US3663129A - Concrete pump - Google Patents

Concrete pump Download PDF

Info

Publication number
US3663129A
US3663129A US73449A US3663129DA US3663129A US 3663129 A US3663129 A US 3663129A US 73449 A US73449 A US 73449A US 3663129D A US3663129D A US 3663129DA US 3663129 A US3663129 A US 3663129A
Authority
US
United States
Prior art keywords
valve
pump
concrete
assemblies
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US73449A
Inventor
Leon A Antosh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3663129A publication Critical patent/US3663129A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • F04B15/023Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/02Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00 having movable cylinders
    • F04B19/027Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00 having movable cylinders cylinders oscillating around an axis perpendicular to their own axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0034Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an orbital movement, e.g. elbow-pipe type members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/008Piston machines or pumps characterised by having positively-driven valving the distribution being realised by moving the cylinder itself, e.g. by sliding or swinging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1172Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each pump piston in the two directions being obtained by a double-acting piston liquid motor
    • F04B9/1174Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each pump piston in the two directions being obtained by a double-acting piston liquid motor with fluid-actuated inlet or outlet valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/90Slurry pumps, e.g. concrete

Definitions

  • Cl .,F04b 7/00, F04! 15/02 has a single discharge opening in the opposite wall, and a valve 58 Field of Search ..417/5 l6, 517, 900 mounted in the pp and having an inlet of Sufficient length to encompass at least two of the inlet openings in the hopper References Cited wall, relative movement is provided between the valves and inlet openings to provide constant flow of concrete through UNITED STATES PATENTS the hopper.
  • the valve can be fixed, oscillated or rotated.
  • valve is moved rapidly from one concrete cylinder to the next to minimize back pressure leakage however, an intermittent or pulsed flow of concrete is produced in the delivery or discharge hose. No attempt is made by others to have more than one pump assembly at the same time exerting pressure on the discharge duct.
  • the constant flow concrete pump of the present invention provides for continuous flow of concrete to the delivery or discharge duct by maintaining communication between a discharging concrete pump assembly and the delivery duct at all times. This is accomplished in a number of ways, one embodiment of which involves the addition of an auxiliary concrete cylinder assembly which is charged or filled with concrete from the valve while one of the main concrete cylinders is discharging into the valve and is discharged into the valve while the valve is moved from one of the concrete assemblies to the other.
  • Another embodiment of the invention achieves continuous flow by using an oscillating type valve which has an arcuate opening of sufficient length to encompass two or more concrete assemblies at one time.
  • the valve is moved continuously to provide communication with a discharging concrete pump assembly and the next concrete pump assembly near the end of the discharge stroke of the first assembly.
  • the second pump assembly can commence discharging concrete into the valve immediately after the first concrete pump assembly reaches the end of its discharge stroke. This continuous motion of the valve will disconnect the first pump assembly from the valve so that it can be recharged from the hopper.
  • a further embodiment of this invention provides continuous flow by mounting the valve for continuous rotary motion.
  • the valve is provided with an inlet of sufficient length to again encompass at least two of the concrete pump assemblies at one time and is moved continuously in a revolving motion in timed sequence with the discharging of the pump assemblies to provide continuous pressure on the concrete in the discharge duct.
  • a further embodiment of this invention provides continuous flow by mounting the valve in a fixed position and then moving the pump assemblies.
  • the valve is provided with an inlet of sufficient length to again encompass at least two of the concrete pump assemblies at one time and the pump assemblies themselves are moved continuously or intermittently in a timed sequence with the discharging of of the pump assemblies to provide continuous pressure on the concrete in the discharge duct.
  • leakage is prevented between the valve and the inlet openings for the pump assemblies by an enlarged seal section provided on the leading edge of the valve.
  • This enlarged section will completely seal or close the open end of the pump assemblies before they are connected to the valve.
  • a constant pressure is maintained on the seal at all times by an independent hydraulic system. The back pressure of the concrete in the valve is thus prevented from leaking through the next pump assembly into the hopper before the connection is complete between the valve and the next pump assembly. Once this connection has been completed the next pump assembly can commence discharging concrete into the valve.
  • This seal also makes it possible to pump water through the pump to clean out the hose.
  • FIG. 1 is a top view of a two cylinder concrete pump according to the invention with the valve in a position to provide communication from one of the concrete cylinder assemblies to the discharge duct or hose;
  • FIG. 2 is a top view of the concrete pump of FIG. 1 with the swing valve shown in a position to provide communication between both concrete cylinder assemblies and the discharge duct or hose;
  • FIG. 3 is a top view of the pump of FIG. 1 with the valve in a position to provide communication between the other concrete cylinder assembly and the discharge duct or hose;
  • FIG. 4 is a view taken on line 4-4 of FIG. I showing the valve in communication with the first concrete cylinder assembly
  • FIG. 5 is a view taken on line 5-5 of FIG. 2 showing the valve in communication with both concrete cylinder assemblies;
  • FIG. 6 is a view taken on line 6-6 of FIG. 3 showing the valve in communication with the other concrete cylinder assembly
  • FIG. 7 is a view of another embodiment of the concrete pump of this invention showing two concrete cylinder assemblies and an auxiliary concrete cylinder assembly with the valve in a position to provide communication between the auxiliary cylinder assembly and one of the concrete cylinder assemblies and the discharge duct;
  • FIG. 8 is a top view of the pump shown in FIG. 7 with the valve in a position to provide communication between the auxiliary assembly and the discharge duct;
  • FIG. 9 is a view taken on line 9-9 of FIG. 7 showing the seal for the valve when positioned to encompass one of the concrete assemblies and the auxiliary cylinder;
  • FIG. 10 is a view taken on line I0-l0 of FIG. 8 showing the seal for the valve when moved to the intermediate position between the concrete assemblies;
  • FIG. 1 l is another embodiment of the concrete pump of this invention wherein the concrete cylinder assemblies are mounted for pivotal movement with respect to a valve having an enlarged inlet opening;
  • FIG. 12 is a top view of the embodiment shown in FIG. II with both of the concrete assemblies in communication with the inlet opening of the valve;
  • FIG. 13 is a top view of the embodiment shown in FIG. II with the concrete assemblies moved to the other side of the valve;
  • FIG. 14 is taken on line 14-14 of FIG. 11 showing one of the concrete assemblies in communication with the inlet open ing of the valve;
  • FIG. 15 is taken on line 15-15 of FIG. 12 showing both of the concrete cylinder assemblies in communication with the inlet opening of the valve;
  • FIG. 16 is taken on line l6--16 of FIG. 13 showing the second concrete cylinder assembly in communication with the inlet opening of the valve;
  • FIG. 17 is a top view of a concrete pump having a revolving type valve
  • FIG. 18 is a view taken on line 19 of FIG. 17 showing the revolving valve in communication with one of the concrete cylinder assemblies;
  • FIG. 19 is a view similar to FIG. 18 showing the valve in communication with two of the concrete cylinder assemblies
  • FIG. 20 is a view similar to FIG. 18 showing the valve in communication with the second cylinder assembly.
  • FIG. 21 is a view similar to FIG. 18 showing the valve in communication with the second and third cylinder assemblies.
  • the concrete pump of this invention generally includes a base or frame 12 and a concrete hopper 14.
  • a number of hydraulically actuated concrete pump assemblies 16 are mounted on the base or frame 12 and are operably positioned to withdraw concrete from and pump concrete through the concrete hopper 14 to a discharge duct or hose 18.
  • the constant flow of concrete from the assemblies 16 to the discharge duct 18 is provided by means of a valve 20 which is positioned in the hopper 14.
  • the valve 20 can be a reciprocating type valve as shown in FIGS. 1 through 10, a fixed valve as shown in FIGS. 11 through 16, or a revolving type valve as shown in FIGS. 17 through 21.
  • the relative motion between the valve 20 and the assemblies 16 is timed or synchronized to provide continuous communication between the valve and a discharging pump assembly, as more particularly described hereinafter.
  • FIG. 1 THROUGH 6 the concrete pump 10 shown is of the reciprocating valve type having the valve 20 positioned within the concrete hopper 14 to provide continuous communication between a discharging pump assembly and the discharge duct 18.
  • the semi-fluid concrete material is confined on the frame by means of the concrete hopper 14 which includes a front wall 22, a back wall 24, and a pair of side walls 26 mounted on the base 12. Concrete is poured into the hopper from the top as is generally understood in the art. A single outlet opening 28 is provided in the back wall 24 and a pair of inlet openings 30 are provided in the front wall 22.
  • each of the pump assemblies 160 and 16b includes a concrete cylinder 32a and 32b and a piston 34a and 34b.
  • the cylinders 32a and 32b are sealed in the openings 30.
  • the pistons 34a and 34b are sealed in the cylinders 32a and 32b, respectively, by means of glands or seals 36 provided on the outer periphery of the pistons 34a and 34b to prevent leakage of the liquid or water in the concrete from flowing past the pistons 34a and 34b.
  • Means are provided for actuating the pump assemblies 160 and 16b to withdraw concrete from the hopper.
  • Such means is in the form of hydraulic piston and cylinder assemblies 38a and 38b which are operatively connected to the pump assemblies 16a and 16b
  • Each hydraulic assembly 38a and 38b includes a cylinder 40a and 40b and a piston 42a and 42b
  • the pistons 42a and 42b are connected to the pistons 34a and 34b respectively, by piston rods 44a and 44b which extend through an opening 46 provided in the end wall 48 of the cylinders 40a and 40b
  • the pistons 42a and 42b are sealed in the cylinders 40a and 40b respectively, by means of glands or seals 50a and 50b to form hydraulic pressure chambers at each end of the cylinders 40a and 40b
  • the hydraulic piston assemblies 38a and 38b are therefore double acting and are connected to a conventional hydraulic system by means of hoses 52a and 52b to provide double acting motion. It should be noted that on movement of pistons 42a and 42b to
  • means are provided for connecting the inlet openings 30 to the discharge opening 28 in the form of the valve 20 which is reciprocated in the hopper 14.
  • means are provided for supporting the valve 20 on the frame 12 for reciprocal motion within the hopper 14.
  • Such means is in the form of the discharge duct 18 which is mounted for reciprocal motion in bearings 54 provided on frame 12 and extends through opening 28 in the back wall 24.
  • the valve 20 is provided with an internal curved passage 56 which terminates at one end in an inlet opening 58 which is of sufficient length to encompass both openings 30 and at the other end in an outlet opening 60 which is connected to the discharge duct 18.
  • the valve 20 is oscillated about the axis of the discharge duct 18 by means of a hydraulic piston and cylinder assembly 62.
  • the assembly 62 includes a cylinder 64 which is pivotally connected to the frame 12 and a piston rod 66 which is pivotally connected to a link 68 provided on the discharge duct 18.
  • Means are provided for sealing the openings 30 during the change in the connection of the pump assemblies I60 and l6b from the hopper l4 and to the valve 20.
  • This seal means prevents leakage of concrete from the valve 20 through the openings 30 due to the back pressure of the concrete in the valve 20.
  • Such means is in the form of a flange or plate 70 provided on each end of the valve 20. Each of the plates 70 extend outwardly from the valve a distance sufficient to completely cover one of the openings 30 before the opening 30 is connected to the inlet opening 58 in the valve.
  • Means are provided for maintaining a constant pressure on the seal provided between the plates 70 and the inside surface of the wall 22.
  • Such means is in the form of an independent hydraulic system 25.
  • the end of the duct 18 is connected to the fixed discharge pipe 27 by means of a cylindrical bearing 29 mounted in a fixed bearing bracket 37 and having a swivel joint, slip joint and pressure seal.
  • Pressure is applied to the sea] by a hydraulic piston and cylinder assembly 31 having a piston 33 connected to a collar 51 mounted to slide on the duct 18 and a cylinder 35 connected to the cylindrical bearing 29.
  • the collar 51 is positioned to bear on a flange provided on the duct 18.
  • Pressure is maintained in the cylinder 33 by a hand pump 39 connected to the cylinder 35 by a line 41 and an accumulator 43.
  • a pressure relief valve 45 is provided in the line 41 to allow for flow back to a reservoir 47 whenever the pressure exceeds a predetermined maximum. This can occur if a hard object such as a rock enters the seal between the plate 70 and wall 22.
  • the motion of the valve 20 and the operation of the pump assemblies 16a and 16b is timed to provide continuous communication between a discharging pump assembly 16 and valve 20.
  • the valve 20 is moved slowly in a continuous motion back and forth within the hopper 14.
  • the valve 20 reaches a position where the inlet opening 58 is in communication with both of the openings 30, one of the pump assemblies 16 should be reaching the end of its discharge stroke and the other pump assembly 16 should be commencing its discharge stroke.
  • FIG. 4 where the valve is shown in the extreme right hand position with the opening 30 for the pump assembly 16a in communication with the inlet opening 58 in the valve 20.
  • the pump assembly 16b should be drawing concrete from the hopper 16 when the valve 20 reaches this position.
  • the assembly 62 is actuated to start to rotate the valve 20 counterclockwise toward the left hand position.
  • both of the openings 30 will be in communication with the inlet opening 58 in the valve.
  • the assembly 16a should be at the end of its discharge stroke and the assembly 16b should be actuated to commence its discharge stroke.
  • the assembly 62 will continue to move the valve counterclockwise to the extreme left hand position shown in FIG. 6.
  • the assembly 16a can be actuated to commence drawing concrete into the assembly
  • the assembly 62 is reversed to start a clockwise motion of the valve 20 to repeat the cycle.
  • the time allowed for filling one of the pump assemblies 160 or 16b is equal to the time allowed to discharge one of the pump assemblies.
  • the rest of the pumping cycle consists of the short time interval when two cylinders are discharging at the same time. thus producing constant flow.
  • auxiliary pump asembly 72 positioned between the pump assemblies 160 and 16b
  • the ump includes a frame or base 12 and a concrete hopper l6 iaving a back wall 24 with a single discharge opening 28 and side walls 26.
  • a front wall 74 provided with three openings or ports 76 is substituted for the front wall 22 described above.
  • the auxiliary pump assembly 72 is connected to the center opening 76.
  • the pump asernblies 16a and 16b are eonnected to the side openings 76.
  • a continuous flow of concrete to the discharge duct or hose I8 is provided to the hopper 14 by means of a valve 78 connected to the discharge duct 18 and mounted for pivotal motion in the hopper l4. Constant flow of concrete is achieved by maintaining the auxiliary pump 72 in constant communication with the valve 78 as the valve 78 moved between the side openings 76 for the pump assemblies 164 and 161:.
  • the valve 78 includes a tapered passage 80 which terminates at one end in a rectangular inlet opening 82 having a diagonal length which is long enough to encompas the center opening 76 and one of the side openings 76.
  • the other end of the valve 78 terminates in a discharge opening 84 which is connected to the discharge duct 18.
  • the auxiliary assembly 72 will always be in communication with the pasage 80 in the valve 78 during the movement of the valve 78 between the openings 76 for the pump asemblies 16a and 16b
  • the valve 78 is oscillated by means of the hydraulic assembly 62 which is pivotally connected to the frame l2 and to the link 68 provided on the discharge duct 18.
  • Means are provided for sealing the side openin 76 for each of the pump assemblies 164 and 1611 during the change of communication of the pump assemblies 16a and 166 from the hopper 14 to the valve 78.
  • This seal presents concrete under pressure in the valve 78 from flowing through the side o enings 76 into the hopper 14.
  • Such means is in the form of a plate or flange 86 provided on each end of the valve 18 Plate 86 is long enough to completely cover opening 76 before the pump assemblies are connected to the pasage 80 in the valve 78.
  • a controlled seal presume is maintained by the hydraulic as sembly 25 as described above. It should also be noted that a bearing 29 is also provided at the connection of the duct 18 to the fixed pipe 27.
  • valve 78 will be rotated by the hydraulic piston and cylindetasemblyfitoalign thevalve78withtheopening76 fortheotherpumpasembly l6b.Assoonasthepumpassembly l6b'sactuatedtodischargeconcrete intothevalve78, theanxiliarypumpasembly72will bereversedtncommence withdrawingconcretefmrnthevalvenintothepumpas sembly 72. The cycle is then repeated.
  • FIGS. 11 THROUGH 16 In the embodiment of the concrete pump of ths invention shown in FIGS. 11 through l6. continuous concrete flow is achievedbymeansofafixed valve86.andapairofpumpassemblies 16a and 16b mounted for pivotal movement on the frame [1
  • This pump includes a concrete hopper l4 having a back wall 24 with a discharge opening 28 and side walls 26.
  • An areuate front wall 88 is provided on the front of the hopper l4 and has a radius of curvature equal to the distance of the pivot point for the pump assemblies 16a and 16b and the midpoint of the front wall of the hopper 14.
  • a pair of openings 90 are provided in the wall 88.
  • Seals 92 are provided at each end oftheside walls26inaposition toengagethearcuatewall88.
  • the fixed valve 86 includes a passage 94 and is positioned in the hopper 14. One end of the passage 94 terminates at an inlet opening 96 of sufficient length to encompas both of the openings 90 in the front wall 88.
  • the other end of the passage 94 includes an outlet ope ning 98 which is operatively connected to a discharge duct 100 which is connected to the opening 28 in the back wall 24.
  • the pump asemblies 16a and [6b are actuated by means of hydraulic piston and cylinder asemblies 38a 38b as described above. and are mounted for pivotal movement on the frame 12 to selectively position one or both of the pump assemblies 16a and I6! in communication with the inlet opening 96 of the valve 86.
  • the pump ascmblies 16a and 16b are secured to a plate 102 which is secured at one end to the front wall 88 and at the other end to a pivot pin 104.
  • Assemblies 16a and 166 are oscillated and reciprocated on the firarne l2 by means of a hydraulic p'ston and cylinder assembly 106 which includes a cylinder 108 pivotally connected to the frame 12 and a piston H0 pivotally connected to a bracket 1 12 on the plate 102.
  • Means are provided for sealing the openings 90 in the front wall 88 during the change in connection of the pump asemblies 16a or 166 from the hopper 14 to the valve 86.
  • the seal prevents the concrete which is under pressure in the valve 86 from flowing through the opening 90 back into the hopper 14
  • Such means is in the fonn of a flange 114 provided on each side of the valve 86.
  • the plate 1 14 is long enough to completely cover the openings 90 until the o ening is clear of the inlet opening 96 to the valve 86.
  • a controlled pressure is maintained between the flange 114 and the wall 88 by means of the hydraulic system 25 and the bearing 29 as described above. 1
  • the pump asembly 16a is operatively positioned in communication with the inlet Opening 96 of the valve 86.
  • the hydraulic asembly 106 is actuated to pivot the pump asern blies 16a and 16b to the intermediate position shown in FIGS. 12 and 15.
  • Pump asembly 16a should be nearing the end ot'im discharge stroke when the asemblies are in the intermediate position.
  • the pump asemhly 16b is actuated when the asetnblies 16a and 16b reach this intermediate position to commence discharging of concrete into the valve 86.
  • the hydraulic asembly 106 continues to move the asernblies 16a and 16b to the position shown in H68. 13 and 16.
  • the pump assembly 16!: will be in communication with the inlet opening 96 oftheBGandthepumpasembly lfinwillbeincommunica tion with the hopper 14.
  • Pump asembly 16a '5 then retracted to fill the asembly 164 with concrete, and the cycle is then repeated in the opposite direction.
  • the hopper 14 in this embodiment includesafrontwall 117 having three openings 118 positioned at equal distances from each othmandfiomadischargeopeninglllintizehackwallfi.
  • Eachofthepumpasemblies 16a. b.andc. includesahydraulicp'stonmembly38n.38b.and38e.respectively.as describedabovqandisactuatedintimedsequencetothemotionofthevalve 116.
  • inlet opening 122 is connected by passage 124 to the discharge duct 120.
  • Means are provided for rotating the valve at a continuous slow rate about the axis of the discharge duct to sequentially connect the pump assemblies 16a. 16b. and New the discharge duct 18.
  • Such means is in the form of a gear 126 mounted on the discharge duct 18 and having a gear 128 on its outer periphery.
  • a motor 130 is mounted on the frame 112 and includes a gear 132 on the drive shaft 134 of the motor operatively positioned to engage the peripheral gear 128.
  • Means are provided to seal the opening 118 in the front wall before the pump asembly 16 is connected to the inlet opening 120 in the valve 116.
  • Such means is in the form of a plate 136 provided on the leading edge of the valve and having a length sufficient to completely close the opening before the opening is connected to the inlet opening 118 of the valve 122.
  • the plate 136 will cover the opening 118. in the interval between the connection of the pump assemblies 16a. 16b, or 16: with the hopper l4 and the valve 122.
  • a controlled pressure is maintained on the seal provided between the flange 136 and the front wall 117 by means of the hydraulic asembly and the bearing 29.
  • the concrete pump as described herein provides for the continuous flow of concrete by maintaining communication between a discharging pump assembly and a valve having an inlet opening of sufficient length to span two of the inlet openings in the hopper.
  • the valve can be either oscillated. revolved or fixed.
  • the continuous motion of the valve with respectrothepumpasemblisisslowto providesuflicient time for the pump asemblies to complete the discharge of concretefromthepumpmembliestofilltheassemhlieswith concrete fromthehopper.Leakageofconcretefrornthevalve duetothebackpresureofconueteinthevalveisprevented bysealtlangesorplatesprovidedonthevalve.
  • Theprincipalsofconstantflowifthisinventionisapplicable toalltypesol'moving pump asemblies including pivotalina horizontal plane.pivotalinaverticalplane,oscillatingabouta horizontal axis, swinging about a horizontal axis, complete rotarymotion aboutahorimntalaxkoru'ansverse motionin eitheraverticaLhorizontalortiltedplane.
  • Aconczetepumpwithconstantflcw wouldhavenoabrupt pipelinejlmpingandkickingfmmshockloadswithevery cycleotthep'stom'l'hsnofgreatadvantagesincels ratnint wouldberequiredtoholdthepipelineinplaceduringthepumpingThepipelinewouldalsohaveamuchlonger lil'esincetheconstantkickingmovementofthepipelineis elhninatedandthelifeoftheclampingdevimstherebyincreased.
  • ThepipelineIouldnotbesubjectedtotbehigh shock loath as w'nh prwem pumps which W repeatedly overcomeinertiaofthepipelineconcrete.'l'hepipeline dischargehosewouldbesaferforpersonneltohamflewiththe removalofthekiiBoomcraneswhicharenowmedtohandleconcretepumppipeshouldhavearemarkahleincreaseof operating safety and range with the use of a constant flow pump to remove shock loads caused
  • a concrete pump with constant flow is a more etficient pump because once the initial inertia of the concrete in the pipe is overcome. the momentum of the concrete is maintained and not lost as it is in present-day intermittant pumps only to be overcome and lost again.
  • This constant flow pump willrequirelespowertodothesametaskasan intemittant pump and will therefore have an increae range with equal power.
  • a constant flow concrete pump comprising:
  • a concrete hopper mounted on said frame having a number of inlet openings and an outlet opening
  • each assembly including a concrete cylinder connected to one of said inlet openings. and a pison mounted for reciprocal motion in said cylinder. one of said asemblies being operated at all times to provide a continuous flow of concrete through one of said inlet openings,
  • the pump according to claim 1 including means for oscil lating said valve in said hopper.
  • the pump according to claim 1 including means for rotating said valve in said hopper.
  • the pump according to claim 1 including means for moving said pump asemblia laterally in said hopper.
  • said producing means includes an auxiliary hydraulic pump asembly operatively connected to one of said inlet openings.
  • the pump according to claim 1 including in a large flange on said valve for sealing the inlet openings prior to connecting an inlet opening to said valve.
  • the pump accordingly to claim 7 including a hydraulic asembly operatively connected to said valve for maintaining a predetermined pressure between the flange and the hopper.
  • a constant flow concrete pump comprising.
  • lLThepumpaccordingtoclaim lflwhereinsaidsealing means include a hydraulic assembly for a controlled seal ptmure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A constant flow concrete pump having a number of hydraulically actuated concrete pump assemblies connected to inlet openings in one wall of a semi-fluid concrete hopper which has a single discharge opening in the opposite wall, and a valve mounted in the hopper and having an inlet of sufficient length to encompass at least two of the inlet openings in the hopper wall, relative movement is provided between the valves and inlet openings to provide constant flow of concrete through the hopper. The valve can be fixed, oscillated or rotated.

Description

United States Patent Antosh 51 May 16, 1972 [541 CONCRETE PUMP 2,033,338 3/l936 Kirby ..4l7/900 x [72] inventor: Leon A. Antosh, Rural Route, Erie, lll. Primary Examiner Roben M. walker 6 Attorney-Ronald E. Barry and James E. Nilles [22] Filed: Sept. 18, 1970 [57] ABSTRACT [2]] Appl. No.: 73,449 D A constant flow concrete pump having a number of hydraulically actuated concrete pump assemblies connected to inlet {52] U.S. Cl ..4l7/516,4l7/900 openings in one wall of a semi-fluid concrete hopper which [5] Int. Cl .,F04b 7/00, F04! 15/02 has a single discharge opening in the opposite wall, and a valve 58 Field of Search ..417/5 l6, 517, 900 mounted in the pp and having an inlet of Sufficient length to encompass at least two of the inlet openings in the hopper References Cited wall, relative movement is provided between the valves and inlet openings to provide constant flow of concrete through UNITED STATES PATENTS the hopper. The valve can be fixed, oscillated or rotated.
3,298,322 1/1967 Sherrod ..417/900 X 18 Claims, 21 Drawing Figures ILWSCLIZ?) SHEET t [1F 4 I N VEN 70R.
PATENTEDMAY 16 1972 CONCRETE PUMP BACKGROUND OF THE INVENTION There has been a need since the initial idea of pumping concrete was developed to provide for a uniform constant flow of concrete through the discharge hose. Concrete pumps generally available today as seen in Sherrod US. Pat. Nos. 3,298,322, and Re. 25,568 entitled Pump for Semi-Fluid Material, use an intermittent feed system wherein reciprocating concrete piston and cylinder assemblies are intermittently connected to a discharge outlet to pump concrete to the discharge hose. This is due to the interval or pause which is necessary to move the valve between the termination of the discharge stroke of one piston and the beginning of the discharge stroke of the next piston. This interval or pause produces pipe line jumping or kicking from shock loads on each pump stroke. The valve is moved rapidly from one concrete cylinder to the next to minimize back pressure leakage however, an intermittent or pulsed flow of concrete is produced in the delivery or discharge hose. No attempt is made by others to have more than one pump assembly at the same time exerting pressure on the discharge duct.
SUMMARY OF THE INVENTION The constant flow concrete pump of the present invention provides for continuous flow of concrete to the delivery or discharge duct by maintaining communication between a discharging concrete pump assembly and the delivery duct at all times. This is accomplished in a number of ways, one embodiment of which involves the addition of an auxiliary concrete cylinder assembly which is charged or filled with concrete from the valve while one of the main concrete cylinders is discharging into the valve and is discharged into the valve while the valve is moved from one of the concrete assemblies to the other.
Another embodiment of the invention achieves continuous flow by using an oscillating type valve which has an arcuate opening of sufficient length to encompass two or more concrete assemblies at one time. The valve is moved continuously to provide communication with a discharging concrete pump assembly and the next concrete pump assembly near the end of the discharge stroke of the first assembly. The second pump assembly can commence discharging concrete into the valve immediately after the first concrete pump assembly reaches the end of its discharge stroke. This continuous motion of the valve will disconnect the first pump assembly from the valve so that it can be recharged from the hopper.
A further embodiment of this invention provides continuous flow by mounting the valve for continuous rotary motion. The valve is provided with an inlet of sufficient length to again encompass at least two of the concrete pump assemblies at one time and is moved continuously in a revolving motion in timed sequence with the discharging of the pump assemblies to provide continuous pressure on the concrete in the discharge duct.
A further embodiment of this invention provides continuous flow by mounting the valve in a fixed position and then moving the pump assemblies. The valve is provided with an inlet of sufficient length to again encompass at least two of the concrete pump assemblies at one time and the pump assemblies themselves are moved continuously or intermittently in a timed sequence with the discharging of of the pump assemblies to provide continuous pressure on the concrete in the discharge duct.
In all of the above embodiments, leakage is prevented between the valve and the inlet openings for the pump assemblies by an enlarged seal section provided on the leading edge of the valve. This enlarged section will completely seal or close the open end of the pump assemblies before they are connected to the valve. A constant pressure is maintained on the seal at all times by an independent hydraulic system. The back pressure of the concrete in the valve is thus prevented from leaking through the next pump assembly into the hopper before the connection is complete between the valve and the next pump assembly. Once this connection has been completed the next pump assembly can commence discharging concrete into the valve. This seal also makes it possible to pump water through the pump to clean out the hose.
Other objects and advantages will become apparent from the following detailed description when read in connection with the accompanying drawings.
THE DRAWINGS FIG. 1 is a top view of a two cylinder concrete pump according to the invention with the valve in a position to provide communication from one of the concrete cylinder assemblies to the discharge duct or hose;
FIG. 2 is a top view of the concrete pump of FIG. 1 with the swing valve shown in a position to provide communication between both concrete cylinder assemblies and the discharge duct or hose;
FIG. 3 is a top view of the pump of FIG. 1 with the valve in a position to provide communication between the other concrete cylinder assembly and the discharge duct or hose;
FIG. 4 is a view taken on line 4-4 of FIG. I showing the valve in communication with the first concrete cylinder assembly;
FIG. 5 is a view taken on line 5-5 of FIG. 2 showing the valve in communication with both concrete cylinder assemblies;
FIG. 6 is a view taken on line 6-6 of FIG. 3 showing the valve in communication with the other concrete cylinder assembly;
FIG. 7 is a view of another embodiment of the concrete pump of this invention showing two concrete cylinder assemblies and an auxiliary concrete cylinder assembly with the valve in a position to provide communication between the auxiliary cylinder assembly and one of the concrete cylinder assemblies and the discharge duct;
FIG. 8 is a top view of the pump shown in FIG. 7 with the valve in a position to provide communication between the auxiliary assembly and the discharge duct;
FIG. 9 is a view taken on line 9-9 of FIG. 7 showing the seal for the valve when positioned to encompass one of the concrete assemblies and the auxiliary cylinder;
FIG. 10 is a view taken on line I0-l0 of FIG. 8 showing the seal for the valve when moved to the intermediate position between the concrete assemblies;
FIG. 1 l is another embodiment of the concrete pump of this invention wherein the concrete cylinder assemblies are mounted for pivotal movement with respect to a valve having an enlarged inlet opening;
FIG. 12 is a top view of the embodiment shown in FIG. II with both of the concrete assemblies in communication with the inlet opening of the valve;
FIG. 13 is a top view of the embodiment shown in FIG. II with the concrete assemblies moved to the other side of the valve;
FIG. 14 is taken on line 14-14 of FIG. 11 showing one of the concrete assemblies in communication with the inlet open ing of the valve;
FIG. 15 is taken on line 15-15 of FIG. 12 showing both of the concrete cylinder assemblies in communication with the inlet opening of the valve;
FIG. 16 is taken on line l6--16 of FIG. 13 showing the second concrete cylinder assembly in communication with the inlet opening of the valve;
FIG. 17 is a top view of a concrete pump having a revolving type valve;
FIG. 18 is a view taken on line 19 of FIG. 17 showing the revolving valve in communication with one of the concrete cylinder assemblies;
FIG. 19 is a view similar to FIG. 18 showing the valve in communication with two of the concrete cylinder assemblies;
FIG. 20 is a view similar to FIG. 18 showing the valve in communication with the second cylinder assembly; and
FIG. 21 is a view similar to FIG. 18 showing the valve in communication with the second and third cylinder assemblies.
DESCRIPTION OF THE INVENTION The concrete pump of this invention generally includes a base or frame 12 and a concrete hopper 14. A number of hydraulically actuated concrete pump assemblies 16 are mounted on the base or frame 12 and are operably positioned to withdraw concrete from and pump concrete through the concrete hopper 14 to a discharge duct or hose 18. The constant flow of concrete from the assemblies 16 to the discharge duct 18 is provided by means of a valve 20 which is positioned in the hopper 14. The valve 20 can be a reciprocating type valve as shown in FIGS. 1 through 10, a fixed valve as shown in FIGS. 11 through 16, or a revolving type valve as shown in FIGS. 17 through 21. In any one of these embodiments, the relative motion between the valve 20 and the assemblies 16 is timed or synchronized to provide continuous communication between the valve and a discharging pump assembly, as more particularly described hereinafter.
FIG. 1 THROUGH 6 Referring more particularly to FIGS. 1 through 6, the concrete pump 10 shown is of the reciprocating valve type having the valve 20 positioned within the concrete hopper 14 to provide continuous communication between a discharging pump assembly and the discharge duct 18. In this regard, the semi-fluid concrete material is confined on the frame by means of the concrete hopper 14 which includes a front wall 22, a back wall 24, and a pair of side walls 26 mounted on the base 12. Concrete is poured into the hopper from the top as is generally understood in the art. A single outlet opening 28 is provided in the back wall 24 and a pair of inlet openings 30 are provided in the front wall 22.
The semi-fluid concrete material is withdrawn from the hopper 14 by means of the concrete pump assemblies 16a and 16b which are connected to the inlet openings 30 in the front wall 22. Concrete drawn into the assemblies 16a and 16b is forced or pumped into the valve 20 for discharge through the duct or hose 18. In this regard, each of the pump assemblies 160 and 16b includes a concrete cylinder 32a and 32b and a piston 34a and 34b. The cylinders 32a and 32b are sealed in the openings 30. The pistons 34a and 34b are sealed in the cylinders 32a and 32b, respectively, by means of glands or seals 36 provided on the outer periphery of the pistons 34a and 34b to prevent leakage of the liquid or water in the concrete from flowing past the pistons 34a and 34b.
Means are provided for actuating the pump assemblies 160 and 16b to withdraw concrete from the hopper. Such means is in the form of hydraulic piston and cylinder assemblies 38a and 38b which are operatively connected to the pump assemblies 16a and 16b Each hydraulic assembly 38a and 38b includes a cylinder 40a and 40b and a piston 42a and 42b The pistons 42a and 42b are connected to the pistons 34a and 34b respectively, by piston rods 44a and 44b which extend through an opening 46 provided in the end wall 48 of the cylinders 40a and 40b The pistons 42a and 42b are sealed in the cylinders 40a and 40b respectively, by means of glands or seals 50a and 50b to form hydraulic pressure chambers at each end of the cylinders 40a and 40b The hydraulic piston assemblies 38a and 38b are therefore double acting and are connected to a conventional hydraulic system by means of hoses 52a and 52b to provide double acting motion. It should be noted that on movement of pistons 42a and 42b to the left in FIGS. 1 through 3, concrete will be drawn into the cylinders 400 or 40b and on movement to the right, concrete will be discharged from the cylinders 40a and 40b.
In accordance with the invention, means are provided for connecting the inlet openings 30 to the discharge opening 28 in the form of the valve 20 which is reciprocated in the hopper 14. In this regard, means are provided for supporting the valve 20 on the frame 12 for reciprocal motion within the hopper 14. Such means is in the form of the discharge duct 18 which is mounted for reciprocal motion in bearings 54 provided on frame 12 and extends through opening 28 in the back wall 24. The valve 20 is provided with an internal curved passage 56 which terminates at one end in an inlet opening 58 which is of sufficient length to encompass both openings 30 and at the other end in an outlet opening 60 which is connected to the discharge duct 18. The valve 20 is oscillated about the axis of the discharge duct 18 by means of a hydraulic piston and cylinder assembly 62. The assembly 62 includes a cylinder 64 which is pivotally connected to the frame 12 and a piston rod 66 which is pivotally connected to a link 68 provided on the discharge duct 18.
Means are provided for sealing the openings 30 during the change in the connection of the pump assemblies I60 and l6b from the hopper l4 and to the valve 20. This seal means prevents leakage of concrete from the valve 20 through the openings 30 due to the back pressure of the concrete in the valve 20. Such means is in the form of a flange or plate 70 provided on each end of the valve 20. Each of the plates 70 extend outwardly from the valve a distance sufficient to completely cover one of the openings 30 before the opening 30 is connected to the inlet opening 58 in the valve.
Means are provided for maintaining a constant pressure on the seal provided between the plates 70 and the inside surface of the wall 22. Such means is in the form of an independent hydraulic system 25. In this regard, the end of the duct 18 is connected to the fixed discharge pipe 27 by means of a cylindrical bearing 29 mounted in a fixed bearing bracket 37 and having a swivel joint, slip joint and pressure seal. Pressure is applied to the sea] by a hydraulic piston and cylinder assembly 31 having a piston 33 connected to a collar 51 mounted to slide on the duct 18 and a cylinder 35 connected to the cylindrical bearing 29. The collar 51 is positioned to bear on a flange provided on the duct 18. Pressure is maintained in the cylinder 33 by a hand pump 39 connected to the cylinder 35 by a line 41 and an accumulator 43. A pressure relief valve 45 is provided in the line 41 to allow for flow back to a reservoir 47 whenever the pressure exceeds a predetermined maximum. This can occur if a hard object such as a rock enters the seal between the plate 70 and wall 22.
The motion of the valve 20 and the operation of the pump assemblies 16a and 16b is timed to provide continuous communication between a discharging pump assembly 16 and valve 20. In this regard, the valve 20 is moved slowly in a continuous motion back and forth within the hopper 14. Each time the valve 20 reaches a position where the inlet opening 58 is in communication with both of the openings 30, one of the pump assemblies 16 should be reaching the end of its discharge stroke and the other pump assembly 16 should be commencing its discharge stroke. This can be more easily understood by referring to FIG. 4, where the valve is shown in the extreme right hand position with the opening 30 for the pump assembly 16a in communication with the inlet opening 58 in the valve 20. The pump assembly 16b should be drawing concrete from the hopper 16 when the valve 20 reaches this position. As soon as the pump assembly 1611 is filled with concrete, the assembly 62 is actuated to start to rotate the valve 20 counterclockwise toward the left hand position. When the valve 20 reaches the intermediate position shown in FIG. 5, both of the openings 30 will be in communication with the inlet opening 58 in the valve. The assembly 16a should be at the end of its discharge stroke and the assembly 16b should be actuated to commence its discharge stroke. The assembly 62 will continue to move the valve counterclockwise to the extreme left hand position shown in FIG. 6. As soon as the flange 70 on the right hand end of the valve 20 clears the opening 30 for the assembly 16a the assembly 16a can be actuated to commence drawing concrete into the assembly When the valve 20 reaches the extreme left hand position, as shown in FIG. 6, the assembly 62 is reversed to start a clockwise motion of the valve 20 to repeat the cycle.
It should be noted that the time allowed for filling one of the pump assemblies 160 or 16b is equal to the time allowed to discharge one of the pump assemblies. The rest of the pumping cycle consists of the short time interval when two cylinders are discharging at the same time. thus producing constant flow.
H65. 7 THROUGH 10 [n the embodiment of the concrete pump 10. shown in FlGS. 7 through 10, of this invention, a constant flow of concrete is achieved by means of an auxiliary pump asembly 72 positioned between the pump assemblies 160 and 16b The ump includes a frame or base 12 and a concrete hopper l6 iaving a back wall 24 with a single discharge opening 28 and side walls 26. A front wall 74 provided with three openings or ports 76 is substituted for the front wall 22 described above. The auxiliary pump assembly 72 is connected to the center opening 76. The pump asernblies 16a and 16b are eonnected to the side openings 76. A continuous flow of concrete to the discharge duct or hose I8 is provided to the hopper 14 by means of a valve 78 connected to the discharge duct 18 and mounted for pivotal motion in the hopper l4. Constant flow of concrete is achieved by maintaining the auxiliary pump 72 in constant communication with the valve 78 as the valve 78 moved between the side openings 76 for the pump assemblies 164 and 161:.
In this regard. and referring to FIGS. 7 through 10, the valve 78 includes a tapered passage 80 which terminates at one end in a rectangular inlet opening 82 having a diagonal length which is long enough to encompas the center opening 76 and one of the side openings 76. The other end of the valve 78 terminates in a discharge opening 84 which is connected to the discharge duct 18. It should be apparent that the auxiliary assembly 72 will always be in communication with the pasage 80 in the valve 78 during the movement of the valve 78 between the openings 76 for the pump asemblies 16a and 16b The valve 78 is oscillated by means of the hydraulic assembly 62 which is pivotally connected to the frame l2 and to the link 68 provided on the discharge duct 18.
Means are provided for sealing the side openin 76 for each of the pump assemblies 164 and 1611 during the change of communication of the pump assemblies 16a and 166 from the hopper 14 to the valve 78. This seal presents concrete under pressure in the valve 78 from flowing through the side o enings 76 into the hopper 14. Such means is in the form of a plate or flange 86 provided on each end of the valve 18 Plate 86 is long enough to completely cover opening 76 before the pump assemblies are connected to the pasage 80 in the valve 78.
A controlled seal presume is maintained by the hydraulic as sembly 25 as described above. it should also be noted that a bearing 29 is also provided at the connection of the duct 18 to the fixed pipe 27.
In operation, whenever one of the pump assemblies 160 or [61: is discharging concrete into the valve 78. the auxiliary pump asemhly 72 will be retracted drawing a small amount of concrete from the valve 78 into the auxiliary pump asembly 72. When the discharging assembly 16:: nears the end of its dischargingstrolre, theauxiliarypumpasemblynwillbeacrhatedtocommcnce geoncrete int0thevalve78.
e valve 78 will be rotated by the hydraulic piston and cylindetasemblyfitoalign thevalve78withtheopening76 fortheotherpumpasembly l6b.Assoonasthepumpassembly l6b'sactuatedtodischargeconcrete intothevalve78, theanxiliarypumpasembly72will bereversedtncommence withdrawingconcretefmrnthevalvenintothepumpas sembly 72. The cycle is then repeated.
FIGS. 11 THROUGH 16 In the embodiment of the concrete pump of ths invention shown in FIGS. 11 through l6. continuous concrete flow is achievedbymeansofafixed valve86.andapairofpumpassemblies 16a and 16b mounted for pivotal movement on the frame [1 This pump includes a concrete hopper l4 having a back wall 24 with a discharge opening 28 and side walls 26. An areuate front wall 88 is provided on the front of the hopper l4 and has a radius of curvature equal to the distance of the pivot point for the pump assemblies 16a and 16b and the midpoint of the front wall of the hopper 14. A pair of openings 90 are provided in the wall 88. Seals 92 are provided at each end oftheside walls26inaposition toengagethearcuatewall88. The fixed valve 86 includes a passage 94 and is positioned in the hopper 14. One end of the passage 94 terminates at an inlet opening 96 of sufficient length to encompas both of the openings 90 in the front wall 88. The other end of the passage 94 includes an outlet ope ning 98 which is operatively connected to a discharge duct 100 which is connected to the opening 28 in the back wall 24.
The pump asemblies 16a and [6b are actuated by means of hydraulic piston and cylinder asemblies 38a 38b as described above. and are mounted for pivotal movement on the frame 12 to selectively position one or both of the pump assemblies 16a and I6!) in communication with the inlet opening 96 of the valve 86. In this regard. the pump ascmblies 16a and 16b are secured to a plate 102 which is secured at one end to the front wall 88 and at the other end to a pivot pin 104. Assemblies 16a and 166 are oscillated and reciprocated on the firarne l2 by means of a hydraulic p'ston and cylinder assembly 106 which includes a cylinder 108 pivotally connected to the frame 12 and a piston H0 pivotally connected to a bracket 1 12 on the plate 102.
Means are provided for sealing the openings 90 in the front wall 88 during the change in connection of the pump asemblies 16a or 166 from the hopper 14 to the valve 86. The seal prevents the concrete which is under pressure in the valve 86 from flowing through the opening 90 back into the hopper 14 Such means is in the fonn of a flange 114 provided on each side of the valve 86. The plate 1 14 is long enough to completely cover the openings 90 until the o ening is clear of the inlet opening 96 to the valve 86.
A controlled pressure is maintained between the flange 114 and the wall 88 by means of the hydraulic system 25 and the bearing 29 as described above. 1
In operation as seen in FIGS. ll and 14, the pump asembly 16a is operatively positioned in communication with the inlet Opening 96 of the valve 86. When the pump assembly 16b is fully retracted and filled with concrete from hop er 14. the hydraulic asembly 106 is actuated to pivot the pump asern blies 16a and 16b to the intermediate position shown in FIGS. 12 and 15. Pump asembly 16a should be nearing the end ot'im discharge stroke when the asemblies are in the intermediate position. The pump asemhly 16b is actuated when the asetnblies 16a and 16b reach this intermediate position to commence discharging of concrete into the valve 86. The hydraulic asembly 106 continues to move the asernblies 16a and 16b to the position shown in H68. 13 and 16. The pump assembly 16!: will be in communication with the inlet opening 96 oftheBGandthepumpasembly lfinwillbeincommunica tion with the hopper 14. Pump asembly 16a '5 then retracted to fill the asembly 164 with concrete, and the cycle is then repeated in the opposite direction.
FIGS. 17 THROUGH 21 lntheembodimentoftheconcretepumpofthisinvention showninl-IGS. 17 through 2l.arevolving valve ll6isshown in the hopper 14 for connecting anumber ofpurnp assemblies 16a, 16b, and 16c sequentially to discharge duct 18. The hopper 14 in this embodiment includesafrontwall 117 having three openings 118 positioned at equal distances from each othmandfiomadischargeopeninglllintizehackwallfi. Eachofthepumpasemblies 16a. b.andc. includesahydraulicp'stonmembly38n.38b.and38e.respectively.as describedabovqandisactuatedintimedsequencetothemotionofthevalve 116.
lnthbrtgarthcvalvell6includmanarcuateinlctopeninglnofalengthsufficienttoencompasnwooi'the openings 118 at one time. inlet opening 122 is connected by passage 124 to the discharge duct 120. Means are provided for rotating the valve at a continuous slow rate about the axis of the discharge duct to sequentially connect the pump assemblies 16a. 16b. and New the discharge duct 18. Such means is in the form of a gear 126 mounted on the discharge duct 18 and having a gear 128 on its outer periphery. A motor 130 is mounted on the frame 112 and includes a gear 132 on the drive shaft 134 of the motor operatively positioned to engage the peripheral gear 128. As the valve 1 16 rotates in the hopper. the pump asemblies 116 are actuated in timed sequence to discharge concrete into the inlet opening 120 of the valve 1 16.
Means are provided to seal the opening 118 in the front wall before the pump asembly 16 is connected to the inlet opening 120 in the valve 116. Such means is in the form of a plate 136 provided on the leading edge of the valve and having a length sufficient to completely close the opening before the opening is connected to the inlet opening 118 of the valve 122. The plate 136 will cover the opening 118. in the interval between the connection of the pump assemblies 16a. 16b, or 16: with the hopper l4 and the valve 122.
A controlled pressure is maintained on the seal provided between the flange 136 and the front wall 117 by means of the hydraulic asembly and the bearing 29.
CLEANlNG OF THE APPARATUS It should be noted that in each of the above described embodiments of this invention, complete discharge of concrete can be accomplished due to the controlled pressure seal arrangement. As is conventional in the art. a pin valve is provided in the discharge pipe 27 to allow for disconnection of the pump of the pipe 27. A rabbit is then inserted into the pipe 27. The entire assembly is then flushed with water. The pump is reconnected to the pipe 27 and filled with water. The hydraulic asembly 25 is presurized to reset the seal between the valve and cylinders The pump is then completely sealed and water is pumped through discharge pipe 27 until the rabbit is discharged from the pipe 27.
RESUME The concrete pump as described herein provides for the continuous flow of concrete by maintaining communication between a discharging pump assembly and a valve having an inlet opening of sufficient length to span two of the inlet openings in the hopper. The valve can be either oscillated. revolved or fixed. The continuous motion of the valve with respectrothepumpasemblisisslowtoprovidesuflicient time for the pump asemblies to complete the discharge of concretefromthepumpmembliestofilltheassemhlieswith concrete fromthehopper.Leakageofconcretefrornthevalve duetothebackpresureofconueteinthevalveisprevented bysealtlangesorplatesprovidedonthevalve.
Theprincipalsofconstantflowifthisinventionisapplicable toalltypesol'moving pump asemblies including pivotalina horizontal plane.pivotalinaverticalplane,oscillatingabouta horizontal axis, swinging about a horizontal axis, complete rotarymotion aboutahorimntalaxkoru'ansverse motionin eitheraverticaLhorizontalortiltedplane.
Aconczetepumpwithconstantflcwwouldhavenoabrupt pipelinejlmpingandkickingfmmshockloadswithevery cycleotthep'stom'l'hsnofgreatadvantagesincels ratnintwouldberequiredtoholdthepipelineinplaceduringthepumpingThepipelinewouldalsohaveamuchlonger lil'esincetheconstantkickingmovementofthepipelineis elhninatedandthelifeoftheclampingdevimstherebyincreased.ThepipelineIouldnotbesubjectedtotbehigh shock loath as w'nh prwem pumps which W repeatedly overcomeinertiaofthepipelineconcrete.'l'hepipeline dischargehosewouldbesaferforpersonneltohamflewiththe removalofthekiiBoomcraneswhicharenowmedtohandleconcretepumppipeshouldhavearemarkahleincreaseof operating safety and range with the use of a constant flow pump to remove shock loads caused by pipe lticlt which now occurs with every cycle of the pistons in intermittant pumps.
A concrete pump with constant flow is a more etficient pump because once the initial inertia of the concrete in the pipe is overcome. the momentum of the concrete is maintained and not lost as it is in present-day intermittant pumps only to be overcome and lost again. This constant flow pump willrequirelespowertodothesametaskasan intemittant pump and will therefore have an increae range with equal power.
I claim:
1. A constant flow concrete pump comprising:
a frame.
a concrete hopper mounted on said frame having a number of inlet openings and an outlet opening,
a number of concrete pump asemblies corresponding to said inlet openings. each assembly including a concrete cylinder connected to one of said inlet openings. and a pison mounted for reciprocal motion in said cylinder. one of said asemblies being operated at all times to provide a continuous flow of concrete through one of said inlet openings,
a discharge duct positioned in said outlet opening,
avalvepositionedinsaidhopperandhavingapmgeterminating at one end in an inlet of sufficient length to encompas two of said inlet openings and an outlet at the other end operatively connected to said outlet opening,
and means for producing continuous motion between said valve and inlet openinp.
2. The pump according to claim 1 including means for oscil lating said valve in said hopper.
3. The pump according to claim 1 including means for rotating said valve in said hopper.
4. The pump according to claim 1 including means for moving said pump asemblia laterally in said hopper.
5. The pump according to claim 1 wherein said producing means includes an auxiliary hydraulic pump asembly operatively connected to one of said inlet openings.
6. The pump according to claim 5 wherein said auxiliary pump asembly is connected directly tosaid valve at all times.
7. The pump according to claim 1 including in a large flange on said valve for sealing the inlet openings prior to connecting an inlet opening to said valve.
8. The pump accordingly to claim 7 including a hydraulic asembly operatively connected to said valve for maintaining a predetermined pressure between the flange and the hopper.
9. A constant flow concrete pump comprising.
a frame.
means for confining a semi-fluid concrete material on said frame,
a discharge duct operatively connected to said confining means,
meamconnectedtosaidconfiningmeansforwithdrawinga portion of the semi-fluid material from said confining means,
avalvehavingapassageterminatingatoneendinan inletof suificientlengmtocommunicatewithtwoofsaid withdrawingmeansandanoutletattheotherendoperatively connected to said discharge duct,
beingd'schargedintosaidvalve. and meat: for communication between said valveandthed'sclnrgingwithdnwingmeanstoproduct a constant flow of material through said discharge duct. 10.Thepumpaccordingtoclaim9includingmeansfor sealingtheconnectionofsaidwithdrawingmeanstosaidvalve priorrocompletingtheconnectionofsa'ni withdrawingmeans to said valve.
lLThepumpaccordingtoclaim lflwhereinsaidsealing means include a hydraulic assembly for a controlled seal ptmure.
ll'l'hepumpaccordingtoclaimincludingmeansfor 16. The pump according to claim 15 wherein said withdrawing means includes three hydraulic pump assemblies.
17. The pump according to claim 9 wherein said withdrawing means includes two hydraulic pump assemblies.
18. The pump according to claim 17 wherein said pump assemblies are mounted for pivotal movement on said frame and further including means for oscillating said pump assemblies.
l i k i i

Claims (18)

1. A constant flow concrete pump comprising: a frame, a concrete hopper mounted on said frame having a number of inlet openings and an outlet opening, a number of concrete pump assemblies corresponding to said inlet openings, each assembly including a concrete cylinder connected to one of said inlet openings, and a piston mounted for reciprocal motion in said cylinder, one of said assemblies being operated at all times to provide a continuous flow of concrete through one of said inlet openings, a discharge duct positioned in said outlet opening, a valve positioned in said hopper and having a passage terminating at one end in an inlet of sufficient length to encompass two of said inlet openings and an outlet at the other end operatively connected to said outlet opening, and means for producing continuous motion between said valve and inlet openings.
2. The pump according to claim 1 including means for oscillating said valve in said hopper.
3. The pump according to claim 1 including means for rotating said valve in said hopper.
4. The pump according to claim 1 including means for moving said pump assemblies laterally in said hopper.
5. The pump according to claim 1 wherein said producing means includes an auxiliary hydraulic pump assembly operatively connected to one of said inlet openings.
6. The pump according to claim 5 wherein said auxiliary pump assembly is connected directly to said valve at all times.
7. The pump according to claim 1 including in a large flange on said valve for sealing the inlet openings prior to connecting an inlet opening to said valve.
8. The pump accordingly to claim 7 including a hydraulic assembly operatively connected to said valve for maintaining a predetermined pressure between the flange and the hopper.
9. A constant flow concrete pump comprising, a frame, means for confining a semi-fluid concrete material on said frame, a discharge duct operatively connected to said confining means, means connected to said confining means for withdrawing a portion of the semi-fluid material from said confining means, a valve having a passage terminating at one end in an inlet of sufficient length to communicate with two of said withdrawing means and an outlet at the other end operatively connected to said discharge duct, said withdrawing means being discharged into said valve, and means for maintaining communication between said valve and the discharging withdrawing means to product a constant flow of material through said discharge duct.
10. The pump according to claim 9 including means for sealing the connection of said withdrawing means to said valve prior to completing the connection of said withdrawing means to said valve.
11. The pump according to claim 10 wherein said sealing means includes a hydraulic assembly for maintaining a controlled seal pressure.
12. The pump according to claim 9 including means for oscillating said valve.
13. The pump according to claim 12 wherein said withdrawing means comprises at least two hydraulically actuated pump assemblies.
14. The pump according to claim 12 wherein said withdrawing means comprises two hydraulically actuated pump assemblies and an auxiliary pump assembly.
15. The pump according to claim 9 including means for rotating said valve.
16. The pump according to claim l5 wherein said withdrawing means includes three hydraulic pump assemblies.
17. The pump according to claim 9 wherein said withdrawing means includes two hydraulic pump assemblies.
18. The pump according to claim 17 wherein said pump assemblies are mounted for pivotal movement on said frame and further including means for oscillating said pump assemblies.
US73449A 1970-09-18 1970-09-18 Concrete pump Expired - Lifetime US3663129A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7344970A 1970-09-18 1970-09-18

Publications (1)

Publication Number Publication Date
US3663129A true US3663129A (en) 1972-05-16

Family

ID=22113748

Family Applications (1)

Application Number Title Priority Date Filing Date
US73449A Expired - Lifetime US3663129A (en) 1970-09-18 1970-09-18 Concrete pump

Country Status (1)

Country Link
US (1) US3663129A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2163744A1 (en) * 1971-12-16 1973-07-27 Putzmeister Interholding Gmbh
US3804556A (en) * 1972-09-28 1974-04-16 Dow Chemical Co Slurry pump
US3897180A (en) * 1973-02-20 1975-07-29 Gerald H Reinert Concrete pumping machine
US3908865A (en) * 1973-10-15 1975-09-30 Donald F Day Dual cylinder feeder for course granular material
US3909160A (en) * 1973-10-26 1975-09-30 Eugene L Sherrod Pump for semi-fluid materials
US3963385A (en) * 1975-05-05 1976-06-15 Caban Angel M Valve assembly for concrete pumps
US3982663A (en) * 1975-02-07 1976-09-28 The Gates Rubber Company Method and apparatus for metering thixotropic battery paste
US3982857A (en) * 1973-10-17 1976-09-28 Karl Schlecht Support means for movable connector in concrete pump arrangement
US3989420A (en) * 1974-05-15 1976-11-02 J. I. Case Company Concrete pumping apparatus
US4174788A (en) * 1976-10-04 1979-11-20 Casagrande & C. S.P.A. Batching plant for lime concrete
EP0046902A2 (en) * 1980-09-03 1982-03-10 Libra, S.A. Concrete pumping device
US4343598A (en) * 1980-03-14 1982-08-10 Friedrich Wilh. Schwing Gmbh Viscous material pump, particularly for concrete
US4345883A (en) * 1979-06-11 1982-08-24 Westerlund Robert E High pressure pumping apparatus for semi-fluid material
DE3219882A1 (en) * 1982-05-27 1983-12-01 Maschinenfabrik Walter Scheele GmbH & Co KG, 4750 Unna-Massen Concrete pump
DE3243738A1 (en) * 1982-11-26 1984-05-30 Karl Dipl.-Ing. 7000 Stuttgart Schlecht Hydraulic reversal for two-cylinder piston pump
US4569642A (en) * 1982-01-22 1986-02-11 Dwyer Anthony F Slurry pump
US4653990A (en) * 1984-05-26 1987-03-31 Karl Schlecht Positive double-piston displacement pump conveying pasteous material
DE3738359A1 (en) * 1987-11-12 1989-05-24 Putzmeister Maschf FUEL PUMP
US4913089A (en) * 1988-07-29 1990-04-03 American Cast Iron Pipe Company Concrete injector pump and process for lining pipe
US4987013A (en) * 1988-07-29 1991-01-22 American Cast Iron Pipe Company Process for lining pipe
EP0422745A1 (en) * 1989-10-13 1991-04-17 Pieter Faber Concrete-pumping device
EP0561262A1 (en) * 1992-03-19 1993-09-22 Schwing GmbH Pump for viscous materials having cylinders, in particular two cylinder concrete pump
US5263828A (en) * 1989-03-29 1993-11-23 Friedrich Wilh. Schwing Gmbh Two-cylinder thick matter pump having a piston storage
EP0854285A2 (en) * 1997-01-17 1998-07-22 Gian Guido Ravellini Pumping device, in particular for cement material
WO1999009315A1 (en) 1997-08-13 1999-02-25 Schwing Gmbh Two-cylinder thick matter pump
US5993181A (en) * 1995-02-07 1999-11-30 Gerhard Hudelmaier Process and device for feeding concrete or other thick materials
WO2001040649A1 (en) * 1999-11-29 2001-06-07 Hudelmaier, Jörg Thick matter pump
WO2004025119A2 (en) * 2002-08-31 2004-03-25 Hudelmaier Joerg Thick material pump
US6776558B1 (en) * 1999-12-08 2004-08-17 Putzmeister Ag Method and arrangement for concreting vertical shafts
WO2005033508A1 (en) * 2003-09-22 2005-04-14 Schwing Gmbh Piston high-density pump with a continuous flow rate
DE102004009363A1 (en) * 2004-02-26 2005-09-15 Schwing Gmbh Piston slurry pump
DE102004009362A1 (en) * 2004-02-26 2005-10-06 Schwing Gmbh Piston slurry pump
DE102005008938A1 (en) * 2005-02-26 2006-08-31 Schwing, Friedrich, Dipl.-Ing. Pump device comprises two main conveyor cylinders with a switchable slider system that changes position of the connecting either first or second main conveyor cylinders to conveying channel and has compensation cylinder downstream
US20060193738A1 (en) * 2005-02-26 2006-08-31 Friedrich Schwing Pump apparatus and method for continuously conveying a viscous material
EP1978249A1 (en) * 2006-01-23 2008-10-08 Sany Heavy Industry Co., Ltd. A distribution valve for concrete transport pump
CN100547239C (en) * 2004-03-26 2009-10-07 普茨迈斯特混凝土泵有限公司 Be used to control the apparatus and method of slurry pump
CN101922429A (en) * 2010-08-25 2010-12-22 三一重工股份有限公司 Concrete mixer and controlling method thereof, pumping system and distributing mechanism thereof
CN102588243A (en) * 2012-03-15 2012-07-18 三一重工股份有限公司 Engineering machinery, material pumping system and pumping method for material pumping system
CN103410325A (en) * 2012-12-17 2013-11-27 北汽福田汽车股份有限公司 Pumping mechanism and concrete pump truck
CN103821688A (en) * 2014-01-20 2014-05-28 三一汽车制造有限公司 Pumping mechanism, pumping control method and concrete pumping equipment
US8827657B1 (en) * 2014-01-15 2014-09-09 Francis Wayne Priddy Concrete pump system and method
DE102013215990A1 (en) * 2013-08-13 2015-02-19 Putzmeister Engineering Gmbh Two-cylinder thick matter pump with diverter
CN104541054A (en) * 2012-09-13 2015-04-22 普茨迈斯特工程有限公司 Device for the drive control of a two-cylinder thick matter pump
US9046086B2 (en) 2009-01-16 2015-06-02 Friedrich Schwing Method for feeding pasty masses and pump device for feeding pasty masses
WO2015087337A1 (en) * 2013-12-12 2015-06-18 Amit Arun Gokhale Hydraulically operated but mechanically driven & mechanically reversed simple concrete pump
CN105829712A (en) * 2013-10-29 2016-08-03 热技术控股公司 System for feeding and pumping of less pumpable material in a conduit line
EP3273058A1 (en) * 2016-07-22 2018-01-24 Putzmeister Engineering GmbH Viscous material pump
US10001114B1 (en) * 2017-03-28 2018-06-19 Jessop Initiatives LLC Continuous flow pumping system
CN108691557A (en) * 2018-07-24 2018-10-23 山东科技大学 A kind of no pulse S valve wet-spraying machines
CN109098959A (en) * 2018-07-24 2018-12-28 山东科技大学 A kind of concrete spraying machine distribution valve arrangement
RU191862U1 (en) * 2019-04-29 2019-08-26 АО Триада-Холдинг Installation for feeding highly viscous quick setting repair compounds
US10519943B2 (en) 2014-01-15 2019-12-31 Francis Wayne Priddy Concrete pump system and method
US10900302B2 (en) 2018-07-27 2021-01-26 Country Landscapes & Tree Service, LLC Directional drilling systems, apparatuses, and methods
US11629707B2 (en) * 2017-07-27 2023-04-18 Weir Minerals Netherlands B.V. Pump system for handling a slurry medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2033338A (en) * 1933-11-13 1936-03-10 Andrew Stewart Cement, grout, or concrete placer
US3298322A (en) * 1966-04-20 1967-01-17 Robert T Sherrod Pump for semi-fluid materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2033338A (en) * 1933-11-13 1936-03-10 Andrew Stewart Cement, grout, or concrete placer
US3298322A (en) * 1966-04-20 1967-01-17 Robert T Sherrod Pump for semi-fluid materials

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832097A (en) * 1971-12-16 1974-08-27 Putzmeister Interholding Gmbh Pump for concrete and other sludging materials
FR2163744A1 (en) * 1971-12-16 1973-07-27 Putzmeister Interholding Gmbh
US3804556A (en) * 1972-09-28 1974-04-16 Dow Chemical Co Slurry pump
US3897180A (en) * 1973-02-20 1975-07-29 Gerald H Reinert Concrete pumping machine
US3908865A (en) * 1973-10-15 1975-09-30 Donald F Day Dual cylinder feeder for course granular material
US3982857A (en) * 1973-10-17 1976-09-28 Karl Schlecht Support means for movable connector in concrete pump arrangement
US3909160A (en) * 1973-10-26 1975-09-30 Eugene L Sherrod Pump for semi-fluid materials
US3989420A (en) * 1974-05-15 1976-11-02 J. I. Case Company Concrete pumping apparatus
US3982663A (en) * 1975-02-07 1976-09-28 The Gates Rubber Company Method and apparatus for metering thixotropic battery paste
US3963385A (en) * 1975-05-05 1976-06-15 Caban Angel M Valve assembly for concrete pumps
US4174788A (en) * 1976-10-04 1979-11-20 Casagrande & C. S.P.A. Batching plant for lime concrete
US4345883A (en) * 1979-06-11 1982-08-24 Westerlund Robert E High pressure pumping apparatus for semi-fluid material
US4343598A (en) * 1980-03-14 1982-08-10 Friedrich Wilh. Schwing Gmbh Viscous material pump, particularly for concrete
EP0046902A3 (en) * 1980-09-03 1982-03-17 Libra, S.A. Concrete pumping device
EP0046902A2 (en) * 1980-09-03 1982-03-10 Libra, S.A. Concrete pumping device
US4569642A (en) * 1982-01-22 1986-02-11 Dwyer Anthony F Slurry pump
DE3219882A1 (en) * 1982-05-27 1983-12-01 Maschinenfabrik Walter Scheele GmbH & Co KG, 4750 Unna-Massen Concrete pump
DE3243738A1 (en) * 1982-11-26 1984-05-30 Karl Dipl.-Ing. 7000 Stuttgart Schlecht Hydraulic reversal for two-cylinder piston pump
US4653990A (en) * 1984-05-26 1987-03-31 Karl Schlecht Positive double-piston displacement pump conveying pasteous material
DE3738359A1 (en) * 1987-11-12 1989-05-24 Putzmeister Maschf FUEL PUMP
US4913089A (en) * 1988-07-29 1990-04-03 American Cast Iron Pipe Company Concrete injector pump and process for lining pipe
US4987013A (en) * 1988-07-29 1991-01-22 American Cast Iron Pipe Company Process for lining pipe
US5263828A (en) * 1989-03-29 1993-11-23 Friedrich Wilh. Schwing Gmbh Two-cylinder thick matter pump having a piston storage
EP0422745A1 (en) * 1989-10-13 1991-04-17 Pieter Faber Concrete-pumping device
US5114319A (en) * 1989-10-13 1992-05-19 Pieter Faber Concrete-pumping device
US5316453A (en) * 1992-03-19 1994-05-31 Friedrich Wilh. Schwing Gmbh Slurry pump with discharge cylinders, especially two-cylinder concrete pump
CN1042258C (en) * 1992-03-19 1999-02-24 弗里德里克-威尔-施温有限公司 Concrete pump with conveying cylinder, especially double-cylinders concrete pump
EP0561262A1 (en) * 1992-03-19 1993-09-22 Schwing GmbH Pump for viscous materials having cylinders, in particular two cylinder concrete pump
US5993181A (en) * 1995-02-07 1999-11-30 Gerhard Hudelmaier Process and device for feeding concrete or other thick materials
EP0854285A3 (en) * 1997-01-17 1999-11-24 Gian Guido Ravellini Pumping device, in particular for cement material
EP0854285A2 (en) * 1997-01-17 1998-07-22 Gian Guido Ravellini Pumping device, in particular for cement material
WO1999009315A1 (en) 1997-08-13 1999-02-25 Schwing Gmbh Two-cylinder thick matter pump
DE19735091A1 (en) * 1997-08-13 1999-04-29 Schwing Gmbh F Two-cylinder slurry pump
DE19735091B4 (en) * 1997-08-13 2006-03-02 Schwing Gmbh Two-cylinder slurry pump
US20030143089A1 (en) * 1999-11-29 2003-07-31 Gerhard Hudelmaier Thick matter pump
WO2001040649A1 (en) * 1999-11-29 2001-06-07 Hudelmaier, Jörg Thick matter pump
US6793467B2 (en) * 1999-11-29 2004-09-21 Jorg Hudelmaier Thick matter pump
US6776558B1 (en) * 1999-12-08 2004-08-17 Putzmeister Ag Method and arrangement for concreting vertical shafts
WO2004025119A3 (en) * 2002-08-31 2004-10-14 Joerg Hudelmaier Thick material pump
WO2004025119A2 (en) * 2002-08-31 2004-03-25 Hudelmaier Joerg Thick material pump
DE10343802B4 (en) * 2003-09-22 2007-12-06 Schwing Gmbh Piston slurry pump with continuous flow
US7771174B2 (en) 2003-09-22 2010-08-10 Schwing Gmbh Reciprocating slurry pump with a continuous feed rate
KR100934634B1 (en) 2003-09-22 2009-12-31 슈빙 게엠베하 Piston high density pump with continuous feed rate and control method for control thereof
US20070196224A1 (en) * 2003-09-22 2007-08-23 Manfred Lenhart Reciprocating Slurry Pump With A Continuous Feed Rate
WO2005033508A1 (en) * 2003-09-22 2005-04-14 Schwing Gmbh Piston high-density pump with a continuous flow rate
CN100412358C (en) * 2003-09-22 2008-08-20 施维英集团公司 Piston high-density pump with a continuous flow rate
DE102004009362A1 (en) * 2004-02-26 2005-10-06 Schwing Gmbh Piston slurry pump
DE102004009363A1 (en) * 2004-02-26 2005-09-15 Schwing Gmbh Piston slurry pump
US20080260560A1 (en) * 2004-02-26 2008-10-23 Manfred Lenhart Piston Pump for Thick Materials
DE102004009362B4 (en) * 2004-02-26 2008-01-24 Schwing Gmbh Piston slurry pump
DE102004009363B4 (en) * 2004-02-26 2008-01-24 Schwing Gmbh Piston slurry pump
CN100547239C (en) * 2004-03-26 2009-10-07 普茨迈斯特混凝土泵有限公司 Be used to control the apparatus and method of slurry pump
US20060193738A1 (en) * 2005-02-26 2006-08-31 Friedrich Schwing Pump apparatus and method for continuously conveying a viscous material
DE102005008938B4 (en) * 2005-02-26 2007-01-25 Schwing, Friedrich, Dipl.-Ing. Pumping device and method for the continuous delivery pulpy masses
DE102005008938A1 (en) * 2005-02-26 2006-08-31 Schwing, Friedrich, Dipl.-Ing. Pump device comprises two main conveyor cylinders with a switchable slider system that changes position of the connecting either first or second main conveyor cylinders to conveying channel and has compensation cylinder downstream
EP1978249A4 (en) * 2006-01-23 2010-06-09 Sany Heavy Ind Co Ltd A distribution valve for concrete transport pump
EP1978249A1 (en) * 2006-01-23 2008-10-08 Sany Heavy Industry Co., Ltd. A distribution valve for concrete transport pump
US9046086B2 (en) 2009-01-16 2015-06-02 Friedrich Schwing Method for feeding pasty masses and pump device for feeding pasty masses
CN101922429A (en) * 2010-08-25 2010-12-22 三一重工股份有限公司 Concrete mixer and controlling method thereof, pumping system and distributing mechanism thereof
WO2012024964A1 (en) * 2010-08-25 2012-03-01 湖南三一智能控制设备有限公司 Concrete pumping vehicle and control method thereof, pumping system and distribution mechanism thereof
CN101922429B (en) * 2010-08-25 2012-07-25 三一重工股份有限公司 Concrete pump truck and control method thereof as well as pumping system and distribution mechanism thereof
CN102588243A (en) * 2012-03-15 2012-07-18 三一重工股份有限公司 Engineering machinery, material pumping system and pumping method for material pumping system
CN104541054A (en) * 2012-09-13 2015-04-22 普茨迈斯特工程有限公司 Device for the drive control of a two-cylinder thick matter pump
CN104541054B (en) * 2012-09-13 2016-11-09 普茨迈斯特工程有限公司 Device for drive control twin-tub underflow pump
CN103410325A (en) * 2012-12-17 2013-11-27 北汽福田汽车股份有限公司 Pumping mechanism and concrete pump truck
US20160160851A1 (en) * 2013-08-13 2016-06-09 Putzmeister Engineering Gmbh Two-cylinder thick matter pump having a transfer tube
CN105683569A (en) * 2013-08-13 2016-06-15 普茨迈斯特工程有限公司 Two-cylinder thick matter pump having a transfer tube
JP2016528433A (en) * 2013-08-13 2016-09-15 プッツマイスター エンジニアリング ゲーエムベーハー Two-cylinder viscous material pump with pipe switching part
DE102013215990A1 (en) * 2013-08-13 2015-02-19 Putzmeister Engineering Gmbh Two-cylinder thick matter pump with diverter
CN105829712B (en) * 2013-10-29 2018-10-12 热技术控股公司 System for being supplied in pipe-line and pumping the material for being not easy to pump
CN105829712A (en) * 2013-10-29 2016-08-03 热技术控股公司 System for feeding and pumping of less pumpable material in a conduit line
EP3063407A4 (en) * 2013-10-29 2017-08-09 Thermtech Holdings AS System for feeding and pumping of less pumpable material in a conduit line
WO2015087337A1 (en) * 2013-12-12 2015-06-18 Amit Arun Gokhale Hydraulically operated but mechanically driven & mechanically reversed simple concrete pump
US8827657B1 (en) * 2014-01-15 2014-09-09 Francis Wayne Priddy Concrete pump system and method
US10519943B2 (en) 2014-01-15 2019-12-31 Francis Wayne Priddy Concrete pump system and method
CN103821688B (en) * 2014-01-20 2016-04-06 三一汽车制造有限公司 A kind of pumping mechanism, pumping controlling method and concrete pumping equipment
CN103821688A (en) * 2014-01-20 2014-05-28 三一汽车制造有限公司 Pumping mechanism, pumping control method and concrete pumping equipment
WO2018015070A1 (en) * 2016-07-22 2018-01-25 Putzmeister Engineering Gmbh Thick material pump
US20190293060A1 (en) * 2016-07-22 2019-09-26 Putzmeister Engineering Gmbh Thick Material Pump
EP3273058A1 (en) * 2016-07-22 2018-01-24 Putzmeister Engineering GmbH Viscous material pump
US11255317B2 (en) * 2016-07-22 2022-02-22 Putzmeister Engineering Gmbh Thick material pump
US10001114B1 (en) * 2017-03-28 2018-06-19 Jessop Initiatives LLC Continuous flow pumping system
US11629707B2 (en) * 2017-07-27 2023-04-18 Weir Minerals Netherlands B.V. Pump system for handling a slurry medium
CN108691557A (en) * 2018-07-24 2018-10-23 山东科技大学 A kind of no pulse S valve wet-spraying machines
CN109098959A (en) * 2018-07-24 2018-12-28 山东科技大学 A kind of concrete spraying machine distribution valve arrangement
CN108691557B (en) * 2018-07-24 2021-02-09 山东科技大学 No pulse S valve wet blasting machine
US10900302B2 (en) 2018-07-27 2021-01-26 Country Landscapes & Tree Service, LLC Directional drilling systems, apparatuses, and methods
RU191862U1 (en) * 2019-04-29 2019-08-26 АО Триада-Холдинг Installation for feeding highly viscous quick setting repair compounds

Similar Documents

Publication Publication Date Title
US3663129A (en) Concrete pump
SU498917A3 (en) Viscosity pump
US4790728A (en) Dual-rigid-hollow-stem actuators in opposite-phase slurry pump drive having variable pumping speed and force
US3331332A (en) Piston pump for conveying concrete or other masses of similar consistency
US3056356A (en) Rotary pump
CN109595152A (en) A kind of big flow twin flue parallel connection three-apexed rotor pump
GB1461529A (en) Pumping apparatus
RU1771516C (en) Two-cylinder piston pump
SU712041A3 (en) Piston concrete pump
US3429267A (en) Material pumping assembly
US2360876A (en) Compressor and the like
US2702510A (en) Pump
US2446748A (en) etter
US3257953A (en) Positive displacement piston pump
US2495445A (en) Double piston valveless pump or engine
RU186212U1 (en) PISTON PUMP
CN207315587U (en) A kind of reciprocating continuous slush pump
SU510586A1 (en) Piston pump
US2990110A (en) Fluid compressors
US2814255A (en) Hydraulic pump
US3168050A (en) Piston pump
RU190164U1 (en) PISTON PUMP
SU1177531A1 (en) Concrete pump
US1645834A (en) Valveless pump
US2908225A (en) Rotor pump