the drive voltage Vx slightly changes as shown in FIG. 2 (b), so strictly speaking, the illuminance and luminous intensity (so-called brightness
  • the coefficient of the detection unit 7 by adjusting the coefficient of the detection unit 7 in advance, the voltage change rate of the drive voltage Vx with respect to the power supply voltage Vcc can be reduced, which cannot be sensed by human eyes. It is possible to suppress the change in the driving voltage Vx so that the illuminance and luminous intensity (so-called brightness) of the light emitting element FL change within the range of about. Therefore, according to the illumination control circuit 1, even when the power supply voltage Vcc rises, it is possible to emit light without causing flicker in the illuminance or luminous intensity (so-called brightness) of the light emitting element FL.
  • the driving element 5 can emit light without causing flicker in the illuminance and luminous intensity (so-called brightness) of the light emitting element FL.
  • the power supply voltage Vcc power 12 (Volt)
  • the illuminance and luminous intensity (so-called brightness) of the light emitting element FL may be flickered by the driving element 5. It is possible to emit light without causing it to emit light.
  • the light emitting element FL, the driving element 5, and the compensator 8 are connected in series with respect to the power supply voltage Vcc, and the detector 7 is connected to the power supply voltage Vcc.
  • the voltage fluctuation of Vcc is detected, and the compensator 8 generates the compensation voltage V3 that follows the fluctuation of the power supply voltage Vcc.
  • the fluctuation of the drive voltage Vx can be reduced, and the load applied to the drive element 5 can be reduced.
  • the fluctuation of the driving voltage Vx can be reduced, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL can be stabilized.
  • a reference section 6 and a detection section 7 are provided for the power supply voltage Vcc, and the power supply voltage Vcc and the reference section 6 are provided.
  • the detector 7 Based on the difference voltage (Vcc-Vz) from the generated constant voltage Vz, the detector 7 detects the fluctuation of the power supply voltage Vcc, and the compensator 8 detects the compensation voltage V3 based on the detection result (detected voltage) V2. Therefore, even when the power supply voltage Vcc rises above the so-called rated voltage Vccg, fluctuations in the drive voltage Vx across the light emitting element FL and the drive element 5 can be reduced.
  • the illuminance and luminous intensity (so-called brightness) of the light-emitting element FL can be stabilized, and the power supply voltage Vcc has dropped below the so-called rated voltage Vccg.
  • the variation of the driving voltage Vx between both ends of the light emitting element FL and the driving element 5 can be reduced within the range from the rated voltage Vccg to the constant voltage Vz.
  • the applied load can be reduced, and the illuminance and luminous intensity ( ⁇ ⁇ Any brightness) can be stabilized.
  • the change of the detection voltage V2 output from the detection unit 7 with respect to the change of the power supply voltage Vcc is variably adjusted by the coefficient ⁇ shown in the above equation (1).
  • the drive voltage Vx can be adjusted with respect to the fluctuation of the power supply voltage Vcc.For example, it is possible to adjust the drive voltage Vx to suppress the fluctuation of the drive voltage Vx in accordance with the actual change characteristics of the power supply voltage Vcc. it can.
  • FIG. 3 is a circuit diagram showing a configuration of the illumination control circuit 1 of the present embodiment, and the same or corresponding portions as those in FIG. 1 are denoted by the same reference numerals.
  • this illumination control circuit 1 includes a control signal source 2, a switching element 3 as a control element, a smoothing section 4, a driving element 5, a reference section 6, a detection section 7, and a compensation section 10. It is configured with.
  • the control signal source 2 is formed of an oscillation circuit or the like that outputs the PWM signal S1, similarly to the first embodiment shown in FIG. 1, and the control signal source 2 receives the PWM signal S1 by an operation input from an external power source.
  • the pulse width W can be variably adjusted.
  • the switching element 3 performs a switching operation in accordance with the PWM signal SI, and outputs a switching signal S2 having a rectangular waveform.
  • the smoothing unit 4 is formed of a low-noise filter or the like, and generates a DC voltage V4 as a control signal corresponding to the pulse width W by smoothing the switching signal S2. .
  • the DC voltage V4 rises as the pulse width W of the PWM signal S1 decreases,
  • the compensator 10 sets the control current Id for operating the drive element 5 according to the DC voltage V4.
  • the driving element 5 is connected in series with the light emitting element FL between the plus side output terminal (+) and the minus side output terminal (one) of the power supply PWR to emit the light emitting element FL according to the control current Id.
  • the driving element 5 is formed of a PNP transistor, the emitter of the PNP transistor is connected to the positive output terminal (+) of the power supply PWR, the collector is connected to the light emitting element FL, The base is connected to the compensator 10 and is controlled by the control current Id.
  • the compensator 10 increases the control current Id to increase the base current (in other words, the attraction current) of the PNP transistor.
  • the base current of the PNP transistor is reduced by reducing the control current Id. Therefore, the driving element (PNP transistor) 5 increases the driving power for causing the light emitting element FL to emit light when the DC voltage V4 rises, and increases the driving power for causing the light emitting element FL to emit light when the DC voltage V4 falls. Reduce drive power.
  • the reference unit 6 and the detection unit 7 are connected in series between the plus output terminal (+) and the minus output terminal (1) of the power supply PWR, and the reference unit 6 has a zener-diode constant voltage. It is formed of electronic elements or circuits that generate a constant voltage Vz such as a circuit, and generates a constant voltage Vz smaller than the power supply voltage Vcc.
  • the detection unit 7 detects a difference voltage (Vcc-Vz) between the power supply voltage Vcc of the power supply PWR and the constant voltage Vz, and connects a connection point between the detection unit 7 and the switching element 3 and a negative output terminal of the power supply PWR.
  • Vcc-Vz a difference voltage
  • V2 expressed by the following equation (2) is generated between (1) and. Note that the coefficient j8 is greater than 0 and 1 Is a positive constant value less than.
  • V2 ⁇ X (Vcc -Vz) + Vz... (2)
  • the detection unit 7 generates, as the detection voltage V2, a voltage obtained by adding the constant voltage Vz to the voltage ⁇ X (Vcc-Vz) expressed by multiplying the difference voltage (Vcc-Vz) by the coefficient j8. Then, the emitter voltage of the switching element 3 composed of a PNP transistor is set by the detection voltage V2.
  • the reference unit 6 generates a constant voltage Vz
  • the detection unit 7 uses the detection voltage V2 generated based on the difference voltage (Vcc-Vz) to generate an emitter potential of the switching element 3 that is a PNP transistor power. Set. Further, when the power supply voltage Vcc is constant without fluctuation, the detection voltage V2 remains at a constant voltage, and the emitter voltage of the switching element 3 composed of a PNP transistor is also maintained at a constant voltage by the detection voltage V2.
  • the switching element 3 when a user or the like externally operates the control signal source 2 to output a PWM signal S1 having an appropriate pulse width W, the switching element 3 generates a switching signal S2 according to the PWM signal S1. Then, the smoothing unit 4 generates a DC voltage V4 based on the switching signal S2.
  • the driving element 5 sets a predetermined driving power according to the DC voltage V4, thereby changing the illuminance and luminous intensity (so-called brightness) of the light emitting element FL to the brightness corresponding to the pulse width W of the PWM signal S1. Adjust to
  • the control signal source 2 when the user or the like externally operates the control signal source 2 to adjust the pulse width W of the PWM signal S1 so that the DC voltage V4 drops, the power amplification factor of the driving element 5 decreases, and light emission occurs.
  • the illuminance and luminous intensity (so-called brightness) of the element FL can be reduced.
  • the pulse width W of the PWM signal S1 is adjusted so that the DC voltage V4 increases, the power amplification factor of the driving element 5 increases, The illuminance and luminous intensity (so-called brightness) of the light emitting element FL can be increased.
  • a user or the like operates the control signal source 2 externally to adjust the pulse width W of the PWM signal S1.
  • the pulse width is maintained at an appropriate value
  • the DC voltage V4 also remains at a voltage corresponding to the pulse width, and the illuminance and luminous intensity (so-called brightness) of the light emitting element FL can be maintained at a desired brightness.
  • the reference unit 6 When the power supply voltage Vcc of the power supply PWR rises due to fluctuations or the like, the reference unit 6 generates a constant voltage Vz regardless of the change in the power supply voltage Vcc, and further, based on the relationship of the above equation (2).
  • the detection unit 7 generates a detection voltage V2 from the difference voltage (Vcc-Vz).
  • the detection unit 7 By detecting the rise of the difference voltage (Vi-Vz), the detection voltage V2 that rises following the rise of the power supply voltage Vcc is output from the relationship of the above equation (2).
  • the detection voltage V2 increases with an increase in the power supply voltage Vcc
  • the voltage between the emitter bases of the switching element 3 formed of a PNP transistor increases, and the voltage amplification factor of the switching element 3 increases.
  • the detection voltage V 2 rises depending on the coefficient
  • the voltage change rate of the detection voltage V2 is gentler (smaller) than the voltage change rate of Vcc.
  • the voltage between the emitter and base of the switching element 3 increases with a rise in the power supply voltage Vcc, but increases with a smaller voltage change rate than the voltage change rate of the power supply voltage Vcc. The rate also increases in a suppressed state.
  • the amplitude of the switching signal S2 increases according to the voltage gain of the switching element 3 in which the switching is suppressed, and the voltage level of the DC voltage V4 output from the smoothing unit 4 is also reduced.
  • the power amplification factor of the driving element 5 also increases according to the suppressed voltage amplification factor of the switching element 3, and the driving power supplied to the light emitting element FL does not change significantly. For this reason, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL only change within a range where the brightness does not change and does not flicker.
  • the switching element 3 having the power of the PNP transistor is used.
  • the bias voltage between the emitter and base is secured by the detection voltage V2, and the detection voltage V2 drops depending on the coefficient
  • the voltage change rate of the detection voltage V2 is gentler (smaller) than that of.
  • the voltage between the emitter and the base of the switching element 3 decreases with the drop of the power supply voltage Vcc, the voltage decreases at a smaller voltage change rate than the voltage change rate of the power supply voltage Vcc.
  • the voltage amplification rate also decreases in a suppressed state, and the power amplification rate of the driving element 5, which is a PNP transistor, decreases in accordance with the suppressed voltage amplification rate of the switching element 3, and the driving power supplied to the light emitting element FL Does not change significantly.
  • the power supply voltage Vcc drops, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL only change within a range in which the brightness does not flicker without significantly changing.
  • the illumination control circuit 1 of the present embodiment even when the power supply voltage Vcc fluctuates, the reference unit 6 and the detection unit 7 prevent the load on the driving element 5 from increasing.
  • the DC voltage V4 and the control current Id can be adjusted, and the illuminance and the luminous intensity (, so-called brightness) of the light emitting element FL can be stabilized.
  • the detection voltage V2 changes, so that the voltage amplification factor of the switching element 3 also changes, and further the DC voltage V4 also changes.
  • the illuminance and luminous intensity (so-called brightness) of the element FL will change.
  • the voltage change ratio of the detection voltage V2 to the power supply voltage Vcc can be reduced.
  • DC voltage V4 so that the illuminance and luminous intensity (, so-called brightness) of the light emitting element FL change within a range that cannot be sensed by human eyes. It is possible to reduce. Further, since the fluctuation of the DC voltage V4 can be reduced, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL can be stabilized.
  • a change in the detection voltage V2 output from the detection unit 7 with respect to a change in the power supply voltage Vcc is variably adjusted by the coefficient
  • FIG. 4 is a circuit diagram showing the configuration of the illumination control circuit of the present embodiment, and the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals.
  • this lighting control circuit 1 includes a control signal source 2, a switching element 3, a smoothing unit 4, and a driving element 5, similarly to the lighting control circuit of the embodiment shown in FIG. , A reference unit 6, a detection unit 7, and a compensation unit 8.
  • the control signal source 2 is formed by an oscillation circuit 2a that outputs a PWM signal SO, an NPN transistor 2f, and resistors 2b to 2e for bias.
  • the switching element 3 is formed of a PNP transistor.
  • the emitter of the switching element 3 is connected to the positive output terminal (+) of the power supply PWR via a zener diode 9, and the collector is connected to the smoothing section 4. Then, by performing a switching operation according to the PWM signal S1 supplied to the base, a rectangular wave-like switching signal S2 is output.
  • the smoothing unit 4 is a ⁇ -type low-pass filter formed by the resistors 4a to 4d and the capacitors 4e and 4f, and generates a DC voltage V4 by smoothing the switching signal S2.
  • the driving element 5 is formed of the transistor 5, and the emitter of the driving element 5 controls the light emitting element FL. Connected to the positive output terminal (+) of the power supply PWR, the collector is connected to the compensation unit 8, and the DC voltage V4 is applied to the base.
  • the compensating unit 8 is formed by a PNP transistor 8 connected between the collector of the PNP transistor 5 and the negative output terminal (1) of the power supply PWR, and the collector is connected to the negative output terminal (1). ), Emitters are connected to the collectors of PNP transistors 5, respectively.
  • the reference section 6 is formed of a zener diode 6 that generates a constant voltage Vz, and generates a constant voltage Vz that is smaller than the power supply voltage Vcc.
  • the detecting unit 7 includes a plurality of resistors R11 to R13 connected in series together with the zener diode 6 between the positive output terminal (+) and the negative output terminal (-) of the power supply PWR and a switching switch. It is formed by SW and resistor R2. By switching the switch SW, one of the resistors R11 to R13 is connected between the positive output terminal (+) of the power supply PWR and the Zener diode 6. You.
  • the resistance values of the resistors R11 to R13 are as follows.
  • the resistor R13 is determined to be the largest value. Further, the resistor R2 is formed by a fixed resistor having a predetermined resistance value.
  • a detection voltage V2 is generated across the resistor R2 based on the relationship expressed by the following equation (3).
  • the coefficients ⁇ ⁇ , ⁇ 2, ⁇ 3 described in the above equations (3), (4), (5) are resistances Rll, R12, R 13 shows the voltage division ratio by 13 and the fixed resistance R2, and corresponds to the coefficient ⁇ shown in the above equation (1).
  • the detection voltage V2 generated at both ends of the resistor R2 is applied to the base of the transistor 8 constituting the compensator 8, and the compensation voltage V3 is generated between the emitter and collector of the transistor 8. It's like that.
  • the Zener diode 6 generates a constant voltage Vz, and the detection unit 7 formed by the resistors R11 to R13, the switching switch SW, and the resistor R2 divides the difference voltage (Vcc-Vz). Then, the detection voltage V2 is generated at both ends of the resistor R2, and the PNP transistor 8 power-amplifies the detection voltage V2, thereby generating a compensation voltage V3 that follows the detection voltage V2.
  • the detection voltage is calculated according to the relationship of the above equation (3).
  • the detection voltage V2 is generated according to the relationship of the above equation (4), and when the switch SW is switched to the resistor R13, The detection voltage V2 is generated according to the relationship of the above equation (5).
  • the PNP transistor 8 power-amplifies each detection voltage V2 to generate a compensation voltage V3 that follows each detection voltage V2.
  • the impedance when viewing the emitter of the PNP transistor 8 from the PNP transistor 5 side Z8 force From the PNP transistor 8 side
  • the impedance is lower than the impedance Z5.
  • the potential of the connection point P between the PNP transistor 5 and the PNP transistor 8 is determined by the compensation voltage V3, and the PNP transistor 5 and the light emitting element FL
  • a driving voltage Vx corresponding to a difference between the power supply voltage Vcc and the compensation voltage V3 is applied to both ends of the driving voltage Vcc.
  • the user or the like operates the oscillation circuit 2a externally to have an appropriate pulse width W.
  • the NPN transistor 2f When the PWM signal SO is output, the NPN transistor 2f generates a PWM signal S1 obtained by inverting and amplifying the PWM signal SO and supplies the PWM signal S1 to the base of the switching element 3.
  • the switching element 3 generates a switching signal S2 in accordance with the PWM signal S1
  • the smoothing unit 4 generates a DC voltage V4 based on the switching signal S2
  • the PNP transistor 5 generates a predetermined voltage corresponding to the DC voltage V4.
  • the driving power By setting the driving power, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL are adjusted to the brightness according to the pulse width W of the PWM signal S1.
  • the DC voltage V4 also remains at a voltage corresponding to the pulse width W.
  • the light emitting element FL can be maintained at the illuminance or luminous intensity (so-called brightness) desired by the user or the like.
  • the present illumination control device 1 when power supply voltage Vcc is stable at a constant voltage, drive voltage Vx is also maintained at a predetermined voltage, so that a large load is applied to PNP transistor 5.
  • the illuminance and luminous intensity (so-called brightness) of the light emitting element FL are not changed, and the brightness specified by the user or the like can be maintained.
  • one of the resistances Rll, R12, and R13 is selected by the switch SW.
  • the power supply voltage Vcc rises in the state of being turned on
  • the drive voltage Vx applied to both ends of the light emitting element FL and the PNP transistor 5 changes as shown in FIG. 2 (b) with the rise of the compensation voltage V3.
  • the drive voltage Vx is a voltage (Vcc ⁇ V3) obtained by subtracting the compensation voltage V3 from the power supply voltage Vcc
  • the compensation voltage V3 also increases when the power supply voltage Vcc increases.
  • the subtracted voltage (Vcc-V3), that is, the drive voltage Vx does not change much. For this reason, a state where a large load is not applied to the driving element 5 is maintained.
  • the user or the like externally operates the oscillation circuit 2a to output the PWM signal SO having an appropriate pulse width W, or to keep the pulse width W before the power supply voltage Vcc fluctuates.
  • the switching element 3 generates a switching signal S2 according to the inverted and amplified PWM signal S1 of the PWM signal SO
  • the smoothing unit 4 generates a DC voltage V4 based on the switching signal S2
  • the transistor 5 sets a predetermined driving power according to the DC voltage V4, thereby adjusting the illuminance and the luminous intensity (so-called brightness) of the light emitting element FL to a brightness corresponding to the pulse width W of the PWM signal S1.
  • the light-emitting element FL can emit light with almost constant illuminance and luminous intensity (or so-called brightness) desired by the user or the like in accordance with the pulse width W of the PWM signal SO.
  • the light emitting element FL and the PNP transistors 5 and 8 are connected in series with respect to the power supply voltage Vcc, and the detection unit 7 operates at the voltage of the power supply voltage Vcc. Since the PNP transistor 8 detects the fluctuation and generates the compensation voltage V3 that follows the fluctuation of the power supply voltage Vcc, even if the power supply voltage Vcc fluctuates, the voltage across the light-emitting element FL and the PNP transistor 5 That is, the fluctuation of the driving voltage Vx can be reduced, and the load applied to the PNP transistor 5 can be reduced. Further, since the fluctuation of the driving voltage Vx can be reduced, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL can be stabilized.
  • a Zener diode 6 and a detection unit 7 are provided for the power supply voltage Vcc, and the detection is performed based on the difference voltage (Vcc ⁇ Vz) between the power supply voltage Vcc and the constant voltage Vz generated in the Zener diode 6.
  • the output section 7 detects the fluctuation of the power supply voltage Vcc, and the PNP transistor 8 generates the compensation voltage V3 based on the detection result (detection voltage) V2, so that the power supply voltage Vcc is higher than the rated voltage.
  • the fluctuation of the driving voltage Vx between the light emitting element FL and the PNP transistor 5 can be reduced, the load applied to the PNP transistor 5 can be reduced, and the light emitting element can be reduced.
  • FL illuminance and luminous intensity can be stabilized, and even when the power supply voltage Vcc drops below the so-called rated voltage, light is emitted within the range from the rated voltage to the constant voltage Vz. It is possible to reduce the fluctuation of the driving voltage Vx between both ends of the element FL and the driving element 5, thereby reducing the load applied to the PNP transistor 5, and the illuminance and luminous intensity (so-called brightness) of the light emitting element FL. Stabilized) Rukoto can.
  • the change in the detection voltage V2 output from the detection unit 7 with respect to the change in the power supply voltage Vcc is variably adjusted by the switching switch SW, and as shown in FIG.
  • the drive voltage Vx can be adjusted with respect to the fluctuation of the power supply voltage Vcc.
  • the drive voltage Vx can be adjusted so as to suppress the fluctuation of the drive voltage Vx according to the actual change characteristic of the power supply voltage Vcc.
  • FIG. 5 is a circuit diagram showing the configuration of the illumination control circuit of the present embodiment, and the same or corresponding parts as in FIG. 3 are denoted by the same reference numerals.
  • this lighting control circuit 1 includes a control signal source 2, a switching element 3, a smoothing unit 4, and a driving element 5, similarly to the lighting control circuit of the embodiment shown in FIG. , A reference unit 6, a detection unit 7, and a compensation unit 10.
  • the control signal source 2 is formed by an oscillation circuit 2a that outputs a PWM signal SO and resistors 2b and 2c for biasing the switching element 3, and a P signal output from the oscillation circuit 2a.
  • the WM signal SO is divided into the PWM signal SI by the resistors 2b and 2c and supplied to the base of the switching element 3.
  • the switching element 3 is formed of a PNP transistor, the emitter of which is connected to the positive output terminal (+) of the power supply PWR, and the collector of which is connected to the smoothing section 4. Then, by performing a switching operation in accordance with the PWM signal S1 supplied to the base, the switching signal S2 having a rectangular waveform is output.
  • the smoothing unit 4 is a ⁇ -type low-pass filter formed by the resistors 4g to 4h, the capacitors 4i and 4j, and the NPN transistor Trl.
  • the resistors 4g to 4h and the capacitors 4i and 4j switch the switching signal S2.
  • the DC voltage V4a is generated by the smoothing, and the NPN transistor Trl further amplifies the DC voltage V4a by power, thereby generating a DC voltage V4 corresponding to the DC voltage V4a in the emitter.
  • the compensator 10 is formed by a differential amplifier circuit formed by NPN transistors Tr2 and Tr3 and resistors rl to r4 for biasing, and the NPN transistor Tr2 connected to the driving element 5 receives the DC voltage V4. Generates the corresponding control current Id.
  • the driving element 5 is formed of a PNP transistor 5, the emitter of which is connected to the positive output terminal (+) of the power supply PWR, and the collector of which is connected to the negative output of the power supply PWR via the light emitting element FL.
  • the NPN transistor Tr2 is connected to the terminal (1) and the base is connected to the collector of the NPN transistor Tr2, so that the NPN transistor Tr2 operates according to the control current Id.
  • the reference section 6 is formed of a zener diode 6 that generates a constant voltage Vz, and generates a constant voltage Vz smaller than the power supply voltage Vcc.
  • the detection unit 7 is formed by resistors Rl and R2 connected in series between the positive output terminal (+) and the negative output terminal (1) of the power supply PWR together with the zener diode 6, and The emitter of the switching element 3 composed of a PNP transistor and the resistor 2b are connected to the connection point of the resistors Rl and R2.
  • the resistances Rl and R2 divide the difference voltage (Vcc-Vz) between the power supply voltage Vcc and the constant voltage Vz, thereby obtaining the detection voltage V2 from the relationship represented by the following equation (6). appear.
  • V2 (Vcc-Vz) XR1 / (R1 + R2) + Vz
  • the reference unit 6 generates a constant voltage Vz
  • the detection unit 7 uses the detection voltage V2 generated based on the above-described difference voltage (Vcc-Vz) to generate an emitter potential of the switching element 3 based on the PNP transistor power.
  • Vcc-Vz difference voltage
  • the switching element 3 when the user or the like externally operates the oscillation circuit 2a to output the PWM signal SO having an appropriate pulse width W, the switching element 3 generates the switching signal S2 according to the PWM signal S1. Then, the smoothing unit 4 generates a DC voltage V4 based on the switching signal S2.
  • the NPN transistor Tr2 of the compensator 10 generates a control current Id in accordance with the DC voltage V4, and controls the operation of the PNP transistor 5, whereby the illuminance and luminous intensity (so-called bright Adjust the brightness according to the pulse width W of the PWM signal SO.
  • the DC voltage V4 also remains at a voltage corresponding to the pulse width, and the light emission is performed.
  • the illuminance and luminous intensity (so-called brightness) of the element FL can be maintained at a desired brightness.
  • the operation of the lighting control circuit 1 when the power supply voltage Vcc changes due to a fluctuation or the like will be described.
  • the Zener diode 6 When the power supply voltage Vcc of the power supply PWR rises due to fluctuations or the like, the Zener diode 6 generates a constant voltage Vz regardless of the change in the power supply voltage Vcc.
  • Rl and R2 also generate the above-mentioned difference voltage (Vcc-Vz) force, and also generate the detection voltage V2.
  • the difference voltage (Vcc-Vz) increases with the increase in the power supply voltage Vcc, and the resistances Rl and R2 are The rise of the difference voltage (Vcc-Vz) is detected, and a detection voltage V2 that rises following the rise of the power supply voltage Vcc is output from the relationship of the above equation (6).
  • the amplitude of the switching signal S2 increases in accordance with the voltage gain of the switching element 3 in which the switching is suppressed, and the voltage level of the DC voltage V4 output from the smoothing unit 4 is also reduced. Accordingly, the power amplification rate of the PNP transistor 5 also increases according to the suppressed voltage amplification rate of the switching element 3, and the driving power supplied to the light emitting element FL does not change significantly.
  • the illuminance and luminous intensity (so-called brightness) of the light-emitting element FL do not change significantly, but only change within a range where the brightness does not flicker.
  • the power supply voltage Vcc drops, the power supply voltage Vcc is deviated from the rated voltage to the reference voltage. If the voltage drop in the section 6 generates the constant voltage Vz, the bias voltage between the emitter and the base of the switching element 3 consisting of the PNP transistor is secured by the detection voltage V2. Since the voltage drops depending on the coefficient
  • the voltage between the emitter and the base of the switching element 3 decreases as the power supply voltage Vcc decreases
  • the voltage between the emitter and the base decreases at a smaller voltage change rate than the voltage change rate of the power supply voltage Vcc.
  • the voltage amplification rate also decreases in a suppressed state
  • the power amplification rate of the PNP transistor 5 also decreases in accordance with the suppressed voltage amplification rate of the switching element 3, and the driving power supplied to the light emitting element FL is also large. Does not change. For this reason, even when the power supply voltage Vcc drops, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL only change within a range in which the brightness does not flicker without greatly changing.
  • the illumination control circuit 1 of the present embodiment even when the power supply voltage Vcc fluctuates, the load on the PNP transistor 5 does not increase due to the Zener diode 6 and the resistors Rl and R2. As described above, the DC voltage V4 can be adjusted, and further, the illuminance and luminous intensity (or so-called brightness) of the light emitting element FL can be stabilized.
  • the detection voltage V2 changes, so that the voltage amplification factor of the switching element 3 also changes, and further the DC voltage V4 also changes.
  • the illuminance and luminous intensity (so-called brightness) of the element FL will change.
  • the voltage change ratio of the detection voltage V2 to the power supply voltage Vcc can be reduced. It is possible to reduce the fluctuation of the DC voltage V4 so that the illuminance and luminous intensity (, so-called brightness) of the light emitting element FL change within a range that cannot be sensed by human eyes. is there. Further, since the fluctuation of the DC voltage V4 can be reduced, the illuminance and luminous intensity (so-called brightness) of the light emitting element FL can be stabilized.
  • the change of the detection voltage V2 with respect to the change of the power supply voltage Vcc is variably adjusted by the coefficient ⁇ 8 shown in the above equation (6), for example, the change corresponds to the actual change characteristic of the power supply voltage Vcc.
  • the fluctuation of the DC voltage V4 can be adjusted. For this reason Even when controlling the illuminance and luminous intensity of the light emitting element FL using various power supplies PWR with different power supply voltage Vcc and voltage fluctuation, the fluctuation of the DC voltage V4 should be suppressed according to the characteristics of the power supply PWR. Effects such as adjustment can be obtained.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Arrangements Of Lighting Devices For Vehicle Interiors, Mounting And Supporting Thereof, Circuits Therefore (AREA)

Abstract

 本発明は、発光素子を駆動する駆動素子を有する照明制御回路において、電源電圧が変動した場合に、該駆動素子に対する負荷を低減し、また発光素子の明るさを安定化させることを目的とする。  電源電圧Vccに対して、発光素子FLと、発光素子FLを駆動する駆動素子5と、補償部8とを直列接続する。更に、電源電圧Vccに対して、定電圧Vzを発生する基準部6と、電源電圧Vccと定電圧Vzとの差電圧V1を検出する検出部7を直列接続する。電源電圧Vccが変動すると、検出部7が差電圧V1に基づいて電源電圧Vccの電圧変化を検出し、差電圧V1を分圧した検出電圧V2を発生し、補償部8が検出電圧V2に追従する補償電圧V3を発生することにより、電源電圧Vccの変化に対して、発光素子FLと駆動素子5との両端に掛かる駆動電圧Vxの変化を抑制する。

Description

明 細 書
照明制御回路
技術分野
[0001] 本発明は、例えば照明ランプや発光ランプや発光素子等の照度や光度等のいわ ゆる明るさを制御する照明制御回路に関する。
背景技術
[0002] 従来、カーオーディオ機器を照明するための照明ランプを駆動し、その照度を調整 する照明制御回路 (照明調整回路)として、特開平 11— 233276号公報に示された ものがある。
[0003] この照明調整回路は、同特許文献の図 1に示されているように、電源 (Vcc)に直列 接続された抵抗 (R1)及びツエナーダイオード (D1)と、 PWM信号 (P)に従ってスィ ツチング動作するスイッチングトランジスタ(Q2)と、抵抗 (Rl, R2)及びコンデンサ(C 1)で形成されたフィルタ回路と、電源 (Vcc)から照明ランプ (FL)へ駆動電力を供給 するための駆動素子としてのドライブ用トランジスタ (Q1)とを備えて構成されている。
[0004] 力かる構成の照明調整回路において、スイッチングトランジスタ (Q2)が PWM信号
(P)に応じて、ツエナーダイオード (D1)に生じる定電圧 (V2)をスイッチングし、その スイッチング出力をフィルタ回路が平滑ィ匕することにより直流電圧 (VB)を生成し、ド ライブ用トランジスタ(Q1)のベース電位を決定している。
[0005] このため、 PWM信号(P)のパルス幅(W)を調整すると、ドライブ用トランジスタ(Q1
)のベース電位を調整し、照明ランプ (FL)への駆動電力を調整することができ、照明 ランプ (FL)の照度を調整することが可能となって 、る。
[0006] また、 PWM信号(P)のパルス幅 (W)を所定幅に維持しておけば、直流電圧 (VB) によってドライブ用トランジスタ(Q1)のベース電位が一定レベルに保たれることから、 照明ランプ (FL)を一定の照度に保つことが可能となっている。
[0007] 特許文献 1 :特開平 11 233276号公報
発明の開示
発明が解決しょうとする課題 [0008] 上記従来の照明調整回路では、ツエナーダイオード (D1)に生じる定電圧 (V2)を 基準電圧とし、その定電圧 (V2)をスイッチングして平滑ィ匕することにより、ドライブ用 トランジスタ (Q1)のベース電位を調整するための直流電圧 (VB)を生成する構成と なっているため、電源 (Vcc)の電圧変動の影響を受けることなぐ照明ランプ (FL)が 一定の照度となるように調整することが可能となって 、る。
[0009] しかし、電源 (Vcc)に変動が生じて、その電圧レベルが上昇した場合、ドライブ用ト ランジスタ (Q1)のベース電位は直流電圧 (VB)によって一定に保たれるため、ドライ ブ用トランジスタ (Q1)のコレクタベース間電圧が上昇し、そのコレクタ損失が大きくな るという問題があった。
[0010] 特に、消費電力の大きな照明ランプ (FL)を駆動制御する場合、電源 (Vcc)の電圧 レベルが上昇すると、ドライブ用トランジスタ (Q1)に対する負荷が大きくなつて、ドラ イブ用トランジスタ (Q1)のコレクタ損失が急激に増大し、発熱等によってドライブ用ト ランジスタ (Q1)の特性が劣化したり、損傷等を招くという問題があった。
[0011] 本発明は、こうした従来の問題点に鑑みてなされたものであり、例えば照明ランプ や発光ランプや発光素子等を駆動する駆動素子を有する照明制御回路であって、 電源電圧変動等が生じた場合でも、該駆動素子に対する負荷を低減し得る照明制 御回路を提供することを目的とする。
[0012] また、電源電圧変動等が生じた場合でも、例えば照明ランプや発光ランプや発光 素子等の照度や光度等のいわゆる明るさを安定化させることが可能な照明制御回路 を提供することを目的とする。
課題を解決するための手段
[0013] 請求項 1に記載の発明は、発光素子を駆動制御する照明制御回路であって、前記 電源の電源電圧を検出し、前記電源電圧の変化に応じた検出電圧を出力する検出 手段と、前記発光素子と共に前記電源に直列接続された、前記発光素子を駆動する 駆動素子と、前記検出電圧に追従する補償電圧を発生する補償手段とを備え、前記 補償手段は、前記検出電圧に追従する前記補償電圧を発生することにより、前記電 源の電源電圧の変化に対して、前記発光素子と前記駆動素子との両端に掛かる駆 動電圧の変化を抑制することを特徴とする。 [0014] 請求項 7に記載の発明は、発光素子を駆動制御する照明制御回路であって、 前記発光素子と共に電源に直列接続され、前記発光素子を駆動する駆動素子と、 前記駆動素子に制御用の信号を供給する補償手段と、
前記電源の電源電圧を検出し、前記電源電圧の変化に応じた検出電圧を出力す ると共に、前記検出電圧によって前記補償手段を調節することにより、前記制御用の 信号のレベル変化を抑制させる検出手段と、を備えることを特徴とする。
図面の簡単な説明
[0015] [図 1]本発明の第 1の実施形態に係る照明制御回路の構成を表した回路図である。
[図 2]図 1に示した照明制御回路の基本特性を説明するための特性図である。
[図 3]本発明の第 2の実施形態に係る照明制御回路の構成を表した回路図である。
[図 4]第 1の実施例に係る照明制御回路の構成を表した回路図である。
[図 5]第 2の実施例に係る照明制御回路の構成を表した回路図である。
発明を実施するための最良の形態
[0016] 本発明に係る照明制御回路の 2つの実施形態を図 1〜図 3を参照して説明する。
[0017] 〔実施形態 1〕
図 1は、第 1の実施形態に係る照明制御回路 1の構成を表した回路図である。 同図において、この照明制御回路 1は、制御信号源 2と、制御素子としてのスィッチ ング素子 3と、平滑部 4と、駆動素子 5と、基準部 6と、検出部 7と、補償部 8を備えて 構成されており、例えば自動車に搭載されている車載バッテリ等の電源 PWRに接続 されると、該電源 PWR力 の電力供給を受けて発光する照明ランプや発光ランプや 発光素子等 FLの照度や光度を制御する。
[0018] なお、以下の説明では、便宜上、照明ランプや発光ランプや発光素子等 FLを単に 「発光素子」と総称することとする。
[0019] 制御信号源 2は、 PWM信号 S1を出力する発振回路等で形成されており、外部か らの操作入力によって、 PWM信号 S1のパルス幅(論理" H"となるときのパルス幅) Wを可変調整することが可能となっている。別言すれば、外部操作によって PWM信 号 S1のデューティを可変調整することが可能となっている。
[0020] スイッチング素子 3は、 PWM信号 S1に従ってスイッチング動作し、 PWM信号 S1 に対して論理反転した矩形波状のスイッチング信号 S2を出力する。
[0021] 平滑部 4は、ローノ スフィルタ等で形成され、スイッチング信号 S2を平滑ィ匕すること により、制御用信号としての直流電圧 V4を出力する。
[0022] 駆動素子 5は、発光素子 FLと補償回路 8の間に接続され、直流電圧 V4に従って 発光素子 FLを発光させるための駆動電力を設定する。
[0023] ここで、本実施形態では、駆動素子 5として PNPトランジスタが用いられており、そ のベースに直流電圧 V4が印加され、コレクタに補償部 8が接続され、ェミッタに発光 素子 FLの一方の入力端子が接続されて、発光素子 FLの他方の入力端子が電源 P
WRに接続されている。
[0024] そして、 PWM信号 S 1のパルス幅 Wが小さくなるほど、直流電圧 V4が上昇するた め、駆動素子 5は、発光素子 FLを発光させるための駆動電力を減少させ、逆に、 P WM信号 S 1のパルス幅 Wが大きくなるほど、直流電圧 V4が降下するため、駆動素 子 5は、発光素子 FLを発光させるための駆動電力を増カロさせる。
[0025] 基準部 6と検出部 7は、電源 PWRのマイナス側出力端子(-)とプラス側出力端子(
+ )間に直列接続されており、基準部 6は、ツエナーダイオードゃ定電圧回路等の定 電圧 Vzを発生する電子素子や電子回路で形成されて ヽる。
[0026] 検出部 7は、電源 PWRから出力される定電圧 Vzよりも高電圧の電源電圧 Vccと定 電圧 Vzとの差電圧 (Vcc— Vz)を検出し、差電圧 (Vcc— Vz)と所定の係数 exとの乗 算値に相当する、次式 (1)で表される検出電圧 V2を発生する。なお、係数 αは、 0より 大きく 1未満の正の定数値である。
[0027] V2 = α X (Vcc -Vz) ' · ·(1)
すなわち、説明の便宜上、電源 PWRのマイナス側出力端子(一)をグランド (GND )端子とすると、基準部 6と検出部 7との接続点に生じる電圧 VIが、 GND端子に対し てプラスとなる差電圧 (Vcc— Vz)となり、この差電圧 (Vcc— Vz)を検出部 7が検出し て、上記式 (1)で表される検出電圧 V2を発生する。
[0028] 補償部 8は、トランジスタや増幅回路等の能動素子や能動回路で形成されており、 検出電圧 V2を電力増幅することにより、検出電圧 V2に追従した補償電圧 V3を発生 し、その補償電圧 V3によって駆動素子 5と補償部 8との接続点 Pの電位を設定する。 [0029] また、補償部 8は、駆動素子 5側力も補償部 8を見た場合のインピーダンス Z8が補 償部 8側から駆動素子 5を見た場合のインピーダンス Z5に較べて低インピーダンスと なるように、上述の能動素子や能動回路によって形成されることにより、低インピーダ ンス側の補償電圧 V3によって駆動素子 5と補償部 8との接続点 Pの電位を設定する ことが可能となっている。
[0030] なお、本実施形態の補償部 8は、検出電圧 V2を電力増幅することにより、検出電 圧 V2より高い電圧となる補償電圧 V3を発生する構成となっているが、検出電圧 V2 と同電圧、又は、検出電圧 V2より低い電圧となる補償電圧 V3を発生するようにして もよい。すなわち、補償部 8は、検出電圧 V2が上昇するとそれに追従して補償電圧 V3も上昇し、検出電圧 V2が降下するとそれに追従して補償電圧 V3も降下するよう な補償電圧 V3を出力するようになって ヽる。
[0031] 次に、照明制御回路 1の基本特性と動作を図 1及び図 2を参照して説明する。
[0032] 〈照明制御回路 1の基本特性〉
まず、照明制御回路 1の基本特性を図 2を参照して説明する。
[0033] なお、図 2は、本照明制御回路 1の基本特性を説明するために、仮に電源電圧 Vcc を 0 (Volt)力 次第に上昇させたときの特性を表しており、同図(a)は、基準部 6の両 端に生じる電圧 Vzと、検出部 7の両端に生じる電圧 VIすなわち差電圧 (Vcc-Vz) と、検出部 7から出力される検出電圧 V2と、補償部 8の両端に生じる補償電圧 V3と、 発光素子 FL及び駆動素子 5との両端に生じる駆動電圧 Vxの変化を表した特性図、 同図 (b) (c)は、電源電圧 Vccの変化に対する駆動電圧 Vxの変化を表した特性図で ある。
[0034] 図 2 (a)において、例えば時間経過に従って電源電圧 Vccを所定電圧ずつ上昇さ せていくと、ツエナーダイオード等で形成されている基準部 6は、電源電圧 Vccが所 定の電圧 (例えばツエナー電圧) Vzg未満の範囲内では動作しないため、定電圧 Vz が発生せず、電源電圧 Vccが電圧 Vzg以上になると、電圧 Vzgとほぼ等しい定電圧 V zが発生する。
[0035] 電圧 VIは、電源電圧 Vccと定電圧 Vzとの差電圧 (Vcc-Vz)であるため、電源電 圧 Vccが電圧 Vzg以上となる範囲内において、電源電圧 Vccの変化に追従して変化 する。
[0036] 検出電圧 V2は、電源電圧 Vccが電圧 Vzg以上となる範囲内において、電圧 VIに 従って変化し、更に、補償電圧 V3も同様に電圧 VI及び検出電圧 V2に従って変化 する。ただし、検出電圧 V2は、上記式 (1)の関係に従って変化することから、電圧 VI の電圧変化率よりも緩やかな電圧変化率で変化することとなり、更に、補償電圧 V3も 検出電圧 V2に従って緩やかな電圧変化率で変化する。
[0037] 駆動電圧 Vxは、電源電圧 Vccと補償電圧 V3との差の電圧 (Vcc— V3)に相当する こと力 、図 2 (b)に示すように、電源電圧 Vccの変化に追従して変化する。
[0038] すなわち、駆動電圧 Vxは、電源電圧 Vccが電圧 Vzg以上となる範囲内にお 、て、 電源電圧 Vccに追従して変化する。ただし、電源電圧 Vccが上昇すると、補償電圧 V 3も上昇するため、駆動電圧 Vxは、電源電圧 Vccの電圧変化率よりも緩やかな (小さ い)電圧変化率で変化する。
[0039] 更に、上記式 (1)の関係から、係数 exを可変調整すると、電源電圧 Vccの変化し応じ て検出電圧 V2の電圧変化率が変化することから、図 2 (c)に例示するように、電源電 圧 Vccに追従して変化する駆動電圧 Vxの電圧変化率も変化する。
[0040] そして、本照明制御回路 1は、基準部 6に発生する定電圧 Vz (すなわち電圧 Vzg) よりも高電圧(例えば電圧 Vccg)の電源電圧 Vccを出力する電源 PWRに接続されて 動作する。
[0041] 次に、以上に説明した基本特性を有する本照明制御回路 1の動作を説明する。
[0042] 〈電源電圧 Vccが安定している場合の照明制御回路 1の動作〉
上述の電圧 Vccgの電源電圧 Vccを出力する電源 PWRが接続され、電源電圧 Vcc が一定電圧で安定している場合、上記式 (1)中の係数 αが所定値に設定されると、発 光素子 FLと駆動素子 5との両端に掛カる駆動電圧 Vxは、図 2 (b)に示す電圧 Vccg に対応する電圧 Vxs〖こ保持されることとなる。
[0043] この駆動電圧 Vxが一定電圧に保たれて ヽる状態で、ユーザ等が制御信号源 2を 外部操作して、適宜のパルス幅 Wを有する PWM信号 S 1を出力させると、スィッチン グ素子 3がその PWM信号 S 1に従ってスイッチング信号 S 2を生成し、平滑部 4がそ のスイッチング信号 S2を平滑化することにより、 PWM信号 S 1のパルス幅 Wに比例し た直流電圧 V4を生成する。そして、駆動素子 5が直流電圧 V4に応じた所定の駆動 電力を設定することにより、発光素子 FLの照度や光度 (いわゆる明るさ)を PWM信 号 S 1のパルス幅 Wに応じた明るさに調整する。
[0044] したがって、ユーザ等が制御信号源 2を外部操作して、 PWM信号 S1のパルス幅
Wを適宜に調整すると、発光素子 FLの照度や光度 (いわゆる明るさ)を所望の明るさ に調整することが可能となって 、る。
[0045] 更に、ユーザ等が制御信号源 2を外部操作して、 PWM信号 S1のパルス幅 Wを適 宜のパルス幅に保持させると、直流電圧 V4もそのパルス幅 Wに応じた電圧のままと なり、発光素子 FLをユーザ等の所望する照度や光度 (いわゆる明るさ)に維持させる ことができる。
[0046] 更に、本照明制御装置 1によれば、電源電圧 Vccが一定電圧で安定している場合 には、駆動電圧 Vxも所定電圧 (すなわち電圧 Vxs)に保たれるため、駆動素子 5に大 きな負荷が力かることがなぐ更に、発光素子 FLの照度や光度 (いわゆる明るさ)を変 動させることなぐユーザ等が指定した明るさに保つことができる。
[0047] 〈電源電圧 Vccが変動等した場合の照明制御回路 1の動作〉
次に、電源電圧 Vccが変動等によって変化した場合の動作を説明する。例えば、電 源 PWRが自動車に搭載された車載バッテリであった場合、発電機によって充電され るため、電源電圧 Vccが上昇する等の変動を生じることとなる。
[0048] 電源電圧 Vccがこうした変動等によって上昇した場合、基準部 6の定電圧 Vzは上 述の電圧 Vzgのままとなつて変化しないため、上記式 (1)の関係から、検出電圧 V2と 補償電圧 V3が電源電圧 Vccに伴って上昇することとなり、駆動電圧 Vxは、電源電圧 Vccに従って上昇するものの、図 2 (b)に示したように、電圧 Vxsを基準として、電源電 圧 Vccに較べて穏やかな (小さ ヽ)電圧変化率で変化することとなる。
[0049] このため、電源電圧 Vccが上昇しても、駆動素子 5は大きな負荷力かかることがなく 、更に、発光素子 FLの照度や光度 (いわゆる明るさ)を変動させることなく発光させる ことができる。
[0050] そして、上述したようにユーザ等が制御信号源 2を外部操作して、 PWM信号 S 1の パルス幅 Wを調整すると、電圧変化の小さ!/ヽ駆動電圧 Vxによってバイアスされた駆 動素子 5に、その PWM信号 SIに応じた直流電圧 V4が印加されるため、駆動素子 5 は、発光素子 FLをユーザ等の調整した照度や光度 ( 、わゆる明るさ)で発光させるこ とができ、更に明るさにちらつきを生じさせることなく発光させることができる。
[0051] すなわち、電源電圧 Vccが上昇すると、図 2 (b)に示したように、駆動電圧 Vxが若干 変化することとなるため、厳密には、発光素子 FLの照度や光度 (いわゆる明るさ)が 変化することとなるが、検出部 7の係数ひを予め調整しておくことによって、駆動電圧 Vxの電源電圧 Vccに対する電圧変化率を小さくすることができ、人間の目では感じる ことができない程度の範囲内で発光素子 FLの照度や光度 (いわゆる明るさ)が変化 するように、駆動電圧 Vxの変化を抑制することが可能である。したがって、照明制御 回路 1によれば、電源電圧 Vccが上昇した場合でも、発光素子 FLの照度や光度 (い わゆる明るさ)にちらつきを生じさせることなく発光させることができる。
[0052] また、電源電圧 Vccが、図 2 (b)に示した電圧 Vccgよりも降下した場合でも、基準部 6の定電圧 Vzが電圧 Vzgとなる範囲内であれば、駆動電圧 Vxの電圧変化が小さ ヽ ため、駆動素子 5によって、発光素子 FLの照度や光度 (いわゆる明るさ)にちらつき を生じさせることなく発光させることができる。
[0053] 例えば、電源電圧 Vccの定格電圧 Vccgが 12 (Volt)で、基準部 6が発生する定電圧 Vzの電圧 Vzgが 5. 3 (Volt)であった場合、電源電圧 Vcc力 12 (Volt)力ら 5. 3 (Volt )の範囲内で降下した場合には、駆動電圧 Vxの電圧変化が小さいため、駆動素子 5 によって、発光素子 FLの照度や光度 (いわゆる明るさ)にちらつきを生じさせることな く発光させることが可能である。
[0054] 以上説明したように、本実施形態の照明制御回路 1によれば、電源電圧 Vccに対し て発光素子 FLと駆動素子 5と補償部 8とを直列接続し、検出部 7が電源電圧 Vccの 電圧変動を検出して、補償部 8が電源電圧 Vccの変動に追従する補償電圧 V3を発 生するようにしたので、電源電圧 Vccが変動した場合でも、発光素子 FLと駆動素子 5 との両端電圧、すなわち駆動電圧 Vxの変動を低減することができ、駆動素子 5に掛 力る負荷を低減することができる。更に、駆動電圧 Vxの変動を低減することができる ため、発光素子 FLの照度や光度 (いわゆる明るさ)を安定化させることができる。
[0055] 更に、電源電圧 Vccに対して基準部 6と検出部 7を設け、電源電圧 Vccと基準部 6に 発生する定電圧 Vzとの差電圧 (Vcc— Vz)に基づいて、検出部 7が電源電圧 Vccの 変動を検出し、その検出結果 (検出電圧) V2に基づいて補償部 8が補償電圧 V3を 発生するようにしたので、電源電圧 Vccが 、わゆる定格電圧 Vccgよりも上昇した場合 にも、発光素子 FLと駆動素子 5との両端の駆動電圧 Vxの変動を低減することができ 、駆動素子 5に掛力る負荷を低減することができると共に、発光素子 FLの照度や光 度 (いわゆる明るさ)を安定ィ匕させることができ、更に、電源電圧 Vccがいわゆる定格 電圧 Vccgよりも降下した場合にも、定格電圧 Vccg力ゝら定電圧 Vzまでの範囲内にお V、て、発光素子 FLと駆動素子 5との両端の駆動電圧 Vxの変動を低減することができ 、駆動素子 5に掛力る負荷を低減することができると共に、発光素子 FLの照度や光 度 ( ヽゎゆる明るさ)を安定化させることができる。
[0056] 更に、電源電圧 Vccの変化に対する検出部 7から出力される検出電圧 V2の変化を 、上記式 (1)に示した係数 αによって可変調整するようにしたため、図 2 (c)に示したよ うに、電源電圧 Vccの変動に対して駆動電圧 Vxを調整することができ、例えば電源 電圧 Vccの実際の変化特性に対応させて、駆動電圧 Vxの変動を抑制するように調 整することができる。
[0057] このため、電源電圧 Vccや電圧変動等の異なる各種電源 PWRを用いて、発光素 子 FLの照度や光度を制御する場合でも、その電源 PWRの特性に合わせて、駆動 電圧 Vxの変動を抑制するように調整することができる等の効果が得られる。
[0058] 〔実施形態 2〕
次に、第 2の実施形態に係る照明制御回路を図 3を参照して説明する。なお、図 3 は、本実施形態の照明制御回路 1の構成を表した回路図であり、図 1と同一又は相 当する部分を同一符号で示している。
[0059] 図 3において、この照明制御回路 1は、制御信号源 2と、制御素子としてのスィッチ ング素子 3と、平滑部 4、駆動素子 5、基準部 6、検出部 7、補償部 10を備えて構成さ れている。
[0060] 制御信号源 2は、図 1に示した第 1の実施形態と同様に、 PWM信号 S1を出力する 発振回路等で形成されており、外部力ゝらの操作入力によって PWM信号 S1のパルス 幅 Wを可変調整することが可能となって 、る。 [0061] スイッチング素子 3は、 PWM信号 SIに従ってスイッチング動作し、矩形波状のスィ ツチング信号 S2を出力する。
[0062] 平滑部 4は、ローノ スフィルタ等で形成されており、スイッチング信号 S2を平滑ィ匕す ることにより、上述のパルス幅 Wに応じた制御用信号としての直流電圧 V4を発生す る。そして、直流電圧 V4は、 PWM信号 S1のパルス幅 Wが小さくなるほど上昇し、 P
WM信号 S1のパルス幅 Wが大きくなるほど降下する。
[0063] 補償部 10は、駆動素子 5を動作させるための制御電流 Idを直流電圧 V4に応じて 設定する。
[0064] 駆動素子 5は、電源 PWRのプラス側出力端子( + )とマイナス側出力端子(一)の間 に、発光素子 FLと共に直列接続され、制御電流 Idに従って発光素子 FLを発光させ るための駆動電力を設定する。
[0065] ここで、本実施形態では、駆動素子 5は PNPトランジスタで形成されており、該 PNP トランジスタのェミッタが電源 PWRのプラス側出力端子(+ )、コレクタが発光素子 FL に接続され、更にベースが補償部 10に接続されて制御電流 Idによって制御されるよ うになつている。
[0066] そして、補償部 10は、直流電圧 V4が上昇すると、制御電流 Idを増加させることによ り、 PNPトランジスタのベース電流 (別言すれば、吸引電流)を増加させ、一方、直流 電圧 V4が降下すると、制御電流 Idを減少させることにより、 PNPトランジスタのベー ス電流を減少させる。このため、駆動素子 (PNPトランジスタ) 5は、直流電圧 V4が上 昇すると、発光素子 FLを発光させるための駆動電力を増加させ、直流電圧 V4が降 下すると、発光素子 FLを発光させるための駆動電力を減少させる。
[0067] 基準部 6と検出部 7は、電源 PWRのプラス側出力端子(+ )とマイナス側出力端子( 一)の間に直列接続されており、基準部 6は、ッヱナ一ダイオードゃ定電圧回路等の 定電圧 Vzを発生する電子素子や電子回路で形成され、電源電圧 Vccより小さな定 電圧 Vzを発生する。
[0068] 検出部 7は、電源 PWRの電源電圧 Vccと定電圧 Vzとの差電圧(Vcc— Vz)を検出 し、検出部 7とスイッチング素子 3の接続点と、電源 PWRのマイナス側出力端子(一) との間に、次式 (2)で表される検出電圧 V2を発生する。なお、係数 j8は、 0より大きく 1 未満の正の定数値である。
[0069] V2= β X (Vcc -Vz) +Vz … (2)
すなわち、検出部 7は、差電圧 (Vcc— Vz)に係数 j8を乗算することで表される電圧 β X (Vcc-Vz)に定電圧 Vzを加えた電圧を、検出電圧 V2として発生する。そして、 この検出電圧 V2によって、 PNPトランジスタから成るスイッチング素子 3のェミッタ電 位を設定している。
[0070] 次に、力かる構成を有する照明制御回路 1の動作を説明する。
[0071] まず、電源電圧 Vccが変動することなく一定の場合における、照明制御回路 1の動 作を説明する。
[0072] 基準部 6が定電圧 Vzを発生し、検出部 7が上述の差電圧 (Vcc-Vz)に基づ ヽて 発生した検出電圧 V2によって、 PNPトランジスタ力 成るスイッチング素子 3のェミツ タ電位を設定する。更に、電源電圧 Vccが変動することなく一定の場合には、検出電 圧 V2が一定電圧のままとなり、 PNPトランジスタから成るスイッチング素子 3のェミッタ 電位も検出電圧 V2によって一定電圧のまま保持される。
[0073] かかる状態で、ユーザ等が制御信号源 2を外部操作して、適宜のパルス幅 Wを有 する PWM信号 S1を出力させると、スイッチング素子 3がその PWM信号 S1に従って スイッチング信号 S2を生成し、平滑部 4がそのスイッチング信号 S2に基づ 、て直流 電圧 V4を生成する。
[0074] そして、駆動素子 5が直流電圧 V4に応じた所定の駆動電力を設定することにより、 発光素子 FLの照度や光度(いわゆる明るさ)を PWM信号 S1のパルス幅 Wに応じた 明るさに調整する。
[0075] したがって、ユーザ等が制御信号源 2を外部操作して、直流電圧 V4が降下するよう に PWM信号 S1のパルス幅 Wを調整すると、駆動素子 5の電力増幅率が低下して、 発光素子 FLの照度や光度 (いわゆる明るさ)を低下させることができ、一方、直流電 圧 V4が上昇するように PWM信号 S1のパルス幅 Wを調整すると、駆動素子 5の電力 増幅率が上昇し、発光素子 FLの照度や光度 (いわゆる明るさ)を上昇させることがで きる。
[0076] また、ユーザ等が制御信号源 2を外部操作して、 PWM信号 S1のパルス幅 Wを適 宜のパルス幅に保持させると、直流電圧 V4もそのパルス幅に応じた電圧のままとなり 、発光素子 FLの照度や光度 (いわゆる明るさ)を所望の明るさに維持させることがで きる。
[0077] 次に、電源電圧 Vccが変動等によって変化した場合の照明制御回路 1の動作を説 明する。
[0078] 電源 PWRの電源電圧 Vccが変動等によって上昇した場合、基準部 6はその電源電 圧 Vccの変化にかかわらず定電圧 Vzを発生し、更に、上記式 (2)の関係に基づいて、 検出部 7が上述の差電圧 (Vcc-Vz)から検出電圧 V2を発生する。
[0079] ここで、電源電圧 Vccが変動等しても定電圧 Vzは変化しな 、ため、差電圧 (Vcc- Vz)は電源電圧 Vccの上昇に伴って上昇することとなり、検出部 7がこの差電圧 (Vi —Vz)の上昇を検出して、上記式 (2)の関係から、電源電圧 Vccの上昇に追従して上 昇する検出電圧 V2を出力する。
[0080] こうして、電源電圧 Vccの上昇に伴って検出電圧 V2が上昇すると、 PNPトランジス タカ 成るスイッチング素子 3のェミッタベース間の電圧が大きくなり、スイッチング素 子 3の電圧増幅率が大きくなる。
[0081] そして、スイッチング素子 3の電圧増幅率が大きくなると、スイッチング信号 S2の振 幅が大きくなり、平滑部 4から出力される直流電圧 V4の電圧レベルが上昇して、 PN Pトランジスタ力 成る駆動素子 5によって発光素子 FLに供給される駆動電力が増加 する。
[0082] ここで注目すべき点は、電源電圧 Vccが変動等によって上昇した場合、検出電圧 V 2は、上記式 (2)の係数 |8に依存して上昇することとなるため、電源電圧 Vccの電圧変 化率に較べて検出電圧 V2の電圧変化率の方が穏やかとなる(小さくなる)。このため 、スイッチング素子 3のェミッタベース間の電圧は、電源電圧 Vccの上昇に伴って大き くなるものの、電源電圧 Vccの電圧変化率に較べて小さな電圧変化率で大きくなり、 スイッチング素子 3の電圧増幅率も抑制された状態で大きくなる。
[0083] したがって、スイッチング信号 S2の振幅力 抑制されたスイッチング素子 3の電圧増 幅率に従って大きくなり、平滑部 4から出力される直流電圧 V4の電圧レベルも、抑制 されたスイッチング素子 3の電圧増幅率に従って上昇し、 PNPトランジスタ力 成る駆 動素子 5の電力増幅率も、抑制されたスイッチング素子 3の電圧増幅率に従って増加 することとなり、発光素子 FLに供給される駆動電力も大幅に変化することがない。こ のため、発光素子 FLの照度や光度 (いわゆる明るさ)は大きく変化することがなぐ明 るさがちらつくことのない範囲内で変化するに止まることとなる。
[0084] また、電源電圧 Vccが降下した場合でも、その電源電圧 Vccが定格電圧から、基準 部 6が定電圧 Vzを発生する範囲内での電圧降下あれば、 PNPトランジスタ力 成る スイッチング素子 3のェミッタベース間のバイアス電圧が検出電圧 V2によって確保さ れることとなり、更に、検出電圧 V2は上記式 (2)の係数 |8に依存して降下することとな るため、電源電圧 Vccの電圧変化率に較べて検出電圧 V2の電圧変化率の方が穏 や力となる (小さくなる)。
[0085] このため、スイッチング素子 3のェミッタベース間の電圧は、電源電圧 Vccの降下に 伴って小さくなるものの、電源電圧 Vccの電圧変化率に較べて小さな電圧変化率で 小さくなり、スイッチング素子 3の電圧増幅率も抑制された状態で小さくなり、 PNPトラ ンジスタカ 成る駆動素子 5の電力増幅率も、抑制されたスイッチング素子 3の電圧 増幅率に従って減少することとなり、発光素子 FLに供給される駆動電力も大幅に変 化することがない。このため、電源電圧 Vccが降下した場合でも、発光素子 FLの照度 や光度 (いわゆる明るさ)は大きく変化することがなぐ明るさがちらつくことのない範 囲内で変化するに止まることとなる。
[0086] 以上説明したように、本実施形態の照明制御回路 1によれば、電源電圧 Vccが変動 等した場合でも、基準部 6と検出部 7によって、駆動素子 5の負荷が大きくならないよ うに直流電圧 V4及び制御電流 Idを調整することができ、更に、発光素子 FLの照度 や光度 ( 、わゆる明るさ)を安定ィ匕することができる。
[0087] また、電源電圧 Vccが変動すると、検出電圧 V2が変化することから、スイッチング素 子 3の電圧増幅率も変化し、更に直流電圧 V4も変化することとなるため、厳密には、 発光素子 FLの照度や光度 (いわゆる明るさ)が変化することとなるが、検出部 7の係 数 j8を予め調整しておくことによって、検出電圧 V2の電源電圧 Vccに対する電圧変 化率を小さくすることができ、人間の目では感じることができない程度の範囲内で発 光素子 FLの照度や光度 ( 、わゆる明るさ)が変化するように、直流電圧 V4の変動を 低減することが可能である。更に、直流電圧 V4の変動を低減することができるため、 発光素子 FLの照度や光度 (いわゆる明るさ)を安定化させることができる。
[0088] 更に、電源電圧 Vccの変化に対する検出部 7から出力される検出電圧 V2の変化を 、上記式 (2)に示した係数 |8によって可変調整するようにしたため、例えば電源電圧 V ccの実際の変化特性に対応させて、直流電圧 V4及び制御電流 Idの変動を抑制す るように調整することができる。このため、電源電圧 Vccや電圧変動等の異なる各種 電源 PWRを用いて、発光素子 FLの照度や光度を制御する場合でも、その電源 PW Rの特性に合わせて、直流電圧 V4の変動を抑制するように調整することができる等 の効果が得られる。
実施例 1
[0089] 次に、第 1の実施形態に係るより具体的な照明制御回路の実施例を図 4を参照して 説明する。
[0090] 図 4は、本実施例の照明制御回路の構成を表した回路図であり、図 1と同一又は相 当する部分を同一符号で示している。
[0091] 図 4において、この照明制御回路 1は、図 1に示した実施形態の照明制御回路と同 様に、制御信号源 2と、スイッチング素子 3と、平滑部 4と、駆動素子 5と、基準部 6と、 検出部 7と、補償部 8を備えて構成されている。
[0092] 制御信号源 2は、 PWM信号 SOを出力する発振回路 2aと、 NPNトランジスタ 2fとバ ィァス用の抵抗 2b〜2eとによって形成されており、 NPNトランジスタ 2fが PWM信号
SOを反転増幅し、その反転増幅した PWM信号 S1をスイッチング素子 3のベースに 供給する。
[0093] スイッチング素子 3は、 PNPトランジスタで形成されており、そのェミッタがツエナー ダイオード 9を介して電源 PWRのプラス側出力端子(+ )に接続され、コレクタが平滑 部 4に接続されている。そして、ベースに供給される PWM信号 S1に従ってスィッチン グ動作することにより、矩形波状のスイッチング信号 S2を出力する。
[0094] 平滑部 4は、抵抗 4a〜4dとコンデンサ 4e, 4fによって形成された π型ローパスフィ ルタであり、スイッチング信号 S 2を平滑ィ匕することにより、直流電圧 V4を発生する。
[0095] 駆動素子 5は、 ΡΝΡトランジスタ 5で形成されており、そのェミッタが発光素子 FLを 介して電源 PWRのプラス側出力端子(+ )に接続され、コレクタが補償部 8に接続さ れ、ベースに直流電圧 V4が印加されている。
[0096] 補償部 8は、 PNPトランジスタ 5のコレクタと電源 PWRのマイナス側出力端子(一)と の間に接続された PNPトランジスタ 8によって形成されており、そのコレクタがマイナ ス側出力端子(一)、ェミッタが PNPトランジスタ 5のコレクタに夫々接続されている。
[0097] 基準部 6は、定電圧 Vzを発生するッヱナ一ダイオード 6で形成されており、電源電 圧 Vccより小さ 1ゝ定電圧 Vzを発生する。
[0098] 検出部 7は、電源 PWRのプラス側出力端子(+ )とマイナス側出力端子(-)との間 に、ツエナーダイオード 6と共に直列接続された複数個の抵抗 R11〜R13と切替えス イッチ SWと抵抗 R2によって形成され、切替えスィッチ SWを切り替えることにより、抵 抗 R11〜R13の何れかを電源 PWRのプラス側出力端子(+ )とツエナーダイオード 6 との間に接続するようになって ヽる。
[0099] また、抵抗 R11〜R13の各抵抗値は、抵抗 R11が最も小さぐ次に抵抗 R12が大きく
、抵抗 R13が最も大きな値に決められている。また、抵抗 R2は、所定の抵抗値を有す る固定抵抗で形成されて 、る。
[0100] そして、切替スィッチ SWを抵抗 R11側に切り替えると、抵抗 R11と R2が、電源電圧
Vccと定電圧 Vzとの差電圧 (Vcc— Vz)を分圧することにより、次式 (3)で表される関係 から、抵抗 R2の両端に検出電圧 V2を発生する。
[0101] V2 = (Vcc - Vz) X R2/ (Rl 1 + R2) = α 1 X (Vcc - Vz) · '·(3)
また、切替スィッチ SWを抵抗 R12側に切り替えると、抵抗 R12と R2が、電源電圧 V ccと定電圧 Vzとの差電圧 (Vcc Vz)を分圧することにより、次式 (4)で表される関係 から、抵抗 R2の両端に検出電圧 V2を発生する。
[0102] V2 = (Vcc - Vz) X R2/ (Rl 2 + R2) = α 2 X (Vcc - Vz) · '·(4)
また、切替スィッチ SWを抵抗 R13側に切り替えると、抵抗 R13と R2が、電源電圧 V ccと定電圧 Vzとの差電圧 (Vcc Vz)を分圧することにより、次式 (5)で表される関係 から、抵抗 R2の両端に検出電圧 V2を発生する。
[0103] V2 = (Vcc - Vz) X R2/ (Rl 3 + R2) = α 3 X (Vcc - Vz) 〜(5)
なお、上記式 (3)(4)(5)に記載されている係数 α ΐ, α 2, α 3は、各抵抗 Rll, R12, R 13と固定抵抗 R2とによる分圧比を示し、前記式 (1)に示した係数 αに相当している。
[0104] そして、抵抗 R2の両端に生じる検出電圧 V2が、補償部 8を構成している ΡΝΡトラ ンジスタ 8のベースに印加され、該 ΡΝΡトランジスタ 8のェミッタコレクタ間に補償電圧 V3が発生するようになって 、る。
[0105] 次に、本実施例の照明制御回路 1の動作を図 2及び図 4を参照して説明する。
[0106] まず、図 2 (a)を参照して、本実施例の照明制御回路 1の基本動作を説明する。
[0107] ツエナーダイオード 6が定電圧 Vzを発生し、抵抗 R11〜R13と切替スィッチ SWと抵 抗 R2によって形成された検出部 7が、上述の差電圧 (Vcc-Vz)を分圧することによ つて、抵抗 R2の両端に検出電圧 V2を発生させ、 PNPトランジスタ 8が検出電圧 V2 を電力増幅することにより、検出電圧 V2に追従する補償電圧 V3を発生する。
[0108] すなわち、上記式 (3)(4)(5)を参照して説明したように、切替スィッチ SWが抵抗 R11 側に切り替えられた場合には、上記式 (3)の関係に従って検出電圧 V2が発生し、切 替スィッチ SWが抵抗 R12側に切り替えられた場合には、上記式 (4)の関係に従って 検出電圧 V2が発生し、切替スィッチ SWが抵抗 R13側に切り替えられた場合には、 上記式 (5)の関係に従って検出電圧 V2が発生する。そして、 PNPトランジスタ 8が各 検出電圧 V2を電力増幅することにより、各検出電圧 V2に追従する補償電圧 V3を発 生する。
[0109] 更に、 PNPトランジスタ 8のェミッタと、 PNPトランジスタ 5のコレクタとが接続されて いるため、 PNPトランジスタ 5側から PNPトランジスタ 8のェミッタを見た場合のインピ 一ダンス Z8力 PNPトランジスタ 8側から PNPトランジスタ 5を見た場合のインピーダ ンス Z5に較べて低インピーダンスとなり、その結果、補償電圧 V3によって PNPトラン ジスタ 5と PNPトランジスタ 8との接続点 Pの電位が決まり、 PNPトランジスタ 5と発光 素子 FLとの両端に、電源電圧 Vccと補償電圧 V3との差分に相当する駆動電圧 Vx が掛力つた状態となる。
[0110] 更に、電源電圧 Vccが変動することなく一定の場合には、検出電圧 V2と補償電圧 V3も夫々一定電圧のままとなり、駆動電圧 Vxも上述の電圧 (VCC-V3)のまま保持 される。
[0111] かかる状態で、ユーザ等が発振回路 2aを外部操作して、適宜のパルス幅 Wを有す る PWM信号 SOを出力させると、 NPNトランジスタ 2fが PWM信号 SOを反転増幅した PWM信号 S1を生成してスイッチング素子 3のベースに供給する。そして、スィッチン グ素子 3がその PWM信号 S1に従ってスイッチング信号 S2を発生し、平滑部 4がそ のスイッチング信号 S2に基づいて直流電圧 V4を発生し、 PNPトランジスタ 5が直流 電圧 V4に応じた所定の駆動電力を設定することにより、発光素子 FLの照度や光度 ( いわゆる明るさ)を PWM信号 S1のパルス幅 Wに応じた明るさに調整する。
[0112] したがって、ユーザ等が発振回路 2aを外部操作して、 PWM信号 SOのパルス幅 W を適宜に調整すると、発光素子 FLの照度や光度 (いわゆる明るさ)を所望の明るさに 調整することが可能となって 、る。
[0113] 更に、ユーザ等が発振回路 2aを外部操作して、 PWM信号 SOのパルス幅 Wを適宜 のパルス幅に保持させると、直流電圧 V4もそのパルス幅 Wに応じた電圧のままとなり 、発光素子 FLをユーザ等の所望する照度や光度 (いわゆる明るさ)に維持させること ができる。
[0114] 更に、本照明制御装置 1によれば、電源電圧 Vccが一定電圧で安定している場合 には、駆動電圧 Vxも所定電圧に保たれるため、 PNPトランジスタ 5に大きな負荷がか 力ることがなぐ更に、発光素子 FLの照度や光度 (いわゆる明るさ)を変動させること なぐユーザ等が指定した明るさに保つことができる。
[0115] 次に、電源 PWRの電源電圧 Vccが変動等によって変化した場合の照明制御回路 1の動作を説明する。
[0116] 電源 PWRの電源電圧 Vccが変動等によって上昇した場合、ツエナーダイオード 6 の両端には、電源電圧 Vccの変動に影響されることなく定電圧 Vzが発生するため、 上記式 (3)(4)(5)を参照して説明したように、切替スィッチ SWが抵抗 R11側に切り替え られた場合には、上記式 (3)の関係に従って検出電圧 V2が上昇し、切替スィッチ SW が抵抗 R12側に切り替えられた場合には、上記式 (4)の関係に従って検出電圧 V2が 上昇し、切替スィッチ SWが抵抗 R13側に切り替えられた場合には、上記式 (5)の関係 に従って検出電圧 V2が上昇する。そして、 PNPトランジスタ 8が各検出電圧 V2を電 力増幅することにより、各検出電圧 V2に追従する補償電圧 V3を発生する。
[0117] そして、切替えスィッチ SWによって抵抗 Rll, R12, R13の何れかが切り替え選択さ れた状態で電源電圧 Vccが上昇すると、補償電圧 V3の上昇に伴って、発光素子 FL と PNPトランジスタ 5との両端に掛カる駆動電圧 Vxが、図 2 (b)に示すように変化する
[0118] ここで、駆動電圧 Vxは、電源電圧 Vccから補償電圧 V3を差し引いた電圧(Vcc— V 3)であるため、電源電圧 Vccが上昇すると補償電圧 V3も上昇するという関係から、 上述の差し引いた電圧 (Vcc— V3)すなわち駆動電圧 Vxは、大きく変化しない。この ことから、駆動素子 5に対して大きな負荷が掛カ ない状態が保たれる。
[0119] かかる状態で、ユーザ等が発振回路 2aを外部操作して、適宜のパルス幅 Wを有す る PWM信号 SOを出力させたり、電源電圧 Vccが変動する前のパルス幅 Wのままにし ておくと、スイッチング素子 3がその PWM信号 SOの反転増幅された PWM信号 S1に 従ってスイッチング信号 S2を生成し、平滑部 4がそのスイッチング信号 S2に基づ ヽ て直流電圧 V4を生成し、 PNPトランジスタ 5が直流電圧 V4に応じた所定の駆動電 力を設定することにより、発光素子 FLの照度や光度 (いわゆる明るさ)を PWM信号 S 1のパルス幅 Wに応じた明るさに調整する。
[0120] つまり、電源電圧 Vccが変動等した場合でも、図 2 (b)に示したように、電源電圧 V ccと補償電圧 V3との差分に相当する駆動電圧 Vxは大きく変化することがないため、 PWM信号 SOのパルス幅 Wに応じて、発光素子 FLを、ユーザ等の所望するほぼ一 定の照度や光度 ( 、わゆる明るさ)で発光させることができる。
[0121] 以上説明したように、本実施例の照明制御回路 1によれば、電源電圧 Vccに対して 発光素子 FLと PNPトランジスタ 5, 8を直列接続し、検出部 7が電源電圧 Vccの電圧 変動を検出して、 PNPトランジスタ 8が電源電圧 Vccの変動に追従する補償電圧 V3 を発生するようにしたので、電源電圧 Vccが変動した場合でも、発光素子 FLと PNPト ランジスタ 5との両端電圧、すなわち駆動電圧 Vxの変動を低減することができ、 PNP トランジスタ 5に掛カゝる負荷を低減することができる。更に、駆動電圧 Vxの変動を低減 することができるため、発光素子 FLの照度や光度 (いわゆる明るさ)を安定化させるこ とがでさる。
[0122] 更に、電源電圧 Vccに対してツエナーダイオード 6と検出部 7を設け、電源電圧 Vcc とツエナーダイオード 6に発生する定電圧 Vzとの差電圧 (Vcc— Vz)に基づいて、検 出部 7が電源電圧 Vccの変動を検出し、その検出結果 (検出電圧) V2に基づいて P NPトランジスタ 8が補償電圧 V3を発生するようにしたので、電源電圧 Vccが 、わゆる 定格電圧よりも上昇した場合にも、発光素子 FLと PNPトランジスタ 5との両端の駆動 電圧 Vxの変動を低減することができ、 PNPトランジスタ 5に掛カゝる負荷を低減するこ とができると共に、発光素子 FLの照度や光度 (いわゆる明るさ)を安定化させることが でき、更に、電源電圧 Vccがいわゆる定格電圧よりも降下した場合にも、その定格電 圧から定電圧 Vzまでの範囲内において、発光素子 FLと駆動素子 5との両端の駆動 電圧 Vxの変動を低減することができ、 PNPトランジスタ 5に掛カゝる負荷を低減するこ とができると共に、発光素子 FLの照度や光度 (いわゆる明るさ)を安定化させることが できる。
[0123] 更に、電源電圧 Vccの変化に対する検出部 7から出力される検出電圧 V2の変化を 、切替えスィッチ SWによって可変調整するようにしたため、図 2 (c)に示すように、電 源電圧 Vccの変動に対して駆動電圧 Vxを調整することができ、例えば電源電圧 Vcc の実際の変化特性に対応させて、駆動電圧 Vxの変動を抑制するように調整すること ができる。
[0124] このため、電源電圧 Vccや電圧変動等の異なる各種電源 PWRを用いて、発光素 子 FLの照度や光度を制御する場合でも、その電源 PWRの特性に合わせて、駆動 電圧 Vxの変動を抑制するように調整することができる等の効果が得られる。
実施例 2
[0125] 次に、第 2の実施形態に係るより具体的な照明制御回路の実施例を図 5を参照して 説明する。
[0126] 図 5は、本実施例の照明制御回路の構成を表した回路図であり、図 3と同一又は相 当する部分を同一符号で示している。
[0127] 図 5において、この照明制御回路 1は、図 3に示した実施形態の照明制御回路と同 様に、制御信号源 2と、スイッチング素子 3と、平滑部 4と、駆動素子 5と、基準部 6と、 検出部 7、及び補償部 10を備えて構成されている。
[0128] 制御信号源 2は、 PWM信号 SOを出力する発振回路 2aと、スイッチング素子 3をバ ィァスするための抵抗 2b, 2cによって形成されており、発振回路 2aから出力される P WM信号 SOを抵抗 2b, 2cで PWM信号 SIに分圧して、スイッチング素子 3のベース に供給する。
[0129] スイッチング素子 3は、 PNPトランジスタで形成されており、そのェミッタが電源 PW Rのプラス側出力端子(+ )に接続され、コレクタが平滑部 4に接続されている。そして 、ベースに供給される PWM信号 S1に従ってスイッチング動作することにより、矩形波 状のスイッチング信号 S2を出力する。
[0130] 平滑部 4は、抵抗 4g〜4hと、コンデンサ 4i, 4jと、 NPNトランジスタ Trlとによって形 成された π型ローパスフィルタであり、抵抗 4g〜4hとコンデンサ 4i, 4jがスイッチング 信号 S2を平滑ィ匕することによって直流電圧 V4aを発生し、更に NPNトランジスタ Trl が直流電圧 V4aを電力増幅することにより、直流電圧 V4aに対応した直流電圧 V4を ェミッタに発生する。
[0131] 補償部 10は、 NPNトランジスタ Tr2, Tr3及びバイアス用の抵抗 rl〜r4で形成され た差動増幅回路によって形成されており、駆動素子 5に接続された NPNトランジスタ Tr2が直流電圧 V4に応じた制御電流 Idを発生する。
[0132] 駆動素子 5は、 PNPトランジスタ 5で形成されており、そのェミッタが電源 PWRのプ ラス側出力端子(+ )に接続され、コレクタが発光素子 FLを介して電源 PWRのマイナ ス側出力端子(一)に接続され、ベースが NPNトランジスタ Tr2が NPNトランジスタ T r2のコレクタに接続されることで、制御電流 Idに従って動作するようになって 、る。
[0133] 基準部 6は、定電圧 Vzを発生するッヱナ一ダイオード 6で形成されており、電源電 圧 Vccより小さ 1ゝ定電圧 Vzを発生する。
[0134] 検出部 7は、ツエナーダイオード 6と共に電源 PWRのプラス側出力端子(+ )とマイ ナス側出力端子(一)との間に直列接続された抵抗 Rl, R2によって形成されており、 図示するように、抵抗 Rl, R2の接続点に、 PNPトランジスタ力 成るスイッチング素 子 3のェミッタと、抵抗 2bが接続されている。
[0135] そして、抵抗 Rl, R2が、電源電圧 Vccと定電圧 Vzとの差電圧 (Vcc-Vz)を分圧す ることにより、次式 (6)で表される関係から、検出電圧 V2を発生する。
[0136] V2= (Vcc-Vz) XR1/ (R1 +R2) +Vz
= β X (Vcc-Vz) +Vz 〜(6) 次に、本実施例の照明制御回路 1の動作を説明する。
[0137] 次に、力かる構成を有する照明制御回路 1の動作を説明する。
[0138] まず、電源電圧 Vccが変動することなく一定の場合における、照明制御回路 1の動 作を説明する。
[0139] 基準部 6が定電圧 Vzを発生し、検出部 7が上述の差電圧 (Vcc-Vz)に基づ ヽて 発生した検出電圧 V2によって、 PNPトランジスタ力 成るスイッチング素子 3のェミツ タ電位を設定する。更に、電源電圧 Vccが変動することなく一定の場合には、検出電 圧 V2が一定電圧のままとなり、 PNPトランジスタから成るスイッチング素子 3のェミッタ 電位も検出電圧 V2によって一定電圧のまま保持される。
[0140] かかる状態で、ユーザ等が発振回路 2aを外部操作して、適宜のパルス幅 Wを有す る PWM信号 SOを出力させると、スイッチング素子 3が PWM信号 S1に従ってスイツ チング信号 S2を生成し、平滑部 4がそのスイッチング信号 S2に基づ 、て直流電圧 V 4を発生する。
[0141] そして、補償部 10の NPNトランジスタ Tr2が、直流電圧 V4に応じて制御電流 Idを 発生して、 PNPトランジスタ 5の動作を制御することにより、発光素子 FLの照度や光 度(いわゆる明るさ)を PWM信号 SOのパルス幅 Wに応じた明るさに調整する。
[0142] したがって、ユーザ等が発振回路 2aを外部操作して、直流電圧 V4が降下するよう に PWM信号 SOのパルス幅 Wを調整すると、 PNPトランジスタ 5の電力増幅率が低下 して、発光素子 FLの照度や光度 (いわゆる明るさ)を低下させることができ、一方、直 流電圧 V4が上昇するように PWM信号 SOのパルス幅 Wを調整すると、 PNPトランジ スタ 5の電力増幅率が上昇し、発光素子 FLの照度や光度 (いわゆる明るさ)を上昇さ せることができる。
[0143] また、ユーザ等が発振回路 2aを外部操作して、 PWM信号 S0のパルス幅 Wを適宜 のパルス幅に保持させると、直流電圧 V4もそのパルス幅に応じた電圧のままとなり、 発光素子 FLの照度や光度 (いわゆる明るさ)を所望の明るさに維持させることができ る。
[0144] 次に、電源電圧 Vccが変動等によって変化した場合の照明制御回路 1の動作を説 明する。 [0145] 電源 PWRの電源電圧 Vccが変動等によって上昇した場合、ツエナーダイオード 6 は電源電圧 Vccの変化にかかわらず定電圧 Vzを発生し、更に、上記式 (6)の関係に 基づいて、抵抗 Rl, R2が上述の差電圧 (Vcc— Vz)力も検出電圧 V2を発生する。
[0146] ここで、電源電圧 Vccが変動等しても定電圧 Vzは変化しないため、差電圧 (Vcc— Vz)は電源電圧 Vccの上昇に伴って上昇することとなり、抵抗 Rl, R2がこの差電圧( Vcc— Vz)の上昇を検出して、上記式 (6)の関係から、電源電圧 Vccの上昇に追従し て上昇する検出電圧 V2を出力する。
[0147] こうして、電源電圧 Vccの上昇に伴って検出電圧 V2が上昇すると、 PNPトランジス タカ 成るスイッチング素子 3のェミッタベース間の電圧が大きくなり、スイッチング素 子 3の電圧増幅率が大きくなる。
[0148] そして、スイッチング素子 3の電圧増幅率が大きくなると、スイッチング信号 S2の振 幅が大きくなり、平滑部 4から出力される直流電圧 V4の電圧レベルが上昇して、 PN Pトランジスタ力 成る駆動素子 5の電力増幅率が増加し、発光素子 FLに供給する 駆動電力を増加させる。
[0149] ここで注目すべき点は、電源電圧 Vccが変動等によって上昇した場合、検出電圧 V 2は、上記式 (6)の係数 |8に依存して上昇することとなるため、電源電圧 Vccの電圧変 化率に較べて検出電圧 V2の電圧変化率の方が穏やかとなる(小さくなる)。このため 、スイッチング素子 3のェミッタベース間の電圧は、電源電圧 Vccの上昇に伴って大き くなるものの、電源電圧 Vccの電圧変化率に較べて小さな電圧変化率で大きくなり、 スイッチング素子 3の電圧増幅率も抑制された状態で大きくなる。
[0150] したがって、スイッチング信号 S2の振幅力 抑制されたスイッチング素子 3の電圧増 幅率に従って大きくなり、平滑部 4から出力される直流電圧 V4の電圧レベルも、抑制 されたスイッチング素子 3の電圧増幅率に従って上昇し、 PNPトランジスタ 5の電力増 幅率も、抑制されたスイッチング素子 3の電圧増幅率に従って増加することとなり、発 光素子 FLに供給される駆動電力も大幅に変化することがない。
[0151] このため、発光素子 FLの照度や光度 (いわゆる明るさ)は大きく変化することがなく 、明るさがちらつくことのない範囲内で変化するに止まることとなる。
[0152] また、電源電圧 Vccが降下した場合でも、その電源電圧 Vccが定格電圧から、基準 部 6が定電圧 Vzを発生する範囲内での電圧降下あれば、 PNPトランジスタ力 成る スイッチング素子 3のェミッタベース間のバイアス電圧が検出電圧 V2によって確保さ れることとなり、更に、検出電圧 V2は上記式 (6)の係数 |8に依存して降下することとな るため、電源電圧 Vccの電圧変化率に較べて検出電圧 V2の電圧変化率の方が穏 や力となる (小さくなる)。
[0153] このため、スイッチング素子 3のェミッタベース間の電圧は、電源電圧 Vccの降下に 伴って小さくなるものの、電源電圧 Vccの電圧変化率に較べて小さな電圧変化率で 小さくなり、スイッチング素子 3の電圧増幅率も抑制された状態で小さくなり、 PNPトラ ンジスタ 5の電力増幅率も、抑制されたスイッチング素子 3の電圧増幅率に従って減 少することとなり、発光素子 FLに供給される駆動電力も大幅に変化することがない。 このため、電源電圧 Vccが降下した場合でも、発光素子 FLの照度や光度 (いわゆる 明るさ)は大きく変化することがなぐ明るさがちらつくことのない範囲内で変化するに 止まることとなる。
[0154] 以上説明したように、本実施例の照明制御回路 1によれば、電源電圧 Vccが変動等 した場合でも、ツエナーダイオード 6と抵抗 Rl, R2によって、 PNPトランジスタ 5の負 荷が大きくならないように直流電圧 V4を調整することができ、更に、発光素子 FLの 照度や光度 ( 、わゆる明るさ)を安定ィ匕することができる。
[0155] また、電源電圧 Vccが変動すると、検出電圧 V2が変化することから、スイッチング素 子 3の電圧増幅率も変化し、更に直流電圧 V4も変化することとなるため、厳密には、 発光素子 FLの照度や光度 (いわゆる明るさ)が変化することとなるが、検出部 7の係 数 j8を予め調整しておくことによって、検出電圧 V2の電源電圧 Vccに対する電圧変 化率を小さくすることができ、人間の目では感じることができない程度の範囲内で発 光素子 FLの照度や光度 ( 、わゆる明るさ)が変化するように、直流電圧 V4の変動を 低減することが可能である。更に、直流電圧 V4の変動を低減することができるため、 発光素子 FLの照度や光度 (いわゆる明るさ)を安定化させることができる。
[0156] 更に、電源電圧 Vccの変化に対する検出電圧 V2の変化を、上記式 (6)に示した係 数 ι8によって可変調整するようにしたため、例えば電源電圧 Vccの実際の変化特性 に対応させて、直流電圧 V4の変動を抑制するように調整することができる。このため 、電源電圧 Vccや電圧変動等の異なる各種電源 PWRを用いて、発光素子 FLの照 度や光度を制御する場合でも、その電源 PWRの特性に合わせて、直流電圧 V4の 変動を抑制するように調整することができる等の効果が得られる。

Claims

請求の範囲
[1] 発光素子を駆動制御する照明制御回路であって、
前記電源の電源電圧を検出し、前記電源電圧の変化に応じた検出電圧を出力す る検出手段と、
前記発光素子と共に前記電源に直列接続された、前記発光素子を駆動する駆動 素子と、前記検出電圧に追従する補償電圧を発生する補償手段とを備え、
前記補償手段は、前記検出電圧に追従する前記補償電圧を発生することにより、 前記電源の電源電圧の変化に対して、前記発光素子と前記駆動素子との両端に掛 力る駆動電圧の変化を抑制することを特徴とする照明制御回路。
[2] 更に、定電圧を発生する基準手段を備え、
前記検出手段は、前記定電圧と前記電源電圧との差電圧に基づいて、前記電源 電圧の変化に応じた検出電圧を出力することを特徴とする請求項 1に記載の照明制 御回路。
[3] 前記検出手段は、前記電源電圧の変化より小さな変化率で変化する前記検出電 圧を出力することを特徴とする請求項 1又は 2に記載の照明制御回路。
[4] 前記変化率は、可変調整されることを特徴とする請求項 3に記載の照明制御回路。
[5] 前記検出手段は、前記電源電圧の変化を分圧する分圧抵抗を備え、該分圧抵抗 に生じる分圧電圧を前記検出電圧として出力することを特徴とする請求項 1又は 2〖こ 記載の照明制御回路。
[6] 前記補償手段は、前記検出電圧を電力増幅する能動素子又は能動回路で形成さ れていることを特徴とする請求項 1又は 2に記載の照明制御回路。
[7] 発光素子を駆動制御する照明制御回路であって、
前記発光素子と共に電源に直列接続され、前記発光素子を駆動する駆動素子と、 前記駆動素子に制御用の信号を供給する補償手段と、
前記電源の電源電圧を検出し、前記電源電圧の変化に応じた検出電圧を出力す ると共に、前記検出電圧によって前記補償手段を調節することにより、前記制御用の 信号のレベル変化を抑制させる検出手段と、を備えることを特徴とする照明制御回路
[8] 定電圧を発生する基準手段をさらに備え、
前記検出手段は、前記定電圧と前記電源電圧との差電圧に基づいて、前記電源 電圧の変化に応じた検出電圧を出力することを特徴とする請求項 7に記載の照明制 御回路。
[9] 前記検出手段は、前記電源電圧の変化を分圧する分圧抵抗を備え、該分圧抵抗 に生じる分圧電圧を前記検出電圧として出力することを特徴とする請求項 7又は 8に 記載の照明制御回路。
PCT/JP2005/005948 2004-03-31 2005-03-29 照明制御回路 WO2005096678A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006511688A JP4332177B2 (ja) 2004-03-31 2005-03-29 照明制御回路
US10/594,677 US7355353B2 (en) 2004-03-31 2005-03-29 Illumination control circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004105297 2004-03-31
JP2004-105297 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096678A1 true WO2005096678A1 (ja) 2005-10-13

Family

ID=35064165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005948 WO2005096678A1 (ja) 2004-03-31 2005-03-29 照明制御回路

Country Status (4)

Country Link
US (1) US7355353B2 (ja)
JP (1) JP4332177B2 (ja)
CN (1) CN1934912A (ja)
WO (1) WO2005096678A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311793B (zh) * 2007-05-25 2010-07-07 群康科技(深圳)有限公司 背光模块
CN104464627A (zh) * 2014-12-17 2015-03-25 昆山国显光电有限公司 有源矩阵有机发光显示器及其控制方法
US10246003B2 (en) * 2017-03-22 2019-04-02 International Business Machines Corporation Determination and setting of optimal intensity
KR102240936B1 (ko) * 2020-03-12 2021-04-16 주식회사 코아솔루션 발열 저감형 led 조명

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858619U (ja) * 1981-10-15 1983-04-20 東芝熱器具株式会社 負荷制御回路
JPS63301488A (ja) * 1987-06-02 1988-12-08 Mitsubishi Electric Corp 電球駆動回路
JPH02123965A (ja) * 1988-10-31 1990-05-11 Matsushita Electric Works Ltd 電源装置
JPH11233276A (ja) * 1998-02-13 1999-08-27 Fms Audio Sdn Bhd カーオーディオ機器の照明調整方法及び照明調整回路
JP2002189522A (ja) * 2000-12-21 2002-07-05 Rohm Co Ltd レギュレータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2558155C3 (de) * 1974-12-28 1978-10-19 Canon K.K., Tokio Lkhtmeßschaltung
GB2369730B (en) * 2001-08-30 2002-11-13 Integrated Syst Tech Ltd Illumination control system
US7276025B2 (en) * 2003-03-20 2007-10-02 Welch Allyn, Inc. Electrical adapter for medical diagnostic instruments using LEDs as illumination sources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858619U (ja) * 1981-10-15 1983-04-20 東芝熱器具株式会社 負荷制御回路
JPS63301488A (ja) * 1987-06-02 1988-12-08 Mitsubishi Electric Corp 電球駆動回路
JPH02123965A (ja) * 1988-10-31 1990-05-11 Matsushita Electric Works Ltd 電源装置
JPH11233276A (ja) * 1998-02-13 1999-08-27 Fms Audio Sdn Bhd カーオーディオ機器の照明調整方法及び照明調整回路
JP2002189522A (ja) * 2000-12-21 2002-07-05 Rohm Co Ltd レギュレータ

Also Published As

Publication number Publication date
JPWO2005096678A1 (ja) 2008-07-31
US20070194720A1 (en) 2007-08-23
CN1934912A (zh) 2007-03-21
JP4332177B2 (ja) 2009-09-16
US7355353B2 (en) 2008-04-08

Similar Documents

Publication Publication Date Title
US7443209B2 (en) PWM LED regulator with sample and hold
US7612505B2 (en) Liquid crystal display backlight inverter
EP0982880A2 (en) Optical transmitter having temperature compensating function and optical transmission system
JP2004158644A (ja) 半導体レーザの光出力安定化回路および光送信モジュール
WO2005096678A1 (ja) 照明制御回路
KR100721578B1 (ko) 유기전계발광장치의 직류 안정화 회로 및 이를 이용하는전원 공급 장치
JP4653857B1 (ja) 負荷装置
JP2004281922A (ja) 発光素子の電流制御装置
JPH06250747A (ja) 基準光源ランプ用スイッチング電源
JPH1141040A (ja) 差動増幅回路および負荷駆動回路
KR20090026564A (ko) Led 구동회로
JPH0661555A (ja) レーザダイオード駆動回路
JP5682322B2 (ja) 光送信回路
JP5003586B2 (ja) 半導体レーザ駆動回路
JP3397908B2 (ja) 光検出器
JP4135895B2 (ja) 監視カメラの照明制御回路
JP3043247B2 (ja) 光検出器
JP2908288B2 (ja) 電流帰還バイアス増幅回路
JP3043248B2 (ja) 光検出器
KR0183292B1 (ko) 전압 안정기의 출력 제어회로
TWI662859B (zh) 可隨調光訊號改變響應的回授電路
KR20060039802A (ko) 자동 전압 조절 기능을 갖는 스위치 모드 전원 공급장치
JP2009123959A (ja) 光送信機及び光送信機の制御方法
JPH08288818A (ja) 発光素子駆動回路
JP2005166939A (ja) 半導体発光素子駆動回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580009542.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006511688

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10594677

Country of ref document: US

Ref document number: 2007194720

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10594677

Country of ref document: US