WO2005094978A1 - 粒子を分散させるための組成物、粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸化チタン焼結体 - Google Patents

粒子を分散させるための組成物、粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸化チタン焼結体 Download PDF

Info

Publication number
WO2005094978A1
WO2005094978A1 PCT/JP2005/004804 JP2005004804W WO2005094978A1 WO 2005094978 A1 WO2005094978 A1 WO 2005094978A1 JP 2005004804 W JP2005004804 W JP 2005004804W WO 2005094978 A1 WO2005094978 A1 WO 2005094978A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
composition
dispersing
titanium
acid
Prior art date
Application number
PCT/JP2005/004804
Other languages
English (en)
French (fr)
Inventor
Osamu Sakurada
Minoru Hashiba
Yasutaka Takahashi
Tomokazu Ohya
Masaaki Saito
Original Assignee
Gifu University
Toyo Ink. Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University, Toyo Ink. Mfg. Co., Ltd. filed Critical Gifu University
Priority to JP2006511621A priority Critical patent/JP5205611B2/ja
Priority to KR1020067021508A priority patent/KR101179385B1/ko
Priority to US10/593,294 priority patent/US20070203042A1/en
Publication of WO2005094978A1 publication Critical patent/WO2005094978A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/026Making or stabilising dispersions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Definitions

  • composition for dispersing particles composition in which particles are dispersed, method for producing the same, and sintered anatase-type titanium oxide
  • the present invention relates to a composition for dispersing particles, a composition in which particles are dispersed, a method for producing the same, and a sintered anatase-type titanium oxide. More specifically, a composition for dispersing particles having an excellent dispersing effect on a suspension of various particles and having no environmental load, and a composition for stably dispersing particles.
  • the present invention relates to a product, a method for producing the same, and an anatase-type titanium oxide sintered body.
  • the present invention can be widely used in the fields of ceramic materials, photocatalytic materials, optical materials, and electronic materials.
  • aqueous solution particles containing a polyvalent metal ion such as titanium are not suitable for suspension of particles.
  • the polymer electrolyte has an effect as if it were used as a dispersant.
  • the present invention has been made in view of the above viewpoints, and has a composition for dispersing particles having an excellent dispersing effect on a suspension of various particles and having no environmental load. It is an object of the present invention to provide a product, a composition in which particles are stably dispersed, a method for producing the same, and an anatase-type titanium oxide sintered body.
  • the present inventors have proposed a transparent and stable aqueous solution (composition) obtained by mixing a metal alkoxide such as a titanium alkoxide, an organic acid such as lactic acid, and water,
  • a metal alkoxide such as a titanium alkoxide
  • an organic acid such as lactic acid
  • water water
  • the metal ions in the composition are complexed with the organic acid by a precipitate formation test using an ionic dye and measurement of the zeta potential.
  • the effect as a dispersant is equal to or higher than that of the conventionally reported polymer electrolytes, and is very effective in dispersing various particles such as oxidized particles.
  • the invention has been completed.
  • the present invention is as follows.
  • a composition for dispersing particles obtained by mixing a metal alkoxide containing a + 3-pentavalent metal element, an organic acid, and water (hereinafter referred to as “particles”). Dispersion composition ").
  • a composition for dispersing the particles according to (1) which is obtained by mixing the hydrolyzate derived from the metal alkoxide and the organic acid and is a transparent aqueous solution.
  • a mixing ratio of the titanium alkoxide and the organic acid which is obtained by mixing titanium alkoxide, at least one organic acid among lactic acid, oxalic acid, citric acid, and tartaric acid, and water.
  • a composition in which particles comprising the particles and the particle dispersion composition according to any of (1) to (7) above (hereinafter referred to as “particle-containing composition”). Object).)
  • a particle-containing composition comprising: anatase-type titanium oxide particles; and a composition for dispersing the particles described in (7) above.
  • An anatase-type titanium oxide sintered body characterized by sintering the solid content of the particle-containing composition according to the above (13).
  • a mixing step of mixing the particle-dispersing composition according to (1) to (7) above, particles and a solvent, and in the mixing step, adjusting the mixing amount of the composition to A method for producing a particle-containing composition, characterized in that the composition is controlled according to the isoelectric point of the particles.
  • composition for dispersing particles of the present invention has an excellent dispersing effect on suspensions of various particles and has no environmental impact
  • ceramic materials, photocatalytic materials, and optical materials can be used. It can be widely used in the field of materials and electronic materials.
  • a composition for dispersing a particle having an excellent dispersing effect on a suspension of various particles can be obtained more reliably.
  • a metal element of the same type as the particles to be dispersed for example, when the particles to be dispersed are titanium oxide particles and the metal element in the particle dispersing composition is titanium
  • a particle-containing composition with less impurities is used. A product can be obtained.
  • the particles can be doped at a desired ratio when used in the field of electronic materials and the like.
  • the other particle-dispersing composition of the present invention contains a titanium alkoxide and a specific organic acid in a specific mixing ratio, and is more excellent for a suspension of various particles having a high titanic acid concentration. Since it has a dispersing effect and has no environmental impact, it can be widely used in ceramic materials, photocatalyst materials, optical materials and electronic materials.
  • the particle-containing composition of the present invention in which the particles are stably dispersed by the present particle-dispersing composition, can be widely used in the fields of ceramic materials, photocatalyst materials, optical materials, and electronic materials.
  • Another particle-containing composition of the present invention contains anatase-type titanium oxide particles and a specific particle-dispersing composition, wherein the titanium oxide particles are stably dispersed, and a photocatalyst material or a solar cell is provided. It can be suitably used in the field of materials.
  • the anatase-type titanium oxide sinter according to the present invention is characterized in that the titanic acid in the above-mentioned particle-dispersing composition becomes titanium oxide, so that no impurities are mixed therein, and the titanium oxide derived from the titanic acid is anatase. Since it exists uniformly around the titanium oxide particles and acts as a sintering aid between the particles, for example, an anatase-type titanium oxide sintered body that is strong even when fired at a low temperature of 300 to 750 ° C. Become. Therefore, it can be suitably used in the field of solar cell materials such as photocatalytic materials or dye-sensitized solar cells.
  • the method for producing a particle-containing composition of the present invention particles in which the particles are stably dispersed
  • the containing composition can be easily produced.
  • FIG. 1 is an explanatory diagram illustrating the results of a precipitate formation test in a dye.
  • FIG. 2 is a graph illustrating the relationship between pH and zeta potential in a 2% by volume oxidized aluminum suspension having various titanic acid concentrations.
  • FIG. 3 is a graph illustrating the relationship between titanic acid concentration and zeta potential in a 2% by volume oxidized aluminum suspension at various pHs.
  • FIG. 4 is a graph illustrating the relationship between the titanic acid concentration, the sedimentation volume, and the sedimentation velocity in a 2% by volume oxidized aluminum suspension at pH2.
  • FIG. 5 is a graph illustrating the relationship between the titanic acid concentration, the sedimentation volume, and the sedimentation velocity in a 2% by volume oxidized aluminum suspension at pH 4.
  • FIG. 6 is a graph illustrating the relationship between the titanic acid concentration, the sediment volume, and the sedimentation velocity in a 2% by volume oxidized aluminum suspension at pH 10.5.
  • FIG. 7 is a graph illustrating the relationship between titanic acid concentration and apparent viscosity in a 2% by volume oxidized aluminum suspension at pH4.
  • FIG. 8 is a graph illustrating the relationship between titanic acid concentration and apparent viscosity in a 20% by volume aluminum oxide suspension at pH 4;
  • FIG. 9 is a graph illustrating the relationship between titanic acid concentration and apparent viscosity in a 2% by volume oxidized aluminum suspension at pH 10.5.
  • FIG. 10 is a graph illustrating the relationship between titanic acid concentration and apparent viscosity in a 20% by volume oxidized aluminum suspension of ⁇ 1 ⁇ .5.
  • FIG. 11 is a graph illustrating the relationship between shear stress and shear rate in a 20% by volume oxidized aluminum suspension of ⁇ 4.
  • FIG. 12 is a graph illustrating the relationship between shear stress and shear rate in a 20% by volume aluminum oxide suspension having a pH of 10.5.
  • FIG. 14 is a graph illustrating the relationship between the titanic acid concentration and the amount of titanium adsorbed in a 2% by volume aluminum oxide suspension at pH 9;
  • FIG. 15 is a graph illustrating the relationship between the titanic acid concentration and the amount of titanium adsorbed in a 2% by volume oxidized aluminum suspension at pH 10.5.
  • FIG. 16 is a graph illustrating a change in dispersibility according to the ratio of titanium alkoxide and lactic acid in a 2% by volume oxidized aluminum suspension at pH 10.5.
  • FIG. 17 is a graph illustrating a change in dispersibility of a 2% by volume oxidized aluminum suspension at pH 10.5 depending on the ratio of titanium alkoxide to lactic acid.
  • FIG. 18 is a graph illustrating a change in dispersibility of a 2% by volume oxidized aluminum suspension at pH 2 depending on the ratio of titanium alkoxide and lactic acid.
  • FIG. 19 is a graph illustrating a change in dispersibility of a 2% by volume oxidized aluminum suspension at pH 2 depending on the ratio of titanium alkoxide and lactic acid.
  • composition for dispersing particles composition for dispersing particles
  • composition for dispersing particles of the present invention is characterized by being obtained by mixing a metal alkoxide containing a + 3-5 valent metal element, an organic acid, and water.
  • the composition for dispersing particles can be a transparent aqueous solution obtained by mixing the hydrolyzate derived from the metal alkoxide and the organic acid.
  • the composition for dispersing particles is considered to be a metal acid aqueous solution in which a metal ion (mainly a metal acid ion) forms a complex with an organic acid and a bulky and stable metal complex having a negative charge is present in the aqueous solution. .
  • organic acid examples include lactic acid, oxalic acid, citric acid, tartaric acid and the like. These organic acids may be used alone or in combination of two or more.
  • the "metal alkoxide” contains a +3 to pentavalent metal element.
  • This metal alkoxide is [M (OR)] [where, M is a + 3-pentavalent metal element, R is an alkyl group, x is an integer of 3-5, and the valence of the metal element (M) is Corresponding. ]It can be expressed as.
  • the metal element (M) include aluminum, gallium, indium, titanium, hafnium, vanadium, niobium, and tantalum. Of these, aluminum, titanium, niobium, and tantalum are preferred, and aluminum and titanium are more preferred, and titanium is more preferred.
  • the alkyl group (R) is usually an alkyl group having 118, preferably 116, and more preferably 114 carbon atoms. Specific examples include methoxide, ethoxide, propoxide, isopropoxide, butoxide and the like.
  • the alkyl group is butoxide, the alcohol content (butanol) generated by hydrolysis of the metal alkoxide is phase-separated, so that the alcohol content is low without performing a treatment such as distillation under reduced pressure.
  • the composition can be easily prepared.
  • these metal alkoxides may be used alone or in combination of two or more.
  • titanium alkoxides when the metal element is titanium include, for example, titanium tetramethoxide [Ti (0-Me)], titanium tetraethoxide [Ti (0-Et)], titanium
  • titanium tetraisopropoxide and titanium tetrabutoxide are preferred from the viewpoint of generally being easily available and easy to handle.
  • titanium tetrabutoxide is preferable from the viewpoint that the alcohol generated by hydrolysis is easily removed.
  • aluminum alkoxide when the metal element is aluminum examples include aluminum trimethoxide [A1 (0-Me)] and aluminum triethoxy.
  • Aluminum triisopropoxide and aluminum tributoxide are preferred from the viewpoint of easy availability and easy handling.
  • aluminum tributoxide is preferred from the viewpoint of easy removal of alcohol generated by hydrolysis.
  • the order of mixing the metal alkoxide, the organic acid, and water is not particularly limited.
  • a metal alkoxide, an organic acid, and water are simultaneously And (2) mixing the metal alkoxide and the organic acid followed by water; or (3) mixing the metal alkoxide and the water and then mixing the organic acid. May be.
  • the metal alkoxide is hydrolyzed by the presence of water and becomes cloudy, and then the resulting hydrolyzate derived from the metal alkoxide is dissolved by being mixed with an organic acid to form a transparent liquid.
  • the metal alkoxide is hydrolyzed by the presence of water and becomes cloudy, and then the resulting hydrolyzate derived from the metal alkoxide is dissolved by being mixed with an organic acid to form a transparent liquid.
  • composition for dispersing particles of the present invention a composition obtained as a transparent liquid by stirring them for 1 week or more, particularly 2 to 6 weeks, and further 2 to 4 weeks after mixing. In some cases, after mixing these, a transparent liquid can be obtained without performing the above-mentioned stirring.
  • the atmosphere and temperature at which the mixing is performed are not particularly limited, and for example, the mixing can be performed at room temperature (about 25 ° C) under the atmosphere.
  • the atmosphere and the temperature at the time of performing the stirring are not particularly limited, and for example, the stirring can be performed at room temperature (about 25 ° C.) under the atmosphere.
  • the mixing ratio of the organic acid and the metal alkoxide is not particularly limited.
  • this molar ratio is (0.5-4): 1, especially (0.5-3): 1, preferably (0.5-2): 1, more preferably (0.5-1). 8): 1, more preferably (0.7-1.5): 1, particularly preferably 1: 1.
  • this ratio is (0.5-4): 1, a transparent and sufficiently stable composition having an excellent dispersing effect on the suspension of various particles can be obtained.
  • the ratio is 1: 1, a composition containing the metal component of the predetermined metal alkoxide at a high concentration can be obtained more easily.
  • the proportion of the metal alkoxide the dispersing effect can be further improved.
  • the period of the stirring can be shortened.
  • the composition for dispersing particles of the present invention is obtained by mixing the above titanium alkoxide, at least one organic acid among lactic acid, oxalic acid, citric acid and tartaric acid, and water.
  • the mixing ratio of the titanium alkoxide and the organic acid may be (0.7-1.5): 1 (preferably 1: 1) in molar ratio.
  • titanic acid is contained at a high concentration of 13 mol Zdm 3 , particularly 1.1 2.5 mol / dm 3 , and more preferably 1.5-2.5 mol Zdm 3 , and more excellent particle dispersing effect.
  • the mixing amount of “water” is not particularly limited, and is appropriately adjusted so that the metal component contained in the particle dispersion composition of the present invention has a predetermined concentration.
  • the water is not particularly limited, and pure water, distilled water and the like are used.
  • the concentration of the metal component contained in the particle-dispersing composition of the present invention is not particularly limited, and is appropriately adjusted according to the intended purpose and the like.
  • the composition for dispersing particles of the present invention may have an alcohol content due to hydrolysis of a metal alkoxide during the production process. (E.g., distillation). It should be noted that, by removing the alcohol generated by this hydrolysis, the uniformity and stability of the composition and the effect of dispersing the particles are not reduced.
  • composition for dispersing particles can maintain a homogeneous solution state for a long period of time (generally, one year or more, particularly, 110 years), and gelation or precipitation hardly occurs.
  • composition for dispersing particles of the present invention is a transparent (particularly colorless and transparent) and stable liquid in the pH range of 12 to 12. Further, it is a transparent and stable liquid in a pH range of 11 to 11 (particularly pH 2 to 11) and can stably disperse predetermined particles.
  • composition for dispersing particles of the present invention should form a precipitate when reacted with the cationic dye used in the “test for forming a precipitate” in Examples described later. Is preferred.
  • the composition for dispersing particles of the present invention has an excellent dispersing effect on suspensions of various kinds of particles and has no environmental load, so that it can be easily applied industrially. It can be widely used in ceramic materials, photocatalytic materials, optical materials and electronic materials. Furthermore, since it does not contain other components such as halogen, nitric acid, and sulfuric acid, it is an aqueous solution that does not adversely affect the environment even after the baking process, so it has excellent safety without fire and other dangers.
  • water or a solid obtained by removing water and alcohol in the composition is again dissolved in water to be used as the composition for dispersing particles of the present invention. be able to. Also in this case, the same dispersion effect as described above can be obtained.
  • the particle-containing composition of the present invention is characterized by including particles and a composition for dispersing particles. Note that the description of the above [1] can be applied as it is to the “particle dispersion composition”.
  • the “particles” are not particularly limited, and may be inorganic particles or organic particles.
  • the inorganic particles include (1) oxide particles such as aluminum oxide, titanium oxide, zirconium oxide, silicon oxide, magnesium oxide, iron oxide, zinc oxide, tin oxide, chromium oxide, and ferrite. , (2) carbides such as titanium carbide, zirconium carbide, tungsten carbide, iron carbide, and silicon carbide; (3) nitrides such as titanium nitride and iron nitride; (4) hydroxide alloys and hydroxides Hydroxide products such as zirconium and (5) particles of metals such as gold, platinum, silver and copper. Further, salts such as calcium carbonate and beryllium carbonate, and powders derived from natural minerals can be used.
  • oxide particles such as aluminum oxide, titanium oxide, zirconium oxide, silicon oxide, magnesium oxide, iron oxide, zinc oxide, tin oxide, chromium oxide, and ferrite.
  • carbides such as titanium carbide, zirconium carbide, tungsten carbide, iron carbide, and silicon carbide
  • organic particles examples include acrylic resin, amide resin, ester resin, epoxy resin, melamine resin, urethane resin, styrene resin, silicone resin, and fluorine resin. And resin particles such as resin (including elastomer particles and rubber particles). Furthermore, starch powder, cellulose powder and the like can also be mentioned.
  • the type of the particles can be appropriately selected and used according to the application and purpose. These particles may be used alone or in combination of two or more types in consideration of the surface charge of the particles.
  • the type of the particles can be oxidized particles or organic particles, and particularly, oxidized particles.
  • the particles are titanium oxide particles
  • the composition for dispersing the particles comprises a titanium alkoxide and at least one of lactic acid, oxalic acid, citric acid and tartaric acid.
  • a particle-containing composition which is a composition for dispersing particles can be obtained.
  • the particle dispersion composition serving as a dispersion medium can contain a high concentration of titanic acid, the concentration of the titanium component is increased. It can be a thick suspension.
  • the alcohol component generated by the hydrolysis of the titanium alkoxide may be removed by the above-described method.
  • the crystal form of the titanium oxide particles is not particularly limited, and may be any of anatase type, rutile type and brookite type, but is preferably anatase type.
  • the particle dispersion composition can be suitably used in the field of photocatalytic materials or solar cell materials.
  • the average particle size of the above-mentioned particles is not particularly limited, and can be appropriately adjusted depending on the use, purpose, and the like.
  • the concentration of the metal component in the particle-containing composition of the present invention can be appropriately adjusted according to the use and purpose. The higher the concentration, the more easily the surface charge of the particles to be dispersed is shifted to a negative value.
  • the content ratio of the particles in the particle-containing composition of the present invention is not particularly limited.
  • the particle-containing composition is 100% by volume, it is preferably 60% by volume or less, more preferably. Is 50% by volume.
  • the content is 60% by volume or less, a composition in which predetermined particles are more stably dispersed is obtained.
  • the particle-containing composition preferably has a pH of 11 to 12, more preferably a pH of 11 to 11, and still more preferably a pH of 2 to 11. In particular, when the pH is in the range of 2 to 11, the composition becomes a composition in which the predetermined particles are more stably dispersed.
  • the particle-containing composition of the present invention usually contains a solvent.
  • the solvent include (1) water such as pure water and distilled water, and (2) a mixed solution of water and a hydrophilic organic solvent.
  • the organic solvent include lower alcohols such as ethanol and isopropanol. Among them, water is preferred because it is easy to handle and has high safety without danger such as fire.
  • the particle-containing composition of the present invention may contain a known additive according to the purpose and use, as long as stable dispersion of the particles is not impaired.
  • the particle-containing composition of the present invention uses the above-mentioned particle-dispersing composition, so that it can be easily applied to industrial applications where no load is imposed on the environmental surface. It can be widely used in the fields of materials, photocatalytic materials, optical materials and electronic materials. In addition, halogen Since it does not contain other components such as sulfuric acid, nitric acid and sulfuric acid, it has no adverse effects on the environment even after the firing step, and it can be made water-based, so that it has excellent safety without fire and other dangers. Further, when the particle-containing composition of the present invention undergoes a sintering step, the metal acid in the particle-dispersing composition becomes a metal oxide, and around the dispersed particles such as the oxide particles. Since it exists uniformly and acts as a sintering aid between particles, the above-mentioned +3 to pentavalent metal element can be uniformly doped between particles.
  • the method for producing a particle-containing composition of the present invention includes a mixing step of mixing the particle-dispersing composition, the particles, and a solvent, and in this mixing step, the mixing amount of the particle-dispersing composition is reduced.
  • the control is performed according to the isoelectric point of the particles.
  • composition for dispersing particles the description in the above [1] can be applied as it is.
  • particles and the “solvent” each description in the above [2] can be applied as it is, and water is particularly preferable.
  • the particle dispersion composition, the particles, and the solvent are mixed.
  • the order of mixing the particle-dispersing composition, the particles, and the solvent is not particularly limited, and they may be mixed simultaneously or may be mixed in any order. Specifically, for example, after mixing particles and a solvent, the composition for dispersing particles can be mixed.
  • the mixing means in the mixing step is not particularly limited, and may be, for example, ball milling, an ultrasonic homogenizer, or the like.
  • the atmosphere and the temperature at the time of mixing are not particularly limited, and for example, the mixing can be performed at room temperature (about 25 ° C.) in the atmosphere.
  • the mixing amount of the particle dispersion composition is controlled according to the isoelectric point of the particles. Since the pH behavior of the composition for dispersing particles is very similar to the pH behavior when an anionic polymer electrolyte is added as a dispersant, it can be used in the same manner as a conventional polymer electrolyte.
  • Sani ⁇ aluminum particles to be dispersed case of the (isoelectric point near P H about 9), the pH region of more acidic than the isoelectric point (pH less than about 9), Sani ⁇ aluminum surface positive
  • the composition for dispersing the present particles containing a complex having a negative charge By aggregating, the compounding amount can be further increased, and the mixture can be redispersed by mixing more than neutralizing the surface charge of the silicon oxide aluminum.
  • the pH region (acidic side) below the isoelectric point of the desired particles to be dispersed it is necessary to mix the particle dispersing composition more than neutralizing the charge on the particle surface.
  • a particle-containing composition containing a large amount of a metal component in a large amount can be produced, and can be widely applied to ceramic materials, photocatalyst materials, optical materials, electronic materials, and the like.
  • the surface charge of the aluminum oxide also had a negative charge similarly to the complex in the particle dispersion composition. Therefore, it is possible to obtain a more stable dispersed particle-containing composition without aggregation.
  • An anatase-type titanium oxide sintered body of the present invention is characterized in that a solid content of a particle-containing composition comprising anatase-type titanium oxide particles and a composition for particle dispersion is sintered.
  • the average particle size of the “anatase-type titanium oxide particles” is not particularly limited, and can be appropriately adjusted according to the use and purpose.
  • the content ratio of the anatase-type titanium oxide particles is not particularly limited.
  • the particle-containing composition is 100% by volume, it is preferably 60% by volume or less, more preferably 1 to 50% by volume. %.
  • the content ratio is 60% by volume or less, it is preferable because the particles are stably dispersed.
  • the “particle dispersion composition” is obtained by mixing a titanium alkoxide, at least one organic acid selected from lactic acid, oxalic acid, citric acid, and tartaric acid, and water.
  • the composition for dispersing particles is a mixture ratio of (organic acid: titanium alkoxide) of (0.7 to 1.5): 1 in terms of molar ratio between the mixture and the organic acid.
  • the alcohol generated by the hydrolysis of the titanium alkoxide is removed by the above-described method. In this case, an aqueous solution of titanic acid containing almost no extra component is obtained, and the purity of the titanium component is further increased, which is preferable.
  • the "solid content of the particle-containing composition” can be obtained by drying the particle-containing composition by a general method.
  • the above sintering temperature is usually 300-750. C, preferably 400-750. C, more preferably 500-750 ° C.
  • the sintering temperature is within the above range, a strong anatase-type titanium oxide sintered body can be obtained without transferring the titanium oxide particles to the rutile type. Further, as the sintering temperature increases within the above range, the strength of the sintered body can be improved.
  • the titanic acid in the composition for dispersing particles becomes oxidized titanium, no impurities are mixed therein, and the oxidized titanium derived from this titanic acid is not mixed.
  • Force Anatase-type titanium oxide sintering titanium which exists uniformly around the anatase-type titanium oxide sintering particles and acts as a sintering aid between the particles, is strong even at low temperatures of 300-750 ° C. It becomes united.
  • anatase-type oxidized titanium or a thick balta body of anatase-type oxidized titanium which was difficult to produce by a conventional method such as a sol-gel method can be easily produced without adding an extra component. It can be widely used in ceramic materials, photocatalytic materials, optical materials and electronic materials.
  • the anatase-type titanium oxide sintered body of the present invention can be suitably used in the field of photocatalytic materials or solar cell materials such as dye-sensitized solar cells (for example, substrates, electrodes, etc.).
  • composition for dispersing particles composition for particle dispersion
  • Titanium tetraisopropoxide manufactured by Wako Pure Chemical Industries, Ltd.
  • lactic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • water pure water
  • the mixture immediately hydrolyzed and became cloudy, resulting in a very viscous solution.
  • the mixture was stirred for 2 weeks using a stirrer to obtain a colorless, transparent, low-viscosity particle dispersion composition [concentration of metal component (titanic acid concentration): 2 molZdm 3 ].
  • Example 9 the same particle dispersing composition as in Example 1 could be obtained.
  • the composition for dispersing each of these particles was stored for a long period of time (about 1 year), a uniform solution was maintained, and no gelation or precipitation was observed.
  • Titanium tetraisopropoxide manufactured by Wako Pure Chemical Industries, Ltd.
  • water pure water
  • lactic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • Tianium tetraisopropoxide lactic acid
  • the mixture was stirred for 2 weeks using a stirrer to obtain a colorless and transparent low-viscosity particle dispersion composition [concentration of metal component (titanic acid concentration); 2 molZdm 3 ].
  • Example 9 the same particle dispersion composition as in Example 1 can be obtained.
  • the composition for dispersing each of these particles was stored for a long period of time (about 1 year), a uniform solution was maintained, and no gelation or precipitation was observed.
  • the metal acid ion (titanate ion) forms a complex with the organic acid (lactic acid), and the negatively-charged stable metal complex (titanium complex) becomes water. It was confirmed that it was present in the solution. Furthermore, since no precipitate is formed unless the bulk is to some extent, this metal complex is considered to be bulky and exist in a form like a cluster cut containing titanium.
  • Example 1 Using the particle-dispersing composition of Example 1 obtained in the above [1], a composition in which particles are dispersed (particle-containing composition) was produced, and the dispersion performance of the particle-dispersing composition was determined as follows. Evaluation was made by each measurement and test.
  • the composition for dispersing particles of Example 1 (concentration of titanic acid; 2 mol Zdm 3 ), water, and aluminum oxide powder (average particle diameter; 0.3 ⁇ ⁇ , purity; 99.99% or more; Co., Ltd., product name “ ⁇ -30”) and ⁇ modifier are mixed by ball milling at room temperature (about 25 ° C) for 24 hours to obtain a titanic acid concentration of 1.0 X 10 3, 2. 5 X 10- 3, 5. 0 X 10- 3, 1. 0 X 10- 2, and 1. a 0 X 10-molZdm 3, and the aluminum oxide suspension having a pH of about 2-12 A liquid (ratio of aluminum oxide; 2% by volume) was prepared. For comparison, a composition for dispersing particles was mixed to prepare a suspension of aluminum oxide (a ratio of aluminum aluminum; 2 parts). %) Was also prepared.
  • nitric acid HNO
  • ammonia NH
  • TMAOH Lummo-pum
  • FIG. 2 shows the relationship between pH and zeta potential in a 2 vol% aluminum oxide suspension having various titanic acid concentrations.
  • FIG. 3 in 2 volumes 0/0 Sani ⁇ aluminum suspension various pH, shows the relationship between the titanic acid concentration and the zeta potential.
  • the isoelectric point of aluminum oxide in a suspension having a titanic acid concentration of OmolZdm 3 is around pH 9 and is in the pH range below the isoelectric point (acid side).
  • the surface of the aluminum oxide film has a positive charge
  • the surface of the aluminum oxide film has a negative charge.
  • the isoelectric point of this aluminum oxide shifts to the pH range on the acidic side, that is, the aluminum oxide. It was confirmed that the surface charge of aluminum shifted to the negative side, and that when the titanic acid concentration was 1.0 ⁇ 10 ⁇ ImolZdm 3 , it did not have an isoelectric point.
  • FIGS. 416 show the relationship between the titanic acid concentration, the sedimentation volume, and the sedimentation velocity in the 2% by volume oxidized aluminum suspension at pH 2, 4 and 10.5, respectively.
  • 5 X 10- 3 molZdm 3 is the sedimentation rate is 0. ImmZs less, and the sedimentation volume is not more than lml, good It was in a dispersed state.
  • the titanate concentration 5. 0 X 10- 3 mol / dm 3 and 1. 0 X 10- 2 mol Zdm 3 , sedimentation rate of about 0. 8- lmmZs, and sedimentation volume of about 1. 8-2 2 ml, a stable dispersion was obtained.
  • titanate concentration 1. 0 X 10- 3, 2. 5 X 10- 3, 5. 0 X 10- 3, 1. 0 X 10- 2, 2. 5 X 10- 2, 5. 0 X 10- 2, 7. Ri 5 X 10- 2 and 1. 0 X 10- ⁇ 11101 / (1111 3 der, and pH4 and suspended each Sani ⁇ aluminum 10.5
  • a suspension (a ratio of aluminum oxide; 2 and 20% by volume) was prepared, and, as a comparison, a suspension of aluminum oxide not containing the particle dispersion composition (a ratio of aluminum oxide). 2 and 20% by volume) were also prepared.
  • each shear stress of the aluminum oxide suspension shows the relationship between the titanium acid concentration and apparent viscosity .
  • FIGS. 11 and 12 respectively, pH 4 20 vol% oxide ⁇ Lumi -. ⁇ arm suspension, and Roitaiotaomikuron 5 20 vol 0/0
  • Each titanate Sani ⁇ aluminum suspension 2 shows the relationship between the shear stress and the shear rate in the concentration.
  • titanate concentration in FIG. 11 is 1. 0 X 10- 3, 1. 0 X 10- 2, 7. 5 X 10- 2 and 1. 0 X 10 -MolZdm 20 volume 0/0 aluminum oxide suspension 3 (pH 4), and titanate of 12 concentration force 5.
  • the straight line passes through the origin - considered Yuton fluid, and the slope of the straight line is large appliances these distributed systems It was confirmed that it was excellent in fluidity and very homogeneous.
  • titanate concentration 1. 0 X 10- 3, 2. 5 X 10- 3, 5. 0 X 10- 3, 1. 0 X 10- 2, and 1. a 0 X 10-molZdm 3, and pH 4, 9 and 10.5 the oxidation ⁇ Rumi - ⁇ beam suspension (the proportion of Sani ⁇ aluminum; 2 vol% ) was prepared.
  • a particle dispersion composition was mixed to prepare a suspension of aluminum oxide (a ratio of aluminum oxide: 2% by volume).
  • FIGS. 13-15 show the relationship between the titanic acid concentration and the amount of titanium adsorbed in a 2% by volume aluminum oxide suspension of ⁇ 4, ⁇ 9 and ⁇ .5, respectively.
  • the adsorption amount of titanium 1. 5 X 10- 5 mol / m 2 in the case of 2. OX 10- 5 mol / m 2 , pH 9 in the case of pH4, and ⁇ . 5 6.
  • OX 10- 6 mol / m 2 der if the is, the adsorption amount was reduced according to changes in the alkaline side. This is because when the titanate concentration in FIG. 2 considering the surface charge during OmolZdm 3, isoelectric point (pH 9 near) following realm surface charge (acidic side) in Sani ⁇ aluminum particles on the positive side Therefore, it is considered that the amount of adsorption is larger on the acidic side than on the alkaline side. From this, it is considered that the metal complex having a negative charge is present in the particle dispersion composition of Example 1 described above.
  • a composition for dispersing particles (titanic acid concentration; 2 molZdm 3 ), water, and oxidized aluminum powder (average particle size; 0.3 / ⁇ , purity: 99.99% or more, each of the above molar ratios;
  • the chemical name “ ⁇ -30” manufactured by Chemical Industry Co., Ltd.) and a ⁇ modifier were mixed by ball milling at room temperature (about 25 ° C) for 24 hours, and the titanic acid concentration was 1.0 X 10- 2 MolZdm is 3, and pH2 and each Sani ⁇ aluminum suspension of 10.5; the (proportion of Sani ⁇ aluminum 2 volumes 0/0) was prepared.
  • the above-mentioned aluminum oxide particles were sufficiently dispersed without settling.
  • the pH adjuster the same one as described above was appropriately used.
  • the same pH electrode as described above was used.
  • FIG. 17 shows the change in the dispersibility (sedimentation time: 0-2900 minutes) depending on the ratio of titanium alkoxide to lactic acid in a 2% by volume aluminum oxide suspension of ⁇ .5.
  • FIG. 18 shows changes in dispersibility (sedimentation time: 0 to 16000 minutes) depending on the ratio of titanium alkoxide to lactic acid in a 2% by volume oxidized aluminum suspension at pH2.
  • FIG. 19 shows the change in dispersibility (sedimentation time: 0 to 2900 minutes) depending on the ratio of titanium alkoxide and lactic acid in a 2% by volume oxidized aluminum suspension at pH2.
  • TIP in FIGS. 16-19 indicates titanium tetraisopropoxide
  • Lac indicates lactic acid.
  • a stable bulky and negatively charged metal complex in which a metal ion is complexed with an organic acid is present in the particle dispersion composition of the present invention.
  • a homogeneous and stable dispersion system can be easily formed by controlling the mixing amount of the particle dispersion composition in consideration of the isoelectric point of various particles to be dispersed. It is possible to manufacture.
  • the above phenomenon exhibited by the particle dispersing composition is very similar to the pH behavior when an anionic polyelectrolyte is added as a dispersant. It is surprising that the particles are dispersed without agglomeration in the presence of (in the examples titanium ions). In addition, the effect as a dispersant is equal to or higher than that of the conventionally reported polymer electrolytes, and the pH range of the suspension functioning as a dispersant is 2-11, which is extremely wide and can be mixed. The amount is also wide. Furthermore, it does not contain other components such as halogen, nitric acid, sulfuric acid and the like! Therefore, if there is a sintering process in the manufacturing process, such as the manufacture of ceramics, there is no adverse effect on the environment and the aqueous solution Therefore, the safety is high, as there is no danger such as fire.
  • the composition for dispersing particles includes ceramic materials, photocatalytic materials (waste liquid treatment, deodorization, decolorization, sterilization, photosensitizers, etc.), electronic materials such as optical materials and dielectric materials (such as barium titanate and potassium titanyl phosphate). Etc.) are widely available. In particular, it can be suitably used in the field of photocatalytic materials and solar cell materials such as dye-sensitized solar cells. It can be used as a dispersant for particles, and is also effective as a method for uniformly doping a metal element into a main component. Since the composition for dispersing particles is an aqueous solution, it can be combined with other water-soluble compounds, and the range of synthesis of the material can be improved.

Abstract

【課題】 種々の粒子の懸濁液に対して優れた分散効果を有し且つ環境面への負荷のない粒子を分散させるための組成物、安定して粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸化チタン焼結体を提供する。 【解決手段】 本発明の粒子を分散させるための組成物は、+3~5価の金属元素(例えば、チタン等)を含む金属アルコキシドと、有機酸(例えば、乳酸等)と、水と、を混合することにより得られたことを特徴とする。本発明の粒子が分散されている組成物は、粒子(例えば、酸化物粒子等)と、上記粒子を分散させるための組成物と、を含むことを特徴とする。本発明の粒子が分散されている組成物の製造方法は、上記粒子を分散させるための組成物と、粒子と、溶媒(例えば、水等)とを混合する混合工程を備えており、且つこの混合工程において、上記組成物の混合量を上記粒子の等電点に応じて制御することを特徴とする。

Description

明 細 書
粒子を分散させるための組成物、粒子が分散されている組成物及びその 製造方法並びにアナターゼ型酸化チタン焼結体
技術分野
[0001] 本発明は、粒子を分散させるための組成物、粒子が分散されている組成物及びそ の製造方法並びにアナターゼ型酸ィ匕チタン焼結体に関する。更に詳しくは、種々の 粒子の懸濁液に対して優れた分散効果を有し且つ環境面への負荷のない粒子を分 散させるための組成物、安定して粒子が分散されて 、る組成物及びその製造方法並 びにアナターゼ型酸ィ匕チタン焼結体に関する。
本発明は、セラミックス材料、光触媒材料、光学材料及び電子材料分野等におい て幅広く利用できる。
背景技術
[0002] 従来より、粒子の分散系の調製には、静電的な粒子の反発を利用するための懸濁 液の pH調整、及び分散剤の添カ卩が主に行われている。この分散剤としては、例えば 、水ガラス、ポリリン酸等の無機電解質、並びに高分子電解質が一般的に使用されて いる。特に濃厚な懸濁液の調製には、高分子電解質を分散剤として添加する以外で は困難と考えられてきた。
[0003] また、コロイド科学において、多価のイオンが少量でも共存すると懸濁液の安定性 が崩れることが一般的に知られており、チタン(+4価)等の多価金属のような高い陽 電荷をもつイオンの共存下では、分散系はすぐに凝集してしまうと考えられてきた。 更に、チタン等の多価金属のイオンを含む水溶液は、その陽電荷密度のために、 アクア錯イオンが容易に加水分解 '縮合し、一般には塩基性酸ィ匕物として沈殿する 傾向があり、多価金属イオンを含む水溶液は極めて酸濃度が高い条件でしか安定に 得られな 、ことが知られて 、る(例えば、米国特許第 2926183号等)。
発明の開示
発明が解決しょうとする課題
[0004] 上記のように、チタン等の多価金属イオンが含まれる水溶液力 粒子の懸濁液に対 して、高分子電解質を分散剤として使用したような効果を奏することは知られていな い。
[0005] 本発明は上記観点に鑑みてなされたものであり、種々の粒子の懸濁液に対して優 れた分散効果を有し且つ環境面への負荷のない粒子を分散させるための組成物、 安定して粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸ィ匕 チタン焼結体を提供することを目的とする。
課題を解決するための手段
[0006] 本発明者等は、チタンアルコキシド等の金属アルコキシドと、乳酸等の有機酸と、水 とを混合することで得られる透明で安定な水溶液 (組成物)の利用用途にっ ヽて、鋭 意検討した結果、イオン性染料を用いた沈殿物の形成試験及びゼータ電位の測定 等により、組成物中の金属イオンが有機酸と錯形成し、嵩高く且つ負の電荷を有する 溶存種として存在しており、分散剤としての効果が従来報告されている高分子電解 質と同等若しくはそれ以上であり、酸ィ匕物粒子等の各種粒子の分散に非常に有効で あることを見出し、本発明を完成するに至った。
[0007] 本発明は以下の通りである。
(1) +3— 5価の金属元素を含む金属アルコキシドと、有機酸と、水と、を混合する ことにより得られたことを特徴とする粒子を分散させるための組成物(以下、「粒子分 散用組成物」とも言う。)。
(2)上記金属アルコキシド由来の加水分解物と、上記有機酸と、が混合されて得ら れ、且つ透明な水溶液である上記(1)に記載の粒子を分散させるための組成物。
(3)上記金属元素が、アルミニウム、チタン、ニオブ及びタンタルのうちのいずれか である上記(1)又は(2)に記載の粒子分散用組成物。
(4)上記金属元素が、アルミニウム又はチタンである上記(1)又は(2)に記載の粒 子分散用組成物。
(5)上記有機酸が、乳酸、シユウ酸、クェン酸及び酒石酸のうちの少なくとも 1種で ある上記(1)乃至 (4)の 、ずれかに記載の粒子分散用組成物。
(6)上記有機酸と上記金属アルコキシドとの混合割合 (有機酸:金属アルコキシド) は、モル比で (0. 5— 2) : 1である上記(1)乃至(5)のいずれかに記載の粒子分散用 組成物。
(7)チタンアルコキシドと、乳酸、シユウ酸、クェン酸及び酒石酸のうちの少なくとも 1 種の有機酸と、水と、を混合することにより得られ、上記チタンアルコキシドと上記有 機酸との混合割合 (有機酸:チタンアルコキシド)は、モル比で (0. 7-1. 5) : 1であ ることを特徴とする粒子分散用組成物。
(8)粒子と、上記(1)乃至(7)のいずれかに記載の粒子分散用組成物と、を含むこ とを特徴とする粒子が分散されている組成物 (以下、「粒子含有組成物」とも言う。 ) o
(9)上記粒子が酸化物粒子である上記(8)に記載の粒子含有組成物。
(10)上記粒子の含有割合が、 60体積%以下である上記(8)又は(9)に記載の粒 子含有組成物。
(11) pH2— 11である上記(8)乃至(10)の 、ずれかに記載の粒子含有組成物。
(12)セラミックス材料、光触媒材料、光学材料又は電子材料分野に用いられる上 記(8)乃至(11)の 、ずれかに記載の粒子含有組成物。
(13)アナターゼ型酸ィ匕チタン粒子と、上記(7)に記載の粒子を分散させるための 組成物と、を含むことを特徴とする粒子含有組成物。
(14)上記(13)に記載の粒子含有組成物の固形分が焼結されたことを特徴とする アナターゼ型酸化チタン焼結体。
(15)焼結温度が、 300— 750°Cである上記(14)に記載のアナターゼ型酸化チタ ン焼結体。
(16)光触媒材料又は太陽電池材料分野に用いられる上記(14)又は(15)に記載 のアナターゼ型酸ィヒチタン焼結体。
(17)上記(1)乃至 (7)に記載の粒子分散用組成物と、粒子と、溶媒とを混合する 混合工程を備えており、且つ該混合工程において、上記組成物の混合量を上記粒 子の等電点に応じて制御することを特徴とする粒子含有組成物の製造方法。
(18)上記溶媒が、水である上記(17)に記載の粒子含有組成物の製造方法。 発明の効果
本発明の粒子分散用組成物は、種々の粒子の懸濁液に対して優れた分散効果を 有しており、且つ環境面への負荷がないため、セラミックス材料、光触媒材料、光学 材料及び電子材料分野等において幅広く利用できる。
また、特定の金属元素を用いた場合には、より確実に、種々の粒子の懸濁液に対 して優れた分散効果を有する粒子分散用組成物となる。また、分散させる粒子と同系 の金属元素を用いることで (例えば、分散させる粒子が酸ィ匕チタン粒子であり、粒子 分散用組成物における金属元素がチタンの場合)、より不純物の少ない粒子含有組 成物を得ることができる。また、分散させる粒子と、系が異なる金属元素を用いること で、電子材料分野等において用いる場合に、所望の割合でその粒子をドープするこ とがでさる。
更に、上記有機酸と上記金属アルコキシドとを特定の混合割合とした場合には、種 々の粒子の懸濁液に対して優れた分散効果を有し且つ透明で十分に安定な組成物 となる。
本発明の他の粒子分散用組成物は、チタンアルコキシドと特定の有機酸とを特定 の混合割合で含有しており、チタン酸濃度が高ぐ種々の粒子の懸濁液に対してより 優れた分散効果を有しており、且つ環境面への負荷がないため、セラミックス材料、 光触媒材料、光学材料及び電子材料分野等にお!ヽて幅広く利用できる。
本発明の粒子含有組成物は、本粒子分散用組成物により粒子が安定して分散さ れており、セラミックス材料、光触媒材料、光学材料及び電子材料分野等において幅 広く利用できる。
本発明の他の粒子含有組成物は、アナターゼ型酸化チタン粒子と、特定の粒子分 散用組成物とを含んでおり、上記酸化チタン粒子が安定して分散されており、光触媒 材料又は太陽電池材料分野において好適に利用できる。
本発明のアナターゼ型酸ィ匕チタン焼結体は、上記粒子分散用組成物におけるチタ ン酸が酸ィ匕チタンとなるため不純物が混入せず、且つこのチタン酸由来の酸化チタ ンが、アナターゼ型酸ィ匕チタン粒子の周りに均一に存在し、粒子間において焼結助 剤として働くため、例えば、 300— 750°Cという低温の焼成によっても強度のあるアナ ターゼ型酸化チタン焼結体となる。そのため、光触媒材料又は色素増感型太陽電池 等の太陽電池材料分野において好適に用いることができる。
本発明の粒子含有組成物の製造方法によれば、粒子が安定して分散された粒子 含有組成物を容易に製造することができる。
また、溶媒が水である場合には、取り扱い易ぐ火災等の危険がないため、安全性 が高い。
図面の簡単な説明
[図 1]染料における沈殿物の形成試験の結果を説明する説明図である。
[図 2]各種チタン酸濃度の 2体積%酸ィ匕アルミニウム懸濁液における、 pHとゼータ電 位との関係を説明するグラフである。
[図 3]各種 pHの 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度とゼータ電 位との関係を説明するグラフである。
[図 4]pH2の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度と沈降体積と 沈降速度との関係を説明するグラフである。
[図 5]pH4の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度と沈降体積と 沈降速度との関係を説明するグラフである。
[図 6]pH10. 5の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度と沈降体 積と沈降速度との関係を説明するグラフである。
[図 7]pH4の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度と見かけ粘度 との関係を説明するグラフである。
[図 8]pH4の 20体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度と見かけ粘度 との関係を説明するグラフである。
[図 9]pH10. 5の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度と見かけ 粘度との関係を説明するグラフである。
[図 10]ρΗ1Ο. 5の 20体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度と見か け粘度との関係を説明するグラフである。
[図 11]ρΗ4の 20体積%酸ィ匕アルミニウム懸濁液における、剪断応力と剪断速度との 関係を説明するグラフである。
[図 12]pH10. 5の 20体積%酸ィ匕アルミニウム懸濁液における、剪断応力と剪断速度 との関係を説明するグラフである。
[図 13]pH4の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度とチタン吸着 量との関係を説明するグラフである。
[図 14]pH9の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度とチタン吸着 量との関係を説明するグラフである。
[図 15]pH10. 5の 2体積%酸ィ匕アルミニウム懸濁液における、チタン酸濃度とチタン 吸着量との関係を説明するグラフである。
[図 16]pH10. 5の 2体積%酸ィ匕アルミニウム懸濁液における、チタンアルコキシドと 乳酸の比率による分散性の変化を説明するグラフである。
[図 17]pH10. 5の 2体積%酸ィ匕アルミニウム懸濁液における、チタンアルコキシドと 乳酸の比率による分散性の変化を説明するグラフである。
[図 18]pH2の 2体積%酸ィ匕アルミニウム懸濁液における、チタンアルコキシドと乳酸 の比率による分散性の変化を説明するグラフである。
[図 19]pH2の 2体積%酸ィ匕アルミニウム懸濁液における、チタンアルコキシドと乳酸 の比率による分散性の変化を説明するグラフである。
発明を実施するための最良の形態
[0010] 以下、本発明を詳しく説明する。
[1]粒子を分散させるための組成物 (粒子分散用組成物)
本発明の粒子分散用組成物は、 + 3— 5価の金属元素を含む金属アルコキシドと、 有機酸と、水と、を混合することにより得られたことを特徴とする。
また、この粒子分散用組成物は、上記金属アルコキシド由来の加水分解物と、上記 有機酸と、が混合されて得られ、且つ透明な水溶液であるものとすることができる。 上記粒子分散用組成物は、金属イオン (主として金属酸イオン)が有機酸と錯形成 し、嵩高く且つ負の電荷を有する安定な金属錯体が水溶液中に存在している金属酸 水溶液と考えられる。
[0011] 上記「有機酸」としては、例えば、乳酸、シユウ酸、クェン酸及び酒石酸等を挙げる ことができる。これらの有機酸は、単独で用いてもよいし、 2種以上を併用してもよい。
[0012] 上記「金属アルコキシド」は、 + 3— 5価の金属元素を含むものである。この金属ァ ルコキシドは、〔M (OR) 〕 [但し、 M ; + 3— 5価の金属元素、 R;アルキル基、 x; 3— 5の整数であり、金属元素(M)の価数に対応する。 ]と表すことができる。 上記金属元素(M)としては、例えば、アルミニウム、ガリウム、インジウム、チタン、ハ フニゥム、バナジウム、ニオブ及びタンタル等が挙げられる。これらのなかでも、アルミ ユウム、チタン、ニオブ、タンタルが好ましぐ特にアルミニウム、チタンが好ましぐ更 にはチタンが好ましい。
上記アルキル基 (R)は、通常、炭素数 1一 8、好ましくは 1一 6、更に好ましくは 1一 4 のアルキル基である。具体的には、例えば、メトキシド、エトキシド、プロポキシド、イソ プロポキシド、ブトキシド等が挙げられる。特に、このアルキル基がブトキシドである場 合には、金属アルコキシドの加水分解で生じるアルコール分 (ブタノール)が分相す るため、減圧下での留去等の処理をすることなくアルコール含量の少な 、組成物を 容易に調製できる。
尚、これらの金属アルコキシドは、単独で用いてもよいし、 2種以上を併用してもよい
[0013] 上記金属元素がチタンである場合の具体的なチタンアルコキシドとしては、例えば 、チタンテトラメトキシド〔Ti (0— Me) 〕、チタンテトラエトキシド〔Ti (0— Et) 〕、チタン
4 4 テトライソプロポキシド〔1 (0— iPr) 〕、チタンテトラブトキシド〔Ti (0— Bu) 〕及びこれ
4 4 らの誘導体等が挙げられる。これらのなかでも、一般的に入手し易ぐ取り扱い易いと いう観点から、チタンテトライソプロポキシド、チタンテトラブトキシドが好ましい。また、 加水分解により生じるアルコール分の除去が容易であるという観点から、チタンテトラ ブトキシドが好ましい。
また、上記金属元素がアルミニウムである場合の具体的なアルミニウムアルコキシド としては、例えば、アルミニウムトリメトキシド〔A1 (0-Me) 〕、アルミニウムトリエトキシ
3
〔A1 (0—Et) 〕、ァルミ-ゥムトリィソプロポキシド〔八1 (04?1:) 〕、アルミニウムトリブ
3 3
トキシド〔A1 (0— Bu) 〕及びこれらの誘導体等が挙げられる。これらのなかでも、一般
3
的に入手し易ぐ取り扱い易いという観点から、アルミニウムトリイソプロポキシド、アル ミニゥムトリブトキシドが好ましい。また、加水分解により生じるアルコール分の除去が 容易であると 、う観点から、アルミニウムトリブトキシドが好まし 、。
[0014] 上記「混合」にお 、て、前記金属アルコキシドと、前記有機酸と、水と、を混合する 順序は特に限定されない。例えば、(1)金属アルコキシドと、有機酸と、水と、を同時 に混合してもよ!/ヽし、 (2)金属アルコキシドと有機酸とを混合した後に水を混合しても よいし、(3)金属アルコキシドと水とを混合した後に、有機酸を混合してもよい。これら のいずれの場合においても、金属アルコキシドが水の存在により加水分解されて白 濁し、その後、得られる金属アルコキシド由来の加水分解物が有機酸と混合されるこ とにより溶解し、透明の液体となる。尚、本発明の粒子分散用組成物においては、こ れらの混合後、 1週間以上、特に 2— 6週間、更には 2— 4週間の攪拌を行うことで透 明の液体として得られるものもあるし、これらの混合後、上記攪拌を行わなくとも透明 の液体として得られるものちある。
[0015] 上記混合を行う際の雰囲気及び温度は、各々特に限定されず、例えば、大気下に て室温 (約 25°C)で行うことができる。また、上記攪拌を行う際の雰囲気及び温度に ついても、各々特に限定されず、例えば、大気下にて室温 (約 25°C)で行うことがで きる。
[0016] 上記有機酸と上記金属アルコキシドとの混合割合 (有機酸:金属アルコキシド)は、 特に限定されない。例えば、このモル比は(0. 5—4): 1、特に(0. 5—3): 1、好まし くは(0. 5— 2) : 1、より好ましくは(0. 5—1. 8) : 1、更に好ましくは(0. 7—1. 5) : 1、 特に好ましくは 1: 1である。この割合が(0. 5-4): 1である場合、種々の粒子の懸濁 液に対して優れた分散効果を有し且つ透明で十分に安定な組成物が得られる。特 に、この割合が 1 : 1である場合、所定の金属アルコキシドの金属成分が高濃度で含 まれる組成物をより容易に得られる。また、上記金属アルコキシドの割合を増加させる ことで、分散効果をより向上させることができる。一方、上記有機酸の割合を増加させ ることで、前記攪拌の期間を短くすることができる。
[0017] また、本発明の粒子分散用組成物は、上記チタンアルコキシドと、乳酸、シユウ酸、 クェン酸及び酒石酸のうちの少なくとも 1種の有機酸と、水と、を混合することにより得 られ、チタンアルコキシドと有機酸との混合割合 (有機酸:チタンアルコキシド)が、モ ル比で (0. 7-1. 5) : 1 (好ましくは 1 : 1)であるものとすることができる。この場合、チ タン酸を 1一 3molZdm3、特に 1一 2. 5mol/dm3,更には 1. 5—2. 5molZdm3と Vヽぅ高濃度で含有し、且つより優れた粒子の分散効果を有する粒子分散用組成物を 得ることができる。 [0018] 上記「水」の混合量は特に限定されず、本発明の粒子分散用組成物に含まれる金 属成分が所定の濃度となるように適宜調整される。尚、この水は特に限定されず、純 水、蒸留水等が用いられる。
[0019] 本発明の粒子分散用組成物に含まれる金属成分の濃度は、特に限定されず、用 途ゃ目的等に応じて適宜調整される。
[0020] また、本発明の粒子分散用組成物には、製造過程上、金属アルコキシドの加水分 解によりアルコール分が含有される力 このアルコール分は必要に応じて公知の方 法 (例えば、減圧留去等)により除去することが可能である。尚、この加水分解で生じ るアルコール分を除去することによって、組成物の均一性や安定性、粒子を分散させ る効果が低減することはな 、。
また、この粒子分散用組成物は、長期間 (通常、 1年以上、特に 1一 10年間)、均質 な溶液の状態を維持することができ、ゲル化や沈殿が生じることは殆どな ヽ。
[0021] このようにして得られる本発明の粒子分散用組成物は、 pHl— 12の範囲において 、透明(特に無色透明)で安定した液体である。また、 pHl— 11 (特に pH2— 11)の 範囲において、透明で安定した液体であり且つ所定の粒子を安定して分散させるこ とがでさる。
[0022] また、本発明の粒子分散用組成物は、後述の実施例における「沈殿物の形成試験 」に用いられている陽イオン染料と反応させた場合に、沈殿を形成するものであること が好ましい。
[0023] 本発明の粒子分散用組成物は、種々の粒子の懸濁液に対して優れた分散効果を 有しており、且つ環境面への負荷がないため、工業的に簡単に応用でき、セラミック ス材料、光触媒材料、光学材料及び電子材料分野等において幅広く利用できる。更 に、ハロゲン、硝酸、硫酸などの他の成分を含まないので、焼成工程を経ても環境へ の悪影響がなぐ水溶液であることから火災などの危険もなぐ安全性に優れる。 また、この粒子分散用組成物では、組成物中の水又は水とアルコール分を除去し て得られる固形分を、再度、水に溶解することで、本発明の粒子分散用組成物して 用いることができる。この場合においても、上記と同様の分散効果を得ることができる [0024] [2]粒子が分散されて ヽる組成物 (粒子含有組成物)
本発明の粒子含有組成物は、粒子と、粒子分散用組成物と、を含むことを特徴とす る。尚、上記「粒子分散用組成物」については、前記 [1]の説明をそのまま適用する ことができる。
[0025] 上記「粒子」は特に限定されず、無機物粒子であっても、有機物粒子であってもよ い。
上記無機物粒子としては、例えば、(1)酸ィ匕アルミニウム、酸化チタン、酸化ジルコ ユウム、酸化ケィ素、酸化マグネシウム、酸化鉄、酸化亜鉛、酸化スズ、酸化クロム及 びフェライト等の酸ィ匕物、(2)炭化チタン、炭化ジルコニウム、炭化タングステン、炭 化鉄、炭化ケィ素等の炭化物、(3)窒化チタン、窒化鉄等の窒化物、(4)水酸ィ匕アル ミニゥム、水酸ィ匕ジルコニウム等の水酸ィ匕物、(5)金、白金、銀及び銅等の金属など の粒子を挙げることができる。更には、炭酸カルシウム、炭酸ベリリウム等の塩や、天 然鉱物由来の粉末等を挙げることができる。
上記有機物粒子としては、例えば、アクリル系榭脂、アミド系榭脂、エステル系榭脂 、エポキシ系榭脂、メラミン系榭脂、ウレタン系榭脂、スチレン系榭脂、シリコーン系榭 脂及びフッ素系榭脂等の榭脂粒子 (エラストマ一粒子及びゴム粒子を含む)を挙げる ことができる。更には、デンプン粉末、セルロース粉末等を挙げることもできる。
本発明においては、粒子の種類を用途や目的等に応じて適宜選択して用いること ができる。これらの粒子は、単独で用いてもよいし、粒子の表面電荷を考慮して 2種 以上を併用してもよい。
また、本発明においては、この粒子の種類を酸ィ匕物粒子又は有機物粒子とすること ができ、特に酸ィ匕物粒子とすることができる。
[0026] 更に、本発明においては、上記粒子が酸ィ匕チタン粒子であり、上記粒子分散用組 成物が、チタンアルコキシドと、乳酸、シユウ酸、クェン酸及び酒石酸のうちの少なくと も 1種の有機酸と、水と、を混合することにより得られ、チタンアルコキシドと有機酸と の混合割合 (有機酸:チタンアルコキシド)力 モル比で (0. 7-1. 5) : 1の前記粒子 分散用組成物である粒子含有組成物とすることができる。この場合、分散媒となる粒 子分散用組成物はチタン酸を高濃度で含有することができるため、チタン成分の濃 厚な懸濁液とすることができる。尚、チタンアルコキシドの加水分解により生じたアル コール分は、前述の方法により除去されていてもよい。
また、上記酸ィ匕チタン粒子の結晶型は特に限定されず、アナターゼ型、ルチル型 及びブルカイト型のいずれであってもよいが、好ましくはアナターゼ型である。この粒 子がアナターゼ型酸ィ匕チタン粒子である場合には、この粒子分散組成物を光触媒材 料又は太陽電池材料分野に好適に用いることができる。
[0027] 上記粒子の平均粒径は特に限定されず、用途や目的等に応じて適宜調整すること ができる。
[0028] また、本発明の粒子含有組成物における金属成分の濃度は、用途や目的等に応 じて適宜調整することができる。尚、この濃度が大きい程、分散させる粒子の表面電 荷を負にシフトさせ易い。
[0029] 更に、本発明の粒子含有組成物における粒子の含有割合は特に限定されず、例 えば、粒子含有組成物を 100体積%とした場合、 60体積%以下であることが好ましく 、より好ましくは 1一 50体積%である。この含有割合が 60体積%以下である場合、所 定の粒子がより安定して分散された組成物となる。
[0030] また、この粒子含有組成物は、 pHl— 12であることが好ましぐより好ましくは pHl 一 11、更に好ましくは pH2— 11である。特に pHが 2— 11の範囲である場合、所定 の粒子がより安定して分散された組成物となる。
[0031] 本発明の粒子含有組成物には、通常、溶媒が含まれる。この溶媒としては、(1)純 水、蒸留水等の水、(2)水と親水性の有機溶媒との混合液等が挙げられる。この有 機溶媒としては、例えば、エタノール、イソプロパノール等の低級アルコール等が挙 げられる。これらのなかでも、取り扱い易ぐ且つ火災等の危険がなく安全性が高いと V、う観点力 水であることが好まし 、。
更に、本発明の粒子含有組成物には、粒子の安定した分散を損なわない範囲で、 目的及び用途等に応じて、公知の添加剤を含有させてもよい。
[0032] また、本発明の粒子含有組成物は、上記粒子分散用組成物を用いて!/、るため、環 境面への負荷がなぐ工業的にも簡単に応用することができ、セラミックス材料、光触 媒材料、光学材料及び電子材料分野等において幅広く利用できる。更に、ハロゲン 、硝酸、硫酸などの他の成分を含まないので、焼成工程を経ても環境への悪影響が なぐ更には水系とすることができるため火災などの危険もなぐ安全性に優れる。 更に、本発明の粒子含有組成物は焼結工程を経た際に、粒子分散用組成物にお ける金属酸が金属酸ィ匕物となり、酸ィ匕物粒子等の分散された粒子の周りに均一に存 在し、粒子間において焼結助剤として働くため、 + 3— 5価の上記金属元素を粒子間 に均一〖こドープすることができる。
[0033] [3]粒子含有組成物の製造方法
本発明の粒子含有組成物の製造方法は、粒子分散用組成物と、粒子と、溶媒とを 混合する混合工程を備えており、且つこの混合工程において、上記粒子分散用組成 物の混合量を上記粒子の等電点に応じて制御することを特徴とする。尚、上記「粒子 分散用組成物」については、前記 [1]の説明をそのまま適用することができる。また、 上記「粒子」及び上記「溶媒」については、前記 [2]の各説明をそのまま適用すること ができ、特に水が好ましい。
[0034] 上記「混合工程」では、粒子分散用組成物と、粒子と、溶媒とが混合される。これら の粒子分散用組成物と、粒子と、溶媒とを混合する順序は特に限定されず、これらを 同時に混合してもよいし、各々を任意の順に混合してもよい。具体的には、例えば、 粒子と溶媒とを混合した後、粒子分散用組成物を混合することができる。
上記混合工程における、混合手段は特に限定されず、例えば、ボールミリング、超 音波ホモジナイザー等により行うことができる。
また、混合を行う際の雰囲気及び温度は、各々特に限定されず、例えば、大気下 にて室温 (約 25°C)で行うことができる。
[0035] 上記粒子分散用組成物の混合量は、上記粒子の等電点に応じて制御される。この 粒子分散用組成物の pH挙動は、陰イオン性の高分子電解質を分散剤として添加し たときの pH挙動ときわめて類似しているため、従来の高分子電解質と同様に用いる ことができる。
例えば、分散させる粒子を酸ィ匕アルミニウム (等電点; PH約 9付近)とした場合、等 電点よりも酸性側の pH領域 (pH約 9未満)では、酸ィ匕アルミニウム表面は正の電荷 を有して!/ヽるために、負の電荷を有する錯体を含む本粒子分散用組成物を配合して いくことで凝集し、更に配合量を増やし、酸ィ匕アルミニウムの表面電荷を中和する以 上に混合することで再分散させることができる。このように、分散させる所望の粒子の 等電点よりも低 、pH領域 (酸性側)で分散させるためには、粒子表面の電荷を中和 する以上に粒子分散用組成物を混合する必要があるが、この場合、多量の金属成分 を多量に含む粒子含有組成物を製造することができ、セラミックス材料、光触媒材料 、光学材料及び電子材料分野等にぉ ヽて幅広く応用できる。
一方、等電点よりもアルカリ側の pH領域 (pH約 9を超える場合)では、酸化アルミ- ゥムの表面電荷も粒子分散用組成物における錯体と同様に負の電荷を有しているた め、凝集することなぐ更に安定して分散した粒子含有組成物を得ることができる。
[0036] [4]アナターゼ型酸化チタン焼結体
本発明のアナターゼ型酸ィ匕チタン焼結体は、アナターゼ型酸化チタン粒子と、粒 子分散用組成物と、を含む粒子含有組成物の固形分が焼結されたことを特徴とする 上記「アナターゼ型酸ィ匕チタン粒子」の平均粒径は特に限定されず、用途や目的 等に応じて適宜調整することができる。
このアナターゼ型酸ィ匕チタン粒子の含有割合は特に限定されず、例えば、粒子含 有組成物を 100体積%とした場合、 60体積%以下であることが好ましぐより好ましく は 1一 50体積%である。この含有割合が 60体積%以下である場合、粒子が安定して 分散するので好ましい。
[0037] 上記「粒子分散用組成物」は、チタンアルコキシドと、乳酸、シユウ酸、クェン酸及び 酒石酸のうちの少なくとも 1種の有機酸と、水と、を混合することにより得られ、チタン アルコキシドと有機酸との混合割合 (有機酸:チタンアルコキシド)が、モル比で (0. 7 一 1. 5) : 1の前記粒子分散用組成物である。特に、チタンアルコキシドの加水分解 により生じたアルコール分が前述の方法により除去されたものが好ましい。この場合、 余分な成分をほとんど含有しないチタン酸水溶液となり、チタン成分の純度がより高 まるので好ましい。
[0038] 上記「粒子含有組成物の固形分」は、粒子含有組成物を一般的な方法により乾燥 することで得ることができる。 上記焼結温度は、通常 300— 750。Cであり、好ましくは 400— 750。C、より好ましく は 500— 750°Cである。この焼結温度が上記範囲である場合には、酸化チタン粒子 をルチル型へ転移させることなく、強度のあるアナターゼ型酸ィ匕チタン焼結体を得る ことができる。また、上記焼結温度が上記範囲内において高くなるほど、焼結体の強 度を向上させることができる。
[0039] 本発明のアナターゼ型酸化チタン焼結体においては、上記粒子分散用組成物に おけるチタン酸が酸ィ匕チタンとなるため不純物が混入せず、且つこのチタン酸由来 の酸ィ匕チタン力 アナターゼ型酸ィ匕チタン粒子の周りに均一に存在し、粒子間にお いて焼結助剤として働くため、 300— 750°Cという低温の焼成によっても強度のある アナターゼ型酸ィ匕チタン焼結体となる。そのため、アナターゼ型酸ィ匕チタンの薄膜や 、ゾルゲル法等の従来法では製造が困難であった厚みのあるアナターゼ型酸ィ匕チタ ンのバルタ体を余分な成分を添加することなく容易に製造することができ、セラミック ス材料、光触媒材料、光学材料及び電子材料分野等において幅広く利用できる。特 に、本発明のアナターゼ型酸ィ匕チタン焼結体は、光触媒材料又は色素増感型太陽 電池等の太陽電池材料分野 (例えば、基板、電極等)において好適に用いることが できる。
実施例
[0040] 以下、実施例により本発明を具体的に説明する。
[1]粒子を分散させるための組成物 (粒子分散用組成物)の調製
実施例 1
チタンテトライソプロボキシド (和光純薬工業株式会社製)と乳酸 (和光純薬工業株 式会社製)とをモル比(チタンテトライソプロボキシド:乳酸)で 1: 1となるように混合し た後、水(純水)を更に混合した。水を加えると混合液は直ちに加水分解して白濁し、 非常に粘度の高い溶液となった。その後、スターラーを用いて、 2週間攪拌すること で、無色透明な低粘度の粒子分散用組成物 [金属成分の濃度 (チタン酸濃度) ; 2m olZdm3]を得た。
尚、上記乳酸の代わりに、シユウ酸、クェン酸又は酒石酸 (いずれもナカライテスタ 株式会社製)を用いた場合にも同様の粒子分散用組成物を得ることができた。また、 上記チタンテトライソプロボキシドの代わりに、チタンテトラブトキシド (和光純薬工業 株式会社製)又はアルミニウムトリイソプロボキシドけ力ライテスタ株式会社製)を用 いた場合にも実施例 1と同様の粒子分散用組成物を得ることができた。更に、上記モ ル比(チタンテトライソプロポキシド:乳酸)を、 1 :0. 8、 1 :0. 9のそれぞれに変更した 場合にも実施例 1と同様の粒子分散用組成物を得ることができた。また、これらの各 粒子分散用組成物を長期間 (約 1年)保存しても、均一溶液の状態を維持し、ゲル化 や沈殿は見られなかった。
[0041] 実施例 2
チタンテトライソプロボキシド (和光純薬工業株式会社製)と水 (純水)とを混合した。 その際、混合液は直ちに加水分解して白濁し、非常に粘度の高い溶液となった。そ の後、乳酸 (和光純薬工業株式会社製)を、上記チタンテトライソプロボキシドとのモ ル比(チタンテトライソプロポキシド:乳酸)が 1: 1となるように混合した。次いで、スタ 一ラーを用いて、 2週間攪拌することで、無色透明な低粘度の粒子分散用組成物 [ 金属成分の濃度 (チタン酸濃度);2molZdm3]を得た。
尚、上記乳酸の代わりに、シユウ酸、クェン酸又は酒石酸 (いずれもナカライテスタ 株式会社製)を用いた場合にも同様の粒子分散用組成物を得ることができた。また、 上記チタンテトライソプロボキシドの代わりに、チタンテトラブトキシド (和光純薬工業 株式会社製)又はアルミニウムトリイソプロボキシドけ力ライテスタ株式会社製)を用 いた場合にも実施例 2と同様の粒子分散用組成物を得ることができた。更に、上記モ ル比(チタンテトライソプロポキシド:乳酸)を、 1 :0. 8、 1 :0. 9のそれぞれに変更した 場合にも実施例 1と同様の粒子分散用組成物を得ることができた。また、これらの各 粒子分散用組成物を長期間 (約 1年)保存しても、均一溶液の状態を維持し、ゲル化 や沈殿は見られなかった。
[0042] [2]粒子分散用組成物の物性
(染料における沈殿物の形成試験)
上記 [ 1 ]で得られた実施例 1の粒子分散用組成物を下記に示す No . 1— 5の各染 料に、金属成分と染料の濃度が 0. OOlmolZdm3となるように添加し、染料における 沈殿物の形成試験を行った。その結果を図 1に示す。 No. 1 ;陰イオン染料;メチルオレンジ (純正化学株式会社製)
No. 2 ;陰イオン染料;フルォレセイン (ナカライテスタ株式会社製)
No. 3 ;陽イオン染料;トルィジンブルー(Chroma Gesellshaft Schmid Gmb h&Co製)
No. 4 ;陽イオン染料;バインドシェドラーグリーン(Chroma Gesellshaft Schmi d Gmbh&Co製)
No. 5 ;陽イオン染料;カプリブルー (東京化成工業株式会社製)
[0043] 図 1によれば、粒子分散用組成物が添加された各染料のうち、 No. 1及び 2の陰ィ オン染料では沈殿は形成されていな力つた。一方、 No. 3— 5の全ての陽イオン染料 では、沈殿の形成が確認できた。
このことから、本実施例 1の粒子分散用組成物では、金属酸イオン (チタン酸イオン )が有機酸 (乳酸)と錯形成し、負の電荷を有する安定な金属錯体 (チタン錯体)が水 溶液中に存在していることが確認できた。更に、ある程度の嵩高さがなければ沈殿は 形成されないため、この金属錯体は嵩高いものであり、チタンを含むクラスターュ-ッ トのような形で存在していると考えられる。
[0044] [3]粒子分散用組成物の分散効果
上記 [1]で得られた実施例 1の粒子分散用組成物を用いて、粒子が分散されてい る組成物 (粒子含有組成物)を製造し、粒子分散用組成物の分散性能を下記の各測 定及び試験により評価した。
[0045] (3-1)ゼータ電位 ( ζ電位)の測定及びその結果
(1)酸化アルミニウム懸濁液の調製 (粒子含有組成物の製造)
実施例 1の粒子分散用組成物(チタン酸濃度; 2molZdm3)と、水と、酸化アルミ- ゥム粉末 (平均粒径; 0. 3 ^ πι,純度; 99. 99%以上、住友化学工業株式会社製、 商品名「ΑΚΡ— 30」)と、 ρΗ調整剤とを、室温 (約 25°C)にて、 24時間ボールミリング することにより混合し、チタン酸濃度が 1. 0 X 10—3、 2. 5 X 10—3、 5. 0 X 10— 3、 1. 0 X 10—2、及び 1. 0 X 10—molZdm3であり、且つ pH約 2— 12の各酸化アルミニウム 懸濁液 (酸ィ匕アルミニウムの割合; 2体積%)を調製した。また、比較として、粒子分散 用組成物を混合して 、な 、酸ィ匕アルミニウム懸濁液 (酸ィ匕アルミニウムの割合; 2体 積%)も調製した。
尚、上記 pH調整剤としては、硝酸 (HNO )、アンモニア (NH )、水酸化テトラメチ
3 3
ルアンモ -ゥム (TMAOH)を所定の pHとなるように適宜使用した。また、 pHを調整 する際には、 pH電極として、 Orion Research社製、型名「Orion 81—72 ROSS 」を用いた。
[0046] (2)ゼータ電位の測定
上記(1)で得られた各酸ィ匕アルミニウム懸濁液のゼータ電位を、超音波方式 ζ電 位測定装置(Dispersion Technology社製、型式「DT1200」)を用いて測定した 。その結果を図 2及び 3に示す。ここで、図 2は、各種チタン酸濃度の 2体積%酸化ァ ルミ-ゥム懸濁液における、 pHとゼータ電位との関係を示すものである。また、図 3は 、各種 pHの 2体積0 /0酸ィ匕アルミニウム懸濁液における、チタン酸濃度とゼータ電位と の関係を示すものである。
[0047] (3)ゼータ電位測定の結果
図 2及び図 3によれば、チタン酸濃度が OmolZdm3の懸濁液における酸ィ匕アルミ 二ゥムの等電点は pH約 9付近にあり、等電点以下の pH領域 (酸性側)では、酸ィ匕ァ ルミ-ゥム表面は正の電荷を有しており、等電点以上の pH領域 (アルカリ側)では、 酸ィ匕アルミニウムの表面は負の電荷を有していることが確認できる。
更に、これらの図によれば、混合する粒子分散用組成物におけるチタン酸濃度が 濃くなるに従って、この酸ィ匕アルミニウムの等電点が酸性側の pH領域にシフトしてい き、即ち酸ィ匕アルミニウムの表面電荷が負の側にシフトしていき、チタン酸濃度が 1. 0 X 10— ImolZdm3の際には、等電点を有さなくなることが確認できた。
以上のことからも、この粒子分散用組成物には、負の電荷を有する安定な金属錯 体 (チタン錯体)が存在して!/、ることが確認できる。
[0048] (3— 2)沈降試験及びその結果
(1)酸化アルミニウム懸濁液の調製 (粒子含有組成物の製造)及び沈降試験 上記(3—1)と同様にして、チタン酸濃度が 1. 0 X 10—3、 2. 5 X 10—3、 5. 0 X 10— 3、 1. 0 X 10—2、及び 1. 0 X 10—molZdm3であり、且つ pH2、 4及び 10. 5の各酸化ァ ルミ-ゥム懸濁液 (酸ィ匕アルミニウムの割合; 2体積%)を調製した。また、比較として、 粒子分散用組成物を混合して 、な 、酸ィ匕アルミニウム懸濁液 (酸ィ匕アルミニウムの割 合; 2体積%)も調製した。
[0049] (2)沈降試験
上記(1)で得られた各酸ィ匕アルミニウム懸濁液 10mlを、それぞれメスシリンダーに 移して密栓し、その後、静置することにより沈降試験を行い、各チタン酸濃度及び懸 濁液の各 pHにおける酸化アルミニウム粒子の沈降速度及び沈降体積を測定した。 その結果を図 4一 6に示す。ここで、図 4一 6は、各々 pH2、 4及び 10. 5の 2体積% 酸ィ匕アルミニウム懸濁液における、チタン酸濃度と沈降体積と沈降速度との関係を示 すものである。
[0050] (3)沈降試験の結果
図 4によれば、 pH2の懸濁液では、チタン酸濃度が 0— 2. 5 X 10— 3molZdm3まで は、沈降速度が 0. ImmZs以下、且つ沈降体積が lml以下であり、良好な分散状 態を示していた。一方、チタン酸濃度が 5. 0 X 10— 3mol/dm3及び 1. 0 X 10— 2mol Zdm3では、沈降速度が約 0. 8— lmmZs、且つ沈降体積が約 1. 8-2. 2mlであ り、安定した分散系は得られな力つた。これは、チタン酸濃度の増加、即ち負の電荷 の増加に伴い、酸化アルミニウムの正の表面電荷が中和されたためであり、この現象 は、前記図 2及び図 3におけるゼータ電位力 ^付近 (pH2における等電点付近)の挙 動と対応していることが確認できた。また、チタン酸濃度が 1. 0 X 10— ol/dm3と更 に濃くなると、酸ィ匕アルミニウムの表面電荷が更に負の側にシフトするため、沈降速 度が 0. ImmZs以下、且つ沈降体積が lml以下となり、再度、良好な分散状態を示 した。
[0051] 図 5によれば、チタン酸濃度が 5. 0 X 10— 3molZdm3の際に、沈降速度が約 1. 6 mm/s,且つ沈降体積が約 2. 3mlであり、安定した分散系は得られな力つた。この 範囲以外のチタン酸濃度では、沈降速度が 0. ImmZs以下、且つ沈降体積が lml 以下であり、良好な分散状態を示していた。これは、上記 pH2の場合と同様に、チタ ン酸濃度の増加に伴い、酸ィ匕アルミニウムの正の表面電荷が中和され、一時的に分 散性が低下し、その後、更に表面電荷が負の側にシフトすることで再度安定した分散 系が得られていることを示している。この現象においても、前記図 2及び図 3における ゼータ電位が 0付近 (PH4における等電点付近)の挙動と対応して 、ることが確認で きた。
[0052] 図 6によれば、 ρΗΙΟ. 5の懸濁液では、粒子分散用組成物が配合されていない場 合、酸ィ匕アルミニウム粒子の等電点が pH約 9付近であるため、沈降速度が約 5. 9m mZs、且つ沈降体積が約 2. 5mlであり、安定した分散系は得られな力つた。
これに対して、粒子分散用組成物を加えた場合には、表面電荷が更に負の側にシ フトされるため、良好な分散状態を示した。この現象は、前記図 2及び図 3におけるゼ ータ電位力^付近 (ρΗΙΟ. 5の等電点付近)の挙動と対応していることが確認できた
[0053] 上記のことから、チタン酸濃度、即ち粒子分散用組成物の混合量を、分散される粒 子の表面電荷に応じて制御することにより、幅広い pH範囲で安定した分散系を得る ことができることが分力つた。
[0054] (3— 3)流動挙動試験及びその結果
(1)酸化アルミニウム懸濁液の調製 (粒子含有組成物の製造)
上記(3—1)と同様にして、チタン酸濃度が 1. 0 X 10—3、 2. 5 X 10—3、 5. 0 X 10— 3、 1. 0 X 10—2、 2. 5 X 10—2、 5. 0 X 10— 2、 7. 5 X 10— 2及び 1. 0 X 10—丄11101/(11113であ り、且つ pH4及び 10. 5の各酸ィ匕アルミニウム懸濁液 (酸ィ匕アルミニウムの割合; 2及 び 20体積%)を調製した。また、比較として、粒子分散用組成物を混合していない酸 化アルミニウム懸濁液 (酸ィヒアルミ-ゥムの割合; 2及び 20体積%)も調製した。
[0055] (2)流動試験
上記(1)で得られた各酸ィ匕アルミニウム懸濁液の各剪断応力における見かけ粘度 及び剪断速度を、温度 25°Cで、レオメーター (HAKKE社製、型式「RS150」)により 測定し、流動挙動を評価した。その結果を図 7— 12に示す。ここで、図 7— 10は、そ れぞれ、 pH4の 2体積0 /0酸ィ匕アルミニウム懸濁液、 pH4の 20体積0 /0酸ィ匕アルミ-ゥ ム懸濁液、 ρΗΙΟ. 5の 2体積0 /0酸ィ匕アルミニウム懸濁液、及び ρΗΙΟ. 5の 20体積0 /0 酸化アルミニウム懸濁液の各剪断応力における、チタン酸濃度と見かけ粘度との関 係を示すものである。また、図 11及び図 12は、それぞれ、 pH4の 20体積%酸化ァ ルミ-ゥム懸濁液、及び ρΗΙΟ. 5の 20体積0 /0酸ィ匕アルミニウム懸濁液の各チタン酸 濃度における、剪断応力と剪断速度との関係を示すものである。
[0056] (3)流動試験の結果
図 7における、 pH4の 2体積0 /0の酸ィ匕アルミニウム懸濁液ではチタン酸濃度の影響 は顕著ではないが、図 8に示すように、酸ィ匕アルミニウムの割合を 20体積%に増やし た懸濁液 (PH4)では、分散性が一旦低下し、更なるチタン酸濃度の増加により、再 度分散性が良好になることが確認できた。この現象は、負の電荷の増加に伴い、酸 化アルミニウムの正の表面電荷が中和されたために分散性が低下したためである。こ のように、分散させる所望の粒子の等電点よりも低 、PH領域 (酸性側)で分散させる ためには、粒子表面の電荷を中和する以上に粒子分散用組成物を混合する必要が あるが、この場合、多量の金属成分を多量に含む粒子含有組成物を製造することが でき、セラミックス材料、光触媒材料、光学材料及び電子材料分野等において幅広 い応用が期待できる。
[0057] 図 9によれば、 ρΗΙΟ. 5の 2体積0 /0の酸ィ匕アルミニウム懸濁液ではチタン酸濃度の 影響は顕著ではないが、図 10に示すように、酸ィ匕アルミニウムの割合を 20体積%に 増やした懸濁液 (ρΗΙΟ. 5)では、チタン酸濃度が高くなるに従って見かけ粘度が低 下していき、 5. 0 X 10— 3molZdm3よりも高い場合には、急激に見かけ粘度が低下し て流動性が良くなつており、優れた分散系となっていることが分力る。
上記のことから、この粒子分散用組成物を用いることで、分散させる粒子の割合が 高くなつても良好な分散系を得られることが確認できた。
[0058] また、図 11及び図 12によれば、図 11におけるチタン酸濃度が 1. 0 X 10— 3、 1. 0 X 10—2、 7. 5 X 10— 2及び 1. 0 X 10—molZdm3の 20体積0 /0酸化アルミニウム懸濁液( pH4)、並びに図 12におけるチタン酸濃度力 5. 0 X 10—3、 1. 0 X 10— 2及び 1. 0 X 1 0— imolZdm3の 20体積0 /0酸ィ匕アルミニウム懸濁液 (ρΗΙΟ. 5)では、直線が原点を 通っていることから-ユートン流体と考えられ、且つ直線の傾きが大きぐこれらの分 散系は流動性に優れ、非常に均質なものであることが確認できた。
[0059] (3-4)吸着量測定及びその結果
(1)酸化アルミニウム懸濁液の調製 (粒子含有組成物の製造)
上記(3—1)と同様にして、チタン酸濃度が 1. 0 X 10—3、 2. 5 X 10—3、 5. 0 X 10— 3、 1. 0 X 10—2、及び 1. 0 X 10—molZdm3であり、且つ pH4、 9及び 10. 5の各酸化ァ ルミ-ゥム懸濁液 (酸ィ匕アルミニウムの割合; 2体積%)を調製した。また、比較として、 粒子分散用組成物を混合して 、な 、酸ィ匕アルミニウム懸濁液 (酸ィ匕アルミニウムの割 合; 2体積%)も調製した。
[0060] (2)吸着量測定
上記(1)で得られた各酸化アルミニウム懸濁液を遠心分離 (最大遠心力; 15000G )し、得られた上澄み液を用いて、 ICP— AES (Leeman Labs製、型式「JICP— PS— 1000UV'AT」)により、各酸ィ匕アルミニウム懸濁液のチタン酸濃度における酸ィ匕ァ ルミ-ゥム粒子へのチタン吸着量を測定した。その結果を図 13— 15に示す。尚、図 13— 15は、それぞれ、 ρΗ4、 ρΗ9及び ρΗΙΟ. 5の 2体積%酸化アルミニウム懸濁 液における、チタン酸濃度とチタン吸着量との関係を示す。
[0061] (3)吸着量測定の結果
図 13— 15によれば、チタンの吸着量は、 pH4の場合に 2. O X 10— 5mol/m2、 pH 9の場合に 1. 5 X 10— 5mol/m2、及び ρΗΙΟ. 5の場合に 6. O X 10— 6mol/m2であ り、この吸着量はアルカリ側に変化するに従って減少していた。これは、図 2のチタン 酸濃度が OmolZdm3の際の表面電荷を考慮すると、等電点 (pH9付近)以下の領 域 (酸性側)では酸ィ匕アルミニウム粒子の表面電荷は正の側にシフトして 、るため、 酸性側ではアルカリ側よりも吸着量が増加していると考えられる。このことからも、前記 実施例 1の粒子分散用組成物では、負の電荷を有する金属錯体が存在していると考 えられる。
[0062] [4]粒子分散用組成物の分散効果 (金属アルコキシドと有機酸のモル比による影響) 調製の際におけるチタンテトライソプロボキシドと乳酸のモル比を下記の〔1〕一 [5] のように変えたこと以外は、上記 [1]と同様にして、各粒子分散用組成物を調製し、こ の組成物の分散性能を下記の試験により評価した。
[0063] モル比(チタンテトライソプロボキシド:乳酸)
〔1〕1 : 1、 [2] 1 : 2, [3] 1 : 3, [4] 1 :4,〔5〕1 : 0. 4
尚、上記〔5〕のモル比 1 : 0. 4の糸且成物は、上記 [1]における 2週間の攪拌では加 水分解物が完全に溶解せず、粒子分散用組成物を調製することができなカゝつた。そ のため、下記の評価は上記〔1〕一〔4〕のモル比の粒子分散用組成物を用いて行った
[0064] (1)酸化アルミニウム懸濁液の調製 (粒子含有組成物の製造)
上記各モル比の粒子分散用組成物(チタン酸濃度; 2molZdm3)と、水と、酸ィ匕ァ ルミニゥム粉末 (平均粒径; 0. 3 /ζ πι、純度; 99. 99%以上、住友化学工業株式会社 製、商品名「ΑΚΡ— 30」)と、 ρΗ調整剤とを、室温 (約 25°C)にて、 24時間ボールミリ ングすることにより混合し、チタン酸濃度が 1. 0 X 10— 2molZdm3であり、且つ pH2 及び 10. 5の各酸ィ匕アルミニウム懸濁液 (酸ィ匕アルミニウムの割合; 2体積0 /0)を調製 した。尚、各懸濁液の調製時においては、上記酸ィ匕アルミニウム粒子は沈降すること なぐ十分に分散していた。
尚、上記 pH調整剤としては、前記と同様のものを適宜使用した。また、 pHを調整 する際には、 pH電極として、前記と同様のものを用いた。
[0065] (2)沈降試験
上記(1)で得られた各酸ィ匕アルミニウム懸濁液 10mlを、それぞれメスシリンダーに 移して密栓し、その後、静置することにより沈降試験を行い、各 pHでの各モル比にお ける酸ィ匕アルミニウム粒子の沈降時間を測定した。その結果を図 16— 19に示す。こ こで、図 16は、 ρΗΙΟ. 5の 2体積0 /0酸化アルミニウム懸濁液における、チタンアルコ キシドと乳酸の比率による分散性の変化 (沈降時間: 0— 17500分)を示すものであ る。図 17は、 ρΗΙΟ. 5の 2体積%酸化アルミニウム懸濁液における、チタンアルコキ シドと乳酸の比率による分散性の変化 (沈降時間: 0— 2900分)を示すものである。 また、図 18は、 pH2の 2体積%酸ィ匕アルミニウム懸濁液における、チタンアルコキシ ドと乳酸の比率による分散性の変化 (沈降時間: 0— 16000分)を示すものである。図 19は、 pH2の 2体積%酸ィ匕アルミニウム懸濁液における、チタンアルコキシドと乳酸 の比率による分散性の変化 (沈降時間: 0— 2900分)を示すものである。尚、図 16— 19における「TIP」はチタンテトライソプロポキシドを示しており、且つ「Lac」は乳酸を 示している。
[0066] (3)結果
図 16及び 17によれば、 ρΗΙΟ. 5である場合において、チタンアルコキシドと乳酸 の比率が 1: 2及び 1: 1の各懸濁液では、 17500分が経過するまで酸ィ匕アルミニウム 粒子の沈降はほんの僅かであり、沈降界面の高さはほぼ一定であったことから、長期 に渡って優れた分散性を有することが分力つた。また、チタンアルコキシドと乳酸の比 率が 1 : 3の懸濁液では、 7500分が経過するまでは粒子の沈降が僅かであり、その 後、徐々〖こ粒子が沈降し始めたが、長期にわたって優れた分散性を有することが分 かった。更に、チタンアルコキシドと乳酸の比率が 1 :4の懸濁液では、短い時間で粒 子が沈降してしまったが、調製時力 短期間は十分な分散性を有することが分力つた 図 18及び 19によれば、 pH2である場合において、チタンアルコキシドと乳酸の比 率が 1: 1の懸濁液では、 16000分が経過するまで酸化アルミニウム粒子の沈降はほ んの僅かであり、沈降界面の高さはほぼ一定であったことから、長期に渡って優れた 分散性を有することが分力つた。また、チタンアルコキシドと乳酸の比率が 1 : 2の懸濁 液では、 2500分が経過するまでは粒子の沈降が僅かであり、その後、徐々に粒子が 沈降し始めた力 長期にわたって優れた分散性を有することが分力つた。更に、チタ ンアルコキシドと乳酸の比率が 1: 3及び 1 :4の各懸濁液では、短い時間で粒子が沈 降してしまったが、調製時力も短期間は十分な分散性を有することが分力つた。 尚、上記各懸濁液における沈降物は、攪拌することにより、直ぐに調製時と同様に 十分に粒子が分散した状態となった。
上記のことから、チタンアルコキシドに対する乳酸の比率が少ないほど、分散性を 向上させることができ且つより長期に渡ってその効果を持続できることが分かった。
[5]実施例の効果
上記のことから、本発明の粒子分散用組成物には、金属イオンが有機酸と錯形成 した、嵩高く且つ負の電荷を有する安定な金属錯体が存在していると考えられる。こ の粒子分散用組成物によれば、分散させる各種粒子の等電点を考慮し、粒子分散 用組成物の混合量を制御することによって均質で安定した分散系 (粒子含有組成物 )を容易に製造することが可能である。
この粒子分散用組成物が示す上記の現象は、陰イオン性の高分子電解質を分散 剤として添加したときの pH挙動と極めて類似しており、高い陽電荷をもつ金属イオン (実施例ではチタンイオン)の存在下で、粒子が凝集せずに分散することは驚くべきこ とである。また、分散剤としての効果も従来報告されている高分子電解質と同等若し くはそれ以上であり、分散剤として機能する懸濁液の pH範囲が 2— 11と極めて幅広 ぐ且つ混合可能な量も幅広い。更には、ハロゲン、硝酸、硫酸等の他の成分を含ま な!、ので、セラミックスの製造のように製造過程にぉ 、て焼成プロセスがあるような場 合には、環境へ悪影響がなぐ且つ水溶液であることから火災等の危険もなぐ安全 '性が高い。
産業上の利用可能性
この粒子分散用組成物は、セラミックス材料、光触媒材料 (廃液処理、脱臭、脱色、 除菌、感光剤など)、光学材料、誘電体材料等のエレクトロニクス材料 (チタン酸バリ ゥム、カリウムチタ二ルリン酸など)等の分野に幅広く利用可能である。特に、光触媒 材料、色素増感型太陽電池等の太陽電池材料分野において好適に利用できる。 また、粒子の分散剤として利用できると共に、均一に金属元素を主成分にドープす るための方法としても有効である。この粒子分散用組成物は、水溶液であるため、水 溶性の他の化合物との組み合わせることも可能であり、材料の合成範囲を向上させ ることがでさる。

Claims

請求の範囲
[I] + 3— 5価の金属元素を含む金属アルコキシドと、有機酸と、水と、を混合すること により得られたことを特徴とする粒子を分散させるための組成物。
[2] 上記金属アルコキシド由来の加水分解物と、上記有機酸と、が混合されて得られ、 且つ透明な水溶液である請求項 1に記載の粒子を分散させるための組成物。
[3] 上記金属元素が、アルミニウム、チタン、ニオブ及びタンタルのうちの!/、ずれかであ る請求項 1又は 2に記載の粒子を分散させるための組成物。
[4] 上記金属元素が、アルミニウム又はチタンである請求項 1又は 2に記載の粒子を分 散させるための組成物。
[5] 上記有機酸が、乳酸、シユウ酸、クェン酸及び酒石酸のうちの少なくとも 1種である 請求項 1乃至 4のいずれかに記載の粒子を分散させるための組成物。
[6] 上記有機酸と上記金属アルコキシドとの混合割合 (有機酸:金属アルコキシド)は、 モル比で (0. 5— 2) : 1である請求項 1乃至 5のいずれかに記載の粒子を分散させる ための組成物。
[7] チタンアルコキシドと、乳酸、シユウ酸、クェン酸及び酒石酸のうちの少なくとも 1種 の有機酸と、水と、を混合することにより得られ、上記チタンアルコキシドと上記有機 酸との混合割合 (有機酸:チタンアルコキシド)は、モル比で (0. 7-1. 5) : 1であるこ とを特徴とする粒子を分散させるための組成物。
[8] 粒子と、請求項 1乃至 7のいずれかに記載の粒子を分散させるための組成物と、を 含むことを特徴とする粒子が分散されて!、る組成物。
[9] 上記粒子が酸化物粒子である請求項 8に記載の粒子が分散されて!ヽる組成物。
[10] 上記粒子の含有割合が、 60体積%以下である請求項 8又は 9に記載の粒子が分 散されている組成物。
[I I] pH2— 11である請求項 8乃至 10の 、ずれかに記載の粒子が分散されて!、る組成 物。
[12] セラミックス材料、光触媒材料、光学材料又は電子材料分野に用いられる請求項 8
Figure imgf000027_0001
ヽずれかに記載の粒子が分散されて ヽる組成物。
[13] アナターゼ型酸ィ匕チタン粒子と、請求項 7に記載の粒子を分散させるための組成 物と、を含むことを特徴とする粒子が分散されて!ヽる組成物。
[14] 請求項 13に記載の粒子が分散されている組成物の固形分が焼結されたことを特 徴とするアナターゼ型酸ィ匕チタン焼結体。
[15] 焼結温度が、 300— 750°Cである請求項 14に記載のアナターゼ型酸ィ匕チタン焼 結体。
[16] 光触媒材料又は太陽電池材料分野に用いられる請求項 14又は 15に記載のアナ ターゼ型酸ィ匕チタン焼結体。
[17] 請求項 1乃至 7に記載の粒子を分散させるための組成物と、粒子と、溶媒とを混合 する混合工程を備えており、且つ該混合工程において、上記組成物の混合量を上 記粒子の等電点に応じて制御することを特徴とする粒子が分散されている組成物の 製造方法。
[18] 上記溶媒が、水である請求項 17に記載の粒子が分散されている組成物の製造方 法。
PCT/JP2005/004804 2004-03-18 2005-03-17 粒子を分散させるための組成物、粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸化チタン焼結体 WO2005094978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006511621A JP5205611B2 (ja) 2004-03-18 2005-03-17 酸化物粒子を分散させるための組成物、粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸化チタン焼結体
KR1020067021508A KR101179385B1 (ko) 2004-03-18 2005-03-17 입자를 분산시키기 위한 조성물, 입자가 분산되어 있는조성물 및 그 제조 방법 및 아나타아제형 산화티탄 소결체
US10/593,294 US20070203042A1 (en) 2004-03-18 2005-03-17 Composition for Dispersing of Particle, Composition Having Particle Dispersed Therein, Process for Producing the Same, and Sintered Compact of Anatase Titanium Oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004079265 2004-03-18
JP2004-079265 2004-03-18

Publications (1)

Publication Number Publication Date
WO2005094978A1 true WO2005094978A1 (ja) 2005-10-13

Family

ID=35063569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004804 WO2005094978A1 (ja) 2004-03-18 2005-03-17 粒子を分散させるための組成物、粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸化チタン焼結体

Country Status (5)

Country Link
US (1) US20070203042A1 (ja)
JP (1) JP5205611B2 (ja)
KR (1) KR101179385B1 (ja)
CN (1) CN100469429C (ja)
WO (1) WO2005094978A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117460A (ja) * 2004-10-20 2006-05-11 Taki Chem Co Ltd 酸化タンタルゾル及びその製造方法
JP2007161502A (ja) * 2005-12-09 2007-06-28 Gifu Univ チタン含有複合酸化物形成用溶液及びその製造方法、チタン含有複合酸化物の製造方法、チタン含有複合酸化物の前駆体、誘電体材料、並びに誘電体材料の製造方法
JP2007269616A (ja) * 2006-03-31 2007-10-18 Toyota Central Res & Dev Lab Inc 金属酸化物ナノ多孔体の製造方法
JP2008239368A (ja) * 2007-03-26 2008-10-09 Kao Corp チタン酸ナノシート分散液
JP2008247712A (ja) * 2007-03-30 2008-10-16 Kao Corp チタン酸ナノシート分散液の製造方法
WO2009091064A1 (ja) * 2008-01-17 2009-07-23 Henkel Technologies Japan Ltd. チタン含有乳化剤
JP2009233648A (ja) * 2007-10-09 2009-10-15 Sumitomo Chemical Co Ltd 光触媒体分散液
WO2009125680A2 (ja) * 2008-03-19 2009-10-15 日本化学工業株式会社 誘電体材料の製造方法
WO2009125681A2 (ja) * 2008-03-19 2009-10-15 日本化学工業株式会社 チタン酸バリウムの製造方法
JP2010037146A (ja) * 2008-08-05 2010-02-18 Nippon Soken Inc 分散スラリーの調製方法及び分散スラリー製造装置
JP2011167620A (ja) * 2010-02-17 2011-09-01 Sumitomo Chemical Co Ltd アナターゼ型酸化チタン分散液およびその製造方法
JP2017110220A (ja) * 2015-12-14 2017-06-22 ジャパンマテックス株式会社 フッ素系樹脂−アルミニウム酸化物混合分散液およびその製造方法
JP2017178759A (ja) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 チタン化合物及びその製造方法、チタン系組成物、樹脂組成物、並びにチタン系固体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044533A1 (en) * 2016-08-29 2018-03-08 Sasol (Usa) Corporation Method of producing an alumina dispersible at a ph greater than 8
CN112390644B (zh) * 2020-11-23 2022-11-22 中国振华集团云科电子有限公司 一种改善mct陶瓷一次球磨混料质量的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167727A (ja) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk 変性酸化チタンゾル、光触媒組成物及びその形成剤
JP2000119898A (ja) * 1998-10-14 2000-04-25 Samsung Electro Mech Co Ltd 電気泳動成膜法を利用した圧電/電歪膜型素子の低温形成方法及びその圧電/電歪膜型素子
JP2004026553A (ja) * 2002-06-25 2004-01-29 Sumitomo Chem Co Ltd 酸化チタン分散液およびその保存容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926183A (en) * 1957-05-24 1960-02-23 Nat Lead Co Organotitanium complexes and method of making same
US5897958A (en) * 1995-10-26 1999-04-27 Asahi Glass Company Ltd. Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent
JPH10338516A (ja) * 1997-06-04 1998-12-22 Nikki Kagaku Kk 粘土鉱物にインターカレートした金属酸化物の製造方法
US6329058B1 (en) 1998-07-30 2001-12-11 3M Innovative Properties Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
US6284391B1 (en) * 1999-07-12 2001-09-04 Corning Incorporated Mercaptofunctional silanes to deposit sol-gel coatings on metals
JP3502904B2 (ja) * 2000-05-11 2004-03-02 岐阜大学長 チタン含有水溶液の製造方法
NZ505774A (en) * 2000-07-17 2002-12-20 Ind Res Ltd Oxalate stabilised titania solutions and coating compositions and catalysts formed therefrom
JP2004256727A (ja) * 2003-02-27 2004-09-16 Okatakagumi:Kk 光触媒性コーティング溶液の製造方法および光触媒性コーティング溶液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167727A (ja) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk 変性酸化チタンゾル、光触媒組成物及びその形成剤
JP2000119898A (ja) * 1998-10-14 2000-04-25 Samsung Electro Mech Co Ltd 電気泳動成膜法を利用した圧電/電歪膜型素子の低温形成方法及びその圧電/電歪膜型素子
JP2004026553A (ja) * 2002-06-25 2004-01-29 Sumitomo Chem Co Ltd 酸化チタン分散液およびその保存容器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646055B2 (ja) * 2004-10-20 2011-03-09 多木化学株式会社 酸化タンタルゾル及びその製造方法
JP2006117460A (ja) * 2004-10-20 2006-05-11 Taki Chem Co Ltd 酸化タンタルゾル及びその製造方法
JP2007161502A (ja) * 2005-12-09 2007-06-28 Gifu Univ チタン含有複合酸化物形成用溶液及びその製造方法、チタン含有複合酸化物の製造方法、チタン含有複合酸化物の前駆体、誘電体材料、並びに誘電体材料の製造方法
JP2007269616A (ja) * 2006-03-31 2007-10-18 Toyota Central Res & Dev Lab Inc 金属酸化物ナノ多孔体の製造方法
EP1840086A3 (en) * 2006-03-31 2008-07-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing nanoporous metal oxide material
JP2008239368A (ja) * 2007-03-26 2008-10-09 Kao Corp チタン酸ナノシート分散液
JP2008247712A (ja) * 2007-03-30 2008-10-16 Kao Corp チタン酸ナノシート分散液の製造方法
JP2009233648A (ja) * 2007-10-09 2009-10-15 Sumitomo Chemical Co Ltd 光触媒体分散液
WO2009091064A1 (ja) * 2008-01-17 2009-07-23 Henkel Technologies Japan Ltd. チタン含有乳化剤
WO2009125680A2 (ja) * 2008-03-19 2009-10-15 日本化学工業株式会社 誘電体材料の製造方法
JP2009256190A (ja) * 2008-03-19 2009-11-05 Nippon Chem Ind Co Ltd 誘電体材料の製造方法
WO2009125680A3 (ja) * 2008-03-19 2009-12-03 日本化学工業株式会社 誘電体材料の製造方法
WO2009125681A3 (ja) * 2008-03-19 2009-12-03 日本化学工業株式会社 チタン酸バリウムの製造方法
WO2009125681A2 (ja) * 2008-03-19 2009-10-15 日本化学工業株式会社 チタン酸バリウムの製造方法
JP2010037146A (ja) * 2008-08-05 2010-02-18 Nippon Soken Inc 分散スラリーの調製方法及び分散スラリー製造装置
JP2011167620A (ja) * 2010-02-17 2011-09-01 Sumitomo Chemical Co Ltd アナターゼ型酸化チタン分散液およびその製造方法
JP2017110220A (ja) * 2015-12-14 2017-06-22 ジャパンマテックス株式会社 フッ素系樹脂−アルミニウム酸化物混合分散液およびその製造方法
JP2017178759A (ja) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 チタン化合物及びその製造方法、チタン系組成物、樹脂組成物、並びにチタン系固体

Also Published As

Publication number Publication date
US20070203042A1 (en) 2007-08-30
KR20070037569A (ko) 2007-04-05
KR101179385B1 (ko) 2012-09-03
CN100469429C (zh) 2009-03-18
JPWO2005094978A1 (ja) 2008-02-14
JP5205611B2 (ja) 2013-06-05
CN1946474A (zh) 2007-04-11

Similar Documents

Publication Publication Date Title
WO2005094978A1 (ja) 粒子を分散させるための組成物、粒子が分散されている組成物及びその製造方法並びにアナターゼ型酸化チタン焼結体
JP6061097B2 (ja) 水性インク用顔料、それを含有する水性インク組成物、およびその画像または印刷物
TWI523813B (zh) 氧化錫粒子及其製造方法
KR102046273B1 (ko) 산화티타늄의 제조 방법
JP5358877B2 (ja) 抗菌性窯業製品、窯業表面処理剤、および抗菌性窯業製品の製造方法
JP4891021B2 (ja) ニオブ系酸化物微粒子の製造方法
TWI759635B (zh) 銀粉及其製造方法
KR100226370B1 (ko) 세라믹물질의 제조용 조성물 및 그 제조방법
JP2009057627A (ja) 濃厚ナノ金コロイド液と金微粉体およびその製造方法
Sallem et al. Surface modification of titania nanoparticles by catechol derivative molecules: Preparation of concentrated suspensions
CN101302358B (zh) 一种无水纳米锑酸锌溶胶及其制备方法
CN103842065A (zh) 稳定的奈米粒子悬浮液及其制造方法
Ni et al. Surface modification of ultrafine silicon nitride powders by calcination
JP5765455B2 (ja) 抗菌性窯業製品、窯業表面処理剤、および抗菌性窯業製品の製造方法
JP4722412B2 (ja) 導電性酸化錫粉末、その製造方法、導電性ペースト及び導電性塗料
JP7186362B2 (ja) 酸化チタン粒子及びその製造方法
JP5582164B2 (ja) 抗菌性窯業製品、窯業表面処理剤、および抗菌性窯業製品の製造方法
JP4731220B2 (ja) セリアゾルの製造方法
JPH05170425A (ja) 複合粒子の製造方法
CN115818740B (en) Synthetic method of ruthenium dioxide nano powder
AU2017205246B2 (en) Method for coating the surface of a substrate
KR200277784Y1 (ko) 광촉매성 티타니아 코팅피막
JP2007223881A (ja) 結晶質ハフニアゾルおよびその製造方法
KR20050003169A (ko) 계면활성제를 이용한 구리분말 제조방법
Xu et al. Effect of polyethyleneimine on the properties of concentrated suspensions of titanium dioxide microbeads

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580008673.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067021508

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10593294

Country of ref document: US

Ref document number: 2007203042

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067021508

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10593294

Country of ref document: US