WO2005093251A1 - Vorrichtung und verfahren zur steuerung einer dickstoffpumpe - Google Patents

Vorrichtung und verfahren zur steuerung einer dickstoffpumpe Download PDF

Info

Publication number
WO2005093251A1
WO2005093251A1 PCT/EP2005/002893 EP2005002893W WO2005093251A1 WO 2005093251 A1 WO2005093251 A1 WO 2005093251A1 EP 2005002893 W EP2005002893 W EP 2005002893W WO 2005093251 A1 WO2005093251 A1 WO 2005093251A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
reversing
pistons
pump
delivery
Prior art date
Application number
PCT/EP2005/002893
Other languages
English (en)
French (fr)
Inventor
Wilhelm Hofmann
Stefan Höfling
Original Assignee
Putzmeister Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Putzmeister Aktiengesellschaft filed Critical Putzmeister Aktiengesellschaft
Priority to JP2007504319A priority Critical patent/JP2007530853A/ja
Priority to KR1020067009227A priority patent/KR101148579B1/ko
Priority to EP05716190A priority patent/EP1727979B1/de
Priority to US10/558,938 priority patent/US7581935B2/en
Priority to DE502005001072T priority patent/DE502005001072D1/de
Priority to EA200600260A priority patent/EA007861B1/ru
Publication of WO2005093251A1 publication Critical patent/WO2005093251A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/02Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • F04B15/023Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/02Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
    • F04B7/0233Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0241Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an oscillating movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor
    • F04B9/1178Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor the movement in the other direction being obtained by a hydraulic connection between the liquid motor cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/09Motor parameters of linear hydraulic motors
    • F04B2203/0903Position of the driving piston
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/90Slurry pumps, e.g. concrete

Definitions

  • the invention relates to a device and a method for controlling a thick matter pump with two delivery cylinders which open into a material feed container via front openings and can be actuated in a push-pull manner by means of a hydraulic reversing pump and controlled hydraulic drive cylinders with a feed cylinder arranged inside the material feed container and alternatingly on the openings of the
  • the delivery cylinder can be connected and the other opening opening and connected on the outlet side to a delivery line, hydraulically actuated pipe switch, with each delivery stroke at at least two sensor positions located at predetermined distances from each other and from the rod and / or bottom ends of the drive cylinder detected and a reversal process of the reversing pump and the pipe switch is triggered at the end of a delivery stroke.
  • a device for controlling a two-cylinder thick matter pump of this type is known (DE 195 42 258), in which the end positions of the pistons of the drive cylinders can be tapped by means of cylinder switching sensors for generating end position signals.
  • the flow reversal of the reversing pump can be triggered there via the end position signals of the drive cylinders.
  • the end position signals are usually triggered via the two rod-side cylinder switching sensors.
  • a certain switchover time is required within which the swash plate present in a reversing pump can be moved through.
  • the switchover times for common reversing pumps are approx. 0.1 sec. With a two-second stroke, this switching time speaks about 5% of the stroke.
  • the object of the invention is to develop a device and a method for controlling a thick matter pump of the type specified at the outset, with which a complete emptying of the cylinders is possible with each piston stroke and nevertheless an undesired striking of the pistons at the ends of the drive cylinders is avoided.
  • the solution according to the invention is based on the idea that movement detection of the drive pistons is possible with at least two cylinder switching sensors arranged at arbitrary locations on the working cylinders, which are arranged at a distance from one another and from the two end positions Software allow a complete recording of the movement sequence of the pistons along the working cylinders and thus a solution to the problem specified above.
  • the computer-aided reversing device has a measurement and evaluation routine for the measurement and / or calculation of the chronological sequence of movements of the pistons on their way between the two cylinder ends and for calculating a triggering time derived therefrom has a reversal of the reversing pump and the pipe switch.
  • a preferred embodiment of the invention provides that the measurement and evaluation routine takes into account an algorithm for recording the piston passage at the location of the cylinder switching sensors as well as for calculating a triggering time derived therefrom for reversing the reversing pump and the pipe switch with each piston stroke a predetermined or calculated braking time of the pistons until the respective stop at the cylinder end.
  • the braking time of the pistons essentially consists of the response time of the reversing relay and the switching time of the reversing pump.
  • a time for triggering the reversing pump and the pipe switch can be assigned to each time interval that is measured as a reference value for the speed.
  • the time can be recorded, for example, using the changeover pulse for the pipe switch.
  • the distance between two switch points then corresponds to the stroke duration.
  • the triggering time for the reversal is then determined. This value is approximately constant for one and the same pump type.
  • a special feature arises when the flow rate is changed within a pump stroke. In this case, the new delivery rate must be taken into account and converted into a corresponding remaining term in order to determine the exact triggering time.
  • a preferred embodiment of the invention accordingly provides that the measurement and evaluation routine include an algorithm for calculating the speed of the pistons on their way between the cylinder switching sensors and a triggering time derived therefrom for the reversing processes, taking into account a predetermined or calculated braking time of the pistons up to the respective end stops in the cylinders.
  • Algorithm for determining the course of the piston speed and of the derived next triggering time for the reversal processes in accordance with the currently set default values It is particularly advantageous if the measurement and evaluation routine has an algorithm for determining the braking time or the braking distance of the pistons in accordance with the currently measured or calculated piston speed and a triggering time derived therefrom for the switching processes.
  • the chronological sequence of movements of the pistons on their way between the two cylinder ends is measured and / or calculated, and the next triggering time for the reversal processes is derived therefrom.
  • a preferred embodiment of the invention provides that the piston passages at the location of the cylinder switching sensors are recorded in relation to one another in time and that the triggering time for the subsequent reversal of the reversing pump and the diverter valve is taken into account, taking into account a predetermined or calculated braking time of the pistons to the respective End stop on the cylinder is calculated.
  • the speed of the pistons on their way between the selected cylinder shift sensors can be calculated and the next point in time for the reversal processes can be derived from this.
  • a further preferred procedure consists in that the chronological sequence of movements of the pistons is changed via remote-controlled default values for the delivery quantity and that the next triggering time for the reversing operations is derived from the sequence of motions of the pistons calculated according to the default values, taking into account a modified braking time.
  • the braking time or the braking distance of the pistons from the measured or calculated instantaneous piston speed, taking into account the device-specific response and changeover times of the reversing pump is determined and the next trigger point is calculated from it.
  • Figure 1 shows a section of a two-cylinder slurry pump in a partially sectioned diagram.
  • FIG. 2 shows a circuit diagram of a computer-assisted drive hydraulics for the two-cylinder thick matter pump
  • FIG. 3 shows a detail from FIG. 2 with some dimensions for calculating a preferred triggering time
  • 5 shows a flowchart of the measurement and triggering routine.
  • the control arrangement shown in FIGS. 2 and 3 is intended for a thick matter pump according to FIG. 1.
  • the thick matter pump has two delivery cylinders 50, 50 ', the end openings 52 of which open into a material feed container 54 and can be connected alternately to a delivery line 58 via a pipe switch 56 during the pressure stroke.
  • the delivery cylinders 50, 50 ' are driven by hydraulic drive cylinders 5.5' and a reversing hydraulic pump 6 in push-pull.
  • the delivery pistons 60, 60 'of the delivery cylinders 50, 50' are connected to the pistons 8, 8 'of the drive cylinders 5.5' via a common piston rod 9, 9 '.
  • the drive cylinders 5, 5 ' are connected on the ground side via hydraulic lines 11, 11' of the hydraulic circuit using the Reversing pump 6 is pressurized with pressure oil and is hydraulically connected to one another at its rod-side end via a rocking oil line 12.
  • the direction of movement of the drive pistons 8,8 'and thus the common piston rod 9,9' is reversed by reversing the direction of flow of the reversing pump 6 via a reversing device 18 containing a computer 14 and an adjustment mechanism 16.
  • the reversing pump 6 has a swash plate 62, which is swiveled through its zero position during reversal, so that the direction of delivery of the pressure oil in the hydraulic lines 11, 11 ′ is reversed.
  • the delivery rate of the reversing pump 6 can be varied at a given speed of a drive motor, not shown, by the swivel angle of the swash plate 62.
  • the swivel angle of the swash plate 62 can be adjusted via a remote control device 64 with the support of the computer 14.
  • the reversing pump and the pipe switch 56 are reversed as soon as the pistons 8, 8 'of the drive cylinders 5, 5' reach their end position.
  • the reversing device utilizes output signals of the cylinder switching sensors 20, 22 and 20 ', 22 ⁇ which are arranged at a distance from the rod-side and bottom ends of the two drive cylinders 5, 5' and which are connected on the output side to the computer 14 of the reversing device 18.
  • the cylinder switching sensors respond to the drive pistons 8,8 'that pass during pump operation and signal this event to the computer input 66,68.
  • a reversal signal 76 is triggered in the reversing device, which reverses the reversing pump 6 via the adjusting mechanism 16.
  • a reversal of the pipe switch 56 via the directional control valve 79 and the plunger cylinders 72, 72 ' is also triggered via a signal 77.
  • the signals from the cylinder switching sensors 20, 20 'on the rod side are primarily used to generate a reversing signal.
  • the computer 14 has a measurement and evaluation routine 40 (cf. FIG. 5) in which the output signals of the cylinder-side cylinder switching sensors 20, 20 'are evaluated to form a reversing signal 76, 77 for the reversing pump 6 and / or the pipe switch 56.
  • the rod-side cylinder switching sensors 20, 20 ' are denoted by Si and S 2 . Accordingly, the sensor positions from the bottom end of the drive cylinders are denoted by Xsi and Xs 2 , while the useful length of the cylinder, which is calculated from the cylinder length minus the piston length, is denoted by Xz y ⁇ . This is the maximum piston stroke.
  • the positions Xsi, Xs 2 of the cylinder switching sensors and the effective length Xz y ⁇ are known.
  • the aim of the invention is to calculate a position X x or the associated time t x for the piston passage at the point X x , from which the reversing pump must be reversed so that a complete piston stroke can be achieved without hitting the cylinder bottom hard.
  • This position depends on the flow rate, but is independent of the position of the cylinder shift sensors (see Fig. 4).
  • the speed VK of the piston results from the length of use Xz y ⁇ and the stroke time as well as the acceleration and braking distances and times Xßeschi, X ⁇ rems, tßeschi, terems:
  • Xx Xzyl - Xßrems where, for simplification, a constant braking acceleration b bre m s is assumed:
  • the braking time is determined accordingly
  • a more precise determination of the triggering time is possible if the information of the piston run through the switch positions Si or S 2 is also added. For example, the time between the start of the stroke and switch 1 is calculated as x s l xS 1 v '' stroke ⁇ cyl
  • the triggering time can also be determined when the delivery quantity changes.
  • the effective length Xz y ⁇ must be divided depending on the change in the delivery rate and the new speed VK of the piston used to calculate the braking time. This is known due to the specified delivery rate.
  • the flowchart of the measurement and evaluation routine 40 in FIG. 5 illustrates the measurement and control processes during the piston movement in the working cylinders.
  • the time tsi and ts 2 of the piston passing by is determined and the theoretical stroke time t H u b is calculated therefrom. If the delivery rate is changed in the meantime, this affects the stroke time t ⁇ u b and thus also the piston speed.
  • These values are then taken into account in the calculation of the tripping time, which ultimately leads to the triggering of the reversing movements in the pipe switch and in the reversing pump at the time t x or ⁇ t x .
  • a lead time for the stroke time is specified in parallel with the event measurements on the cylinder switch sensors, which, independent of the measurement processes on the cylinder switch sensors, reverses the via a parallel branch Diverter and the reversing pump can trigger.
  • the invention relates to an apparatus and a method for controlling a two-cylinder engine. Thick matter pump, the delivery pistons of which are actuated in a push-pull manner by means of a hydraulic reversing pump 6 and hydraulic drive cylinders controlled by this.
  • the delivery cylinders 50, 50 ' are connected to a delivery line 58 with a pressure switch 56 with each pressure stroke. At the end of each pressure stroke, a reversal process of the reversing pump 6 and the pipe switch 56 is triggered.
  • a computer-aided reversing device which has a measuring and Evaluation routine for metrological and / or arithmetic detection of the temporal sequence of movement of the pistons on their way between the two cylinder ends and for calculating a triggering time derived therefrom for the next reversing of the reversing pump and the pipe switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung und ein Verfahren zur Steuerung einer Zweizylinder-Dickstoffpumpe, deren Förderkolben mittels einer hydraulischen Reversierpumpe (6) und über diese angesteuerter hydraulischer Antriebszylinder im Gegentakt betätigt werden. Die Förderzylinder (50, 50') werden bei jedem Druckhub über eine Rohrweiche (56) mit einer Förderleitung (58) verbunden. Bei Beendigung eines jeden Druckhubs wird ein Umsteuervorgang der Reversierpumpe (6) und der Rohrweiche (56) ausgelöst. Um auch bei Änderung der Fördermenge eine gezielte Umsteuerung der Reversierpumpe und der Rohrweiche zu erreichen, bei denen eine vollständige Entleerung der Förderzylinder ohne Kolbenschläge in den Antriebszylindern gewährleistet ist, wird gemäß der Erfindung vorgeschlagen, dass eine rechnergestützte Umsteuereinrichtung vorgesehen ist, die eine Mess- und Auswerteroutine zur messtechnischen und/oder rechnerischen Erfassung des zeitlichen Bewegungsablaufs der Kolben auf ihrem Weg zwischen den beiden Zylinderenden sowie zur Berechnung eines hieraus abgeleiteten Auslösezeitpunkts für die nächste Umsteuerung der Reversierpumpe und der Rohrweiche aufweist.

Description

Vorrichtung und Verfahren zur Steuerung einer Dickstoffpumpe
Beschreibung
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Steuerung einer Dickstoffpumpe mit zwei über stirnseitige Öffnungen in einen Materialaufgabebehälter mündenden, mittels einer hydraulischen Reversierpumpe und über diese angesteuerter hydraulischer Antriebszylinder im Gegentakt betätigbaren Förderzylindern, mit einer innerhalb des Materialaufgabebehälters angeordneten, eintrittsseitig abwechselnd an die Öffnungen der Förderzylinder anschließbaren und die jeweils andere Öffnung freigebenden und aus- trittsseitig mit einer Förderleitung verbundenen, hydraulisch betätigbaren Rohrweiche, wobei bei jedem Förderhub in mindestens zwei in vorgegebenen Abständen voneinander und von den stangen- und/oder bodenseitigen Enden der Antriebszylinder befindlichen Sensorpositionen das Vorbeilaufen der Kolben erfaßt und bei Beendigung eines Förderhubs ein Umsteuervorgang der Reversierpumpe und der Rohrweiche ausgelöst wird.
Es ist eine Vorrichtung zur Steuerung einer Zweizylinder-Dickstoffpumpe dieser Art bekannt (DE 195 42 258), bei welcher die Endlagen der Kolben der Antriebszylinder mittels Zylinderschaltsensoren zur Erzeugung von Endlagensignalen abgreifbar sind. Die Durchflussumkehr der Reversierpumpe ist dort über die Endlagensignale der Antriebszylinder auslösbar. In der Praxis werden die Endlagensignale üblicherweise über die beiden stangenseitigen Zylinderschaltsensoren ausgelöst. Beim Umsteuern der Reversierpumpe und der Rohrweiche kommt es immer wieder zu Problemen, wenn beispielsweise über eine Fernsteuerung unterschiedliche Fördermengen gefahren werden sollen. Dabei ist zu berücksichtigen, dass die Umsteuerung der Reversierpumpe nicht momentan erfolgt. Es bedarf vielmehr einer gewissen Um- schaltzeit, innerhalb der die in einer Reversierpumpe vorhandene Schrägscheibe durchgefahren werden kann. Die Umschaltzeiten liegen bei gängigen Reversierpumpen bei ca. 0,1 sec. Bei einem Zwei-Sekunden-Hub ent- spricht diese Umschaltdauer etwa 5 % der Hubstrecke. Hinzu kommen weitere Verzögerungszeiten, beispielsweise für die Umschaltung der Relais, die in der gleichen Größenordnung liegen können. Dies bedeutet, dass für das Umsteuern der Reversierpumpe je nach Kolbengeschwindigkeit Strecken errechnet werden, die entweder zu einem Anschlagen der Kolben am Boden oder zu einer unvollständigen Entleerung der Zylinder führen können. Aus diesem Grund wurden schon bisher die Zylinderschaltsensoren zur Signalisierung des Kolbendurchlaufs im Bereich der Endpositionen im Abstand vom Stangen- oder bodenseitigen Ende der Zylinder angeordnet. Wenn also der Kolben die Sensorposition durchläuft, steht immer noch eine Kolbenlaufstrecke für die Umschaltung zur Verfügung. Bei bekannten Zweizylinder- Dickstoffpumpen wurde die Position der Zylinderschaltsensoren so gewählt, dass bei maximal möglicher Kolbengeschwindigkeit eine Umsteuerung der Reversierpumpe möglich war, die gerade zu einem Bodenkontakt des Kol- bens geführt hat. Wenn der Kolben langsamer läuft, führt dies aufgrund der konstanten Umschaltdauer der Reversierpumpe und der Ansprechzeit der Relais dazu, dass die Kolben während dieser Zeit nicht ganz bis zum benachbarten Boden laufen. Im Zylinder verbleibt also immer eine Restmenge Beton, die bei einem Kolbenhub nicht aus dem Zylinder herausgefördert wird. Dies kann zu einem Aushärten des Betons und zu Stopfern führen. Bei Einkreispumpen wird mit ein und derselben Hydraulikpumpe auch die Rohrweiche umgesteuert. Dies muß exakt in der Zeit erfolgen, in der die Kolben am bodenseitigen oder stangenseitigen Ende angelangt sind. Nur dann ist der Pumpendruck für die Umsteuerung der Rohrweiche ausreichend. Ein besonderes Problem der Einkreispumpe besteht also darin, dass die Zeitpunkte der Umsteuerung der Reversierpumpe, des Anhaltens der Kolben und der Umsteuerung der Rohrweiche exakt aufeinander abgestimmt werden müssen. Bei Zweikreispumpen, bei welchen die Rohrweiche über einen Druckspeicher umgesteuert wird, sind die Abstimmungsprobleme zwar etwas geringer. Gleichwohl ist jedoch auch hier durch eine geeignete Abstimmung dafür zu sorgen, dass der Kolben den Zylinder vollständig abfährt, um unerwünschte Restmengen in den Zylindern zu vermeiden. Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zur Steuerung einer Dickstoffpumpe der eingangs angegebenen Art zu entwickeln, womit ein vollständiges Entleeren der Zylin- der bei jedem Kolbenhub möglich ist und dennoch ein unerwünschtes Anschlagen der Kolben an den Enden der Antriebszylinder vermieden wird.
Zur Lösung dieser Aufgabe werden die in den Ansprüchen 1 und 6 angegebenen Merkmalskombinationen vorgeschlagen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Die erfindungsgemäße Lösung geht von dem Gedanken aus, dass mit mindestens zwei an beliebigen Stellen der Arbeitszylinder angeordneten Zylin- derschaltsensoren, die im Abstand voneinander und von den beiden Endlagen angeordnet sind, eine Bewegungserfassung der Antriebskolben möglich ist, die unter Zuhilfenahme einer rechnergestützten Umsteuereinrichtung mit geeigneter Software eine vollständige Erfassung des Bewegungsablaufs der Kolben entlang der Arbeitszylinder und damit eine Lösung des vorstehend angegebenen Problems erlauben. Um dies zu erreichen, wird gemäß der Erfindung primär vorgeschlagen, dass die rechnergestützte Umsteuereinrichtung eine Mess- und Auswerteroutine zur messtechnischen und/oder rechnerischen Erfassung des zeitlichen Bewegungsablaufs der Kolben auf ihrem Weg zwischen den beiden Zylinderenden sowie zur Berechnung eines hier- aus abgeleiteten Auslösezeitpunkts für eine Umsteuerung der Reversierpumpe und der Rohrweiche aufweist.
Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass die Mess- und Auswerteroutine einen Algorithmus zur zeitlichen Erfassung des Kolben- durchgangs am Ort der Zylinderschaltsensoren sowie zur Berechnung eines hieraus abgeleiteten Auslösezeitpunkts für eine Umsteuerung der Reversierpumpe und der Rohrweiche bei jedem Kolbenhub unter Berücksichtigung einer vorgegebenen oder berechneten Bremszeit der Kolben bis zum jeweiligen Anschlag am Zylinderende aufweist. Die Bremszeit der Kolben setzt sich im Wesentlichen zusammen aus der Ansprechzeit der Umsteuerrelais und der Durchschaltzeit der Reversierpumpe.
Bei konstanter Betriebsweise ohne Fördermengenwechsel kann jedem Zeitintervall, das als Referenzwert für die Geschwindigkeit gemessen wird, ein Auslösezeitpunkt für die Umsteuerung der Reversierpumpe und der Rohrweiche zugeordnet werden. Die Zeiterfassung kann in diesem Fall beispiels- weise über den Umschaltimpuls für die Rohrweiche erfolgen. Der Abstand zwischen zwei Rohrweichenumschaltungen entspricht dann der Hubdauer. Unter Berücksichtigung der gemessenen Hubdauer wird beim Durchgang des Kolbens durch einen der beiden Zylinderschaltsensoren dann der Auslösezeitpunkt für die Umsteuerung bestimmt. Dieser Wert ist bei ein und der- selben Pumpenbauart etwa konstant. Eine Besonderheit ergibt sich, wenn die Fördermenge innerhalb eines Pumpenhubs verändert wird. In diesem Fall muß die neue Fördermenge berücksichtigt und in eine entsprechende Restlaufzeit umgerechnet werden, um den exakten Auslösezeitpunkt zu ermitteln.
Eine bevorzugte Ausgestaltung der Erfindung sieht demgemäß vor, dass die Mess- und Auswerteroutine einen Algorithmus zur Berechnung der Geschwindigkeit der Kolben auf ihrem Weg zwischen den Zylinderschaltsensoren und eines hieraus abgeleiteten Auslösezeitpunkts für die Umsteuervor- gänge unter Berücksichtigung einer vorgegebenen oder berechneten Bremszeit der Kolben bis zu den jeweiligen Endanschlägen in den Zylindern aufweist.
Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass die Mess- und Auswerteroutine auf vorzugsweise an einem Fernsteuerorgan eingestellte
Vorgabewerte für die Fördermenge der Reversierpumpe anspricht und einen
Algorithmus zur Bestimmung des Verlaufes der Kolbengeschwindigkeit und des daraus abgeleiteten nächsten Auslösezeitpunkts für die Umsteuervorgänge nach Maßgabe der augenblicklich eingestellten Vorgabewerte aufweist. Dabei ist es von besonderem Vorteil, wenn die Mess- und Auswerteroutine einen Algorithmus zur Bestimmung der Bremszeit oder des Brems- wegs der Kolben nach Maßgabe der momentan gemessenen oder berechneten Kolbengeschwindigkeit und eines daraus abgeleiteten Auslösezeitpunkts für die Umschaitvorgänge aufweist.
Verfahrensgemäß wird gemäß der Erfindung primär vorgeschlagen, dass der zeitliche Bewegungsablauf der Kolben auf ihrem Weg zwischen den beiden Zylinderenden gemessen und/oder berechnet und daraus der jeweils nächste Auslösezeitpunkt für die Umsteuervorgänge abgeleitet wird. Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass die Kolbendurchgänge am Ort der Zylinderschaltsensoren in zeitlicher Relation zueinander erfaßt wer- den und dass daraus der Auslösezeitpunkt für die jeweils folgende Umsteuerung der Reversierpumpe und der Rohrweiche unter Berücksichtigung einer vorgegebenen oder berechneten Bremszeit der Kolben bis zum jeweiligen Endanschlag am Zylinder berechnet wird. Dabei kann die Geschwindigkeit der Kolben auf ihrem Weg zwischen den ausgewählten Zylinderschaltsenso- ren berechnet und hieraus der nächste Zeitpunkt für die Umsteuervorgänge abgeleitet werden.
Eine weitere bevorzugte Verfahrensweise besteht darin, dass der zeitliche Bewegungsablauf der Kolben über ferngesteuerte Vorgabewerte für die För- dermenge geändert wird und dass aus dem nach Maßgabe der Vorgabewerte berechneten Bewegungsablauf der Kolben unter Berücksichtigung einer hierdurch modifizierten Bremszeit der nächste Auslösezeitpunkt für die Umsteuervorgänge abgeleitet wird. Dazu kann es zweckmäßig sein, dass die Bremszeit oder der Bremsweg der Kolben aus der gemessenen oder be- rechneten momentanen Kolbengeschwindigkeit unter jeweiliger Berücksichtigung der gerätespezifischen Ansprech- und Umschaltzeiten der Reversier- pumpe ermittelt und daraus der jeweils nächste Auslösezeitpunkt berechnet wird.
Im Folgenden wird die Erfindung anhand eines in der Zeichnung in schema- tischer Weise dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
Fig. 1 einen Ausschnitt aus einer Zweizylinder-Dickstoffpumpe in teilweise geschnittener schaubildlicher Darstellung;
Fig. 2 ein Schaltschema einer rechnergestützten Antriebshydraulik für die Zweizylinder-Dickstoffpumpe;
Fig. 3 einen Ausschnitt aus Fig. 2 mit einigen Maßangaben für die Berechnung eines bevorzugten Auslösezeitpunkts;
Fig. 4 ein Geschwindigkeits-/Zeit-Diagramm der Kolbenbewegung entlang den Antriebszylindern;
Fig. 5 ein Flussdiagramm der Mess- und Auslöseroutine.
Die in Fig. 2 und 3 dargestellte Steuerungsanordnung ist für eine Dickstoff- pumpe entsprechend Fig. 1 bestimmt. Die Dickstoffpumpe weist zwei Förderzylinder 50,50' auf, deren stirnseitige Öffnungen 52 in einen Materialaufgabebehälter 54 münden und abwechselnd während des Druckhubs über eine Rohrweiche 56 mit einer Förderleitung 58 verbindbar sind. Die Förderzylinder 50,50' werden über hydraulische Antriebszylinder 5,5' und eine Re- versierhydropumpe 6 im Gegentakt angetrieben. Zu diesem Zweck sind die Förderkolben 60,60' der Förderzylinder 50,50' mit den Kolben 8,8' der Antriebszylinder 5,5' über eine gemeinsame Kolbenstange 9,9' verbunden.
Die Antriebszylinder 5,5' werden bei dem gezeigten Ausführungsbeispiel bo- denseitig über Hydraulikleitungen 11 ,11' des Hydraulikkreislaufs mit Hilfe der Reversierpumpe 6 mit Drucköl beaufschlagt und sind an ihrem stangenseiti- gen Ende über eine Schaukelölleitung 12 hydraulisch miteinander verbunden. Die Bewegungsrichtung der Antriebskolben 8,8' und damit der gemeinsamen Kolbenstange 9,9' wird dadurch umgekehrt, dass die Durchflussrich- tung der Reversierpumpe 6 über eine einen Computer 14 und einen Verstellmechanismus 16 enthaltende Umsteuereinrichtung 18 umgekehrt wird. Die Reversierpumpe 6 weist zu diesem Zweck eine Schrägscheibe 62 auf, die bei der Umsteuerung durch ihre Nulllage hindurchgeschwenkt wird, so dass sich die Förderrichtung des Drucköls in den Hydraulikleitungen 11 ,11' umkehrt. Die Fördermenge der Reversierpumpe 6 kann bei vorgegebener Drehzahl eines nicht dargestellten Antriebsmotors durch den Schwenkwinkel der Schrägscheibe 62 variiert werden. Der Schwenkwinkel der Schrägscheibe 62 kann dabei über ein Fernsteuergerät 64 mit Unterstützung des Computers 14 verstellt werden. , Die Umsteuerung der Reversierpumpe und der Rohrweiche 56 erfolgt, sobald die Kolben 8, 8' der Antriebszylinder 5, 5' ihre Endlage erreichen. Die Umsteuereinrichtung verwertet Ausgangssignale der jeweils im Abstand von den stangenseitigen und bodenseitigen Enden der beiden Antriebszylinder 5,5' angeordneten Zylinderschaltsensoren 20,22 und 20',22\ die ausgangs- seitig mit dem Rechner 14 der Umsteuereinrichtung 18 verbunden sind. Die Zylinderschaltsensoren sprechen auf die beim Pumpbetrieb vorbeilaufenden Antriebskolben 8,8' an und signalisieren dieses Ereignis an den Rechnereingang 66,68. Beim Auftreten der Ausgangssignale wird in der Umsteuerein- richtung zeitverzögert ein Umsteuersignal 76 ausgelöst, das die Reversierpumpe 6 über den Verstellmechanismus 16 umsteuert. Im Zuge des Umsteuervorgangs wird außerdem über ein Signal 77 eine Umsteuerung der Rohrweiche 56 über das Wegeventil 79 und die Plungerzylinder 72,72' ausgelöst. Im Normalbetrieb werden primär die Signale der stangenseitigen Zy- linderschaltsensoren 20,20' zur Erzeugung eines Umsteuersignais verwendet. Dazu weist der Rechner 14 eine Mess- und Auswerteroutine 40 (vgl. Fig. 5) auf, in welcher die Ausgangssignale der stangenseitigen Zylinderschalt- sensoren 20,20' unter Bildung eines Umsteuersignais 76,77 für die Reversierpumpe 6 und/oder die Rohrweiche 56 ausgewertet werden.
Im Folgenden werden anhand der Fig. 3 und 4 die der Mess- und Auswerte- routine 40 zugrunde liegenden Berechnungsmethoden näher erläutert.
In Fig. 3 sind die stangenseitigen Zylinderschaltsensoren 20,20' mit Si und S2 bezeichnet. Dementsprechend sind die Sensorpositionen vom bodenseitigen Ende der Antriebszylinder aus mit Xsi und Xs2 bezeichnet, während die Nutzlänge des Zylinders, die sich aus der Zylinderlänge abzüglich Kolbenlänge errechnet, mit Xzyι bezeichnet ist. Hierbei handelt es sich um den maximalen Kolbenhub. Die Positionen Xsi, Xs2 der Zylinderschaltsensoren und die Nutzlänge Xzyι sind bekannt.
Ziel der Erfindung ist die Berechnung einer Position Xx bzw. die zugehörige Zeit tx für den Kolbendurchlauf an der Stelle Xx, von der aus die Reversierpumpe umgesteuert werden muss, damit ein vollständiger Kolbenhub ohne hartes Anschlagen am Zylinderboden erzielt werden kann. Diese Position ist abhängig von der Fördermenge, jedoch unabhängig von der Position der Zylinderschaltsensoren (vgl. Fig. 4). Die Geschwindigkeit VK des Kolbens ergibt sich aus der Nutzungslänge Xzyι und der Hubzeit sowie den Beschleunigungs- und Bremswegen und -Zeiten Xßeschi, Xβrems, tßeschi, terems zu:
τ - - Zyl ** Beschl ^ Brems JA = — - κ l tHub — t l Beschl - t l Brems
Der Brems- oder Auslösepunkt für die Umsteuerung ergibt sich zu:
Xx = Xzyl Xßrems wobei zur Vereinfachung von einer konstanten Bremsbeschleunigung bbrems ausgegangen wird:
tbrems = V rems-
Hieraus ergibt sich
Figure imgf000011_0001
Der Bremszeitpunkt bestimmt sich demgemäß zu
X, 'Hub X Zyl
Eine genauere Bestimmung des Auslösezeitpunkts ist möglich, wenn zusätz- lieh die Informationen des Kolbendurchlaufs durch die Schalterpositionen Si bzw. S2 hinzugenommen werden. So errechnet sich beispielsweise die Zeit zwischen dem Hubanfang und dem Schalter 1 zu xs lxS1 v ''Hub Λ Zyl
Für die Auslösezeit vom Schalter 1 aus ergibt sich ein Wert
Δ^d — tχ tχS
Entsprechendes gilt für die Position xs des Zylinderschaltsensors S2: tx2 = tx -txS2 Falls die Schalter Si bzw. S2 vor dem Auslösezeitpunkt überfahren werden, wird die Zeit Δtxι bzw. Δtx2 nach dem Überfahren des Zylinderschaltsensors beginnen. Liegen die Zylinderschaltsensoren hinter der Auslöseposition, so wird die Auslösezeit ab Hubbeginn berechnet.
Analog zu den vorstehend beschriebenen Berechnungsmethoden kann der Auslösezeitpunkt auch bei einer Änderung der Fördermenge bestimmt werden. Dazu ist die Nutzlänge Xzyι in Abhängigkeit von der Fördermengenänderung aufzuteilen und die neue Geschwindigkeit VK des Kolbens für die Berechnung der Bremszeit anzusetzen. Diese ist aufgrund der vorgegebenen Fördermenge bekannt.
Das Flussdiagramm der Mess- und Auswerteroutine 40 in Fig. 5 veranschaulicht die Mess- und Steuerungsvorgänge während der Kolbenbewegung in den Arbeitszylindern. An den Positionen Si und S2 der Zylinderschaltsensoren wird der Zeitpunkt tsi und ts2 des vorbeilaufenden Kolbens ermittelt und daraus die theoretische Hubzeit tHub berechnet. Falls zwischendurch die Fördermenge geändert wird, wirkt sich dies auf die Hubzeit tπub und damit auch auf die Kolbengeschwindigkeit aus. Diese Werte werden dann berücksichtigt bei der Berechnung der Auslösezeit, die schließlich im Zeitpunkt tx bzw. Δtx zur Auslösung der Umsteuerbewegungen in der Rohrweiche und in der Reversierpumpe führen.
Um einen sicheren Betontransport auch beim Ausfallen des einen oder an- deren Zylinderschaltsensors S,S2 zu gewährleisten, wird parallel zu den Ereignismessungen an den Zylinderschaltsensoren eine Vorhaltezeit für die Hubzeit vorgegeben, die unabhängig von den Messvorgängen an den Zylinderschaltsensoren über einen Parallelzweig eine Umsteuerung der Rohrweiche und der Reversierpumpe auslösen kann.
Zusammenfassend ist folgendes festzuhalten: Die Erfindung bezieht sich auf eine Vorrichtung und ein Verfahren zur Steuerung einer Zweizylinder- Dickstoffpumpe, deren Förderkolben mittels einer hydraulischen Reversierpumpe 6 und über diese angesteuerter hydraulischer Antriebszylinder im Gegentakt betätigt werden. Die Förderzylinder 50, 50' werden bei jedem Druckhub über eine Rohrweiche 56 mit einer Förderleitung 58 verbunden. Bei Beendigung eines jeden Druckhubs wird ein Umsteuervorgang der Reversierpumpe 6 und der Rohrweiche 56 ausgelöst. Um auch bei Änderung der Förderleistung eine gezielte Umsteuerung der Reversierpumpe und der Rohrweiche zu erreichen, bei denen eine vollständige Entleerung der Förderzylinder ohne Kolbenschläge in den Antriebszylindern gewährleistet ist, wird gemäß der Erfindung vorgeschlagen, dass eine rechnergestützte Umsteuereinrichtung vorgesehen ist, die eine Mess- und Auswerteroutine zur messtechnischen und/oder rechnerischen Erfassung des zeitlichen Bewegungsablaufs der Kolben auf ihrem Weg zwischen den beiden Zylinderenden sowie zur Berechnung eines hieraus abgeleiteten Auslösezeitpunkts für die nächste Umsteuerung der Reversierpumpe und der Rohrweiche aufweist.

Claims

Patentansprüche
1. Vorrichtung zur Steuerung einer Dickstoffpumpe mit zwei über stirnseitige Öffnungen (52) in einen Materialaufgabebehälter (54) mündenden, mittels mindestens einer hydraulischen Reversierpumpe (6) und über diese angesteuerter hydraulischer Antriebszylinder (5,5') im Gegentakt betätigbaren Förderzylindern (50,50'), mit einer innerhalb des Materialaufgabebehälters (54) angeordneten, eintrittsseitig abwechselnd an die Öffnungen (52) der Förderzylinder (50,50') anschließbaren und die je- weils andere Öffnung freigebenden und austrittsseitig mit einer Förderleitung (58) verbundenen, hydraulisch betätigbaren Rohrweiche (56), wobei die Antriebszylinder (5,5') an ihrem einen Ende über je eine Hydraulikleitung (11 ,11') mit einem Anschluß der Reversierpumpe (6) und an ihrem anderen Ende über eine Schaukelölleitung (12) miteinander hydraulisch verbunden sind, mit mindestens zwei in vorgegebenen Abständen voneinander und von den Stangen- und/oder bodenseitigen Enden der Antriebszylinder (5,5') angeordneten, auf einen vorbeilaufenden Kolben (8,8') der Antriebszylinder ansprechenden Zylinderschaltsensoren (20,20';22,22'), und mit einer auf Ausgangssignale aus- gewählter Zylinderschaltsensoren ansprechenden Einrichtung (18) zur Umsteuerung der Reversierpumpe (5) und der Rohrweiche (56) nach Ablauf eines jeden Kolbenhubs, dadurch gekennzeichnet, dass die rechnergestützte Umsteuereinrichtung eine Mess- und Auswerteroutine zur messtechnischen und/oder rechnerischen Erfassung des zeitlichen Bewegungsablaufs der Kolben auf ihrem Weg zwischen den beiden Zylinderenden sowie zur Berechnung eines hieraus abgeleiteten Auslösezeitpunkts für eine Umsteuerung der Reversierpumpe und der Rohrweiche aufweist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Mess- und Auswerteroutine einen Algorithmus zur zeitlichen Erfassung des Kolbendurchgangs am Ort der Zylinderschaltsensoren sowie zur Berechnung eines hieraus abgeleiteten Auslösezeitpunkts für eine Umsteuerung der Reversierpumpe und der Rohrweiche bei jedem Kolbenhub unter Berücksichtigung einer vorgegebenen oder berechneten Bremszeit der Kolben bis zum jeweiligen Endanschlag am Zylinder aufweist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mess- und Auswerteroutine einen Algorithmus zur Berechnung der Geschwindigkeit der Kolben auf ihrem Weg zwischen den Zylinder- schaltsensoren und eines hieraus abgeleiteten Auslösezeitpunkts für die nächsten Umsteuervorgänge unter Berücksichtigung einer vorgegebenen oder berechneten Bremszeit der Kolben bis zum jeweiligen Endanschlag am Zylinder aufweist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Mess- und Auswerteroutine auf vorzugsweise über ein Fernsteuerorgan eingestellte Vorgabewerte für die Fördermenge der Reversierpumpe anspricht und einen Algorithmus zur Bestimmung des Verlaufs der Kolbengeschwindigkeit und des daraus abgeleiteten Auslösezeitpunkts für die nächsten Umsteuervorgänge nach Maßgabe der augenblicklich eingestellten Vorgabewerte aufweist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mess- und Auswerteroutine einen Algorithmus zur Bestimmung der Bremszeit oder des Bremswegs der Kolben nach Maßgabe der momentan gemessenen oder berechneten Kolbengeschwindigkeit und eines daraus abgeleiteten Auslösezeitpunkts für die Umschaltvorgänge aufweist.
6. Verfahren zur Steuerung einer Dickstoffpumpe mit zwei über stirnseitige Öffnungen (52) in einen Materialaufgabebehälter (54) mündenden, mittels einer hydraulischen Reversierpumpe (6) und über diese ange- steuerter hydraulischer Antriebszylinder (5,5') im Gegentakt betätigbaren Förderzylindern (50,50'), mit einer innerhalb des Materialaufgabebehälters (54) angeordneten, eintrittsseitig abwechselnd an die Öffnungen (52) der Förderzylinder (50,50') anschließbaren und die jeweils an- dere Öffnung freigebenden und austrittsseitig mit einer Förderleitung (58) verbundenen, hydraulisch betätigbaren Rohrweiche, wobei bei jedem Förderhub in mindestens zwei in vorgegebenen Abständen voneinander und von den Stangen- und bodenseitigen Enden der Antriebszylinder befindlichen Sensorpositionen das Vorbeilaufen der Kolben er- faßt und ein Umsteuervorgang der Reversierpumpe (6) und/oder der Rohrweiche (56) ausgelöst wird, dadurch gekennzeichnet, dass der zeitliche Bewegungsablauf der Kolben auf ihrem Weg zwischen den beiden Zylinderenden gemessen und/oder berechnet und daraus der Auslösezeitpunkt für die jeweils nächsten Umsteuervorgänge abgeleitet wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Kolbendurchgänge am Ort der Zylinderschaltsensoren in zeitlicher Relation zueinander erfaßt werden und dass daraus der Auslösezeitpunkt für die jeweils folgende Umsteuerung der Reversierpumpe und der Rohrweiche unter Berücksichtigung einer vorgegebenen oder berechneten Bremszeit der Kolben bis zum jeweiligen Endanschlag am Zylinder berechnet wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Geschwindigkeit der Kolben auf ihrem Weg zwischen den ausgewählten Zylinderschaltsensoren berechnet und dass hieraus der Auslösezeitpunkt für die jeweils folgende Umsteuerung der Reversierpumpe und der Rohrweiche unter Berücksichtigung einer vorgegebenen oder berechneten Bremszeit der Kolben bis zum jeweiligen Endanschlag am Zylinder abgeleitet wird.
. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der zeitliche Bewegungsablauf der Kolben über ferngesteuerte Vorgabewerte für die Fördermenge geändert wird, und dass aus dem nach Maßgabe der Vorgabewerte berechneten Bewegungsablauf der Kolben unter Berücksichtigung einer hierdurch modifizierten Bremszeit der Auslösezeitpunkt für die folgenden Umsteuervorgänge abgeleitet wird.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeich- net, dass die Bremszeit oder der Bremsweg der Kolben aus der gemeinsamen oder berechneten Kolbengeschwindigkeit unter jeweiliger Berücksichtigung der gerätespezifischen Ansprech- und Umschaltzeiten der Reversierpumpe ermittelt und daraus der jeweils nächste Auslösezeitpunkt berechnet wird.
PCT/EP2005/002893 2004-03-26 2005-03-18 Vorrichtung und verfahren zur steuerung einer dickstoffpumpe WO2005093251A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007504319A JP2007530853A (ja) 2004-03-26 2005-03-18 濃厚物質ポンプの制御装置および制御方法
KR1020067009227A KR101148579B1 (ko) 2004-03-26 2005-03-18 농후 물질 펌프를 제어하는 장치 및 방법
EP05716190A EP1727979B1 (de) 2004-03-26 2005-03-18 Vorrichtung und verfahren zur steuerung einer dickstoffpumpe
US10/558,938 US7581935B2 (en) 2004-03-26 2005-03-18 Device and method for controlling a thick matter pump
DE502005001072T DE502005001072D1 (de) 2004-03-26 2005-03-18 Vorrichtung und verfahren zur steuerung einer dickstoffpumpe
EA200600260A EA007861B1 (ru) 2004-03-26 2005-03-18 Устройство и способ управления насосом для густой среды

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004015416.3 2004-03-26
DE102004015416A DE102004015416A1 (de) 2004-03-26 2004-03-26 Vorrichtung und Verfahren zur Steuerung einer Dickstoffpumpe

Publications (1)

Publication Number Publication Date
WO2005093251A1 true WO2005093251A1 (de) 2005-10-06

Family

ID=34962417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002893 WO2005093251A1 (de) 2004-03-26 2005-03-18 Vorrichtung und verfahren zur steuerung einer dickstoffpumpe

Country Status (10)

Country Link
US (1) US7581935B2 (de)
EP (1) EP1727979B1 (de)
JP (1) JP2007530853A (de)
KR (1) KR101148579B1 (de)
CN (1) CN100547239C (de)
AT (1) ATE367523T1 (de)
DE (2) DE102004015416A1 (de)
EA (1) EA007861B1 (de)
ES (1) ES2290896T3 (de)
WO (1) WO2005093251A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2012147256A (ru) * 2010-04-07 2014-05-27 Вейр Минералз Незерландс Б.В. Контроллер сдвига фазы для системы поршневых насосов
CN102094799B (zh) * 2010-12-28 2012-03-07 长沙中联重工科技发展股份有限公司 控制混凝土泵在停机后再次泵送和反泵的方法
CN102410184B (zh) * 2011-09-09 2012-12-26 中联重科股份有限公司 一种用于泵送装置的泵送换向控制方法、装置以及系统
CN103423139B (zh) * 2012-05-23 2016-04-27 中联重科股份有限公司 泵送机构及其控制方法以及混凝土泵送设备
CN103423235B (zh) * 2012-05-23 2015-11-25 中联重科股份有限公司 液压缸缓冲控制方法、缓冲式液压缸控制系统及液压设备
CN103114980B (zh) * 2012-06-27 2014-11-19 中联重科股份有限公司 双缸泵的泵送行程控制方法以及泵送设备
DE102013104494B4 (de) * 2013-05-02 2023-11-30 MPS-Matter Pumpsysteme GmbH Dickstoffpumpe
CN103573727B (zh) * 2013-11-07 2015-10-14 中联重科股份有限公司 串联油缸的换向控制方法、装置和混凝土泵送系统
US9765768B2 (en) * 2014-01-15 2017-09-19 Francis Wayne Priddy Concrete pump system and method
EP2913525A1 (de) * 2014-02-26 2015-09-02 Garniman SA Hydraulisch angetriebene Balgpumpe
CN104265613B (zh) * 2014-09-19 2016-08-24 中国水电基础局有限公司 全液压灌浆泵及其实现方法
US10941762B2 (en) 2015-01-30 2021-03-09 Wagner Spray Tech Corporation Piston limit sensing and software control for fluid application
JP6193291B2 (ja) * 2015-04-13 2017-09-06 三井造船株式会社 燃料供給装置
JP5934409B1 (ja) * 2015-04-13 2016-06-15 三井造船株式会社 燃料供給装置
ES2687175T3 (es) * 2016-04-11 2018-10-24 Epiroc Rock Drills Aktiebolag Método para transmitir o transportar materiales fluidos o semifluidos por medio de una bomba de doble pistón y bomba de doble pistón para ello
WO2017222666A1 (en) 2016-06-22 2017-12-28 Wagner Spray Tech Corporation Piston limit sensing and software control for fluid application
CN112423605B (zh) * 2018-07-18 2023-02-21 株式会社日冷食品 定量分割单元、定量分割方法和食品制造方法
CA3113428C (en) * 2018-09-28 2021-08-24 Julio Vasquez System for monitoring concrete pumping systems
CA3119312A1 (en) 2018-11-09 2020-05-14 Flowserve Management Company Fluid exchange devices and related controls, systems, and methods
EP3894701B1 (de) * 2018-12-14 2024-05-22 Schwing GmbH Kolbenpumpe und verfahren zum betrieb einer kolbenpumpe
DE102019212631A1 (de) * 2019-08-22 2021-02-25 Putzmeister Engineering Gmbh Verfahren zur Zustandsüberwachung einer Vorrichtung und Vorrichtung
AU2020401951A1 (en) * 2019-12-12 2022-05-19 Flowserve Pte. Ltd. Fluid exchange devices and related controls, systems, and methods
DE102020200261A1 (de) * 2020-01-10 2021-07-15 Putzmeister Engineering Gmbh Verfahren zum Betreiben einer Dickstoffpumpe und Dickstoffpumpe
CN114687980B (zh) * 2020-12-29 2023-10-10 三一汽车制造有限公司 泵送设备、泵送系统及其换向参数调节方法
CN113623165A (zh) * 2021-08-14 2021-11-09 深圳市东深环保科技有限公司 一种双缸注浆泵

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206576A1 (de) * 1992-03-02 1993-09-09 Putzmeister Maschf Verfahren und anordnung zur bestimmung der foerdermenge oder des foerderstroms von mittels einer kolbendickstoffpumpe transportiertem foerdergut
EP0562398A1 (de) * 1992-03-21 1993-09-29 Schwing GmbH Dickstoffpumpe
EP0567826A2 (de) * 1992-04-29 1993-11-03 Abel GmbH & Co. Handels- + Verwaltungsgesellschaft Feststoffpumpe

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663129A (en) * 1970-09-18 1972-05-16 Leon A Antosh Concrete pump
JPS5864870U (ja) * 1981-10-27 1983-05-02 株式会社新潟鐵工所 コンクリ−トポンプのピストンストロ−ク制御装置
JPS58131403A (ja) * 1982-01-29 1983-08-05 Hitachi Constr Mach Co Ltd 油圧シリンダの緩衝装置
US5388965A (en) * 1990-10-10 1995-02-14 Friedrich Wilhelm Schwing Gmbh Sludge pump with monitoring system
US5106272A (en) * 1990-10-10 1992-04-21 Schwing America, Inc. Sludge flow measuring system
JPH0633767B2 (ja) * 1983-07-04 1994-05-02 三菱重工業株式会社 スラリ−ポンプ
JP2575688B2 (ja) * 1987-03-06 1997-01-29 三菱重工業株式会社 コンクリ−トポンプの制御装置
JP2585615B2 (ja) * 1987-08-12 1997-02-26 株式会社日立製作所 無脈動ポンプの制御方法
DE3814824A1 (de) * 1988-05-02 1989-11-16 Putzmeister Maschf Steuerungsanordnung fuer eine zweizylinder-dickstoffpumpe
ES2034550T3 (es) * 1988-10-18 1993-04-01 Friedrich Wilh. Schwing Gmbh Dispositivo para la distribucion neumatica de hormigon transportado por medios hidromecanicos en flujo denso.
DE9218858U1 (de) * 1991-05-16 1995-12-07 Sandoz-Patent-GmbH, 79539 Lörrach Doppelkolbenpumpe
JPH05196004A (ja) * 1992-01-20 1993-08-06 Komatsu Ltd 作業機シリンダの自動クッション制御装置
DE4209471A1 (de) * 1992-03-24 1993-09-30 Schwing Gmbh F Dickstoffpumpe für Förderzylindern, insbesondere Zweizylinderbetonpumpe
DE19542258A1 (de) * 1995-11-13 1997-05-15 Putzmeister Maschf Verfahren und Vorrichtung zur Steuerung einer Zweizylinder-Dickstoffpumpe
JP3334525B2 (ja) * 1996-11-14 2002-10-15 株式会社日本自動車部品総合研究所 可変吐出量高圧ポンプおよびそれを用いた燃料噴射装置
JPH10331762A (ja) * 1997-05-30 1998-12-15 Niigata Eng Co Ltd コンクリートポンプの運転方法及びコンクリートポンプ
JP3882153B2 (ja) * 1997-06-05 2007-02-14 石川島建機株式会社 高粘性流体ポンプの切換制御装置
JP3699596B2 (ja) * 1997-09-11 2005-09-28 株式会社デンソー 可変吐出量高圧ポンプ
KR100281932B1 (ko) * 1998-10-10 2001-09-22 양재신 드라이브 실린더 유압장치
DE10036202A1 (de) * 2000-07-24 2002-02-07 Putzmeister Ag Dickstoffpumpe
DE10038647A1 (de) * 2000-08-08 2002-02-21 Hudelmaier Joerg Verfahren und Vorrichtung zum gezielten Steuern einer Dickstofflampe
US6779983B1 (en) * 2001-10-05 2004-08-24 David A. Olson Sludge pump with management system
DE10150467A1 (de) * 2001-10-16 2003-04-17 Putzmeister Ag Dickstoffpumpe mit Fördermengenregelung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206576A1 (de) * 1992-03-02 1993-09-09 Putzmeister Maschf Verfahren und anordnung zur bestimmung der foerdermenge oder des foerderstroms von mittels einer kolbendickstoffpumpe transportiertem foerdergut
EP0562398A1 (de) * 1992-03-21 1993-09-29 Schwing GmbH Dickstoffpumpe
EP0567826A2 (de) * 1992-04-29 1993-11-03 Abel GmbH & Co. Handels- + Verwaltungsgesellschaft Feststoffpumpe

Also Published As

Publication number Publication date
KR101148579B1 (ko) 2012-05-25
CN1788160A (zh) 2006-06-14
DE102004015416A1 (de) 2005-10-13
US7581935B2 (en) 2009-09-01
ATE367523T1 (de) 2007-08-15
US20060245942A1 (en) 2006-11-02
DE502005001072D1 (de) 2007-08-30
EA200600260A1 (ru) 2006-06-30
JP2007530853A (ja) 2007-11-01
EA007861B1 (ru) 2007-02-27
ES2290896T3 (es) 2008-02-16
EP1727979A1 (de) 2006-12-06
EP1727979B1 (de) 2007-07-18
CN100547239C (zh) 2009-10-07
KR20060127381A (ko) 2006-12-12

Similar Documents

Publication Publication Date Title
WO2005093251A1 (de) Vorrichtung und verfahren zur steuerung einer dickstoffpumpe
EP1727980B1 (de) Vorrichtung und verfahren zur steuerung einer zweizylinder-dickstoffpumpe
EP1727981B1 (de) Vorrichtung und verfahren zur steuerung einer dickstoffpumpe
EP1426499B1 (de) Verfahren und Vorrichtung zur Endlagendämpfung in Hydraulikzylindern von mobilen Arbeitsmachinen
EP0861375B1 (de) Verfahren und vorrichtung zur steuerung einer zweizylinder-dickstoffpumpe
DE10036202A1 (de) Dickstoffpumpe
DE10056157A1 (de) Verfahren und System zur elektrohydraulischen Ventilsteuerung
CH686011A5 (de) Doppelkolbenpumpe.
EP0446206B1 (de) Verfahren und vorrichtung zur steuerung einer zweizylinder-dickstoffpumpe
DE4206576B4 (de) Verfahren und Anordnung zur Bestimmung der Fördermenge oder des Förderstroms von mittels einer Kolbendickstoffpumpe transportiertem Fördergut
DE19611339A1 (de) Verfahren zum Fördern von Werkstoffen und Vorrichtung zur Durchführung des Verfahrens
EP0438084B1 (de) Betonpumpe für das Nassspritzverfahren
DE4035518A1 (de) Verfahren und anordnung zur messtechnischen bestimmung des volumenstroms von mittels einer kolbendickstoffpumpe transportiertem foerdergut
DE102005026374B4 (de) Verfahren zum Aufbringen von Streifen aus pastösem Material
EP3000641A1 (de) Straßenfertiger mit Bedienmodul und Verfahren zum Aufrufen einer Bedienfunktion
DE4214109C2 (de) Feststoffpumpe
DE3504107C2 (de)
CH623893A5 (de)
DE102007058118A1 (de) Vorrichtung und Verfahren zum Ausbringen von Dickstoffen, insbesondere von Flüssigmörtel oder Flüssigbeton
DE9207016U1 (de) Feststoffpumpe
DE202004004839U1 (de) Schmierstoff-Verteiler
DE3247942A1 (de) Vorrichtung zum unterwasserbeschichten mit korrosionsschutzmaterialien
DE2914933A1 (de) Steuereinrichtung fuer gesenkschmiedehaemmer, insbesondere gegenschlaghaemmer
DE10038647A1 (de) Verfahren und Vorrichtung zum gezielten Steuern einer Dickstofflampe
AT3380U1 (de) Antriebseinrichtung zur schwenkeinstellung eines bürstenauslegers eines tunnelwaschfahrzeuges

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005716190

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006245942

Country of ref document: US

Ref document number: 10558938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2566/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20058003795

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 200600260

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2007504319

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067009227

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10558938

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005716190

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009227

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2005716190

Country of ref document: EP