WO2005093843A1 - 半導体装置、半導体装置の製造方法 - Google Patents

半導体装置、半導体装置の製造方法 Download PDF

Info

Publication number
WO2005093843A1
WO2005093843A1 PCT/JP2005/004177 JP2005004177W WO2005093843A1 WO 2005093843 A1 WO2005093843 A1 WO 2005093843A1 JP 2005004177 W JP2005004177 W JP 2005004177W WO 2005093843 A1 WO2005093843 A1 WO 2005093843A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
region
diffusion region
base diffusion
semiconductor device
Prior art date
Application number
PCT/JP2005/004177
Other languages
English (en)
French (fr)
Inventor
Toru Kurosaki
Shinji Kunori
Mizue Kitada
Kosuke Ohshima
Hiroaki Shishido
Masato Mikawa
Original Assignee
Shindengen Electric Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co., Ltd. filed Critical Shindengen Electric Manufacturing Co., Ltd.
Priority to CN2005800098278A priority Critical patent/CN1938860B/zh
Priority to EP05720448A priority patent/EP1748492A4/en
Publication of WO2005093843A1 publication Critical patent/WO2005093843A1/ja
Priority to US11/528,637 priority patent/US7365391B2/en
Priority to KR1020067020373A priority patent/KR101098208B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a semiconductor filler is arranged in a groove.
  • FIG. 41 shows a cross-sectional view of a conventional transistor 102.
  • This transistor 102 is a trench type power MOSFET, and has a semiconductor substrate 111 in which an n-type impurity is heavily doped in a silicon single crystal, and an n-type semiconductor formed on the semiconductor substrate 111 by an epitaxy growth method.
  • the silicon epitaxial layer has a drain layer 112.
  • Reference numeral 110 denotes a processing substrate having a semiconductor substrate 111 and a drain layer 112.
  • a p-type Body layer 113 is formed, and a plurality of p + type ohmic diffusion regions 116 and n + type source diffusion regions 130 are formed near the surface inside the body layer 113.
  • the surface of the processing substrate 110 is etched in a strip shape.
  • a narrow groove 120 is formed.
  • a gate insulating film 124 is formed on the inner peripheral surface of the narrow groove 120, and the inside of the narrow groove 120 is filled with polysilicon in a non-contact state with the processing substrate 110 by the gate insulating film.
  • the gate electrode plug 127 is formed by the polysilicon.
  • the gate electrode plugs 127 in each narrow groove 120 are connected to each other by a gate electrode film (not shown) made of a metal thin film.
  • a source electrode film 137 made of a metal thin film is formed on the surfaces of the source diffusion region 130 and the ohmic diffusion region 116.
  • a source electrode film 137 made of a metal thin film is formed on the surfaces of the source diffusion region 130 and the ohmic diffusion region 116.
  • an interlayer insulating film 131 is formed on the narrow groove 120.
  • the source electrode film 137 and the gate electrode plug 127 are electrically insulated by the interlayer insulating film 131.
  • a drain electrode film 139 is formed on the back surface of the processing substrate 110, that is, on the surface of the semiconductor substrate 111.
  • the pn junction between the body layer 113 and the drain layer 112 is reverse-biased, and the avalanche breakdown voltage of the pn junction is equal to the breakdown voltage of the transistor 102.
  • the avalanche withstand voltage of the pn junction differs depending on the shape of the depletion layer when reverse biased.
  • the electric field strength in the depletion layer spreading in the drain layer 112 is not sufficient. Because of the uniformity, the avalanche breakdown voltage is determined where the electric field strength is high, and the breakdown voltage is low.
  • a semiconductor device 103 having a structure as shown in FIG. 42 has been proposed, in which a buried region 122 of a conductivity type different from that of the drain layer 112 is formed below the narrow groove 120, and the buried region 122 is formed in the drain layer 112. Attempts have been made to reduce the electric field strength of the spreading depletion layer!
  • the buried region 122 is formed by deeply excavating the narrow groove 120 and growing a filler on the bottom and side walls inside the narrow groove 120.
  • Semiconductor polycrystals can be used.
  • Patent document 1 JP 2003-069017
  • the present invention has been made to solve the above-mentioned disadvantages of the related art, and has as its object to provide a high-breakdown-voltage semiconductor device.
  • an invention according to claim 1 includes a processing substrate having a conductive layer of a first conductivity type, and a base diffusion region of a second conductivity type formed on an inner surface of the conductive layer.
  • An active groove formed at a position where the base diffusion region of the conductive layer is arranged, and having a bottom portion made deeper than a bottom surface of the base diffusion region, wherein the active groove has an elongated main groove portion;
  • a gate groove is formed in a portion of the main groove portion above the buried region, a gate insulating film is disposed on a side surface of the gate groove, and the gate insulating film contacts the gate insulating film in the gate groove.
  • a conductive gate electrode plug electrically insulated from the buried region is arranged, A source diffusion region of the first conductivity type separated from the conductive layer by the base diffusion region is disposed at a position on the inner surface of the base diffusion region that contacts the gate insulating film, and the sub-groove portion
  • a second conductive type active groove filling region in which an upper portion is in contact with the base diffusion region and a lower portion is in contact with the buried region is disposed on a bottom surface of the semiconductor device. 2.
  • an upper end of the active groove filling region is higher than a surface of the conductive layer.
  • the invention according to claim 3 is the semiconductor device according to claim 1, further comprising a source electrode film formed on a surface of the source diffusion region, wherein the source electrode film is The semiconductor device is in contact with a surface of the active groove filling region.
  • the region is a semiconductor device in contact with the base diffusion region.
  • the invention according to claim 6 is the semiconductor device according to any one of claims 1 to 5, wherein the active groove is concentrically surrounded, and a plurality of ring-shaped rings are separated from each other at a predetermined interval.
  • a semiconductor device having a guard groove and a second conductive type guard groove filling area disposed in the guard groove.
  • a semiconductor device having a conductive collector layer and a collector electrode film electrically connected to the collector layer.
  • the invention according to claim 9 is the semiconductor device according to any one of claims 1 to 6, wherein a Schottky electrode film that forms a Schottky junction with the conductive layer is formed on a back surface of the processing substrate. Are the semiconductor devices arranged.
  • the invention according to claim 10 is a process substrate having a conductive layer of the first conductivity type, a base diffusion region of the second conductivity type formed on the inner surface of the conductive layer, and the base diffusion of the conductive layer.
  • An active groove formed at a position where the region is arranged, and having a bottom portion made deeper than a bottom surface of the base diffusion region; the active groove has an elongated main groove portion and a longitudinal side surface of the main groove portion; And a sub-groove connected thereto, and an upper portion is lower than the base diffusion region on a bottom surface of the main groove portion.
  • a buried region of the second conductivity type is arranged, and the buried region of the active groove is provided.
  • a gate groove is formed in a portion above the region, a gate insulating film is disposed on a side surface of the gate groove, and the gate groove is in contact with the gate insulating film and electrically connected to the buried region.
  • An insulated conductive gate electrode plug is disposed on the inner surface of the base diffusion region.
  • a source diffusion region of the first conductivity type separated from the conductive layer by the base diffusion region is disposed at a position where the base diffusion region is in contact with the gate insulating film.
  • the active groove is formed such that after the base diffusion region is formed, the base diffusion region is exposed on an upper side surface and the conductive layer is exposed on a lower side surface, and the active groove is formed in the active groove.
  • etching is performed with a mask film disposed on the surface of the semiconductor filling in the sub-groove, and the upper portion of the semiconductor filling located in the main groove is removed.
  • a semiconductor device with a high breakdown voltage is obtained.
  • FIG. 1 is a plan view showing a diffusion structure of a semiconductor device according to an example of the present invention, and is a sectional view taken along line GG of FIG. 26.
  • FIG. 2 (a) — (c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (1)
  • FIG. 3 (a)-(c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention
  • FIG. 4 (a) — (c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (3)
  • FIG. 5 (a)-(c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (4)
  • FIG. 6 (a)-(c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (5)
  • FIG. 7 (a)-(c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (6)
  • FIGS. 7 (a) -7 (c) are diagrams for explaining the manufacturing process of the semiconductor device of the present invention.
  • FIGS. 8 (a)-(c) are diagrams for explaining the manufacturing process of the semiconductor device of the present invention.
  • FIG. 10 (a) — (c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (9)
  • FIG. L l (a) — (c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (10)
  • FIG. 12 (a)-(c): Diagram for explaining the manufacturing process of the semiconductor device of the present invention (11)
  • FIG. 13 (a)-(c): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (12)
  • FIGS. 13 (a) -13 (c) are diagrams for explaining the manufacturing process of the semiconductor device of the present invention.
  • FIG. 15 (a)-(c): FIG. 14 for explaining the manufacturing process of the semiconductor device of the present invention (14)
  • FIG. 16] (a)-(c): A diagram for explaining the manufacturing process of the semiconductor device of the present invention (15) ⁇ 17] (a)-(c): A diagram for explaining a manufacturing process diagram of the semiconductor device of the present invention. (16) ⁇ 18] (a)-(c): A manufacturing process diagram of the semiconductor device of the present invention. Illustration (17)
  • FIG. 19 (a) — (c): A diagram for explaining a manufacturing process diagram of the semiconductor device of the present invention.
  • FIG. 26 Diagram for explaining the structure when the present invention is a MOSFET ⁇ 27] (a)-(c): When the present invention is a pn junction type IGBT Sectional view to explain the structure
  • FIG. 29 is a plan view showing the diffusion structure of the semiconductor device of the present invention, and is a sectional view taken along line AA of FIGS. 4A to 4C.
  • FIG. 30 is a plan view showing the diffusion structure of the semiconductor device of the present invention, and is a cross-sectional view taken along line B-B of FIGS.
  • FIG. 31 is a plan view showing a diffusion structure of the semiconductor device of the first example of the present invention, and is a sectional view taken along line CC of FIGS. 7 (a)-(c).
  • FIG. 12 is a plan view showing a diffusion structure of the semiconductor device of the present invention, and is a sectional view taken along line D-D of FIGS. 11 (a)-(c).
  • FIG. 13 is a plan view showing a diffusion structure of the semiconductor device of the present invention, and is a sectional view taken along line E-E of FIGS. 13 (a)-(c).
  • FIG. 15 is a plan view showing a diffusion structure of the semiconductor device of the present invention, and is a sectional view taken along line F-F of FIGS. 15 (a)-(c).
  • ⁇ 35 A plan view of a semiconductor device of the present invention in which adjacent main grooves are connected by sub-grooves.
  • FIG. 37 (a) — (c): Cross-sectional view for explaining the manufacturing process (1)
  • FIG. 38 (a) — (c): Cross-sectional view for explaining the manufacturing process (2)
  • FIG. 40 (a)-(c): Cross-sectional view for explaining the manufacturing process (4)
  • FIG. 41 is a cross-sectional view for explaining a diffusion structure of a conventional MOSFET.
  • FIG. 42 A cross-sectional view for explaining a diffusion structure when a conventional MOSFET is improved.
  • one of the p-type and the n-type is the first conductivity type, and the other is the second conductivity type. Therefore, if the first conductivity type is n-type, the second conductivity type is p-type. Conversely, if the first conductivity type is P-type, the second conductivity type is n-type. Both are included.
  • FIG. 1 is a plan view for explaining a diffusion structure of the semiconductor device 1.
  • a base diffusion region 32a which will be described later, and a source diffusion region 64 are arranged, and a region surrounding the active region, which is a withstand voltage surrounding the active region.
  • the area includes a guard groove filling area 23b-23b described later and an inner peripheral side auxiliary diffusion area.
  • a region 33-33 and an outer peripheral side auxiliary diffusion region 34-34 are arranged.
  • FIGS. 26 (a) and 26 (b) show cross-sectional views of the active region along the Wa-Wa line and the Wb-Wb line in FIG.
  • FIG. 26 (c) is a cross-sectional view of the breakdown voltage region along the line Wc-Wc in FIG. Figure 1
  • FIG. 27 is a sectional view taken along line GG of FIGS. 26 (a)-(c).
  • the semiconductor device 1 has a semiconductor single crystal layer n and a conductive layer 12 in contact with the semiconductor single crystal layer 11. .
  • the semiconductor single crystal layer 11 is made of a first conductivity type silicon single crystal
  • the conductive layer 12 is a first conductivity type silicon epitaxial layer grown on the surface of the semiconductor single crystal layer 11 by an epitaxy method. It is composed of The concentration of the conductive layer 12 is lower than that of the semiconductor single crystal layer 11, and the depletion layer is easily spread.
  • a second conductivity type base diffusion region 32a is formed to a depth that does not reach the semiconductor single crystal layer 11.
  • reference numeral 10 in FIG. 26 (a)-(c) indicates a processing substrate to be processed. And a diffusion layer such as the conductive layer 12 and the base diffusion region 32a.
  • the planar shape of the base diffusion region 32a is a quadrangle with rounded four corners, and a plurality of active grooves 22a are arranged in parallel in the region inside the edge at equal intervals. ing.
  • Each active groove 22a is composed of a narrow and elongated main groove 26 and a sub-groove 27 connected to a central portion of a side surface in the longitudinal direction of the main groove 26.
  • Each active groove 22a is arranged inside the edge of the base diffusion region 32a so as not to protrude from the base diffusion region 32a.
  • a second conductive type semiconductor single crystal (here, silicon single crystal) is formed on the bottom surface of the main groove portion 26.
  • a buried region 24 of the second conductivity type is disposed. The height of the buried region 24 is lower than the bottom surface of the base diffusion region 32a, so that the buried region 24 does not contact the base diffusion region 32a.
  • a gate insulating film 45 is disposed on the side surface of the gate groove 83, and a region surrounded by the gate insulating film 45
  • a gate electrode plug 48 is provided. The gate electrode plug 48 is insulated from the buried region 24, the base diffusion region 32a, the source diffusion region 64, the conductive layer 12, and the active groove filling region 23a.
  • a second conductivity type active groove filling region 25 made of the same material as the buried region is formed on the bottom surface of the sub groove 27.
  • the upper part of the active groove filling region 25 is in contact with at least the base diffusion region 32a which is higher than the bottom surface of the base diffusion region 32a.
  • the upper end of the active groove filling region 25 is higher than the surface of the conductive layer 12, that is, the surface of the base diffusion region 32a.
  • An elongated source diffusion region 64 of the first conductivity type is arranged at a position along the longitudinal side surface of the main groove portion 26 of each active groove 22a.
  • the source diffusion region 64 is in contact with the gate insulating film 45.
  • the depth of the source diffusion region 64 is made shallower than the base diffusion region 32a, and the lateral direction is set so as not to protrude from the outer periphery of the base diffusion region 32a. It is electrically isolated from layer 12.
  • a second conductivity type ohmic diffusion region 6 is formed. 3 are located.
  • the surface concentration of the ohmic diffusion region 63 is higher than the surface concentration of the base diffusion region 32a, and is configured to make ohmic contact with a metal such as aluminum.
  • the base diffusion region 32a is formed from the innermost guard groove 22b.
  • the base diffusion region 32a is formed by the guard grooves 22b-22b.
  • the guard grooves 22 b-22 b have a depth such that the bottom surface is located inside the conductive layer 12,
  • the opening is located in the field insulating film 43 on the surface of the conductive layer 12.
  • each guard groove 22b On the bottom surface of each guard groove 22b—the same as the buried area 24 and the active groove filling area 25
  • Guard groove filling regions 23b-23b of the second conductivity type made of a material are arranged.
  • An auxiliary diffusion region 33-33 and an outer peripheral auxiliary diffusion region 34-34 are arranged.
  • the guard groove filling area 23b- 23b is in contact with the inner peripheral side auxiliary diffusion area 33-33
  • the regions 23b are electrically separated from each other.
  • the shape of the guard groove filling region 23b-23b is the same as the shape of the guard groove 22b-22b,
  • Guard groove filling area 23b-23b and guard groove 22b-22b have four straight corners, respectively.
  • the corner portion of the outer peripheral auxiliary diffusion region 34-34 is formed into a quarter circle having a radius of 0.7 m or more.
  • the inner peripheral auxiliary diffusion region 33 connected to the innermost guard groove filling region 23b is
  • the first diffusion region 32a is separated from the diffusion region 32a by a certain distance, and thus the innermost guard groove filling region 23b is electrically separated from the base diffusion region 32a.
  • the base diffusion region 32a, the source diffusion region 64, and the conductive layer 12 are connected to external terminals, while the guard groove filling regions 23b-23b and the inner and outer peripheral auxiliary diffusion regions 33 are provided.
  • guard groove filling region 23b may be connected to the base diffusion region 32a.
  • the innermost guard groove filling region 23b has the same voltage as the base diffusion region 32a.
  • the plane orientation of the surfaces of the semiconductor single crystal layer 11 and the conductive layer 12 is ⁇ 100 ⁇ .
  • ⁇ 100 ⁇ includes all of the following plane orientations.
  • each guard groove 22b-22b is a square or rectangular square ring shape
  • Two adjacent sides of the guard grooves 22b-22b are arranged in parallel.
  • each guard groove 22 b 22 b is aligned with the plane direction of the conductive layer 12.
  • the guard grooves 22b--22b are located on the inner and outer peripheral side surfaces of the ring.
  • Is set so that the ⁇ 100 ⁇ plane of the conductive layer 12 is exposed.
  • Each of the active grooves 22a has an elongated rectangular shape, is parallel to each other, and has a longitudinal direction. The direction is arranged in parallel with the two parallel sides of the guard groove 22b—
  • the ⁇ 100 ⁇ plane of the conductive layer 12 is also exposed on the four side surfaces.
  • the orientations are all ⁇ 100 ⁇ planes, when a silicon single crystal is grown inside the active groove 22a and the guard groove 22b, the silicon single crystal grows uniformly.
  • the active groove filling region 23a, the guard groove filling region 23b, and the buried region 24 are respectively composed of silicon single crystals epitaxially grown in the active groove 22a and the guard grooves 22b-22b.
  • FIG. 26A is a cross-sectional view of the active groove 22a crossing the main groove 26
  • FIG. 26B is a cross-sectional view of the active groove 22a crossing the sub-groove 27, and FIG. FIG.
  • reference numeral 10 denotes a processing substrate.
  • the processing substrate 10 includes a semiconductor single crystal layer 11 made of a first conductivity type silicon single crystal and a first conductivity type silicon layer formed on the semiconductor single crystal layer 11 by epitaxial growth of silicon. And the conductive layer 12.
  • the processing substrate 10 is a wafer having a diameter of several inches and a inch of several inches, and a plurality of the same patterns are formed in one wafer, and each of the patterns is formed into one semiconductor device 1 through the following steps. In the following, the manufacturing process will be described by focusing on one semiconductor device 1.
  • a first insulating film made of a silicon oxide film formed by a thermal oxidation process is arranged on conductive layer 12, the first insulating film is patterned, and first mask layer 41 is formed. It is formed.
  • the first mask layer 41 has a square or rectangular base diffusion opening 80a, and a plurality (three in this case) of square ring-shaped auxiliary diffusion openings 80b-80b.
  • the base diffusion opening 80a is located at the center position, and the auxiliary diffusion opening 80b-8
  • Ob extends the base diffusion opening 80a concentrically around the base diffusion opening 80a. It is arranged around. Bottom of base diffusion opening 80a and auxiliary diffusion opening 80b—80b
  • the surface of the conductive layer 12 is exposed.
  • the outer four corners are rounded by a quarter circle with a radius of 0.7 m or more, which is not a right angle.
  • the first mask layer 41 becomes a shield (mask).
  • the high-concentration impurity layers 31a and 31b are heat-treated.
  • a base diffusion region 32a is formed at the bottom of the base diffusion opening 80a, and the auxiliary diffusion opening 80b is formed at the bottom of the auxiliary diffusion opening 80b.
  • Regions 32b-32b are respectively formed.
  • 1 3 1 1 32b is the second conductivity type.
  • Reference numeral 43 in FIGS. 4A to 4C indicates a field insulating film in which the thermal oxide thin film and the first mask layer 41 are integrated.
  • FIG. 29 is a sectional view taken along line AA of FIG. 4 (a)-(c).
  • the four corners of the base diffusion region 32a and the outer and inner periphery of the auxiliary diffusion region 32b-32b are the base diffusion opening 80a and the auxiliary diffusion region 32b.
  • Diffusion opening 80b Reflects the shape of 80b and is formed in a quarter circle with a radius of 0.7 / z m or more.
  • FIGS. 4 (a)-(c) correspond to the sectional views taken along the line Pa-Pa, the line Pb-Pb, and the line Pc-Pc in FIG. 29, respectively.
  • the field insulating film 43 is patterned to form a plurality of active groove window openings 81a on the base diffusion region 32a as shown in FIGS. 5 (a) to 5 (c). Also, one guard groove window opening 81b-81b is formed at the center position in the width direction of each auxiliary diffusion region 32b-32b.
  • the guard groove window opening 81b-81b has a ring shape.
  • the active groove window opening 81a is composed of an elongated rectangular portion, and a square portion located substantially at the center in the longitudinal direction and connected to the elongated rectangular portion.
  • Each active groove window opening 81a is arranged inside the edge of the base diffusion region 32a. Accordingly, the surface of the base diffusion region 32a is exposed at the bottom surface of each active groove window opening 81a, and the surface of the conductive layer 12 is exposed! /, Na! /.
  • the active groove window openings 8 la are arranged so that their longitudinal directions are parallel to each other, and are arranged in parallel or at right angles to the edge of the base diffusion region 32 a.
  • the ring of the guard groove window openings 81b-81b has a square shape, and the four sides constituting the ring are
  • the width of 1 3 is narrower than the width of the auxiliary diffusion region 32b-32b.
  • Each of the auxiliary diffusion regions 32b-32b protrudes on both sides of the guard groove window opening portions 81b-81b.
  • the surface of the conductive layer 12 is not exposed at the bottom of the guard groove window opening 81b-81b
  • the processing substrate 10 exposed on the bottom surfaces of the active groove window opening 81a and the guard groove window opening 81b-81b is formed by dry etching using the field insulating film 43 as a mask.
  • active grooves 22a and guard grooves 22b and 22b are formed as shown in FIGS. 6 (a)-(c).
  • the active groove 22a and the guard grooves 22b-22b have the same depth, and the etching time can be adjusted.
  • the cross-sectional shape of the active groove 22a and the guard groove 22b is an elongated rectangular shape whose depth is larger than the width.
  • the active groove window opening 81a forms an upper part of the active groove 22a, and a lower part of the active groove 22a is formed by a groove formed in the processing substrate 10. Similarly, above guard groove 22b—22b
  • 13 is composed of guard groove window openings 81b-81b, and the lower part is formed on the processing substrate 10.
  • each groove 3 is exposed, and the bottom of each groove is located in the conductive layer 12, so that the conductive layer 12 is exposed on the inner periphery at the lower end.
  • the base diffusion region 32a and the auxiliary diffusion regions 32b-32b are exposed on the inner circumference therebetween.
  • the guard grooves 22b-22b are deeper than the auxiliary diffusion regions 32b-32b.
  • the diffused area 32b-32b is formed by the guard groove 22b-22b into the inner peripheral auxiliary diffusion area 33-3.
  • the active groove 22a is located inside the edge of the base diffusion region 32a, and the base diffusion region 32a is separated by the active groove 22a.
  • FIG. 30 is a sectional view taken along line BB of FIGS. 6 (a)-(c). Conversely, FIGS. 6 (a)-(c) correspond to the sectional views taken along the lines Qa-Qa, Qb-Qb, and Qc-Qc in FIG.
  • the planar shape of the active groove 22a reflects the planar shape of the active groove window opening 81a, and is composed of an elongated rectangular main groove portion 26 and sub-groove portions 27 connected to both sides of the longitudinal central portion thereof. RU The insides of the main groove 26 and the sub-groove 27 are connected.
  • the planar shape of the guard grooves 22b-22b is the same as the planar shape of the guard groove window opening portions 81b-81b.
  • the active grooves 22a are parallel to each other, and are parallel to two sides of the guard grooves 22b—22b.
  • the distance between both ends of the active groove 22a and the innermost guard groove 22b is equal to the innermost guard groove 22b.
  • each of the grooves 22a, 22b and 22b is rectangular, and the side of each of the grooves 22a, 22b and 22b is
  • each groove 22a, 22b Since the 1 3 1 3 plane is perpendicular to the surface of the conductive layer 12, the side surfaces of the grooves 22a, 22b and 22b have ⁇ The ⁇ 100 ⁇ plane is exposed. Also, each groove 22a, 22b
  • the bottom of 22b is the conductive layer.
  • the ⁇ 100 ⁇ plane is also exposed on the bottom surface.
  • the body single crystal is exposed, and the surface of the processing substrate 10 is covered with the field insulating film 43.
  • each of the grooves 22a, 22b is formed by an epitaxial growth method.
  • the inside of 22b is the semiconductor of the grown second conductivity type.
  • reference numeral 23a indicates an active groove filling region made of a semiconductor single crystal grown in the active groove 22a
  • reference numerals 23b-23b indicate guard groove 22b-22b.
  • FIG. 4 shows a guard groove filling region made of a body single crystal.
  • a silicon single crystal is used as the semiconductor single crystal.
  • FIG. 31 is a sectional view taken along line CC of FIGS. 7 (a)-(c). Conversely, FIGS. 7 (a)-(c) correspond to the sectional views taken along lines Ra-Ra, Rb-Rb, and Rc-Rc in FIG.
  • each of the filling regions 23a and 23b In a state immediately after the growth of the semiconductor single crystal, each of the filling regions 23a and 23b
  • the raised portion is raised above the surface of the field insulating film 43 used as a mask, and the raised portion is removed by etching, and as shown in FIG. 8 (a)-(c), each filling region 23a, 23b
  • the height of one 23b is made substantially equal to the height of the field insulating film 43.
  • the upper portions of the regions 23a and 23b are positioned slightly below the surface of the field insulating film 43.
  • a second mask layer 44 made of an insulating film such as a silicon oxide film is formed on the surface of the gate insulating film 43 by a CVD method or the like, and as shown in FIGS.
  • the mask layer 44 is patterned to form an opening 82 at a position above the main groove 26, and the bottom surface of the opening 82 exposes the surface of the active groove filling region 23a in the main groove 26.
  • the surface of the active groove filling region 23a in the sub-groove 27 and the surface of the guard groove filling region 23b-23b in the guard groove 22b-22b are the second mass.
  • the portion of the active groove filling region 23a protected by the second mask layer 44 is not etched, so that the active groove filling region 25 remains in the sub-groove portion 27.
  • Reference numeral 25 in FIG. 11B indicates an active groove filling region in the sub groove 27.
  • the guard groove filling regions 23b to 23b remain without being etched.
  • the buried region 24 is in contact with the active groove filling region 25, and the active groove filling region 25 is in contact with the base diffusion region 32a. Therefore, the buried region 24 is electrically connected to the base diffusion region 32a by the active groove filling region 25.
  • the surface is located at substantially the same height as the surface of the field insulating film 43, and is therefore at least higher than the surface of the conductive layer 12.
  • FIG. 32 is a sectional view taken along line D—D in FIGS. 11 (a) — (c). Conversely, FIGS. 11 (a) — (c) correspond to Sa—Sa in FIG. 32, respectively. Line, Sb-Sb line, Sc-Sc line section view.
  • the width of the opening 82 of the second mask layer 44 is wider than the width of the main groove 26, and the field insulating film 43 is slightly exposed on both sides of the main groove 26.
  • the width of the opening 82 is constant, is wider than the width of the main groove 26 on the sub groove 27, and the active groove filling area is on the bottom of the opening 82.
  • the width of the gate groove 83 becomes the width of the wide opening 82 in the sub groove 27, and the width of the main groove 26 in the main groove 26. 26 width. Therefore, the width of the gate groove 83 is wide at the sub-groove portion 27.
  • the field insulating film 43 is partially etched to form an active trench filling region as shown in FIGS. 12 (a)-(c).
  • 25 and guard Groove filling area 23b Inside of the surface of 23b and the edge of base diffusion area 32a by a fixed distance Expose the surface.
  • a gate insulating film 45 is formed on the surface of the processing substrate 10 including the side and bottom surfaces of the gate groove 83, as shown in FIGS. 13 (a) to 13 (c). Is done. The bottom and side surfaces of the gate groove 83 are covered with the gate insulating film 45.
  • the gate insulating film 45 is in contact with the base diffusion region 32a and the conductive layer 12 at a side surface portion extending in the longitudinal direction of the gate groove 83, and is in contact with the active groove filling region 25 at a central portion.
  • FIG. 33 is a sectional view taken along line EE of FIGS. 13 (a)-(c).
  • FIGS. 13 (a) to 13 (c) are sectional views taken along lines Ta-Ta, Tb-Tb, and Tc-Tc in FIG.
  • the gate insulating film 45 is a silicon oxide film formed by a thermal oxidation method, but another type of insulating film, for example, a silicon nitride film formed by a CVD method or the like is also used. It comes out.
  • a conductive material is deposited on the surface of the gate insulating film 45 by a CVD method or the like to form a conductive thin film 46
  • the inside of the gate groove 83 is formed. Is filled with a conductive thin film 46.
  • the conductive material constituting the conductive thin film 46 is made of polysilicon doped with impurities here! RU
  • the conductive thin film 46 is etched to leave a portion inside the gate groove 83 and remove the other portion.
  • a gate electrode plug 48 is formed by the remaining portion.
  • FIG. 34 is a sectional view taken along line FF of FIGS. 15 (a)-(c).
  • FIGS. 15 (a)-(c) are cross-sectional views taken along lines Ua-Ua, Ub-Ub, and Uc-Uc in FIG.
  • the gate electrode plugs 48 formed inside the gate grooves 83 are separated from each other, but when the conductive thin film 46 is etched, a patterned resist film is used to form a conductive layer outside the gate grooves 83.
  • the wiring film may be formed by partially leaving the conductive thin film 46, and the respective gate electrode plugs 48 may be connected to each other by the wiring film.
  • the gate insulating film 45 is etched to expose at least a part of the surface of the base diffusion region 32a as shown in FIG. As shown in FIG. 7, a relaxation layer 50 made of a silicon oxide film is formed on the surface of the base diffusion region 32a.
  • a patterned resist film 51 is disposed on the surface of the relaxation layer 50.
  • the resist film 51 has an opening 52 at a position between the gate grooves 83 adjacent to each other, and the relief layer 50 is exposed at the bottom of the opening 52.
  • the impurity ions penetrate through the relaxation layer 50 located on the bottom surface of the opening 52, and impinge on the inner surface of the base diffusion region 32 a and the active groove filling region 25.
  • a high concentration impurity layer of a mold is formed.
  • Reference numeral 61 in FIGS. 18A and 18B indicates a high-concentration impurity layer of the second conductivity type formed on the inner surface of the base diffusion region 32a. Illustration of the formed high concentration impurity layer is omitted.
  • the second-conductivity-type high-concentration impurity layer 61 is arranged at a position between adjacent gate trenches 83. No high-concentration impurity layer of the second conductivity type is formed on the breakdown voltage region side (Fig. 18 (c)).
  • a resist film 53 having an opening 54 is arranged at a position along the longitudinal direction of the main groove 26 as shown in FIG. Do
  • the surface of the relaxation layer 50 is exposed at the bottom surface of the opening 54, and when irradiated with impurities of the first conductivity type, the light passes through the relaxation layer 50 at the bottom surface of the opening 54 and is located immediately below the bottom surface of the opening 54.
  • a high-concentration impurity layer 62 of the first conductivity type is formed.
  • the surface force of the active groove filling region 25 is also separated by a fixed distance, and the opening 54 is not disposed between the sub-grooves 27 and near the side surface of the sub-groove 27.
  • the high concentration impurity layer 62 is not formed. Therefore, the high-concentration impurity layer 62 of the first conductivity type does not come into contact with the active groove filling region 25.
  • No high concentration impurity layer of the first conductivity type is formed between 23b and 23b.
  • an insulating property is formed on the relaxation layer 50 by a CVD method or the like.
  • An interlayer insulating film 55 is formed.
  • heat treatment is performed to diffuse the first conductivity type impurity and the second conductivity type impurity in the high concentration impurity layers 61 and 62, as shown in FIG. 21 (a).
  • a source diffusion region 64 of the first conductivity type and an ohmic diffusion region 63 of the second conductivity type having a high surface concentration are formed therein.
  • the source diffusion region 64 is not in contact with the active groove filling region 25, but is in contact with the gate insulating film 45.
  • an ohmic diffusion region is also formed inside the active groove filling region 25 from the second conductive type high concentration impurity layer.
  • the interlayer insulating film 55 is patterned to form an ohmic diffusion region as shown in FIG.
  • a source opening 56a and a gate opening 56b are formed at positions above 63 and the source diffusion region 64 and above the gate electrode plug 48, respectively.
  • the source diffusion region 64 and the ohmic diffusion region 63 are exposed at the bottom of the source opening 56a, and the upper end of the gate electrode plug 48 is exposed at the bottom of the gate opening 56b.
  • the interlayer insulating film 55 is left between the source opening 56a and the gate opening 56b, and the source opening 56a and the gate opening 56b are separated from each other.
  • a ground opening 56c is formed on the bottom surface so that the surface of the active groove filling region 25 is exposed, as shown in FIG.
  • the ground opening 56c is separated from the gate opening 56b, and is connected to the source opening 56a. No openings are formed in the guard groove filling regions 23b-23b (FIG. 3 (c)).
  • the metal thin film 58 becomes The source diffusion region 64, the ohmic diffusion region 63 in the base diffusion region 32a, the gate electrode plug 48, and the ohmic diffusion region in the active groove filling region 25 are in contact with each other.
  • the metal thin film 58 for example, a thin film containing aluminum as a main component and formed by a sputtering method can be used.
  • the surface concentration of the source diffusion region 64, the ohmic diffusion region 63, and the gate electrode plug 48 is high, and they form an ohmic junction with the metal thin film 58.
  • the metal thin film 58 is patterned and the source diffusion region is formed as shown in FIGS. 24 (a) and 24 (b).
  • the portion that contacts the ohmic diffusion region 63 in the base diffusion region 32a and the ohmic diffusion region in the active groove filling region 25 and the portion that contacts the gate electrode plug 48 are separated from the source diffusion region 64 ohms.
  • a portion connected to the diffusion region 63 forms a source electrode film 58a, and a portion in contact with the gate electrode plug 48 forms a gate electrode film 58b.
  • the upper portion of 23b is removed, and the surface of the interlayer insulating film 55 is exposed.
  • FIGS. 25 (a) to 25 (c) after a patterned insulating protective film 68 is formed on the surface of the processing substrate 10 by a CVD method or the like, FIG. — As shown in (c), when the drain electrode film 71 is formed on the surface of the semiconductor single crystal layer 11 exposed on the back surface of the processing substrate 10, the semiconductor device 1 of the present invention is obtained. As a constituent material of the drain electrode film 71, a metal forming an ohmic junction with the semiconductor single crystal layer 11 is selected.
  • FIG. 26 is a sectional view taken along the line GG of FIGS. 26 (a)-(c).
  • a plurality of the semiconductor devices 1 are formed on one processing substrate 10, and the processing substrate 10 is cut in a dicing process which is a process after the process of forming the drain electrode film 71, and the plurality of semiconductor devices 1 are formed. After being separated from each other, the drain electrode film 71 is fixed on the lead frame with a low melting point metal or a conductive paste material.
  • the surface of the gate pad, which also has a partial force of the gate electrode film 58b, and the surface of the source pad, which has a partial force of the source electrode film 58a, are connected to another lead frame by wire bonding or the like. Mold.
  • the lead frame is cut, and the lead connected to the drain electrode film 71, the lead connected to the gate pad, and the lead connected to the source pad are separated.
  • the obtained semiconductor device 1 is obtained.
  • the source electrode film 58 a when its lead is connected to an electric circuit and used, the source electrode film 58 a is connected to the ground potential and a positive voltage is applied to the drain electrode film 71.
  • the gate electrode plug 48 When a voltage equal to or higher than the threshold voltage is applied to the gate electrode plug 48 in this state, the gate insulating film is located between the source diffusion region 64 and the conductive layer 12 in the base diffusion region 32a, and The part in contact with 45 is inverted to the first conductivity type, and the inversion layer formed thereby is The source diffusion region 64 and the conductive layer 12 are connected, and a current flows from the drain electrode film 71 to the source electrode film 58a.
  • the polarity of the voltage at the time of conduction is such that the source electrode film 58a is at the ground potential and the drain electrode film 71 and the gate electrode plug 48 are positive.
  • Voltage, and the threshold voltage is a positive voltage.
  • the drain electrode film 71 and the gate electrode plug 48 are at ground potential, the source electrode film 58a is at positive voltage, and the threshold voltage is negative. Voltage.
  • the pn junction between the base diffusion region 32a and the conductive layer 12 is reverse-biased, and the pn junction force is lower than that inside the base diffusion region 32a.
  • the depletion layer extends toward the inside of the conductive layer 12.
  • the buried region 24 is electrically connected to the source electrode film 58a via the active groove filling region 25, and the buried region 24 does not have a floating potential,
  • the potential is set to be the same as that of the diffusion region 64 and the base diffusion region 32a.
  • the impurity concentration of the conductive layer 12 ⁇ the buried region 24, the distance and the width between the buried regions 24, and the like are adjusted to optimal values, the bottom surface of the base diffusion region 32a and the buried region 24 If the inside of the buried region 24 is also completely depleted when the conductive layer 12 in the portion between the bottom and the bottom is completely depleted, the electric field strength immediately below the base diffusion region 32a is relaxed, and the The withstand voltage is improved.
  • auxiliary diffusion regions 33-33, 34-34 are at floating potential and the base diffusion region 32
  • the depletion layer also turns the inner force toward the outside, and sequentially fills the guard groove filling regions 23b-23b,
  • each guard groove filling region 23b-23b intersects at a substantially right angle
  • the conductive layer 12 has a guard groove filling region 23b-23b in a shallow region.
  • the shape of the pn junction is closer to a cylindrical junction / planar junction than a spherical junction, and the electric field strength is greatly reduced.
  • ⁇ 1 ⁇ of the processing substrate 10 is provided on the bottom and side surfaces of each active groove 22a and guard groove 22b-22b.
  • the ⁇ 0 ⁇ plane is exposed, and the active groove filling region 23a and the guard groove filling region 23b—23b
  • the surfaces other than the ⁇ 0 ⁇ surface are not exposed, and voids do not occur at the four corners.
  • the upper part of the guard groove filling region 23b-23b is the upper part of the guard groove filling region 23b-23b
  • the first conductivity type has been described as n-type and the second conductivity type as p-type, the first conductivity type is p-type and the second conductivity type in the above-described embodiment and each of the embodiments described later. May be n-type. [0122] ⁇ Other examples>
  • the semiconductor device 1 of the above embodiment is a MOSFET
  • the semiconductor device of the present invention is not limited to this, and includes, for example, a pn junction type IGBTO nsulated gate bipolar transistor) and a Schottky junction type IGBT. It is.
  • Reference numeral 2 in FIGS. 27 (a) to 27 (c) indicates a pn junction type IGBT in the semiconductor device of the present invention.
  • the semiconductor device 2 is different from the semiconductor single crystal layer 11 of the first conductivity type used as the drain layer in the above embodiment in that the semiconductor single crystal of the opposite conductivity type (second conductivity type) to the semiconductor single crystal layer 11 is used. Is used. Other configurations are the same as those of the semiconductor device 1 of the above embodiment.
  • the collector layer 11 ′ forms a pn junction with the conductive layer 12.
  • the pn junction is forward-biased, and the minority carriers enter the conductive layer 12 from the collector layer 11. Is injected, so that the conduction resistance of the conductive layer 12 decreases.
  • reference numeral 71 'de notes a collector electrode film forming an ohmic junction with the collector layer 11.
  • reference numeral 3 in FIGS. 28 (a)-(c) indicates the semiconductor device of the present invention in the case of a Schottky barrier type IGBT.
  • the semiconductor single crystal layer 11 of the first embodiment is removed by a polishing process or the like, and the conductive layer 12 having a lower concentration than the semiconductor single crystal layer 11 is exposed.
  • the electrode film 72 is formed.
  • At least a portion of Schottky electrode film 72 that is in contact with conductive layer 12 is a material that forms a Schottky junction with conductive layer 12, for example, chromium or the like.
  • Other structures are the same as those of the semiconductor device 1 of the first example.
  • the polarity of the Schottky junction is a polarity that is forward-biased when the pn junction between the conductive layer 12 and the base diffusion region 32a is reverse-biased, and therefore, the polarity of each electrode film 58a, 58b, 72
  • the Schottky junction is forward-biased, minority carriers are injected from the Schottky electrode film 72 into the conductive layer 12, and the conduction resistance of the conductive layer 12 is reduced.
  • the semiconductor single crystal layer 11 has a low concentration and can form a Schottky junction with the Schottky electrode film 72, a Schottky electrode film can be formed on the surface of the semiconductor single crystal layer 11. Also in this case, the semiconductor single crystal layer 11 can be polished to reduce the thickness in order to reduce the conduction resistance.
  • reference numeral 4 in FIGS. 36 (a) to (c) denotes a low conduction resistance type semiconductor device.
  • the semiconductor device 4 has a low resistance region 29 of the first conductivity type having a higher concentration than the conductive layer 12 below the base diffusion region 32a of the semiconductor device 1 of the first embodiment.
  • Other structures are the same as those of the semiconductor device 1 of the first embodiment.
  • FIGS. 37 (a) and (b) indicate the low resistance region, and the low resistance region 28 is not formed in the breakdown voltage region (FIG. 37 (c);
  • FIG. 37 (a) — ( (c) shows a state in which the surface of the conductive layer 12 including the low-resistance region 28 is exposed.
  • a square or rectangular base diffusion opening 80a is formed in the first mask layer 41 formed on the surface of the processing substrate 10, and The surface of the low resistance region 28 and the surface of the conductive layer 12 within a certain distance from the low resistance region 28 are exposed on the bottom surface of the diffusion opening 80a.
  • a plurality (three in this case) of square ring-shaped auxiliary diffusion openings 80b-80b concentrically surrounding the base diffusion opening 80a are formed, and the surface of the conductive layer 12 is exposed on the bottom surface.
  • An impurity of the second conductivity type is injected into the low resistance region 28 and the inner surface of the conductive layer 12 located below the bottom surface 3 of the base 80b.
  • the impurity concentration of the implanted second conductivity type is high, and the surface of the low resistance region 28 becomes the second conductivity type.
  • the base diffusion opening is formed. Under the bottom of 80a and the auxiliary diffusion opening 80b-80b, the second conductive type high concentration impurity layer 31a, 31b-31b force S
  • the region 32a is formed on the low-resistance region 29 and has the same depth as the auxiliary diffusion region 32b—32b.
  • the upper portion of the low-resistance region 28 is replaced with the diffusion region of the second conductivity type by the base diffusion region 32a, and the lower portion of the low-resistance region 28 is located immediately below the base diffusion region 32a.
  • Low resistance region 29 is disposed.
  • low-resistance region 29 is located inside the edge of base diffusion region 32a, and low-resistance region 29 is not exposed on the surface of conductive layer 12.
  • the low resistance region 29 is not disposed below the auxiliary diffusion regions 32b-32b.
  • FIG. 40 (a)-(c) are the same as the steps after forming the base diffusion region 32a of the first embodiment, and the description is omitted.
  • the sub-grooves 27 are arranged on both sides of the center of the main groove 26, and the active groove filling regions 25 are arranged on both sides of the center of the main groove 26. It may be arranged at the end of the groove, or a plurality may be arranged for one main groove 26!
  • each active groove 22a is separated.
  • the length of the sub-groove 27 of each active groove 22a is increased so that the adjacent main groove 22a is formed as in the semiconductor device 5 shown in FIG. 26 may be connected to each other by the sub-groove 27.
  • the sub-grooves 27 are arranged on both sides of the main groove 26.
  • the sub-groove 27 may be arranged on one side of the main groove 26.
  • the active groove filling region 25 is arranged so that the gate electrode plug 48 arranged in one active groove 22a is not divided.
  • each gate electrode plug 48 is In the present invention, the pattern of the gate electrode film 58b and the source electrode film 58a is formed in a comb shape and alternately arranged so that the teeth of the comb are engaged. Can be placed.
  • guard grooves 22b to 22b were formed by force that the four sides crossed at right angles.
  • Guard grooves 22b The four corners of 22b are rounded.
  • a polygonal shape is included.
  • the active groove filling region 23a and the guard groove filling region 23b are formed by a silicon single crystal epitaxially grown in the active groove 22a or the guard groove 22b-22b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 高耐圧の半導体装置を提供する。  細長の主溝部26と、主溝部の長手方向側面に接続された副溝部27とで活性溝22aを構成させ、主溝部26の底面上に、第二導電型のベース拡散領域32aの底面よりも高さが低い第二導電型の埋込領域24を配置し、副溝部27内にベース拡散領域32aと接触する第二導電型の活性溝充填領域25を配置する。埋込領域24は活性溝充填領域25を介してベース拡散領域32aと接触される。1個の活性溝22a内では、埋込領域24よりも上の部分で1個のゲート溝83が形成されるから、ゲート電極プラグ48が分断されず、電極パターンが簡単になる。

Description

明 細 書
半導体装置、半導体装置の製造方法
技術分野
[0001] 本発明は半導体装置にかかり、特に、溝内に半導体充填物が配置された半導体装 置に関する。
背景技術
[0002] 図 41は、従来技術のトランジスタ 102の断面図を示している。
このトランジスタ 102は、トレンチ型パワー MOSFETであり、 n型不純物がシリコン 単結晶中に高濃度にドープされた半導体基板 111と、該半導体基板 111上にェピタ キシャル成長法によって形成された n—型のシリコンェピタキシャル層力 成るドレイン 層 112とを有して!/ヽる。
[0003] 符号 110は、半導体基板 111とドレイン層 112とを有する処理基板を示しており、こ の処理基板 110に半導体製造プロセスが施された結果、ドレイン層 112内部の表面 側に、 p型のボディ層 113が形成されており、該ボディ層 113内部の表面近傍に、 p+ 型のォーミック拡散領域 116と、 n+型のソース拡散領域 130とが複数形成されている
[0004] ソース拡散領域 130の間の位置では、処理基板 110表面が帯状にエッチングされ
、細溝 120が形成されている。
細溝 120の内周面には、ゲート絶縁膜 124が形成されており、その細溝 120の内 部には、そのゲート絶縁膜によって処理基板 110とは非接触の状態で、ポリシリコン が充填され、そのポリシリコンによってゲート電極プラグ 127が形成されている。
[0005] 各細溝 120内のゲート電極プラグ 127は、金属薄膜から成る不図示のゲート電極 膜によって互 、に接続されて!、る。
ソース拡散領域 130とォーミック拡散領域 116の表面には、金属薄膜から成るソー ス電極膜 137が形成されている。細溝 120上には層間絶縁膜 131が形成されており
、この層間絶縁膜 131により、ソース電極膜 137とゲート電極プラグ 127とは電気的 に絶縁されている。 [0006] 処理基板 110の裏面、即ち、半導体基板 111の表面にはドレイン電極膜 139が形 成されている。
ソース電極膜 137を接地電位に接続し、ドレイン電極膜 139に正電圧を印加した状 態で、ゲート電極膜にしきい値電圧以上の正電圧を印加すると、ゲート絶縁膜 124と ボディ層 113の界面に n型の反転層が形成され、その反転層によって、ソース拡散領 域 130とドレイン層 112とが接続され、反転層を通って、ドレイン層 112からソース拡 散領域 130に向けて電流が流れる。この状態は、トランジスタ 102が導通した状態で あり、細溝 120を用いな!/、パワー MOSFETに存在する JFET領域が存在しな!、ため 、通常のパワー MOSFETに比べて導通抵抗が小さくなつて!/、る。
[0007] そして、導通した状態力もゲート電極膜の電位がソース電極膜 137と同じ電位に変 わると、反転層は消滅し、電流は流れなくなる。
この状態では、ボディ層 113とドレイン層 112との間の pn接合は逆バイアスされて おり、その pn接合のアバランシェ耐圧がトランジスタ 102の耐圧と等しくなつている。
[0008] 一般に、 pn接合のアバランシェ耐圧は、逆バイアスされたときの空乏層の形状によ つて異なるが、上記のようなトランジスタ 102では、ドレイン層 112内に広がる空乏層 内の電界強度が不均一であるため、電界強度が強くなる部分でアバランシェ耐圧が 決定され、耐圧が低くなつてしまっている。
[0009] そこで図 42のような構造の半導体装置 103が提案されており、細溝 120の下側にド レイン層 112とは異なる導電型の埋込領域 122を形成し、ドレイン層 112内に広がる 空乏層の電界強度を緩和する試みが成されて!/、る。
[0010] 埋込領域 122は、一且細溝 120を深く掘削し、細溝 120の内部の底部と側壁に充 填物を成長させることで形成しており、充填物としては半導体単結晶や半導体多結 晶を用いることができる。
[0011] し力しながら、埋込領域 122が浮遊電位の場合には、耐圧が安定しない。シミュレ ーシヨンによって耐圧を求めたところ、埋込領域 122をソース電極膜 137と短絡させ れば耐圧が高くなると分力つたため、そのための具体的な構造が求められている。 特許文献 1:特開 2003 - 069017
発明の開示 発明が解決しょうとする課題
[0012] 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目 的は、高耐圧の半導体装置を提供することにある。
課題を解決するための手段
[0013] 上記課題を解決するため、請求項 1記載の発明は、第一導電型の導電層を有する 処理基板と、前記導電層の内部表面に形成された第二導電型のベース拡散領域と 、前記導電層の前記ベース拡散領域が配置された位置に形成され、底部が前記べ ース拡散領域の底面よりも深くされた活性溝とを有し、前記活性溝は、細長の主溝部 と、前記主溝部の長手方向側面に接続された副溝部とを有し、前記主溝部の底面上 には、上部が前記ベース拡散領域よりも低い第 2導電型の埋込領域が配置され、前 記主溝部の前記埋込領域よりも上の部分でゲート溝が構成され、前記ゲート溝の側 面にはゲート絶縁膜が配置され、前記ゲート溝内には前記ゲート絶縁膜と接触し前 記埋込領域とは電気的に絶縁された導電性のゲート電極プラグが配置され、前記べ ース拡散領域の内部表面の前記ゲート絶縁膜と接触する位置には、前記ベース拡 散領域によって前記導電層から分離された第一導電型のソース拡散領域が配置さ れ、前記副溝部の底面上には、上部が前記ベース拡散領域と接触し、下部が前記 埋込領域と接触した第二導電型の活性溝充填領域が配置された半導体装置である 請求項 2記載の発明は、請求項 1記載の半導体装置であって、前記活性溝充填領 域の上端は、前記導電層表面よりも高くされた半導体装置である。
請求項 3記載の発明は、請求項 1又は請求項 2のいずれか 1項記載の半導体装置 であって、前記ソース拡散領域表面に形成されたソース電極膜を有し、前記ソース電 極膜は前記活性溝充填領域の表面と接触された半導体装置である。
請求項 4記載の発明は、請求項 1乃至請求項 3のいずれか 1項記載の半導体装置 であって、前記活性溝充填領域の表面の前記ソース電極膜と接触する部分には、第 二導電型の不純物層が拡散によって形成された半導体装置である。
請求項 5記載の発明は、請求項 1乃至請求項 4のいずれか 1項記載の半導体装置 であって、前記ソース電極膜は前記ベース拡散領域に接触され、前記活性溝充填領 域は、前記ベース拡散領域に接触された半導体装置である。
請求項 6記載の発明は、請求項 1乃至請求項 5のいずれか 1項記載の半導体装置 であって、前記活性溝を同心状に取り囲み、所定間隔で互いに離間された複数本の リング状のガード溝と、前記ガード溝内に配置された第二導電型のガード溝充填領 域とを有する半導体装置である。
請求項 7記載の発明は、請求項 1乃至請求項 6のいずれか 1項記載の半導体装置 であって、前記処理基板の裏面には、前記導電層に電気的に接続されたドレイン電 極膜が配置された半導体装置である。
請求項 8記載の発明は、請求項 1乃至請求項 6のいずれか 1項記載の半導体装置 であって、前記処理基板の裏面には、前記導電層と接触して pn接合を形成する第 二導電型のコレクタ層と、前記コレクタ層と電気的に接続されたコレクタ電極膜が配 置された半導体装置である。
請求項 9記載の発明は、請求項 1乃至請求項 6のいずれか 1項記載の半導体装置 であって、前記処理基板の裏面には、前記導電層とショットキー接合を形成するショ ットキー電極膜が配置された半導体装置である。
請求項 10記載の発明は、第一導電型の導電層を有する処理基板と、前記導電層 の内部表面に形成された第二導電型のベース拡散領域と、前記導電層の前記べ一 ス拡散領域が配置された位置に形成され、底部が前記ベース拡散領域の底面よりも 深くされた活性溝とを有し、前記活性溝は、細長の主溝部と、前記主溝部の長手方 向側面に接続された副溝部とを有し、前記主溝部の底面上には、上部が前記ベース 拡散領域よりも低!ヽ第 2導電型の埋込領域が配置され、前記活性溝の前記埋込領 域よりも上の部分でゲート溝が構成され、前記ゲート溝の側面にはゲート絶縁膜が配 置され、前記ゲート溝内には前記ゲート絶縁膜と接触し前記埋込領域とは電気的に 絶縁された導電性のゲート電極プラグが配置され、前記ベース拡散領域の内部表面 の前記ゲート絶縁膜と接触する位置には、前記ベース拡散領域によって前記導電層 から分離された第一導電型のソース拡散領域が配置され、前記副溝部の底面上に は、上部が前記ベース拡散領域と接触し、下部が前記埋込領域と接触した第二導電 型の活性溝充填領域が配置された半導体装置を製造する半導体装置の製造方法 であって、前記活性溝は、前記ベース拡散領域を形成した後、上部側面に前記べ一 ス拡散領域が露出し、下部側面に前記導電層が露出するように形成し、前記活性溝 内に第二導電型の半導体充填物を成長させた後、前記副溝部内の前記半導体充 填物表面にマスク膜を配置した状態でエッチングし、前記主溝部内に位置する前記 半導体充填物の上部を前記ベース拡散領域の底面よりも低 、位置まで除去し、残さ れた下部によって前記埋込領域を形成し、前記半導体充填物が除去された部分に よって前記ゲート溝を構成させる半導体装置の製造方法である。
発明の効果
[0014] 高耐圧の半導体装置が得られる。
ゲート電極膜の配置が簡単になるため、寄生容量や抵抗値が小さくなる。 図面の簡単な説明
[0015] [図 1]本発明の一例の半導体装置の拡散構造を示す平面図であり、図 26の G— G線 切断面図である
[図 2](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (1)
[図 3](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (2)
[図 4](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (3)
[図 5](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (4)
[図 6](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (5)
[図 7](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (6)
[図 8](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (7)
[図 9](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (8)
[図 10](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (9)
[図 l l](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (10)
[図 12](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (11)
[図 13](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (12)
[図 14](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (13)
[図 15](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (14)
[図 16](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (15) 圆 17](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (16) 圆 18](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (17)
[図 19](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (18) 圆 20](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (19) 圆 21](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (20) 圆 22](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (21) 圆 23](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (22) 圆 24](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (23) 圆 25](a)— (c) :本発明の半導体装置の製造工程図を説明するための図 (24)
[図 26](a)— (c) :本発明が MOSFETである場合の構造を説明するための図 圆 27](a)— (c) :本発明が pn接合型の IGBTである場合の構造を説明するための断 面図
圆 28](a)— (c) :本発明がショットキー接合型の IGBTである場合の構造を説明するた めの断面図
圆 29]本発明の半導体装置の拡散構造を示す平面図であり、図 4(a)— (c)の A-A線 切断面図
圆 30]本発明の半導体装置の拡散構造を示す平面図であり、図 6(a)— (c)の B-B線 切断面図
圆 31]本発明の第一例の半導体装置の拡散構造を示す平面図であり、図 7(a)— (c) の C - C線切断面図
圆 32]本発明の半導体装置の拡散構造を示す平面図であり、図 11(a)— (c)の D-D 線切断面図
圆 33]本発明の半導体装置の拡散構造を示す平面図であり、図 13(a)— (c)の E-E 線切断面図
圆 34]本発明の半導体装置の拡散構造を示す平面図であり、図 15(a)— (c)の F-F 線切断面図
圆 35]隣接する主溝部が副溝部で接続された本発明の半導体装置の平面図 圆 36](a)— (c) :本発明が低抵抗領域を有する半導体装置である場合の拡散構造を 説明するための断面図
[図 37](a)— (c) :その製造工程を説明するための断面図 (1)
[図 38](a)— (c) :その製造工程を説明するための断面図 (2)
[図 39](a)— (c) :その製造工程を説明するための断面図 (3)
[図 40](a)— (c) :その製造工程を説明するための断面図 (4)
[図 41]従来技術の MOSFETの拡散構造を説明するための断面図
[図 42]従来技術の MOSFETを改良した場合の拡散構造を説明するための断面図 符号の説明
1一 5……半導体装置
10……処理基板
11……半導体単結晶層 (ドレイン層)
11 '……コレクタ層
12……導電層
22a……活性溝
22b一 22b……ガード溝
1 3
23a, 25……活性溝充填領域
23b一 23b……ガード溝充填領域
1 3
24……埋込領域
26……主溝部
27……副溝部
32a……ベース拡散領域
43……フィールド、絶縁膜
45……ゲート絶縁膜
48……ゲート電極プラグ
58a……ソース電極膜
58b……ゲート電極膜
64……ソース拡散領域
71……ドレイン電極膜 71'……コレクタ電極膜
72……ショットキー電極膜
83……ゲート溝
発明を実施するための最良の形態
[0017] 本発明の実施例について説明する。
各実施例では、 p型又は n型のうちのいずれか一方を第一導電型とし、他方を第二 導電型とする。従って、第一導電型が n型であれば第二導電型は p型であり、逆に、 第一導電型が P型であれば第二導電型は n型であり、本発明にはその両方が含まれ る。
[0018] <構造の説明 >
図 1の符号 1は、本発明の第一の実施例の半導体装置を示している。この図 1は、 半導体装置 1の拡散構造を説明するための平面図である。
[0019] 半導体装置 1の中央部分である活性領域には、後述するベース拡散領域 32aゃソ ース拡散領域 64が配置され、該活性領域の周辺の領域であって、活性領域を取り 囲む耐圧領域には、後述するガード溝充填領域 23b— 23bや内周側補助拡散領
1 3
域 33— 33や外周側補助拡散領域 34— 34が配置されている。
1 3 1 3
[0020] 図 1の Wa— Wa線と Wb— Wb線に沿った活性領域の切断面図を図 26(a)、(b)に示 す。また、図 1の Wc— Wc線に沿った耐圧領域の切断面図を図 26(c)に示す。図 1は
、図 26(a)— (c)の G-G線切断面図である。
[0021] 図 1と図 26(a)— (c)を参照し、この半導体装置 1は、半導体単結晶層 nと該半導体 単結晶層 11と接触した導電層 12とを有して 、る。
半導体単結晶層 11は、第一導電型のシリコン単結晶で構成されており、導電層 12 は、該半導体単結晶層 11表面にェピタキシャル法によって成長された第一導電型 のシリコンェピタキシャル層で構成されて 、る。半導体単結晶層 11の濃度に比べ導 電層 12は低濃度であり、空乏層が広がりやすくされて 、る。
[0022] 導電層 12のうち、活性領域に位置する部分の内部表面には、第二導電型のベー ス拡散領域 32aが半導体単結晶層 11に達しな 、深さに形成されて 、る。
ここで図 26(a)— (c)の符号 10は、プロセス処理の対象となる処理基板を示しており 、導電層 12やベース拡散領域 32a等の拡散層を含んで ヽる。
[0023] 図 1に示すように、ベース拡散領域 32aの平面形状は四隅が丸められた四角形で あり、その縁よりも内側の領域に、活性溝 22aが複数本互いに等間隔で平行に配置 されている。
[0024] 各活性溝 22aは、幅が狭く細長い主溝部 26と、主溝部 26の長手方向側面の中央 部分に接続された副溝部 27とで構成されている。各活性溝 22aは、ベース拡散領域 32aの縁よりも内側に配置されており、ベース拡散領域 32aからはみ出さないようにな つている。
[0025] 図 26(a)、(b)に示すように、各活性溝 22aのうち、主溝部 26の底面上には、第二導 電型の半導体単結晶 (ここではシリコン単結晶)から成る第二導電型の埋込領域 24が 配置されている。埋込領域 24の高さはベース拡散領域 32aの底面よりも低ぐ埋込 領域 24はベース拡散領域 32aに接触しな 、ようになって 、る。
[0026] 主溝部 26のベース拡散領域 32aよりも上の部分をゲート溝 83とすると、ゲート溝 83 の側面にはゲート絶縁膜 45が配置され、ゲート絶縁膜 45で囲まれた領域内には、ゲ ート電極プラグ 48が配置されている。ゲート電極プラグ 48は、埋込領域 24やベース 拡散領域 32aやソース拡散領域 64や導電層 12や活性溝充填領域 23aとは絶縁さ れている。
[0027] 他方、副溝部 27の底面上には、埋込領域と同じ材料から成る第二導電型の活性 溝充填領域 25が形成されている。この活性溝充填領域 25の上部は、少なくともベー ス拡散領域 32aの底面よりも高ぐベース拡散領域 32aと接触するようになっている。 ここでは活性溝充填領域 25の上端は導電層 12の表面、即ちベース拡散領域 32aの 表面よりも高くなつている。
[0028] 各活性溝 22aの主溝部 26の長手方向の側面に沿った位置には、第一導電型の細 長のソース拡散領域 64が配置されて 、る。ソース拡散領域 64はゲート絶縁膜 45と 接触している。ソース拡散領域 64の深さはベース拡散領域 32aよりも浅くされており、 また、横方向はベース拡散領域 32aの外周からはみ出さないようにされており、従つ て、ソース拡散領域 64は導電層 12から電気的に分離されている。
[0029] 隣接するソース拡散領域 64の間の位置には、第二導電型のォーミック拡散領域 6 3が配置されている。
このォーミック拡散領域 63の表面濃度は、ベース拡散領域 32aの表面濃度よりも高 濃度であり、アルミニウム等の金属とォーミック接触するように構成されている。
[0030] 他方、耐圧領域には、複数本 (ここでは三本)の四角リング形状のガード溝 22b— 2
1
2bが同心状に形成されており、ベース拡散領域 32aは、最内周のガード溝 22bより
3 1 も内側に配置されている。従って、ベース拡散領域 32aはガード溝 22b— 22bによ
1 3 つて同心状に取り囲まれている。
[0031] ガード溝 22b— 22bは、底面が導電層 12の内部に位置する深さであり、上部の開
1 3
口は導電層 12表面のフィールド絶縁膜 43に位置して 、る。
各ガード溝 22b— 22bの底面上には、埋込領域 24や活性溝充填領域 25と同じ
1 3
材料から成る第二導電型のガード溝充填領域 23b— 23bが配置されている。
1 3
[0032] 導電層 12内部の表面付近であって、各ガード溝充填領域 23b— 23bの内周側と
1 3 外周側には、ガード充填領域 23b— 23bの全周と接触して第二導電型の内周側補
1 3
助拡散領域 33— 33と外周側補助拡散領域 34— 34がそれぞれ配置されている。
1 3 1 3
内周側及び外周側の各補助拡散領域 33— 33
1 3、 34
1一 34は四隅部分が丸められ 3
た四角リング形状である。
[0033] 内周側補助拡散領域 33— 33と外周側補助拡散領域 34— 34はいずれか 1個の
1 3 1 3
ガード溝充填領域 23b— 23bに接触し、且つ、内周側補助拡散領域 33— 33と外
1 3 1 3 周側補助拡散領域 34— 34とは接触しないようにされており、従って、ガード溝充填
1 3
領域 23b 23b同士は互いに電気的に分離されている。
1 3
各補助拡散領域 33— 33
1 3、 34
1一 34はベース拡散領域 32aと一緒に形成される 3
ため、ベース拡散領域 32aと同じ深さである。
[0034] ガード溝充填領域 23b— 23bの形状はガード溝 22b— 22bの形状と同じであり、
1 3 1 3
ガード溝充填領域 23b— 23bとガード溝 22b— 22bとは、四隅部分がそれぞれ直
1 3 1 3
角(90deg)に交わっている。
[0035] ガード溝充填領域 23b— 23bの上部には、外周側及び内周側補助拡散領域 33
1 3 1 一 33、 34一 34が配置されているから、ガード溝充填領域 23b 23bの少なくとも
3 1 3 1 3 四隅の上部は、導電層 12と pn接合を形成せず、内周側及び外周側補助拡散領域 3 3一 33、 34一 34と導電層 12とが pn接合を形成する。
1 3 1 3
[0036] 外周側補助拡散領域 34— 34の角部分は、半径 0. 7 m以上の四分の一円に形
1 3
成されており、従って、ガード溝充填領域 23b— 23bの上部の pn接合は、シリンドリ
1 3
カル接合よりもプレーナ接合に近くなつている。
[0037] 最内周のガード溝充填領域 23bに接続された内周側補助拡散領域 33は、ベース
1 1 拡散領域 32aから一定距離だけ離間しており、従って、最内周のガード溝充填領域 2 3bはベース拡散領域 32aから電気的に分離されている。
1
[0038] ベース拡散領域 32aとソース拡散領域 64や導電層 12は外部端子に接続されてい るのに対し、ガード溝充填領域 23b— 23bや内周側及び外周側補助拡散領域 33
1 3 1 一 33、 34一 34は外部端子に接続されておらず、ベース拡散領域 32aや導電層 1
3 1 3
2に電圧が印加されても、各ガード溝充填領域 23b— 23bと内周側及び外周側補
1 3
助拡散領域 33 33
1 3、 34
1一 34は浮遊電位に置かれる。
3
[0039] なお、最内周のガード溝充填領域 23bはベース拡散領域 32aに接続されていても
1
よい。この場合は、最内周のガード溝充填領域 23bはベース拡散領域 32aと同じ電
1
位になり、他のガード溝充填領域 23b
2、 23bが浮遊電位に置かれる。
3
[0040] 半導体単結晶層 11及び導電層 12がシリコン単結晶で構成されて 、る場合、半導 体単結晶層 11と導電層 12の表面の面方位は { 1 0 0}にされている。本明細書で は、 { 1 0 0}は、下記面方位の全てを含むものとする。
[0041] [数 1]
(1 0 0), (0 1 0), (0 0 1 ), (T 0 0), (0了 0), (0 0 T)
[0042] 各ガード溝 22b— 22bの平面形状は、正方形又は長方形の四角リング状であり、
1 3
ガード溝 22b— 22b同士の隣接する二辺は平行に配置されている。
1 3
[0043] そして、各ガード溝 22b 22bの辺の向きは導電層 12の面方位に対して位置合
1 3
わせがされており、各ガード溝 22b— 22bのリング内周側の側面や外周側の側面に
1 3
は導電層 12の { 1 0 0}面が露出するようにされている。
[0044] また、各活性溝 22aは細長の長方形形状であり、互いに平行であり、且つ、長手方 向がガード溝 22b— 22bの平行な二辺に対して平行に配置され、各活性溝 22aの
1 3
四側面にも、導電層 12の { 1 0 0}面が露出されている。
ガード溝 22b— 22bや活性溝 22aの底面は導電層 12の表面と平行であるから { 1
1 3
0 0}面である。
[0045] このように、ガード溝 22b— 22bや活性溝 22a内に露出する導電層 12の表面の面
1 3
方位は全て等しく { 1 0 0}面であるから、活性溝 22aとガード溝 22bの内部にシリコ ン単結晶を成長させる場合、そのシリコン単結晶は均一に成長する。
[0046] 活性溝充填領域 23aとガード溝充填領域 23bと埋込領域 24は、活性溝 22aとガー ド溝 22b— 22b内にェピタキシャル成長されたシリコン単結晶でそれぞれ構成され
1 3
ている。従って、均一に成長された場合には内部にボイドは生じない。
[0047] <製造工程の説明 >
上記のような半導体装置 1の製造工程を説明する。
図 2—図 26の (a)は活性溝 22aの主溝部 26を横断する切断面図であり、(b)は副溝 部 27を横断する切断面図、(c)はガード溝 22b— 22bを横断する切断面図である。
1 3
[0048] 図 2(a)— (c)を参照し、符号 10は、処理基板を示している。この処理基板 10は、上 述したように、第一導電型のシリコン単結晶から成る半導体単結晶層 11と、該半導体 単結晶層 11上にシリコンのェピタキシャル成長によって形成された第一導電型の導 電層 12とを有している。
[0049] 処理基板 10は、直径数インチ一" h数インチのゥェーハであり、一枚のゥエーハ中に は同じパターンが複数個形成され、各パターンが下記の工程を経てそれぞれ一個の 半導体装置 1になる。下記は、 1個の半導体装置 1に着目してその製造工程を説明 する。
[0050] 先ず、熱酸化処理によって形成されたシリコン酸化膜から成る第一の絶縁膜が導 電層 12上に配置され、該第一の絶縁膜がパターユングされ、第一のマスク層 41が形 成される。この第一のマスク層 41は、正方形又は長方形のベース拡散用開口 80aと 、複数本 (ここでは 3本)の四角リング状の補助拡散用開口 80b— 80bを有している。
1 3
[0051] ベース拡散用開口 80aは、中央位置に配置されており、補助拡散用開口 80b— 8
1
Obは、ベース拡散用開口 80aを同心状に取り囲むように、ベース拡散用開口 80aの 周囲に配置されている。ベース拡散用開口 80aと補助拡散用開口 80b— 80bの底
1 3 面には、導電層 12表面が露出している。
[0052] ベース拡散用開口 80aの四隅と補助拡散用開口 80b— 80bの内周側四隅及び
1 3
外周側四隅は直角ではなぐ半径 0. 7 m以上の四分の一円の丸みが付されてい る。
[0053] 次に、処理基板 10の導電層 12側の表面に第二導電型の不純物を照射すると、第 一のマスク層 41が遮蔽物 (マスク)となり、図 3(a)— (c)に示すように、各開口 80a、 80b 一 80b底面の導電層 12の内部表面に第二導電型の高濃度不純物層 31a、 31b
1 3 1 一 31bがそれぞれ形成される。
3
[0054] 次に、熱処理によって高濃度不純物層 31a、 31b
1一 31b (に含まれる第二導電型 3
の不純物)を拡散させると、図 4(a)— (c)に示すように、ベース拡散用開口 80aの底面 にベース拡散領域 32aが形成され、補助拡散用開口 80b— 80b底面に、補助拡散
1 3
領域 32b— 32bがそれぞれ形成される。ベース拡散領域 32aと補助拡散領域 32b
1 3 1 一 32bは第二導電型である。
3
ベース拡散領域 32aや補助拡散領域 32b— 32bを形成するときは、その熱処理
1 3
によって導電層 12表面に熱酸化物薄膜が形成される。
図 4(a)— (c)の符号 43は、その熱酸化物薄膜と、上記第一のマスク層 41とが一体に なったフィールド絶縁膜を示して 、る。
[0055] 図 29は、図 4(a)— (c)の A— A線切断面図である。ベース拡散領域 32aの四隅や補 助拡散領域 32b— 32bの外周及び内周の四隅は、ベース拡散用開口 80aや補助
1 3
拡散用開口 80b— 80bの形状を反映し、半径 0. 7 /z m以上の四分の一円に形成さ
1 3
れる。
図 4(a)— (c)は、それぞれ図 29の Pa— Pa線、 Pb— Pb線、 Pc— Pc線切断面図に相当 する。
[0056] 次に、フィールド絶縁膜 43をパターユングし、図 5(a)— (c)に示すように、ベース拡 散領域 32aの上に活性溝用窓開部 81aを複数個形成し、また、各補助拡散領域 32b 一 32bの幅方向中央位置に、ガード溝用窓開部 81b— 81bを一本ずつ形成する
1 3 1 3
。ガード溝用窓開部 81b— 81bはリング形状になる。 [0057] 活性溝用窓開部 81aは細長の長方形の部分と、その長手方向略中央に位置し、細 長の長方形の部分に接続された四角形の部分で構成されている。各活性溝用窓開 部 81aは、ベース拡散領域 32aの縁よりも内側に配置されている。従って、各活性溝 用窓開部 81aの底面には、ベース拡散領域 32aの表面が露出されており、導電層 1 2の表面は露出して!/、な!/、。
活性溝用窓開部 8 laは長手方向が互 、に平行にされ、ベース拡散領域 32aの縁 に対して平行力、又は直角に配置されている。
[0058] ガード溝用窓開部 81b— 81bのリングは四角形状であり、リングを構成する四辺が
1 3
互いに垂直に交差し、四隅は丸みを有していない。ガード溝用窓開部 81b— 81b
1 3 の幅は補助拡散領域 32b— 32bの幅よりも狭ぐ補助拡散領域 32b— 32bの幅方
1 3 1 3 向中央に位置しており、ガード溝用窓開部 81b— 81bの底面には、各補助拡散領
1 3
域 32b 32bの表面が露出している。
1 3
[0059] 各補助拡散領域 32b— 32bはガード溝用窓開部 81b— 81bの両側にはみ出て
1 3 1 3
おり、ガード溝用窓開部 81b— 81bの底面には導電層 12の表面は露出していない
1 3
[0060] 次に、フィールド絶縁膜 43をマスクとしてドライエッチング法によって、活性溝用窓 開部 81aとガード溝用窓開部 81b— 81bの底面に露出する処理基板 10を構成する
1 3
半導体材料をエッチングすると、図 6(a)— (c)に示すように、活性溝 22aとガード溝 22 b一 22bとがそれぞれ形成される。
1 3
[0061] 活性溝 22aとガード溝 22b— 22bは同じ深さであり、エッチング時間を調節するこ
1 3
とにより、それらの底面は、ベース拡散領域 32aや補助拡散領域 32b— 32bの底部
1 3 と半導体単結晶層 11の表面との間に配置される。
活性溝 22aとガード溝 22bの断面形状は、深さが幅よりも大きい細長の長方形形状 である。
[0062] 活性溝用窓開部 81aは活性溝 22aの上部を構成しており、活性溝 22aの下部は、 処理基板 10に形成された溝で構成されている。同様に、ガード溝 22b— 22bの上
1 3 部は、ガード溝用窓開部 81b— 81bで構成されており、下部は処理基板 10に形成
1 3
された溝で構成されて 、る。 [0063] 従って、活性溝 22aとガード溝 22b— 22bの上部の内周には、フィールド絶縁膜 4
1 3
3が露出されており、各溝の底部は導電層 12内に位置しているため、下端部の内周 には導電層 12が露出されている。その間の内周には、ベース拡散領域 32aや補助 拡散領域 32b— 32bが露出されている。
1 3
[0064] ガード溝 22b— 22bの深さは補助拡散領域 32b— 32bよりも深 、ので、補助拡
1 3 1 3
散領域 32b— 32bは、ガード溝 22b— 22bによって内周側補助拡散領域 33— 3
1 3 1 3 1
3と外周側補助拡散領域 34— 34にそれぞれ分離される。
3 1 3
活性溝 22aはベース拡散領域 32aの縁よりも内側に位置しており、ベース拡散領域 32aは活性溝 22aによって分離されて 、な 、。
[0065] 図 30は、図 6(a)— (c)の B— B線切断面図である。逆に、図 6(a)— (c)は、図 30の Qa — Qa線、 Qb— Qb線、 Qc— Qc線切断面図に相当する。
活性溝 22aの平面形状は活性溝用窓開部 81aの平面形状が反映され、細長の長 方形の主溝部 26と、その長手方向中央部分の両側に接続された副溝部 27で構成さ れて 、る。主溝部 26と副溝部 27の内部はつながって 、る。
[0066] ガード溝 22b— 22bの平面形状は、ガード溝用窓開部 81b— 81bの平面形状が
1 3 1 3
反映され、内周側と外周側の四隅が両方とも直角な四角リング形状になっている。 活性溝 22aは互いに平行になっており、ガード溝 22b— 22bの二辺に対して平行
1 3
にされている。
[0067] 主溝部 26の幅と、ガード溝 22b— 22bの幅は等しくされており、隣接する主溝部 2
1 3
6間の距離と、隣接するガード溝 22b— 22b間の距離と、最内周のガード溝 22bと
1 3 1 それに隣接する主溝部 26の長辺との距離は等しくされている。
[0068] 活性溝 22aの両端と最内周のガード溝 22bとの間の距離は、最内周のガード溝 22
1
bと隣接する主溝部 26の長辺との間の距離の半分になっている。
1
[0069] 活性溝 22aの主溝部 26がのびる方向と、ガード溝 22b 22bの四辺の向きは導
1 3
電層 12の結晶方向に対して位置合わせされており、 { 1 0 0}方向に伸びるようにさ れている。
[0070] 各溝 22a、 22b一 22bの断面形状は長方形であり、各溝 22a、 22b一 22bの側
1 3 1 3 面は導電層 12の表面に対して垂直であるから、各溝 22a、 22b一 22bの側面には { 1 0 0}面が露出されている。また、各溝 22a、 22b
1一 22bの底面は導電層 12の表 3
面に対して平行であるから、底面にも { 1 0 0}面が露出されている。
[0071] 図 6(a)— (c)の状態では、各溝 22a、 22b
1一 22b内に処理基板 10を構成する半導 3
体単結晶が露出し、処理基板 10の表面はフィールド絶縁膜 43によって覆われてい る。
[0072] 次に、ェピタキシャル成長法によって、各溝 22a、 22b
1一 22b内の底面及び側面 3
に露出する半導体単結晶の表面に、第二導電型の不純物が添加された半導体単結 晶を成長させると、各溝 22a、 22b
1一 22bの内部は、成長された第二導電型の半導 3
体単結晶によって充填される。
[0073] 図 7(a)— (c)の符号 23aは、活性溝 22a内に成長した半導体単結晶から成る活性溝 充填領域を示しており、符号 23b— 23bはガード溝 22b— 22b内に成長した半導
1 3 1 3
体単結晶から成るガード溝充填領域を示している。ここでは、半導体単結晶としてシ リコン単結晶が用いられて 、る。
図 31は、図 7(a)— (c)の C C線切断面図である。逆に、図 7(a)— (c)は、図 31の Ra Ra線、 Rb— Rb線、 Rc— Rc線切断面図に相当する。
[0074] 半導体単結晶の成長直後の状態では、各充填領域 23a、 23b
1一 23bの上端部は
、マスクとして用いられたフィールド絶縁膜 43の表面よりも上に盛り上がっており、そ の盛り上がり部分をエッチングによって除去し、図 8(a)— (c)に示すように、各充填領 域 23a、 23b
1一 23bの高さをフィールド絶縁膜 43の高さと略一致させる。各充填領 3
域 23a、 23b一 23bの上部を、フィールド絶縁膜 43の表面よりも少し下方に位置さ
1 3
せてもよい。
[0075] 次に、図 9(a) (b)に示すように、各充填領域 23a、 23b ゃフィール
1一 23bの上部
3
ド絶縁膜 43の表面に、 CVD法等により、シリコン酸ィ匕膜等の絶縁膜から成る第二の マスク層 44を形成し、図 10(a)— (c)に示すように、第二のマスク層 44をパター-ング し、主溝部 26上の位置に開口 82を形成し、その開口 82の底面に、主溝部 26内の 活性溝充填領域 23aの表面を露出させる。副溝部 27内の活性溝充填領域 23aの表 面と、ガード溝 22b— 22b内のガード溝充填領域 23b— 23bの表面は第二のマス
1 3 1 3
ク層 44で覆っておく。 [0076] その状態で、第二のマスク層 44をマスクとし、開口 82底面の活性溝充填領域 23a の上部をエッチングすると、図 l l(a)、(b)に示すように、主溝部 26底面上に活性溝充 填領域 23aの下部から成る埋込領域 24が形成される。符号 83は、活性溝充填領域 23aが除去された部分によって形成されたゲート溝を示している。
[0077] 活性溝充填領域 23aの第二のマスク層 44で保護された部分はエッチングされな ヽ から、副溝部 27内には活性溝充填領域 25が残る。図 11(b)の符号 25は、副溝部 27 内の活性溝充填領域を示して 、る。
また、同図 (c)に示すように、ガード溝充填領域 23b— 23bもエッチングされずに残
1 3
る。
[0078] 埋込領域 24は活性溝充填領域 25に接触しており、活性溝充填領域 25はベース 拡散領域 32aに接触している。従って、埋込領域 24は、活性溝充填領域 25によって ベース拡散領域 32aに電気的に接続されている。
[0079] 活性溝充填領域 25の上端部の表面やガード溝充填領域 23b— 23bの上端部の
1 3
表面は、フィールド絶縁膜 43の表面と略同じ高さに位置しており、従って、少なくとも 導電層 12表面よりも高くなつて ヽる。
[0080] 図 32は、図 11(a)— (c)の D— D線切断面図であり、逆に、図 11(a)— (c)は、それぞ れ図 32の Sa— Sa線、 Sb— Sb線、 Sc— Sc線切断面図である。
[0081] 第二のマスク層 44の開口 82の幅は主溝部 26の幅よりも広くなつており、主溝部 26 の両側にはフィールド絶縁膜 43が僅かに露出している。開口 82の幅は一定であり、 副溝部 27上では主溝部 26の幅よりも幅広になり、開口 82底面には活性溝充填領域
23aの表面だけが露出して!/、る。
[0082] 活性溝充填領域 23aをエッチングするときにフィールド絶縁膜 43はエッチングされ ないから、ゲート溝 83の幅は、副溝部 27では幅広の開口 82の幅となり、主溝部 26で は、主溝部 26の幅となる。従って、ゲート溝 83の幅は、副溝部 27の部分で幅広にな つている。
[0083] 次に、第二のマスク層 44をエッチングによって全部除去した後、フィールド絶縁膜 4 3を部分的にエッチングし、図 12(a)— (c)に示すように、活性溝充填領域 25とガード 溝充填領域 23b— 23bの表面や、ベース拡散領域 32aの縁から一定距離だけ内側 の表面を露出させる。
[0084] その状態で処理基板 10を熱酸化処理すると、図 13(a)— (c)に示すように、ゲート溝 83の側面と底面を含む処理基板 10の表面にゲート絶縁膜 45が形成される。ゲート 溝 83の底面や側面はこのゲート絶縁膜 45により覆われる。ゲート絶縁膜 45は、ゲー ト溝 83の長手方向に伸びる側面部分でベース拡散領域 32aと導電層 12に接触して おり、中央部分では活性溝充填領域 25に接触している。
[0085] 図 33は、図 13(a)— (c)の E— E線切断面図である。逆に、図 13(a)— (c)は、図 33の Ta— Ta線、 Tb— Tb線、 Tc Tc線切断面図である。
なお、ここでは、ゲート絶縁膜 45は、熱酸ィ匕法によって形成したシリコン酸ィ匕膜であ るが、他の種類の絶縁膜、例えば CVD法等によって形成したシリコン窒化膜等も用 いることがでさる。
[0086] 次いで、図 14(a)— (c)に示すように、 CVD法等によってゲート絶縁膜 45表面に導 電性材料を堆積させ、導電性薄膜 46を形成すると、ゲート溝 83の内部は導電性薄 膜 46で充填される。導電性薄膜 46を構成する導電性材料は、ここでは不純物が添 カロされたポリシリコンで構成されて!、る。
[0087] 次いで、導電性薄膜 46をエッチングし、図 15(a)— (c)に示すように、ゲート溝 83の 内部の部分を残し、他の部分を除去すると、ゲート溝 83の内部に残った部分によつ てゲート電極プラグ 48が形成される。
[0088] 図 34は、図 15(a)— (c)の F— F線切断面図である。逆に、図 15(a)— (c)は、図 34の Ua— Ua線、 Ub— Ub線、 Uc— Uc線切断面図である。
なお、ここでは各ゲート溝 83内部に形成されたゲート電極プラグ 48は互いに分離 されているが、導電性薄膜 46をエッチングする際に、パターユングしたレジスト膜を 用い、ゲート溝 83の外部の導電性薄膜 46を部分的に残して配線膜を構成させ、各 ゲート電極プラグ 48を配線膜で相互に接続してもよい。
[0089] 次に、ゲート絶縁膜 45をエッチングし、図 16(a)に示すようにベース拡散領域 32aの 表面の少なくとも一部を露出させた後、熱酸化処理を行い、図 17(a)に示すように、ベ ース拡散領域 32aの表面にシリコン酸ィ匕膜から成る緩和層 50を形成する。
[0090] このとき、図 16(b)、(c)に示すように、活性溝充填領域 25やガード溝充填領域 23b 一 23bの表面もー且露出され、その表面にも、図 17(b)、(c)に示すように、緩和層 50
3
が形成される。
[0091] 次に、図 18(a)— (c)に示すように、緩和層 50の表面にパターユングされたレジスト 膜 51を配置する。
このレジスト膜 51は、互いに隣接するゲート溝 83の間の位置に開口 52を有してお り、開口 52の底面には緩和層 50が露出されている。
[0092] その状態で第二導電型の不純物イオンを照射すると、不純物イオンは開口 52底面 に位置する緩和層 50を透過し、ベース拡散領域 32aや活性溝充填領域 25の内部 表面に第二導電型の高濃度不純物層が形成される。図 18(a)、(b)の符号 61は、ベ ース拡散領域 32aの内部表面に形成された第二導電型の高濃度不純物層を示して おり、活性溝充填領域 25の内部表面に形成された高濃度不純物層は図示を省略す る。第二導電型の高濃度不純物層 61は、隣接するゲート溝 83の間の位置に配置さ れている。耐圧領域側には、第二導電型の高濃度不純物層は形成されない (図 18(c ))
次に、レジスト膜 51を除去して緩和層 50表面を露出させた後、図 19(a)に示すよう に、主溝部 26の長手方向に沿った位置に開口 54を有するレジスト膜 53を配置する
[0093] 開口 54底面には緩和層 50の表面が露出しており、第一導電型の不純物を照射す ると、開口 54底面の緩和層 50を透過し、開口 54の底面の直下位置に第一導電型の 高濃度不純物層 62が形成される。
[0094] 開口 54は、活性溝充填領域 25の表面力も一定距離だけ離間されており、また、副 溝部 27と副溝部 27の間や、副溝部 27の側面近くには開口 54は配置せず、高濃度 不純物層 62は形成しない。従って、第一導電型の高濃度不純物層 62は活性溝充 填領域 25と接触しない。
また、図 19(c)に示すように、ガード溝充填領域 23b— 23b上やガード溝充填領域
1 3
23b一 23bの間には第一導電型の高濃度不純物層は形成しない。
1 3
[0095] 次に、レジスト膜 53を剥離し、緩和層 50表面を露出させた後、図 20(a)— (c)に示す ように、 CVD法等により、緩和層 50上に絶縁性の層間絶縁膜 55を形成する。 [0096] 次いで熱処理を行い、高濃度不純物層 61、 62中の第一導電型の不純物と第二導 電型の不純物を拡散させると、図 21(a)に示すように、ベース拡散領域 32a内に第一 導電型のソース拡散領域 64と、表面濃度が高 、第二導電型のォーミック拡散領域 6 3が形成される。
[0097] ソース拡散領域 64は活性溝充填領域 25とは接触しておらず、ゲート絶縁膜 45と接 触している。
このとき、活性溝充填領域 25の内部にも第二導電型の高濃度不純物層からォーミ ック拡散領域が形成される。
[0098] 次に、層間絶縁膜 55をパターユングし、図 22(a)に示すように、ォーミック拡散領域
63やソース拡散領域 64の上の位置と、ゲート電極プラグ 48の上の位置に、ソース開 口 56aとゲート開口 56bをそれぞれ形成する。
[0099] ソース開口 56a底面にはソース拡散領域 64とォーミック拡散領域 63とが露出され ており、ゲート開口 56b底面にはゲート電極プラグ 48の上端部が露出されている。
[0100] ソース開口 56aとゲート開口 56bの間には層間絶縁膜 55が残されており、ソース開 口 56aとゲート開口 56bは分離されて!、る。
また、ソース開口 56aやゲート開口 56bを形成するときに、同図 (b)に示すように、底 面に活性溝充填領域 25の表面が露出する接地開口 56cが形成されている。この接 地開口 56cは、ゲート開口 56bとは分離されており、ソース開口 56aとはつながってい る。ガード溝充填領域 23b— 23b上には開口は形成しない (同図 (c))。
1 3
[0101] 次に、図 23(a)— (c)に示すように、処理基板 10のソース開口 56aやゲート開口 56b が形成された側の表面に金属薄膜 58を形成すると、金属薄膜 58は、ソース拡散領 域 64と、ベース拡散領域 32a内のォーミック拡散領域 63と、ゲート電極プラグ 48と、 活性溝充填領域 25内のォーミック拡散領域に接触する。
[0102] 金属薄膜 58は、例えばスパッタリング法により形成されたアルミニウムを主成分とす る薄膜を用いることがでさる。
ソース拡散領域 64とォーミック拡散領域 63とゲート電極プラグ 48の表面濃度は高 ぐそれらと金属薄膜 58とはォーミック接合を形成する。
[0103] 次に、その金属薄膜 58をパターユングし、図 24(a)、(b)に示すように、ソース拡散領 域 64とベース拡散領域 32a内のォーミック拡散領域 63及び活性溝充填領域 25内の ォーミック拡散領域とに接触する部分と、ゲート電極プラグ 48に接触する部分とを分 離し、ソース拡散領域 64ゃォーミック拡散領域 63に接続された部分でソース電極膜 58aを構成させ、ゲート電極プラグ 48に接触する部分でゲート電極膜 58bを構成さ せる。
金属薄膜 58のパターユングの際、同図 (c)に示すように、ガード溝充填領域 23b—
1
23b上部は除去され、層間絶縁膜 55表面が露出される。
3
[0104] 次に、図 25(a)— (c)に示すように、 CVD法等によって処理基板 10の表面にパター ユングされた絶縁性の保護膜 68を形成した後、図 26(a)— (c)に示すように、処理基 板 10の裏面に露出する半導体単結晶層 11の表面に、ドレイン電極膜 71を形成する と本発明の半導体装置 1が得られる。ドレイン電極膜 71の構成材料は、半導体単結 晶層 11とォーミック接合を形成する金属を選択する。
[0105] 図 26(a)— (c)の G-G線切断面図は、図 1に示した通りである。
この半導体装置 1は、一枚の処理基板 10に複数個形成されており、ドレイン電極膜 71を形成する工程の後工程となるダイシング工程において、処理基板 10を切断し、 複数の半導体装置 1を互いに分離させた後、低融点の金属や導電性ペースト材によ つてドレイン電極膜 71をリードフレーム上に固定する。
[0106] そして、ゲート電極膜 58bの一部分力も成るゲートパッドの表面と、ソース電極膜 58 aの一部分力 成るソースパッドの表面を、ワイヤーボンド等によって別のリードフレー ムに接続し、半導体装置 1をモールドする。
[0107] 最後に、リードフレームを切断し、ドレイン電極膜 71に接続されたリードと、ゲートパ ッドに接続されたリードと、ソースパッドに接続されたリードとを分離させると、榭脂封 止された半導体装置 1が得られる。
[0108] 榭脂封止された半導体装置 1は、そのリードが電気回路に接続され、使用されると きに、ソース電極膜 58aが接地電位に接続され、ドレイン電極膜 71に正電圧が印加 された状態で、ゲート電極プラグ 48にしきい値電圧以上の電圧が印加されると、ベー ス拡散領域 32aのうちの、ソース拡散領域 64と導電層 12との間に位置し、ゲート絶 縁膜 45に接触する部分が第一導電型に反転し、それによつて形成された反転層で ソース拡散領域 64と導電層 12とが接続され、ドレイン電極膜 71からソース電極膜 58 aに電流が流れる。
[0109] 導通させるときの電圧の極性は、第一導電型が n型、第二導電型力 ¾型の場合は、 ソース電極膜 58aは接地電位、ドレイン電極膜 71とゲート電極プラグ 48は正電圧で あり、しきい値電圧は正電圧である。第一導電型が p型、第二導電型が n型の場合は 、ドレイン電極膜 71とゲート電極プラグ 48が接地電位であり、ソース電極膜 58aが正 電圧であり、しきい値電圧は負電圧である。
[0110] 次に、ゲート電極プラグ 48に印加される電圧の大きさがしきい値電圧以下になると 、反転層は消滅し、半導体装置 1は遮断状態に転じ、電流は流れなくなる。
半導体装置 1が導通状態にあるときと遮断状態にあるときの両方とも、ベース拡散 領域 32aと導電層 12との間の pn接合は逆バイアスされており、 pn接合力もベース拡 散領域 32a内部と導電層 12内部に向けて空乏層が広がっている。
[0111] 本発明の半導体装置 1では、埋込領域 24は活性溝充填領域 25を介してソース電 極膜 58aに電気的に接続されており、埋込領域 24は浮遊電位にならず、ソース拡散 領域 64やベース拡散領域 32aと同電位になるようにされて 、る。
[0112] ベース拡散領域 32aと導電層 12との間に、その pn接合が逆バイアスされる極性の 電圧が印加された場合、埋込領域 24と導電層 12の間の pn接合も逆バイアスされる。 従って、導電層 12の内部には、ベース拡散領域 32aと埋込領域 24の両方から空乏 層が広がる。その結果、ベース拡散領域 32aの真下であって、埋込領域 24の底部よ りも上の部分の導電層 12の内部は容易に全部空乏化する。
[0113] そして、導電層 12ゃ埋込領域 24の不純物濃度や、埋込領域 24間の距離と幅等を 最適値に設定することにより、ベース拡散領域 32aの底面と、埋込領域 24の底部と の間の部分の導電層 12が全部空乏化したとき、埋込領域 24の内部も全部空乏化し ているようにすると、ベース拡散領域 32aの真下位置の電界強度が緩和され、活性 領域の耐圧が向上する。
[0114] 他方、耐圧領域内では、ガード溝充填領域 23b— 23bと内周側及び外周側の各
1 3
補助拡散領域 33— 33、 34一 34は浮遊電位に置かれており、ベース拡散領域 32
1 3 1 3
aゃ埋込領域 24等から横方向に広がった空乏層は、先ず、最内周の内周側補助拡 散領域 33に到達する。
1
[0115] そして、空乏層が到達することにより、最内周の内周側補助拡散領域 33や、それ
1 に接続された最内周のガード溝充填領域 23b、及び外周側補助拡散領域 34の電
1 1 位が安定し、それらからも空乏層が広がり始める。
[0116] こうして、空乏層は、内側力も外側に向け、順次ガード溝充填領域 23b— 23bや
1 3 内周側及び外周側の各補助拡散領域 33— 33
1 3、 34
1一 34に到達しながら広がる。
3
これにより、ガード溝充填領域 23b— 23bが配置された領域の電界強度が緩和さ
1 3
れ、耐圧領域の耐圧が向上する。
[0117] ここで、各ガード溝充填領域 23b— 23bの四辺は略直角に交わっており、四隅に
1 3
丸みは付されていないが、丸みを有する外周側補助拡散領域 34— 34が四隅の上
1 3
部に接続されており、導電層 12は、浅い領域ではガード溝充填領域 23b— 23bと
1 3 は pn接合を形成せず、外周側補助拡散領域 34— 34との間に pn接合が形成され
1 3
ている。
[0118] 従って、 pn接合の形状は、球状接合よりも円筒接合ゃプレーナ接合に近くなり、電 界強度が大幅に緩和される。
なお、各活性溝 22aやガード溝 22b— 22bの底面や側面には、処理基板 10の { 1
1 3
0 0}面が露出されており、活性溝充填領域 23aやガード溝充填領域 23b— 23b
1 3 はその面力も成長する。従って、埋込領域 24やガード溝充填領域 23bには欠陥が 無ぐ耐圧が低下しないようになっている。
[0119] ガード溝 22b— 22bの四隅は直角に交わっているから、 { 1 1 1 }面等の { 1 0
1 3
0}面以外の面が露出せず、四隅にボイドが生じな 、ようになって 、る。
[0120] また、本発明の半導体装置は、ガード溝充填領域 23b— 23bの上部は、処理基
1 3
板 10表面 (導電層 12や内周側及び外周側補助拡散領域 33— 33
1 3、 34
1一 34の表 3 面)よりも高ぐフィールド絶縁膜 43の内部に配置されている。この構造により、ガード 溝充填領域の上端が処理基板 10の表面と同じ高さの場合に比べ、耐圧領域での電 界強度が緩和され、耐圧が高くなる。
[0121] なお、以上は第一導電型を n型、第二導電型を p型として説明したが、上記実施例 や後述する各実施例において、第一導電型を p型、第二導電型を n型としても良い。 [0122] <他の例 >
また、上記実施形態の半導体装置 1は MOSFETであったが、本発明の半導体装 置はこれに限られるものではなぐ例えば、 pn接合型の IGBTOnsulated gate bipolar transistor)やショットキー接合型の IGBTも含まれる。
[0123] 図 27(a)— (c)の符号 2は、本発明の半導体装置のうちの pn接合型の IGBTを示し ている。
この半導体装置 2は、上記実施例ではドレイン層として用いた第 1導電型の半導体 単結晶層 11に替え、半導体単結晶層 11とは反対の導電型 (第二導電型)の半導体 単結晶から成るコレクタ層 11 'が用いられている。それ以外の構成は、上記実施例の 半導体装置 1と同じ構造である。
[0124] このコレクタ層 11 'は導電層 12と pn接合を形成しており、半導体装置 2が導通する ときに、その pn接合が順バイアスされ、コレクタ層 11,から導電層 12内に少数キャリア が注入され、導電層 12の導通抵抗が低下するようになって ヽる。
図 27(a)— (c)の符号 71 'はコレクタ層 11,とォーミック接合を形成するコレクタ電極 膜である。
[0125] 次に図 28(a)— (c)の符号 3は、ショットキーバリア型の IGBTの場合の本発明の半導 体装置を示している。
[0126] この半導体装置 3では、研磨工程等によって第 1の実施例の半導体単結晶層 11が 除去され、半導体単結晶層 11よりも低濃度の導電層 12が露出され、その表面にショ ットキー電極膜 72が形成されて 、る。
[0127] ショットキー電極膜 72の少なくとも導電層 12と接触する部分は、導電層 12とショット キー接合を形成する材料であり、例えばクロム等である。他の構造は、第一例の半導 体装置 1と同じである。
[0128] ショットキー接合の極性は、導電層 12とベース拡散領域 32aの間の pn接合が逆バ ィァスされるときに順バイアスされる極性であり、従って、各電極膜 58a、 58b、 72に 半導体装置 3が導通する極性の電圧が印加されるとショットキー接合は順バイアスさ れ、ショットキー電極膜 72から導電層 12内に少数キャリアが注入され、導電層 12の 導通抵抗が低減される。 [0129] なお、半導体単結晶層 11が低濃度であり、ショットキー電極膜 72とショットキー接合 を形成できる場合、半導体単結晶層 11表面にショットキー電極膜を形成することもで きる。この場合も導通抵抗を小さくするために半導体単結晶層 11を研磨して厚みを 薄くすることができる。
[0130] 次に、図 36(a)— (c)の符号 4は、低導通抵抗型の半導体装置を示している。
この半導体装置 4は、第一の実施例の半導体装置 1のベース拡散領域 32aの下に 、導電層 12よりも高濃度の第一導電型の低抵抗領域 29を有している。他の構造は、 第一の実施例の半導体装置 1と同じである。
[0131] 低抵抗領域 29とベース拡散領域 32aの位置関係を説明するために、この半導体 装置 4の製造工程を簡単に説明すると、先ず、導電層 12への第一導電型の不純物 の注入と拡散により、活性領域の導電層 12の内部に、ベース拡散領域よりも小面積 で、導電層 12よりも高濃度の第一導電型の低抵抗領域を形成する。図 37(a)、(b)の 符号 28は、その低抵抗領域を示しており、低抵抗領域 28は、耐圧領域内には形成 しない (同図 (c》。図 37(a)— (c)は、低抵抗領域 28を含む導電層 12の表面を露出さ せた状態を示している。
[0132] 次に、図 38(a)— (c)に示すように、処理基板 10表面に形成された第一のマスク層 4 1に正方形又は長方形のベース拡散用開口 80aを形成し、ベース拡散用開口 80aの 底面に、低抵抗領域 28表面と、低抵抗領域 28から一定距離内にある導電層 12表 面を露出させる。
[0133] また、ベース拡散用開口 80aを同心状に取り囲む複数本 (ここでは 3本)の四角リン グ状の補助拡散用開口 80b— 80bを形成し、底面に導電層 12表面を露出させる。
1 3
[0134] その状態で第二導電型の不純物を打ち込むと、各開口 80a、 80b
1一 80bの底面 3 下に位置する低抵抗領域 28や導電層 12の内部表面に第二導電型の不純物が注 入される。
[0135] 注入した第二導電型の不純物濃度は高ぐ低抵抗領域 28の表面は第二導電型に なり、その結果、図 39(a)— (b)に示すように、ベース拡散用開口 80aと補助拡散用開 口 80b— 80bの底面下には、第二導電型の高濃度不純物層 31a、 31b一 31b力 S
1 3 1 3 それぞれ形成される。 [0136] そして、熱処理を行!ヽ、低抵抗領域 29よりも浅 ヽ位置まで第二導電型の高濃度不 純物層 31a、 31b一 31bを拡散すると、図 40(a)— (c)に示すように、ベース拡散領
1 3
域 32aは低抵抗領域 29上に形成され、それと同じ深さに補助拡散領域 32b— 32b
1 3 が形成される。
[0137] このように、低抵抗領域 28の上部はベース拡散領域 32aによって第二導電型の拡 散領域に置換されており、ベース拡散領域 32aの直下位置に、低抵抗領域 28の残 部から成る低抵抗領域 29が配置される。
[0138] この低抵抗領域 29の外周は、ベース拡散領域 32aの縁よりも内側に位置しており、 低抵抗領域 29は導電層 12の表面には露出していない。低抵抗領域 29は、補助拡 散領域 32b— 32bの下方には配置されない。
1 3
[0139] この半導体装置 4(図 36(a)— (c》が導通したときには、電流は低抵抗領域 29を通つ て流れるため、導通抵抗が小さくなる。
図 40(a)— (c)以降の工程は、第一の実施例のベース拡散領域 32aを形成した後の 工程と同じであり、説明は省略する。
[0140] なお、上記各実施例では、主溝部 26の中央位置の両側に副溝部 27が配置され、 活性溝充填領域 25が主溝部 26の中央位置の両側に配置されて ヽたが、主溝部の 端部に配置してもよ ヽし、 1つの主溝部 26に対し複数個配置してもよ!/、。
[0141] また、上記各実施例では、各活性溝 22aは分離されて ヽたが、各活性溝 22aの副 溝部 27を長くし、図 35に示す半導体装置 5のように、隣接する主溝部 26同士を副溝 部 27で接続してもよい。
また、上記実施例では主溝部 26の両側に副溝部 27が配置されていた力 主溝部 26のどちらか片側に副溝部 27を配置してもよい。
[0142] 要するに、本発明の半導体装置 1一 4では、 1個の活性溝 22a内に配置されるゲー ト電極プラグ 48を分断しな 、ように活性溝充填領域 25が配置されて 、る。 1個の活 性溝 22a内に複数個のゲート溝 83が形成され、 1個の活性溝 22a内のゲート電極プ ラグ 48が活性溝充填領域 25によって分断されると、各ゲート電極プラグ 48間を接続 するゲート電極膜 58bのパターンが複雑になる力 本発明では、ゲート電極膜 58bと ソース電極膜 58aのパターンを櫛状にし、櫛の歯部分をかみ合わせるように交互に配 置することができる。
[0143] また、上記各実施では、ガード溝 22b— 22bは四辺が直角に交わっていた力 本
1 3
発明はそれに限定されるものではなぐガード溝 22b— 22bの四隅に丸みが付され
1 3
たものも含まれる。また、多角形形状のものも含まれる。
[0144] なお、上記の活性溝充填領域 23aとガード溝充填領域 23bは、活性溝 22aやガー ド溝 22b— 22b内にェピタキシャル成長させたシリコン単結晶で構成した力 単結
1 3
晶ではなぐ第二導電型の半導体の多結晶を成長させ、多結晶で構成された充填領 域も本発明に含まれる。

Claims

請求の範囲
[1] 第一導電型の導電層を有する処理基板と、
前記導電層の内部表面に形成された第二導電型のベース拡散領域と、 前記導電層の前記ベース拡散領域が配置された位置に形成され、底部が前記べ ース拡散領域の底面よりも深くされた活性溝とを有し、
前記活性溝は、細長の主溝部と、前記主溝部の長手方向側面に接続された副溝 部とを有し、
前記主溝部の底面上には、上部が前記ベース拡散領域よりも低い第 2導電型の埋 込領域が配置され、
前記主溝部の前記埋込領域よりも上の部分でゲート溝が構成され、
前記ゲート溝の側面にはゲート絶縁膜が配置され、
前記ゲート溝内には前記ゲート絶縁膜と接触し前記埋込領域とは電気的に絶縁さ れた導電性のゲート電極プラグが配置され、
前記ベース拡散領域の内部表面の前記ゲート絶縁膜と接触する位置には、前記 ベース拡散領域によって前記導電層から分離された第一導電型のソース拡散領域 が配置され、
前記副溝部の底面上には、上部が前記ベース拡散領域と接触し、下部が前記埋 込領域と接触した第二導電型の活性溝充填領域が配置された半導体装置。
[2] 前記活性溝充填領域の上端は、前記導電層表面よりも高くされた請求項 1記載の 半導体装置。
[3] 前記ソース拡散領域表面に形成されたソース電極膜を有し、
前記ソース電極膜は前記活性溝充填領域の表面と接触された請求項 1又は請求 項 2の 、ずれか 1項記載の半導体装置。
[4] 前記活性溝充填領域の表面の前記ソース電極膜と接触する部分には、第二導電型 の不純物層が拡散によって形成された請求項 1乃至請求項 3のいずれ力 1項記載の 半導体装置。
[5] 前記ソース電極膜は前記ベース拡散領域に接触され、
前記活性溝充填領域は、前記ベース拡散領域に接触された請求項 1乃至請求項 4 のいずれか 1項記載の半導体装置。
[6] 前記活性溝を同心状に取り囲み、所定間隔で互いに離間された複数本のリング状の ガード溝と、
前記ガード溝内に配置された第二導電型のガード溝充填領域とを有する請求項 1 乃至請求項 5のいずれか 1項記載の半導体装置。
[7] 前記処理基板の裏面には、前記導電層に電気的に接続されたドレイン電極膜が配 置された請求項 1乃至請求項 6のいずれか 1項記載の半導体装置。
[8] 前記処理基板の裏面には、前記導電層と接触して pn接合を形成する第二導電型の コレクタ層と、
前記コレクタ層と電気的に接続されたコレクタ電極膜が配置された請求項 1乃至請 求項 6の 、ずれか 1項記載の半導体装置。
[9] 前記処理基板の裏面には、前記導電層とショットキー接合を形成するショットキー電 極膜が配置された請求項 1乃至請求項 6のいずれか 1項記載の半導体装置。
[10] 第一導電型の導電層を有する処理基板と、
前記導電層の内部表面に形成された第二導電型のベース拡散領域と、 前記導電層の前記ベース拡散領域が配置された位置に形成され、底部が前記べ ース拡散領域の底面よりも深くされた活性溝とを有し、
前記活性溝は、細長の主溝部と、前記主溝部の長手方向側面に接続された副溝 部とを有し、
前記主溝部の底面上には、上部が前記ベース拡散領域よりも低い第 2導電型の埋 込領域が配置され、
前記活性溝の前記埋込領域よりも上の部分でゲート溝が構成され、
前記ゲート溝の側面にはゲート絶縁膜が配置され、
前記ゲート溝内には前記ゲート絶縁膜と接触し前記埋込領域とは電気的に絶縁さ れた導電性のゲート電極プラグが配置され、
前記ベース拡散領域の内部表面の前記ゲート絶縁膜と接触する位置には、前記 ベース拡散領域によって前記導電層から分離された第一導電型のソース拡散領域 が配置され、 前記副溝部の底面上には、上部が前記ベース拡散領域と接触し、下部が前記埋 込領域と接触した第二導電型の活性溝充填領域が配置された半導体装置を製造す る半導体装置の製造方法であって、
前記活性溝は、前記ベース拡散領域を形成した後、上部側面に前記ベース拡散 領域が露出し、下部側面に前記導電層が露出するように形成し、
前記活性溝内に第二導電型の半導体充填物を成長させた後、前記副溝部内の前 記半導体充填物表面にマスク膜を配置した状態でエッチングし、前記主溝部内に位 置する前記半導体充填物の上部を前記ベース拡散領域の底面よりも低い位置まで 除去し、残された下部によって前記埋込領域を形成し、前記半導体充填物が除去さ れた部分によって前記ゲート溝を構成させる半導体装置の製造方法。
PCT/JP2005/004177 2004-03-29 2005-03-10 半導体装置、半導体装置の製造方法 WO2005093843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800098278A CN1938860B (zh) 2004-03-29 2005-03-10 半导体装置、半导体装置的制造方法
EP05720448A EP1748492A4 (en) 2004-03-29 2005-03-10 SEMICONDUCTOR COMPONENT AND SEMICONDUCTOR COMPONENT MANUFACTURING METHOD
US11/528,637 US7365391B2 (en) 2004-03-29 2006-09-28 Semiconductor device and method for manufacturing thereof
KR1020067020373A KR101098208B1 (ko) 2004-03-29 2006-09-29 반도체 장치, 반도체 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004095753A JP3689419B1 (ja) 2004-03-29 2004-03-29 半導体装置、半導体装置の製造方法
JP2004-095753 2004-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/528,637 Continuation US7365391B2 (en) 2004-03-29 2006-09-28 Semiconductor device and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2005093843A1 true WO2005093843A1 (ja) 2005-10-06

Family

ID=35004113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004177 WO2005093843A1 (ja) 2004-03-29 2005-03-10 半導体装置、半導体装置の製造方法

Country Status (6)

Country Link
US (1) US7365391B2 (ja)
EP (1) EP1748492A4 (ja)
JP (1) JP3689419B1 (ja)
KR (1) KR101098208B1 (ja)
CN (1) CN1938860B (ja)
WO (1) WO2005093843A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200300A (ja) * 2008-02-22 2009-09-03 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721653B2 (ja) * 2004-05-12 2011-07-13 トヨタ自動車株式会社 絶縁ゲート型半導体装置
JP5096739B2 (ja) * 2006-12-28 2012-12-12 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP5315638B2 (ja) * 2007-07-24 2013-10-16 サンケン電気株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070271A (ja) * 1996-06-13 1998-03-10 Plessey Semiconductors Ltd 半導体デバイスの改良
JP2004039655A (ja) * 2002-06-28 2004-02-05 Shindengen Electric Mfg Co Ltd 半導体装置
JP2004064051A (ja) * 2002-06-05 2004-02-26 Shindengen Electric Mfg Co Ltd トランジスタとその製造方法、及びダイオード

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
JP3940518B2 (ja) * 1999-03-10 2007-07-04 株式会社東芝 高耐圧半導体素子
JP2001345444A (ja) * 1999-10-25 2001-12-14 Seiko Instruments Inc 半導体装置とその製造方法
JP4738562B2 (ja) * 2000-03-15 2011-08-03 三菱電機株式会社 半導体装置の製造方法
TW512526B (en) * 2000-09-07 2002-12-01 Sanyo Electric Co Semiconductor integrated circuit device and manufacturing method thereof
TW541584B (en) * 2001-06-01 2003-07-11 Semiconductor Energy Lab Semiconductor film, semiconductor device and method for manufacturing same
JP4865166B2 (ja) * 2001-08-30 2012-02-01 新電元工業株式会社 トランジスタの製造方法、ダイオードの製造方法
US6700156B2 (en) * 2002-04-26 2004-03-02 Kabushiki Kaisha Toshiba Insulated gate semiconductor device
US6841825B2 (en) * 2002-06-05 2005-01-11 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
KR100958561B1 (ko) * 2002-10-04 2010-05-17 신덴겐코교 가부시키가이샤 반도체 장치, 반도체 장치의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070271A (ja) * 1996-06-13 1998-03-10 Plessey Semiconductors Ltd 半導体デバイスの改良
JP2004064051A (ja) * 2002-06-05 2004-02-26 Shindengen Electric Mfg Co Ltd トランジスタとその製造方法、及びダイオード
JP2004039655A (ja) * 2002-06-28 2004-02-05 Shindengen Electric Mfg Co Ltd 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1748492A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200300A (ja) * 2008-02-22 2009-09-03 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20070045726A1 (en) 2007-03-01
CN1938860A (zh) 2007-03-28
KR20070006815A (ko) 2007-01-11
EP1748492A1 (en) 2007-01-31
US7365391B2 (en) 2008-04-29
CN1938860B (zh) 2010-05-12
JP2005285983A (ja) 2005-10-13
EP1748492A4 (en) 2009-11-04
JP3689419B1 (ja) 2005-08-31
KR101098208B1 (ko) 2011-12-23

Similar Documents

Publication Publication Date Title
US7196376B2 (en) Trench-type power MOSFET with embedded region at the bottom of the gate and increased breakdown voltage
US7855413B2 (en) Diode with low resistance and high breakdown voltage
JP2005260199A (ja) 半導体装置および半導体装置の製造方法
JP2006319218A (ja) 半導体装置
CA2199013A1 (en) Process for manufacture of mos gated device with reduced mask count
JP2004342660A (ja) 半導体装置及びその製造方法
CN110226234B (zh) 半导体装置
JP4274771B2 (ja) 半導体装置
WO2005093844A1 (ja) 半導体装置
US6876034B2 (en) Semiconductor device having active grooves
JPH09213951A (ja) 半導体装置
US20220130998A1 (en) Power semiconductor devices including angled gate trenches
US4974050A (en) High voltage semiconductor device and method
WO2005093843A1 (ja) 半導体装置、半導体装置の製造方法
US20220130997A1 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
JP4133548B2 (ja) 半導体装置
JP2002141505A (ja) 電界効果トランジスタ
JP2005093479A (ja) 半導体装置、半導体装置の製造方法
JP2686125B2 (ja) 静電誘導型スイッチング素子及びその製造方法
AU698654C (en) Process for manufacture of mos gated device with reduced mask count
JP2006066606A (ja) 半導体装置、半導体装置の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580009827.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005720448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11528637

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067020373

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067020373

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005720448

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11528637

Country of ref document: US