WO2005092888A1 - ピリジル基で置換されたオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子 - Google Patents

ピリジル基で置換されたオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2005092888A1
WO2005092888A1 PCT/JP2005/006420 JP2005006420W WO2005092888A1 WO 2005092888 A1 WO2005092888 A1 WO 2005092888A1 JP 2005006420 W JP2005006420 W JP 2005006420W WO 2005092888 A1 WO2005092888 A1 WO 2005092888A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
general formula
organic
Prior art date
Application number
PCT/JP2005/006420
Other languages
English (en)
French (fr)
Inventor
Tetsuzo Miki
Makoto Nagaoka
Shuichi Hayashi
Yoshio Taniguchi
Musubu Ichikawa
Original Assignee
Hodogaya Chemical Co., Ltd.
Shinshu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004089277A external-priority patent/JP4610918B2/ja
Application filed by Hodogaya Chemical Co., Ltd., Shinshu University filed Critical Hodogaya Chemical Co., Ltd.
Priority to CN2005800091777A priority Critical patent/CN1938297B/zh
Priority to EP05727286A priority patent/EP1746094A4/en
Priority to KR1020067019559A priority patent/KR101160706B1/ko
Priority to US10/594,241 priority patent/US7812341B2/en
Priority to JP2006511602A priority patent/JP4879734B2/ja
Publication of WO2005092888A1 publication Critical patent/WO2005092888A1/ja
Priority to US12/622,125 priority patent/US7977671B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to a compound and an element suitable for an organic electroluminescence (EL) element which is a self-luminous element suitable for various display devices. More specifically, the present invention relates to an oxaziazole ring structure in which a substituted pyridyl group is linked. And an organic EL device using the compound.
  • EL organic electroluminescence
  • organic EL devices are self-luminous devices, they are brighter and have better visibility than liquid crystal devices, and can display sharper images. Therefore, active research has been conducted.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-48686
  • Patent Document 2 Patent No. 3194648
  • Non-Patent Document 1 Proceedings of the 9th Workshop of the Japan Society of Applied Physics 55-61 Page (2001)
  • Non-Patent Document 2 the use of triplet excitons has been attempted for the purpose of further improving luminous efficiency, and the use of phosphorescent emitters has been studied (for example, see Non-Patent Document 2).
  • Non-Patent Document 2 Proceedings of the 9th Workshop of the Japan Society of Applied Physics 23-31 (1)
  • the light-emitting layer can also be formed by doping a phosphor or phosphorescent substance into a charge-transporting compound generally called a host material.
  • a host material a charge-transporting compound generally called a host material.
  • a typical light-emitting material tri (8-hydroxyquinoline) aluminum (hereinafter abbreviated as A1Q), is also commonly used as an electron transport material, but it is said that the electron transfer speed is slow. Has been done.
  • PBD 2- (4-biphenylyl) -1-5- (4-t-butylphenyl) -1,3,4-oxoxadiazole
  • Non-Patent Document 3 Jpn.J.A.p.1.Phys., 27, L269 (1988)
  • Patent Document 3 Patent No. 2 7 2 1 4 4 2
  • Patent Document 4 Japanese Patent No. 331632
  • Patent Document 5 Japanese Patent No. 34886694
  • a hole blocking layer As a hole blocking material, triazole derivatives (for example, see Patent Document 6), bathocuproine (hereinafter abbreviated as BCP), and a mixed ligand complex of aluminum (BA1q) (for example, (See Patent Document 2).
  • BCP bathocuproine
  • BA1q mixed ligand complex of aluminum
  • Patent Document 6 Patent No. 27343441
  • the hole blocking material that is currently commonly used is BCP, but it cannot be said that it is a sufficiently stable material, so it cannot be said that it functions as a hole blocking layer sufficiently, and satisfactory device characteristics are obtained. Had not been obtained.
  • An object of the present invention is to provide a material for an organic EL device with high efficiency and high durability, which has excellent characteristics of excellent electron injection / transport performance, hole blocking ability, and high stability in a thin film state.
  • Another object of the present invention is to provide a highly efficient and highly durable organic EL device using the above compound.
  • the physical properties of the organic compound suitable for the present invention include (1) good electron injectability, (2) high electron transfer speed, (3) excellent hole blocking ability, ( 4) The thin film state is stable.
  • the physical characteristics of the device suitable for the present invention include (1) high luminous efficiency, (2) low luminescence starting voltage, (3) low practical driving voltage, and (4) maximum High light emission luminance can be given.
  • the present inventors focused on the fact that the nitrogen atom of the pyridine ring, which has electron affinity, has the ability to coordinate to the metal.
  • a novel organic compound linked to a single ring was designed and chemically synthesized, and various organic EL devices were prototyped using the compound, and as a result of intensive evaluation of device characteristics, the present invention was completed. I got it.
  • Ar represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted fused polycyclic aromatic group
  • R 2 , R 3 , 1 ⁇ 4 Oyobi 1 5 one of them is a linking group
  • the other may hydrogen atom be the same or different, a fluorine atom, Shiano group, an alkyl group, a substituted or unsubstituted phenyl group, a substituted or Represents an unsubstituted naphthyl group, R 6 , R 7 , R 8 , R 9, and are two or more bonding groups, and the other may be the same or different, and may be a hydrogen atom or a fluorine atom.
  • a cyano group, an alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, m represents an integer of 1 to 3, and n represents an integer of 0 to 4, where n 0.
  • the four groups excluding the linking group from R 2 , R 3 , R 4 and R 5 are the same. Sometimes it is not a hydrogen atom.
  • n 0, and one of the four groups excluding the bonding group from R_ 2 , R 3 , R 4 and 1 ⁇ 5 is a phenyl group
  • the present invention also relates to an organic electroluminescent element having a pair of electrodes and at least one organic layer sandwiched between the pair of electrodes, wherein the compound is contained as a constituent material of at least one organic layer.
  • Specific examples of the hydrocarbon group, the aromatic heterocyclic group or the condensed polycyclic aromatic group include Group, biphenyl group, evening phenyl group, tetrakisphenyl group, stilyl group, naphthyl group, anthryl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, pyridyl group, pyrimidyl group, Furanyl, pyronyl, thiopheny
  • the group include a fluorine atom, a chlorine atom, a cyano group, a hydroxyl group, a nitro group, an alkyl group, an alkoxy group, an amino group, a substituted amino group, a trifluoromethyl group, a phenyl group, a tolyl group, Examples include a naphthyl group and an aralkyl group.
  • substituted pyridyl group in the general formula (1) examples include a dipyridyl group, a pyridyl group, and a phenylpyridyl group.
  • the compound having an oxadiazole ring structure represented by the general formula (1) of the present invention and having a substituted pyridyl group linked thereto has a higher electron transfer rate than conventional electron transporting materials and has an excellent hole blocking ability. And the thin film state is stable.
  • the compound represented by the general formula (1) of the present invention and having an oxaziazole ring structure in which a substituted pyridyl group is linked can be used as a constituent material of an electron transport layer of an organic EL device.
  • a material that has a higher electron injection and transfer speed than conventional materials the efficiency of electron transport from the electron transport layer to the light emitting layer is improved, and the luminous efficiency is improved, and the driving voltage is reduced.
  • the organic EL element has an effect of improving the durability.
  • the compound represented by the general formula (1) of the present invention and having an oxadiazole ring structure in which a substituted pyridyl group is linked can also be used as a constituent material of a hole blocking layer of an organic EL device.
  • the compound represented by the general formula (1) of the present invention and having an oxaziazole ring structure in which a substituted pyridyl group is linked can also be used as a constituent material of a light emitting layer of an organic EL device.
  • the material of the present invention which has better electron transportability than conventional materials and has a wide band gap, is used as a host material of a light emitting layer, and a phosphor or a phosphorescent material called a dopant is carried thereon to form a light emitting layer.
  • the use of the organic EL device has an effect that a driving voltage is reduced and an organic EL element having improved luminous efficiency can be realized.
  • the organic EL device of the present invention has an oxadiazole ring structure in which a substituted pyridyl group is linked, in which electron transfer is faster than conventional electron transport materials, has excellent hole blocking ability, and is stable in a thin film state.
  • the use of a compound having the above properties makes it possible to achieve high efficiency and high durability.
  • the present invention is a compound having an oxadiazole ring structure in which a substituted pyridyl group is linked, which is useful as a constituent material of an electron transport layer, a hole blocking layer, or a light emitting layer of an organic EL device.
  • the fabricated organic EL device According to the present invention, the luminous efficiency and the durability of the conventional organic EL device can be remarkably improved.
  • FIG. 1 is a diagram showing an EL element configuration of Example 19;
  • FIG. 2 is a diagram showing a configuration of an EL device of Example 21.
  • FIG. 3 is a diagram showing an EL element configuration of Example 22.
  • FIG. 4 is a diagram showing a configuration of an EL device of Example 23.
  • FIG. 5 is a graph comparing the voltage-Z current density characteristics of Example 19 and Comparative Example 1.
  • FIG. 6 is a graph comparing the voltage / luminance characteristics of Example 19 and Comparative Example 1.
  • FIG. 7 is a graph comparing the current density Z luminance characteristics of Example 19 and Comparative Example 1.
  • FIG. 8 is a graph comparing the current density Z current efficiency between Example 19 and Comparative Example 1.
  • FIG. 9 is a graph comparing the voltage / Z current density characteristics of Example 21 and Comparative Example 2.
  • FIG. 10 is a graph comparing the voltage-Z luminance characteristics of Example 21 and Comparative Example 2.
  • FIG. 11 is a graph comparing the current density Z luminance characteristics of Example 21 and Comparative Example 2.
  • FIG. 12 is a graph comparing the current density / current efficiency between Example 21 and Comparative Example 2.
  • the compound of the present invention having an oxaziazole ring structure to which a substituted pyridyl group is linked is a novel compound, and these compounds include, for example, 6- (2H-tetrazol-5-yl) -2,2 It can be synthesized by condensing, -bipyridine and the corresponding pyridine or phenylpyridine with various aromatic acid chlorides.
  • the melting point and glass transition point were measured using a powder and a high-sensitivity differential scanning calorimeter DSC310S manufactured by Bruker AXS.
  • the work function was measured by preparing a 100 nm thin film on an ITO substrate and using an atmospheric photoelectron spectrometer A C2 type manufactured by RIKEN KEIKI. Work function is an indicator of hole blocking ability.
  • the structure of the organic EL device of the present invention includes an anode, a hole injecting layer, a hole transporting layer, a light emitting layer, a hole blocking layer, an electron transporting layer, and a cathode, which are sequentially formed on a substrate.
  • an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode can be sequentially formed on a substrate.
  • anode of the organic EL element an electrode material having a large work function such as ITO or gold is used.
  • hole injection layer in addition to copper phthalocyanine (hereinafter abbreviated as CuPc), a material such as a star burst type triphenylamine derivative, a naphthaleneamine compound, or a coating type material can be used. .
  • N, N'-diphenyl N, N'-di (m-tolyl) benzidine (hereinafter abbreviated as TPD) and N, N'-diphenyl N, N'-di (mononaphthyl) benzidine (hereinafter abbreviated as NPD), various triphenylamine tetramers and the like can be used.
  • TPD N, N'-diphenyl N, N'-di (m-tolyl) benzidine
  • NPD N, N'-diphenyl N, N'-di (mononaphthyl) benzidine
  • various triphenylamine tetramers and the like can be used.
  • a coating type polymer material such as PEDOT / PSS can be used as PEDOT / PSS.
  • the light emitting layer, hole blocking layer, and electron transporting layer of the organic EL device of the present invention include compounds having an oxadiazole ring structure in which a substituted pyridyl group is linked, as well as aluminum complexes, oxazole derivatives, and phenol derivatives. And polydialkylfluorene derivatives.
  • an organic EL device can be manufactured. Further, as a host material for the light emitting layer, for example, a phosphor such as quinacridone, coumarin, or rubrene, or a dopant such as a phosphorescent emitter such as an iridium complex of phenylpyridine is added. Also, a high-performance organic EL device can be manufactured.
  • an oxaziazole ring structure in which a substituted pyridyl group is linked A conventional electron transporting material can be used as an electron transporting layer by layering or co-evaporating a conventional electron transporting material on the compound.
  • the organic EL device of the present invention may have an electron injection layer.
  • the electron injection layer lithium fluoride or the like can be used.
  • the cathode an electrode material having a low work function, such as aluminum, or an alloy having a lower work function, such as aluminum magnesium, is used. Examples>
  • Example 1
  • Phpy OXDm 2- (2-phenylvinylidine-1-6-yl) -11,3,4-oxaziazol-l-5-yl] benzene
  • Phpy O XD (Abbreviated as BP) (synthesis of (1 2)
  • the melting point and glass transition point of the compound of the present invention were determined by a high-sensitivity differential scanning calorimeter (DSC3100S, manufactured by Bruker AXS).
  • the compound of the present invention has a high glass transition point and a stable thin film state Example 18
  • a vapor-deposited film having a thickness of 100 nm was formed on an ITO substrate, and the work function was measured with an atmospheric photoelectron spectrometer (AC2, manufactured by Riken Keiki). All the compounds of the present invention exceeded the measurement limit of 6.2 eV of the measurement device.
  • the compound of the present invention has a clearly deeper work function than the hole transporting material, and has a large hole blocking ability.
  • the organic EL device has a hole transport layer 4, a light emitting layer 5, an electron transport layer 7, a cathode ( (Aluminum magnesium electrode) It was prepared by vapor deposition in the order of 9.
  • the glass substrate 1 on which a 150 nm-thick ITO film was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. This was mounted in a vacuum evaporation machine, and the pressure was reduced to 0.001 Pa or less.
  • TPD hole transport layer 4 at a deposition rate of 6 nmZmin.
  • A1q was formed as the light-emitting layer 5 at a deposition rate of 6 nmXmin.
  • B py O XDm (2) of the present invention was formed as an electron transport layer 7 at a deposition rate of 6 nm / min. All the vapor depositions so far were continuously performed without breaking the vacuum.
  • a cathode vapor deposition mask was inserted, and a Mg 9 Ag alloy was vapor-deposited at a ratio of 10: 1 to about 200 nm to form a cathode 9.
  • the fabricated device was stored overnight in a vacuum desiccator, and its characteristics were measured at room temperature in the air.
  • the characteristics of the organic EL device of the present invention thus formed are obtained by applying an applied voltage of 100 cd dZm 2 and applying a current of 20 OmA / cm 2. And the luminous efficiency defined by luminous luminance / voltage.
  • an organic EL device was produced under the same conditions as in Example 19 except that the material of the electron transport layer 7 was changed from B py OXDm (2) to B py OXD P y (4).
  • the characteristics were investigated. At 4.0 V, light emission of 100 cc dZm 2 was observed. At 8.5 V, a current of 200 mA / cm 2 flowed, and stable green luminescence of 1150 cc dZm 2 was obtained. The luminous efficiency at this luminance was as high as 5.8 cdZA. Comparative Example 1
  • an organic EL device was manufactured under the same conditions as in Example 19 except that the material of the electron transport layer 7 was changed to A1q, and the characteristics were examined. That is, Alq 3 was formed as a light emitting layer and an electron transporting layer 5 and 7 at a deposition rate of 6 nm / min to about 50 nm. A light emission of 100 cd / m 2 was observed from 7.2 V, and a current of 200 mA / cm 2 flowed at 13.3 V, and a green light emission of 960 cd / m 2 was obtained. Was. The luminous efficiency at this luminance was 4.6 cd / A.
  • the organic EL device of the present invention is superior in luminous efficiency to the device using A1q used as a general electron transporting material, and furthermore has a remarkable reduction in driving voltage. Because it can be achieved, it turned out to be excellent in durability.
  • An organic EL device as shown in FIG. 2 was prepared by forming an ITO electrode as a transparent anode 2 on a glass substrate 1 in advance, followed by a hole transport layer 4, a light emitting layer 5, a hole blocking layer 6, The electron transport layer 7 and the cathode (aluminum magnesium electrode) 9 were deposited in this order.
  • the glass substrate 1 on which a 150 nm-thick ITO film was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. This was mounted in a vacuum evaporation machine and the pressure was reduced to 0.001 Pa or less.
  • about 50 nm of TPD was formed as a hole transport layer 4 at a deposition rate of 6 nmZmin.
  • a 1 q was deposited as the light emitting layer 5 at a deposition rate of 6 nm / m
  • B py ⁇ XDm (2) of the present invention was formed as a hole blocking layer 6 to a thickness of about 20 nm at a deposition rate of 6 nm / min. Further, about 20 nm of A1q was formed as an electron transporting layer 7 'at a deposition rate of 6 nmZmin. All of the depositions so far were performed continuously without breaking vacuum. Finally, the cathode 9 was formed by inserting a mask for cathodic vapor deposition and vapor-depositing an MgAg alloy at a ratio of 10: 1 to about 200 nm. The fabricated device was stored overnight in a vacuum desiccator, and its characteristics were measured at room temperature in the air.
  • an organic E device was manufactured under the same conditions as in Example 21 except that the material of the hole blocking layer 6 was changed to BCP, and its characteristics were examined. That is, about 20 nm of BCP was formed as the hole blocking layer 6 at a deposition rate of 6 nm / min. A light emission of 100 cd / m 2 was observed from 12.0 V, and a current of 200 mAZ cm 2 flowed at 19.4 V, and a green light emission of 1900 cd / m 2 was obtained. Was. The luminous efficiency at this luminance was 5.3 cd / A. Maximum luminance before breakthrough was 1 2 7 9 0 c dZm 2 .
  • the organic EL device of the present invention was superior in durability to the device using BCP used as a general hole blocking material. Furthermore, it was found that the organic EL device was suitable for high-brightness light emission.
  • An organic EL device as shown in FIG. 3 was prepared by forming an IT electrode in advance as a transparent anode 2 on a glass substrate 1, and a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, A hole blocking layer 6, an electron transport layer 7, and a cathode (aluminum magnesium electrode) 9 were deposited in this order.
  • the glass substrate 1 on which a 150 nm-thick ITO film was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. This was mounted in a vacuum vapor deposition machine, and the pressure was reduced to less than or equal to 0 OOlPa.
  • Bpy @ XDm (2) of the present invention was formed as a hole blocking layer and an electron transporting layer 6 and 7 at a deposition rate of 6 nm / min to about 30 nm.
  • the pressure was returned to the atmospheric pressure, a mask for cathode deposition was inserted, the pressure was again reduced, and a MgAg alloy was deposited at a ratio of 10: 1 to about 200 nm to form a cathode 9.
  • the fabricated devices were stored overnight in a vacuum desiccator, and their characteristics were measured in air at room temperature.
  • an organic EL device was manufactured under the same conditions as in Example 22 except that B pyOXDm (2) according to the present invention was replaced with AlQ, and the characteristics were examined. That is, AIQ was formed as a light-emitting layer, a hole-blocking layer, and an electron-transport layer 5, 6 and 7 at a deposition rate of 6 nmZmin and about 50 nm. Green light emission of 100 cd dZm 2 was observed from 7.2 V. The maximum luminance before breakthrough of this element was 149 cd / m 2 .
  • the organic EL device of the present invention was found to be excellent in durability and an organic EL device suitable for high-brightness light emission.
  • An organic EL device as shown in FIG. 4 was prepared by forming an ITO electrode as a transparent anode 2 on a glass substrate 1 in advance, and a hole transport layer 4, a light emitting layer 5, an electron transport layer 7, and an electron Injection layer 8, cathode (aluminum electrode) 9 It was produced by vapor deposition.
  • the glass substrate 1 on which an IT film with a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed with oxygen plasma treatment. This was mounted in a vacuum evaporation machine, and the pressure was reduced to 0.001 Pa or less.
  • NPD hole transport layer 4
  • NPD hole transport layer 4
  • CPBO (6) of the present invention was formed as an electron transporting layer 7 to a thickness of about 30 nm at a deposition rate of 6 nm / min.
  • about 0.5 nm of lithium fluoride was formed as the electron injection layer 8 at a deposition rate of 0.6 nm min. All of the depositions so far were performed continuously without breaking vacuum.
  • a cathode deposition mask was inserted, and aluminum was deposited to a thickness of about 200 nm to form a cathode 9.
  • the fabricated device was stored overnight in a vacuum desiccator, and its characteristics were measured at room temperature in the air.
  • an organic EL device was produced under the same conditions as in Example 23 except that the material of the electron transport layer 7 was replaced with Phpy 0 XD m (11) of the present invention. Was examined.
  • the organic EL device was manufactured under the same conditions as in Example 23 except that the material of the electron transport layer ⁇ ⁇ ⁇ was replaced with FP hpy OXDm (16) of the present invention. A device was fabricated and its characteristics were examined.
  • an organic EL device was manufactured under the same conditions as in Example 23, except that the material of the electron transport layer 7 was changed to A1q, and the characteristics were examined. That is, A1d3 was formed as the light emitting layer / electron transporting layers 5 and 7 at about 50 nm at a deposition rate of 6 nm / min. Emission of 100 cd dZm 2 was observed at 3.9 V, and emission of 1000 cd / m 2 was obtained at 7.8 V.
  • the compound having an oxadiazole ring structure of the present invention, in which a substituted pyridyl group is linked, is excellent as an organic EL device compound because it has a good electron injection, a high electron transfer rate, and a stable thin film state. .
  • the compound By manufacturing an organic EL element using a material, the driving voltage can be significantly reduced, and the durability can be improved. For example, it has become possible to expand into home appliances and lighting applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Description

明 細 書 ピリジル基で置換されたォキサジァゾ一ル環構造を有する化合物および 有機エレク トロルミネッセンス素子 技術分野
本発明は、 各種の表示装置に好適な自発光素子である有機エレク トロ ルミネッセンス(E L )素子に適じた化合物と素子に関するものでぁリ、 詳しくは置換されたピリジル基が連結したォキサジァゾール環構造を有 する化合物と、 該化合物を用いた有機 E L素子に関するものである。 背景技術
有機 E L素子は自己発光性素子であるため、 液晶素子にくらベて明る く視認性に優れ、 鮮明な表示が可能であるため、 活発な研究がなされて きた。
1 9 8 7年にィーストマン ' コダック社の C . W . T n gらはニ層 型の積層構造素子を開発すること.により有機材料を用いた有機 E L素子 を実用的なものにした。 彼らは電子を輸送する蛍光体と正孔を輸送する 有機物とを積層し、 両方の電荷を蛍光体の層の中に注入して発光させる ことにより、 1 0 V以下の電圧で 1 0 0 0 c d Zm 2以上の高輝度が得 られるようになった (例えば、 特許文献 1および特許文献 2参照)。
特許文献 1 : 特開平 8— 4 8 6 5 6号公報
特許文献 2 : 特許第 3 1 9 4 6 5 7号公報
現在まで、 有機 E L素子の実用化のために多くの改良がなされ、 二層 の役割をさらに細分化して、 基板上に順次に、 陽極、 正孔注入層、 正孔 輸送層、 発光層、 電子輸送層、 電子注入層、 陰極を設けた電界発光素子 によって高効率と耐久性が達成されている(例えば、非特許文献 1参照)。 非特許文献 1 : 応用物理学会第 9回講習会予稿集 5 5〜 6 1ベ一 ジ (2 0 0 1 )
また発光効率の更なる向上を目的として三重項励起子の利用が試みら れ、 燐光発光体の利用が検討されている (例えば、 非特許文献 2参照)。
非特許文献 2 : 応用物理学会第 9回講習会予稿集 2 3〜3 1ぺ一 ジ (2 0 0 1 )
発光層は、 一般的にホスト材料と称される電荷輸送性の化合物に、 蛍 光体や燐光発光体をドープして作成することもできる。 上記の講習会予 稿集に記載されているように、有機 E L素子における有機材料の選択は、 その素子の効率や耐久性など諸特性に大きな影響を与える。
有機 E L素子においては、 両電極から注入された電荷が発光層で再結 合して発光が得られるが、 電子の移動速度より正孔の移動速度が速いた め、 正孔の一部が発光層を通り抜けてしまうことによる効率低下が問題 となる。そのため電子の移動速度の速い電子輸送材料が求められている。 代表的な発光材料であるトリフヽ ( 8—ヒドロキシキノリン) アルミ二 ゥム (以後、 A 1 Qと略称する) ま電子輸送材料としても一般的に用い られるが、 電子の移動速度は遅いと言われている。 そのために、 移動速 度の速い材料として、 2— (4—ビフエ二リル) 一 5— (4— t —プチ ルフエニル) 一 1, 3, 4—ォキサジァゾ一ル (以後、 P BDと略称す る) などが提案された (例えば、 非特許文献 3参照)。
非特許文献 3 : J p n . J . A p p 1 . P h y s . , 2 7 , L 2 6 9 ( 1 9 8 8)
しかし、 P BDは結晶化を起こしやすいなど、 薄膜状態における安定 性に乏しいことが指摘され、 種々のォキサジァゾ一ル誘導体が提案され ている (例えば、 特許文献 3〜 5参照)。 特許文献 3 : 特許第 2 7 2 1 4 4 2号公報
特許文献 4 : 特許第 3 3 1 6 2 3 6号公報
特許文献 5 : 特許第 3 4 8 6 9 9 4号公報
これらの電子輸送材料においては、 P B Dと比較した安定性は改善さ れたがまだ充分であるとは言えず、 正孔の移動速度との均衡という観点 では電子の移動速度がまだ不十分であった。 そのため、 安定性の良好な A 1 qが電子輸送材料をして用いられることが多かったが、 満足できる 素子特性が得られていなかった。
また正孔の一部が発光層を通り抜けてしまうことを防ぎ、 発光層での 電荷再結合の確率を向上させる方策には、 正孔阻止層を挿入する方法が ある。正孔阻止材料としてはこれまでに、 トリァゾール誘導体(例えば、 特許文献 6参照) やバソクプロイン (以後、 B C Pと略称する)、 アルミ 二ゥムの混合配位子錯体 (B A 1 q ) (例えば、 非特許文献 2参照) など が提案されている。
特許文献 6 : 特許第 2 7 3 4 3 4 1号公報
しかし、 いずれの材料も膜の安定性が不足していたり、 もしくは正孔 を阻止する機能が不十分である。 在一般的に用いられている正孔阻止 材料は B C Pであるが、 充分に安定な材料とは言えないため、 正孔阻止 層として十分に機能しているとは言えず、 満足できる素子特性が得られ ていなかった。
有機 E L素子の素子特性を改善させるために、 電子の注入 · 輸送性能 と正孔阻止能力に優れ、 薄膜状態での安定性が高い有機化合物が求めら れている。 発明の開示
<発明が解決しょうとする課題 > 本発明の目的は、 高効率、 高耐久性の有機 E L素子用の材料として、 電子の注入 ·輸送性能に優れ、 正孔阻止能力を有し、 薄膜状態での安定 性が高い優れた特性を有する有機化合物を提供するこ とにある。
本発明の他の目的は、 上記化合物を用いて、 髙効率、 高耐久性の有機 E L素子を提供することにある。
本発明に適した有機化合物の物理的な特性としては、 ( 1 ) 電子の注 入性が良いこと、 ( 2 ) 電子の移動速度が速いこと、 ( 3 ) 正孔阻止能力 に優れること、 (4) 薄膜状態が安定であることをあげることができる。 また、 本発明に適した素子の物理的な特性としては、 ( 1 )発光効率が高 いこと、 (2 )発光開始電圧が低いこと、 ( 3 )実用駆動電圧が低いこと、 (4) 最大発光輝度が高いことをあげることができる。
<課題を解決するための手段〉
そこで本発明者らは上記の目的を達成するために、 電子親和性である ピリジン環の窒素原子が金属に配位する能力を有していることに着目し て、 置換されたピリジン環をォキサジァゾ一ル環に連結した新規な有機 化合物を設計して化学合成し、 該化合物を用いて種々の有機 E L素子を 試作し、 素子の特性評価を鋭意行 った結果、 本発明を完成するに至つ た。
すなわち、 上記目的は下記化合物を提供することにより達成された。
( 1 ) 下記一般式 ( 1 ) で表される、 置換されたピリジル基が連結し たォキサジァゾール環構造を有する化合物。
Figure imgf000006_0001
(式中、 A rは置換もしくは無置換の芳香族炭化水素基、 置換もしくは 無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基 を表し、 R2、 R 3、 1^4ぉょび1 5は、 それらのうちの 1つが結合 基であり、 他は同一でも異なってもよく水素原子、 フッ素原子、 シァノ 基、 アルキル基、 置換もしくは無置換のフエニル基、 置換もしくは無置 換のナフチル基を表し、 R6、 R7、 R8、 R9および 。は、 それらの うちの 2つが結合基であり、 他は同一でも異なってもよく水素原子、 フ ッ素原子、 シァノ基、 アルキル基、 置換もしくは無置換のフエニル基、 置換もしくは無置換のナフチル基を表し、 mは 1〜 3の整数を表し、 n は 0〜4の整数を表す。 但し、 n = 0の場合、 R2、 R 3、 R4お よび R 5から結合基を除いた 4つの基は同時に水素原子ではないものと する。)
(2 ) 上記一般式 ( 1 ) において n= lである、 上記 ( 1 ) 記載のォ キサジァゾール環構造を有する化合物。
( 3 ) 上記一般式 ( 1 ) において n = 2である、 上記 ( 1 ) 記載のォ キサジァゾール環構造を有する化合物。
(4) 上記一般式 ( 1 ) において n = 0であり、 Rい R_ 2、 R 3、 R 4およぴ1^ 5から結合基を除いた 4つの基のうち 1つがフエニル基であ る、 上記 ( 1 ) 記載のォキサジァゾ一ル環構造を有する化合物。
また、 本発明は、 一対の電極とその間に挟まれた少なくとち一層の有機 層を有する有機エレク トロルミネッセンス素子において、 上記化合物を 少なくとも 1つの有機層の構成材料として含有する有機エレク トロルミ ネッセンス素子も提供する。 一般式 ( 1 ) 中の A rで表される、 置換 もしくは無置換の芳香族炭化水素基、 置換もしくは無置換の芳香族複素 環基または置換もしくは無置換の縮合多環芳香族基の芳香族炭化水素基、 芳香族複素環基または縮合多環芳香族基としては、 具体的には、 フエ二 ル基、 ビフエ二ル基、 夕一フエニル基、 テトラキスフエニル基、 スチリ ル基、 ナフチル基、 アントリル基、 ァセナフテニル基、 フルォレニル基、 フエナントリル基、 インデニル基、 ピレニル基、 ピリジル基、 ピリミジ ル基、 フラニル基、 ピロニル基、 チォフエニル基、 キノリル基、 ベンゾ フラニル基、 ベンゾチオフェニル基、 インドリル基、 カルバゾリル基、 ベンゾォキサゾリル基、 キノキサリル基、 ベンゾイミダゾリル基、 ピラ ゾリル基、 ジベンゾフラニル基、 ジベンゾチオフェニル基などが挙ゴら れる。
一般式 ( 1 ) 中の A rで表される、 置換もしくは無置換の芳香族炭化 水素基、 置換もしくは無置換の芳香族複素環基または置換もしくは無置 換の縮合多環芳香族基の置換基としては、 具体的には、 フッ素原子、 塩 素原子、 シァノ基、 水酸基、 ニトロ基、 アルキル基、 アルコキシ基、 ァ ミノ基、置換アミノ基、 トリフルォロメチル基、 フエニル基、 トリル基、 ナフチル基、 ァラルキル基などが挙げられる。
一般式 ( 1 ) 中の置換されたピリジル基としては、 具体的にジピリジ ル基、 夕一ピリジル基、 フエニルピリジル基をあげることができる。 本発明の一般式 ( 1 ) で表される、 置換されたピリジル基が連結した ォキサジァゾール環構造を有する化合物は、 従来の電子輸送材料より電 子の移動が速く、 優れた正孔の阻止能力を有し、 かつ薄膜状態が安定で ある。
本発明の一般式 ( 1 ) で表される、 置換されたピリジル基が連結した ォキサジァゾール環構造を有する化合物は、 有機 E L素子の電子輸送層 の構成材料として使用することができる。 従来の材料に比べて電子の注 入 ·移動速度の高い材料を用いることにより、 電子輸送層から発光層へ の電子輸送効率が向上して、 発光効率が向上すると共に、 駆動電圧^^低 下して、 有機 E L素子の耐久性が向上するという作用を有する。 本発明の一般式 ( 1 ) で表される、 置換されたピリジル基が連結した ォキサジァゾール環構造を有する化合物は、 有機 E L素子の正孔阻止層 の構成材料としても使用することができる。 優れた正孔の阻止能力と共 に従来の材料に比べて電子輸送性に優れ、 かつ薄膜状態の安定性の高い 材料を用いることにより、 高い発光効率を有しながら、 駆動電圧が低下 し、 電流耐性が改善されて、 有機 E L素子の最大発光輝度が向上すると いう作用を有する。
本発明の一般式 ( 1 ) で表される、 置換されたピリジル基が連結した ォキサジァゾ一ル環構造を有する化合物は、 有機 E L素子の発光層の構 成材料としても使用することができる。 従来の材料に比べて電子輸送性 に優れ、 かつバンドギヤップの広い本発明の材料を発光層のホスト材料 として用い、 ドーパントと呼ばれている蛍光体や燐光発光体を担持させ て、 発光層として用いることにより、 駆動電圧が低下し、 発光効率が改 善された有機 E L素子を実現できるという作用を有する。
本発明の有機 E L素子は、従来の電子輸送材料より電子の移動が速く、 優れた正孔の阻止能力を有し、 かつ薄膜状態が安定な、 置換されたピリ ジル基が連結したォキサジァゾール環構造を有する化合物を用いている ため、 高効率、 高耐久性を実現することが可能となった。
<発明の効果 >
本発明は、 有機 E L素子の電子輸送層、 正孔阻止層あるいは発光層の 構成材料として有用な、 置換されたピリジル基が連結したォキサジァゾ ール環構造を有する化合物であり、 該化合物を用いて作製した有機 E L 素子である。 本発明によって、 従来の有機 E L素子の発光効率と耐久性 を格段に改良す ¾ことができた。 図面の簡単な説明 第 1図は実施例 1 9の E L素子構成を示した図である。
第 2図は実施例 2 1の E L素子構成を示した図である。
第 3図は実施例 2 2の E L素子構成を示した図である。
第 4図は実施例 2 3の E L素子構成を示した図である。
第 5図は実施例 1 9と比較例 1の電圧 Z電流密度特性を比較したダラ フである。
第 6図は実施例 1 9と比較例 1の電圧ノ輝度特性を比較したグラフで ある。
第 7図は実施例 1 9と比較例 1の電流密度 Z輝度特性を比較したダラ フである。
第 8図は実施例 1 9と比較例 1の電流密度 Z電流効率を比較したダラ フである。
第 9図は実施例 2 1 と比較例 2の電圧 Z電流密度特性を比較したグ ラフである。
第 1 0図は実施例 2 1 と比較例 2の電圧 Z輝度特性を比較したダラ フである。
第 1 1図は実施例 2 1 と比較例 2の電流密度 Z輝度特性を比較した グラフである。
第 1 2図は実施例 2 1 と比較例 2の電流密度/電流効率を比較した グラフである。
尚、 図中の符号はそれぞれ以下のものを表す。
1 : ガラス基板
2 : 透明陽極
3 : 正孔注入層
4 : 正孔輸送層
5 : 発光層 6 : 正孔阻止層
7 : 電子輸送層
8 : 電子注入層
9 : 陰極 発明を実施するための最良の形態
本発明の置換されたピリジル基が連結したォキサジァゾール環構造 を有する化合物は、 新規な化合物であり、 これらの化合物は例えば、 6 一 ( 2 H—テトラゾ一ル— 5 _ィル) — 2, 2, -ビピリジンや相当す る夕一ピリジンまたはフエニルピリジンを種々の芳香族酸クロライ ドと 縮合することによって合成することができる。
一般式 ( 1 ) で表される置換されたピリジル基が連結したォキサジァ ゾール環構造を有する化合物の中で、 好ましい化合物の具体例を以下に 示すが、 本発明は、 これらの化合物に限定されるものではない。
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0004
Figure imgf000012_0005
01
OZt'900/SOOZdf/13d 888160/SOOi ΟΛ\ Οΐ
Figure imgf000013_0001
OZt-900/SOOldf/XDd
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
これらの化合物の精製はカラムクロマトグラフによる精製、 吸着精製、 溶媒による再結晶ゃ晶析法などによって行った。 化合物の同定は、 N M R分析によって行なった。 物性値として、 D S C測定 (T g ) と融点の 測定を行った。融点は蒸着性の指標となるものであり、ガラス転移点( T g ) は薄膜状態の安定性の指標となるものである。
融点とガラス転移点は、 粉体を用いて、 ブルカー ·エイエックスエス 製の高感度示差走査熱量計 D S C 3 1 0 0 Sを用いて測定した。
また仕事関数は、 I T O基板の上に 1 0 0 n mの薄膜を作製して、 理 研計器製の大気中光電子分光装置 A C 2型を用いて測定した。 仕事関数 は正孔阻止能力の指標となるものである。
本発明の有機 E L素子の構造としては、 基板上に順次に、 陽極、 正孔 注入層、 正孔輸送層、 発光層、 正孔阻止層、 電子輸送層、 陰極からなる もの、 また、 電子輸送層と陰極の間に電子注入層を有するものがあげら れる。 これらの多層構造においては有機層を何層か省略することが可能 であり、 例えば基板上に順次に、 陽極、 正孔輸送層、 発光層、 電子輸送 層、 陰極とすることもできる。
有機 E L素子の陽極としては、 I T Oや金のような仕事関数の大きな 電極材料が用いられる。 正孔注入層としては銅フタロシアニン (以後、 C u P cと略称する) のほか、 スターバースト型のトリフエニルァミン 誘導体、 ナフタレンアミン化合物などの材料や塗付型の材料を用いるこ とができる。
正孔輸送層にはべンジジン誘導体である N, N ' —ジフエ二ルー N , N ' ージ (m—トリル) ベンジジン (以後、 T P Dと略称する) や N , N ' 一ジフエ二ルー N , N ' —ジ ( 一ナフチル) ベンジジン (以後、 N P Dと略称する)、種々の卜リフエニルアミン 4量体などを用いること ができる。 また、 正孔の注入 ·輸送層として、 P E D O T / P S Sなど の塗布型の高分子材料を用いることができる。
本発明の有機 E L素子の発光層、 正孔阻止層、 電子輸送層としては置 換されたピリジル基が連結したォキサジァゾール環構造を有する化合物 のほか、 アルミニウムの錯体、 ォキサゾール誘導体、 力ルバゾ一ル誘導 体、 ポリジアルキルフルオレン誘導体などを用いることができる。
アルミニウムの錯体、 スチリル誘導体などの従来の発光材料を発光層 に用い、 置換されたピリジル基が連結したォキサジァゾール環構造を有 する化合物を正孔阻止層、 電子輸送層として用いることにより、 高性能 の有機 E L素子を作製することができる。 また、 発光層のホスト材料と して、 例えば、 キナクリ ドン、 クマリン、 ルブレンなどの蛍光体、 ある いはフエニルピリジンのィリジゥム錯体などの燐光発光体であるド一パ ントを添加することによつても、 高性能の有機 E L素子を作製すること ができる。
さらに、 置換されたピリジル基が連結したォキサジァゾール環構造を 有する化合物に、 従来からの電子輸送性の材料を重層、 あるいは共蒸着 して電子輸送層として用いることができる。
本発明の有機 E L素子は電子注入層を有していても良い。 電子注入層 としてはフッ化リチウムなどを用いることができる。 陰極としては、 ァ ルミニゥムのような仕事関数の低い電極材料や、 アルミニウムマグネシ ゥムのような、 より仕事関数の低い合金が電極材料として用いられる。 ぐ実施例 >
以下、 本発明の実施の形態について、 実施例により具体的に説明する が、 本発明はその要旨を越えない限り、 以下の実施例に限定されるもの ではない。 実施例 1
( 1 , 3一ビス 〔 2一 ( 2 , 2, ービピリジン一 6—ィル) — 1, 3 , 4一ォキサジァゾ一ルー 5一ィル〕ベンゼン (以後、 B p yOXDmと略 称する) ( 2 ) の合成)
6― ( 2 H—テトラゾ一ルー 5—ィル) ― 2 , 2 , 一ビビリジン 0. 6 3 gを脱水ピリジン 1 0m l に溶解し、 二塩化ィソフタロイル 0. 2 9 gをゆつくりと加えた。 1 1 5°Cに加温して 6時間還流攪拌を行った。 室温まで冷却した後、 反応溶液を水中に注ぎ、 析出した白色固体を吸引 ろ過によって取り出し、 水洗した。 8 0でで 2 0時間真空乾燥して、 得 られた固形物をカラムクロマ卜グラフ (担体: シリカゲル、 溶離液: ク ロロホルム/メタノール = 2 0 / 1 ) によって精製して、 B p y OXD m 0. 6 2 g (収率 8 1 %) を得た。 NMR分析によって生成物の同定 を行った。 NMR分析(C D C 1 3 ) の結果は以下の通りであった。 9. 0 7 1 p pm ( l H)、 8. 6 3 9— 8. 7 1 4 p pm (6 H)、 8. 3 2 5 - 8. 47 7 p pm (4 H)、 8. 0 3 7 p pm ( 2 H)、 7. 7 5 6— 7. 8 54 p pm ( 3 H)、 7. 3 3 0 p p m ( 2 H )。 実施例 2
( 1 , 4一ビス 〔 2― ( 2, 2, ービピリジン一 6—ィル) 一 1 , 3 , 4一ォキサジァゾ一ルー 5—ィル〕 ベンゼン(以後、 B p yOXD pと略 称する) ( 3) の合成)
6— ( 2 H—テトラゾールー 5—ィル) — 2, 2 ' ービピリジン 0. 6 7 gを脱水ピリジン 1 0m l に溶解し、 二塩化テレフ夕ロイル 0. 3 2 gを加えた。 1 1 0°Cに加温して 5時間還流攪拌を行った。 室温まで 冷却した後、 反応溶液を水中に注ぎ、 析出した白色固体を吸引ろ過によ つて取り出し、 水洗した。 8 0°Cで 2 0時間真空乾燥して、 白色の粗製 物を得た。カラムクロマトグラフによって精製して、 B p y OXD p 0. 5 8 g (収率 7 4 %) を得た。 NMR分析によって生成物の同定を行つ た。 NMR分析 (CD C 1 3 ) の結果は以下の通りであった。 8. 7 3 6 p pm (2 H)、 8. 640 p pm (4H)、 8. 46 3 p pm ( 3 H)、 8. 2 6 0 - 8. 3 84 p pm (4 H)、 8. 0 6 0 p pm ( 2 H)、 7. 9 3 2 p pm (2 H)、 7. 3 8 0 p pm ( l H)。 実施例 3
(2 , 6—ビス 〔 2— ( 2, 2, ービピリジン一 6—ィル) 一 1 , 3 , 4一ォキサジァゾ一ルー 5—ィル〕 ピリジン(以後、 B p yOXD P yと 略称する) (4) の合成)
6 - ( 2 H—テトラゾ一ルー 5—ィル) ― 2, 2, 一ビビリジン 0. 5 0 gを脱水ピリジン 1 0 m 1 に溶解し、 2 , 6—ピリジンジカルボ二 ルジクロライ ド 0. 2 6 gを加えた。 1 1 0°Cに加温して 9時間還流攪 拌を行った。 室温まで冷却した後、 反応溶液を水中に注ぎ、 析出した白 色固体を吸引ろ過によって取り出し、 水洗した。 8 0でで 2 0時間真空 乾燥して、 白色の粗製物を得た。 カラムクロマ卜グラフによって精製し て、 B p y OXD P y O . 1 2 g (収率 2 4 %) を得た。 NMR分析に よって生成物の同定を行った。 NMR分析 (C D C 1 3 ) の結果は以下 の通りであった。 8. 0 0 5 - 8. 6 4 8 p p m ( 1 3 H)、 7 . 6 6 7 p p m ( 2 H)、 7. 2 5 6 ( 2 H)0 実施例 4
( 5 —夕一シャリ一ブチル ( 1, 3 —ビス 〔2 — ( 2, 2 ' —ビビリジ ンー 6 —ィル)— 1, 3 , 4一ォキサジァゾ一ルー 5 一ィル〕ベンゼン (以 後、 B p y OXDm ( 5 t B u) と略称する) ( 5 ) の合成)
6 — ( 2 H—テトラゾールー 5 —ィル) 一 2, 2 ' —ビビリジン 5. 0 0 gをピリジン 1 0 0 m 1 に溶解し、 共沸によって脱水した。 5 —夕 ーシャリープチルイソフタロイルジクロライ ド 3. 0 6 gを加え、 1 1 0 °Cに加温して 1時間還流攪拌を行った。 室温まで冷却した後、 反応溶 液を水中に注ぎ、 水酸化ナトリウム水溶液を加え、 析出した固体を吸引 ろ過によって取り出し、 水洗した。 8 0 °Cで減圧乾燥し、 B p y O XD m ( 5 t B u) 5. 4 6 g (収率 8 4 %) を得た。 NMR分析によって 生成物の同定を行った。 NMR分析 (C D C 1 3 ) の結果は以下の通り であった。 8. 8 5 2 - 8. 8 6 3 p p m ( l H)、 8. 6 3 6 — 8. 7 2 3 p p m ( 6 H)、 8. 4 8 9 — 8. 4 9 5 p p m ( 2 H)、 8. 3 3 9 — 8. 3 7 1 p p m ( 2 H)、 8. 0 1 4— 8. 0 8 6 p p m ( 2 H)、 7. 7 6 4 - 7. 8 2 8 p p m ( 2 H)、 7. 3 0 7 — 7. 3 5 7 p p m ( 2 H)ゝ 1. 5 2 6 p p m ( 9 H)。 実施例 5
( 3 , 5—ビス 〔 2— (2, 2, 一ビピリジン一 6—ィル) 一 1 , 3, 4一ォキサジァゾ一ルー 5—ィル〕 一 4, ーシァノー 1, 1 , ービフエ ニル (以後、 C P B Oと略称する) (6 ) の合成)
3 , 5—ビス 〔 2— ( 2—フエニルピリジン一 6—ィル) 一 1 , 3 , 4一ォキサジァゾ一ルー 5 _ィル〕 一 1一ブロモベンゼン 4. 9 gを脱 気したトルエン 1 2 0 0 m lおよびエタノール 2 0 0 m l に溶解し、 4 一シァノフエ二ルポロン酸 1. 7 9 gとテ卜ラキス (卜リフエニルホス フィン) パラジウム 1 8 6mg、 フッ化セシウム 3. 7 3 gを加えた。 7 5 °Cに加温して 2 0時間攪拌を行った。 室温まで冷却した後、 反応溶 媒を減圧下留去し、 クロ口ホルム 3 0 0 m l を注ぎ、 水洗した。 有機層 を硫酸マグネシウムで乾燥した後、 溶媒を減圧下留去して、 得られた固 形物をトルエン一メタノール(4: 1 )での分散洗浄によって精製して、 C P B 03. 1 7 g (収率 6 2 %) を得た。 NMR分析によって生成物 の同定を行った。 NMR分析 (CD C 1 3 ) の結果は以下の通りであつ た。 9. 1 2 p pm ( l H)、 8. 6 3 - 8. 7 4 p pm ( 8 H)、 8. 3 9 p pm (2 H)、 8. 0 8 p pm (2 H)、 7. 7 8 - 7. 9 5 p ρ m (6 H)、 7. 3 3 - 7. 3 8 p pm ( 2 H)。 実施例 6
( 2, 5—ビス 〔 2— (2, 2, 一ビビリジン一 6—ィル) 一 1 , 3, 4一ォキサジァゾ一ルー 5—ィル〕チォフェン (以後、 B p y OXD T h と略称する) ( 7 ) の合成)
6 - ( 2 H—テトラゾ一ル一 5—ィル) 一 2, 2 ' —ビビリジン 5. 0 0 gをピリジン 1 0 0m 1 に溶解し、 共沸によって脱水した。 2 , 5 —チォフェンジカルボニルジクロライ ド 2. 4 7 gを加え、 1 1 0 °Cに 加温して 1時間還流攪拌を行った。 室温まで冷却後、 反応溶液を水中に 注ぎ、 水酸化ナトリウム水溶液を加え、 析出した固体を吸引ろ過によつ て取り出し、 水洗した。 7 0°Cで減圧乾燥し、 黄土色の粗製物を得た。 トルエンで洗浄した後、 7 0 °Cで減圧乾燥を行い、 B p yOXDT h 4. 6 2 g (収率 7 8 %) を得た。 NMR分析によって生成物の同定を行つ た。 NMR分析 (CD C 1 3 ) の結果は以下の通りであった。 8. 6 1 9一 8. 7 3 3 p pm (6 H)、 8. 3 0 7 - 8. 3 3 5 p pm ( 2 H)、 7. 8 8 7 - 8. 0 7 1 p pm (6 H)、 7. 3 7 0 - 7. 4 1 1 (2 H)。 実施例 7
( 2, 6—ビス 〔 2— ( 2, 2, —ビピリジン一 6—ィル) 一 1 , 3 , 4一ォキサジァゾ一ルー 5—ィル〕ナフ夕レン (以後、 B p y O XD ( 2 , 6 NP) ( 8 ) と略称する)の合成)
6 - ( 2 H—テトラゾ一ルー 5—ィル) 一 2, 2 ' —ビピリジン 5. 0 0 gをピリジン 1 0 0m 1 に溶解し'、 共沸によって脱水した。 2 , 6 一ナフ夕レンジカルボ二ルジク口ライ ド 2. 9 9 gを加え、 1 1 0。Cに 加温して 1時間還流攪拌を行った。 室温まで冷却後、 反応溶液を水中に 注ぎ、 水酸化ナトリウム水溶液を加え、 析出した固体を吸引ろ過によつ て取り出し、 水洗した。 7 0°Cで減圧乾燥し、 淡灰褐色の B p y OXD ( 2, 6 N P) 5. 4 1 g (収率 84 %) を得た。 NMR分析によって 生成物の同定を行った。 NMR分析 (CD C 1 3 ) の結果は以下の通り であった。 8. 8 3 7 p pm (2 H)、 8. 6 4 2 - 8. 7 54 p p m ( 6 H)、 8. 3 6 0 - 8. 4 5 2 p pm (4 H), 8. 2 0 5 - 8. 2 3 7 p pm ( 2 H)、 7. 9 2 3 - 8. 0 94 p pm (4H)、 7. 3 8 6— 7. 4 3 0 ( 2 H)o 実施例 8
( 1, 3—ビス 〔2— ( 2 , 2,: 6, 2 ', 一夕一ピリジン一 6—ィル) - 1 , 3 , 4—ォキサジァゾール _ 5—ィル〕 ベンゼン(以後、 T p y〇 XDmと略称する) ( 9 ) の合成)
6— ( 2 H—テトラゾ一ル— 5 _ィル) — 2 , 2,: 6, 2 ' ' 一夕一 ピリジン 2. 0 gを脱水ピリジン 5 0 m 1 に溶解し、 1 2 0°Cに加温し て 3 0 m 1 を共沸脱水した。 5 0 °Cまで冷却した後、 二塩化イソフタ口 ィル 0. 6 8 gを加え、 1 1 0 に加温して 3時間還流攪拌を行った。 室温まで冷却した後、 反応溶液を水 2 0 0 m 1 中に注ぎ、 析出した黄褐 色固体を吸引ろ過によって取り出し、 水洗した。 8 0 °Cで 2 0時間真空 乾燥して、 得られた固形物を吸着精製(担体: NHシリカゲル、 溶離液: クロ口ホルム) によって精製して、 T p y OXDm l . 5 3 g (収率 6 7 %) を得た。 N M R分析によって生成物の同定を行った。 NMR分析 (C D C 1 3 ) の結果は以下の通りであった。 9. 1 2 p p m ( 1 H)、 8. 8 5 p pm ( 2 H)、 8. 6 2 - 8. 7 3 p pm ( 6 H)、 8. 3 7 — 8. 5 1 p pm ( 6 H)、 7. 7 9— 8. 1 2 p pm ( 7 H)、 7. 3 5 p p m ( 2 H)。 実施例 9
( 5一フエ二ルー 2― ( 2—フエ二ルビリジン— 6—ィル) 一 1 , 3, 4—ォキサジァゾ一ル (以後、 P h p y OXD P hと略称する) ( 1 0 ) の合成)
2一フエ二ルー 6 — ( 2 H—テトラゾールー 5—ィル) ピリジン 5. 0 gを脱水ピリジン 1 2 5m 1 に溶解し、 1 2 0 に加温して 7 5 m l, を共沸脱水した。 5 0°Cまで冷却した後、 塩化ベンゾィル 3. 1 7 gを 加え、 1 0 0 °Cに加温して 2時間還流攪拌を行った。 室温まで冷却した 後、 反応溶液を水 3 0 0 m 1 中に注ぎ、 2 0 %水酸化ナトリウム水溶液 で p H 1 2とした後、 1時間攪拌を行った。 析出した黄色固体を吸引ろ 過によって取り出し、 水洗した。 7 0°Cで 2 0時間真空乾燥して、 得ら れた固形物を吸着精製 (担体: NHシリカゲル、 溶離液: クロ口ホルム) によって精製して、 P h p yOXD P h 6. 1 1 g (収率 9 1 %) を得 た。 NMR分析によって生成物の同定を行った。 NMR分析 (CD C 1 3 ) の結果は以下の通りであった。 8. 2 3 - 8. 2 6 p pm ( 3 H)、 8. 1 4— 8. 1 7 p pm (2 H)、 7. 9 0 - 7. 9 9 p pm (2 H)、 7. 4 8 - 7. 5 8 p pm (6 H)。 実施例 1 0
( 1 , 3—ビス 〔 2一 (2—フエ二ルビリジン一 6—ィル) 一 1 , 3 , 4一ォキサジァゾ一ルー 5—ィル〕ベンゼン(以後、 P h p y OXDmと 略称する) ( 1 1 ) の合成)
2 _フエニル— 6— ( 2 H—テトラゾールー 5 _ィル) ピリジン 5. 0 gを脱水ピリジン 1 2 5m l に溶解し、 1 2 0でに加温して 7 5m l を共沸脱水した。 5 0 まで冷却した後、 二塩化イソフタロイル 2. 2 8 gを加え、 1 0 0 °Cに加温して 1時間還流攪拌を行った。 室温まで冷 却した後、 反応溶液を水 3 0 0 m 1 中に注ぎ、 2 0 %水酸化ナトリウム 水溶液で p H l 2とした後、 1時間攪拌を行った。 析出した茶色の固体 を吸引ろ過によって取り出し、 水洗した。 7 0°Cで 2 0時間真空乾燥し て、 得られた固形物をカラムクロマトグラフ (担体: NHシリカゲル、 溶離液: クロ口ホルム) によって精製して、 P h p y OXDm4. 2 7 g (収率 7 3 %) を得た。 N MR分析によって生成物の同定を行った。 NMR分析 (CD C 1 3 ) の結果は以下の通りであった。 9. 0 7 p p m ( l H)、 8. 4 6 p pm (2 H)、 8. 2 8 p pm (2 H)、 8. 1 7 p pm (4 H)、 7. 9 2 - 8. 1 5 p pm (4H)、 7. 7 8 p p m ( 1 H)、 7. 4 6 - 7. 5 5 p p m ( 6 H)0 実施例 1 1
(3 , 5—ビス 〔 2— ( 2—フエニルピリジン一 6—ィル) ー 1, 3 , 4一ォキサジァゾ一ルー 5—ィル〕 - 1 , 1 ' —ピフエニル(以後、 P h p y O XD B Pと略称する) ( 1 2 ) の合成)
3 , 5—ビス 〔 2— ( 2—フエニルピリジン一 6 _ィル) - 1 , 3, 4一ォキサジァゾ一ルー 5—ィル〕 一 1 _ブロモベンゼン 2. 4 gを脱 気したトルエン 9 6 0 m 1およびエタノール 2 40 m 1 に溶解し、 2 M 一炭酸力リゥム水溶液 4 Om l とテトラキス(トリフエニルホスフィン) パラジウム 1 44mg、 フエ二ルポロン酸 5 8 6 mgを加えた。 8 0 °C に加温して 2 0時間攪拌を行った。 室温まで冷却した後、 反応溶媒を減 圧下留去し、 クロ口ホルム 3 0 0 m 1 を注ぎ、 水洗した。 有機層を硫酸 マグネシウムで乾燥した後、 溶媒を減圧下留去して、 得られた固形物を カラムクロマ卜グラフ (担体: シリカゲル、 溶離液: クロロホルム) に よつて精製して、 P h p y OXD B P l . 8 6 g (収率 7 8 %) を得た。 NMR分析によって生成物の同定を行った。 NMR分析 (CD C 1 3 ) の結果は以下の通りであった。 9. 0 2 p pm ( l H)、 8. 6 5 p p m (2 H)、 8. 2 9 p pm (2 H)、 8. 1 5 p pm (4 H)、 7. 9 2— 8. 0 3 p pm (4H)、 7. 7 9 p pm ( 2 H)、 7. 4 5 - 7. 5 6 p p m ( 9 H)。 実施例 1 2
( 3, 5—ビス 〔 2— ( 2—フエニルピリジン一 6—ィル) — 1 , 3 , 4一ォキサジァゾ一ル— 5—ィル〕 — 1 , 1,: 4, 1,, 一ターフェ二 ル (以後、 P h p y OXD T Pと略称する) ( 1 3 ) の合成)
3 , 5—ビス 〔 2— ( 2—フエ二ルビリジン一 6—ィル) ― 1 , 3 , 4一ォキサジァゾ一ルー 5—ィル〕 一 1一ブロモベンゼン 2. 5 gを脱 気したトルエン 1 0 0 0 m 1、 エタノール 2 5 0 m 1 に溶解し、 2 M— 炭酸カリウム水溶液 4 2 m 1 とテトラキス (トリフエニルホスフィン) パラジウム 1 4 5mg、 4 -ビフエ二ルポロン酸 9 9 l mgを加えた。 8 0 に加温して 2 0時間攪拌を行った。 室温まで冷却した後、 反応溶 媒を減圧下留去し、 クロ口ホルム 6 0 0 m 1 を注ぎ、 水洗した。 有機層 を硫酸マグネシウムで乾燥した後、 溶媒を減圧下留去して、 得られた固 形物を吸着精製 (担体: NHシリカゲル、 溶離液: クロ口ホルム) によ つて精製して、 P h p y〇XDT P 2. 1 3 g (収率 7 6 %) を得た。 NMR分析によって生成物の同定を行った。 NMR分析 (CD C 1 3 ) の結果は以下の通りであった。 9. 0 3 p pm ( l H)、 8. 7 1 p p m ( 2 H), 8. 3 0 p pm ( 2 H)、 8. 1 6 p pm (4H)、 7. 6 8— 8. 0 3 p pm ( 1 0 H)、 7. 4 0 - 7. 5 2 p p m ( 9 H)0 実施例 1 3
( 2 , 6—ビス 〔2— ( 2—フエ二ルビリジン一 6—ィル) 一 1, 3 , 4一ォキサジァゾ一ルー 5—ィル〕 ピリジン(以後、 P h p yOXD P y と略称する) ( 1 4) の合成)
2—フエ二ルー 6— ( 2 H—テトラゾ一ルー 5—ィル) ピリジン 5. 0 gを脱水ピリジン 1 2 5 m 1 に溶解し、 1 2 01:に加温して 7 5m l を共沸脱水した。 5 0°Cまで冷却した後、 2, 6—ピリジンジカルポ二 ルジクロライ ド 2. 3 0 gを加え、 1 0 0°Cに加温して 2時間攪拌を行 つた。 室温まで冷却した後、 反応溶液を水 3 0 0 m 1 中に注ぎ、 2 0 % 水酸化ナトリゥム水溶液で P H 1 2とした後、 1時間攪拌を行った。 析 出した濃緑黒色固体を吸引ろ過によって取り出し、 水洗した。 7 0°Cで 2 0時間真空乾燥して、得られた固形物をカラムクロマ卜グラフ(担体: シリカゲル、 溶離液: クロ口ホルム) によって精製して、 P h p y OX D P y 3. 9 5 g (収率 6 7 %) を得た。 NM R分析によって生成物の 同定を行った。 NMR分析(CD C 1 3 )の結果は以下の通りであった。 8. 5 4 p pm ( 2 H)、 8. 3 0 p pm (2 H)、 8. 1 4 - 8. 2 0 p pm ( 5 H)、 7. 9 4 - 8. 0 1 p pm (4H)、 7. 4 1 - 7. 5 1 p p m ( 6 H)。 実施例 1 4
( 1, 4一ビス 〔 2— ( 2—フエニルピリジン一 6—ィル) — 1, 3, 4一ォキサジァゾ一ルー 5—ィル〕ベンゼン (以後、 P h p yOXD pと 略称する) ( 1 5 ) の合成)
2―フエニル一 6 - ( 2 H—テトラゾールー 5—ィル) ピリジン 5. 0 gを脱水ピリジン 1 2 5 m 1 に溶解し、 1 2 0 に加温して 7 5 m 1 を共沸脱水した。 5 0^まで冷却した後、 二塩化テレフ夕ロイル 2. 3 O gを加え、 1 0 0でに加温して 5時間攪拌を行った。 室温まで冷却し た後、 反応溶液を水 3 0 0 m 1 中に注ぎ、 2 0 %水酸化ナトリウム水溶 液で pH l 2とした後、 1時間攪拌を行った。 析出した黄色固体を吸引 ろ過によって取り出し、 水洗した。 7 0でで 2 0時間真空乾燥して、 得 られた固形物をクロ口ホルム—メ夕ノ一ルの混合溶液の分散洗浄によつ て精製して、 P h p y〇XD p 3. 4 0 g (収率 5 8 %) を得た。 NM R分析によって生成物の同定を行った。 NMR分析 (CD C 1 3 ) の結 果は以下の通りであった。 8. 4 5 p pm (4 H), 8. 2 9 p p m (2 H)、 8. 1 6 p pm (4 H)、 7. 9 3— 8. 0 2 p pm (4 H)、 7. 5 0 - 7. 5 9 p pm ( 6 H)。 実施例 1 5
( 1 , 3—ビス [〔 2— ( 2 ' 一フルオロフェニル) ピリジン一 6—ィル〕 — 1, 3 , 4一ォキサジァゾ一ルー 5—ィル]ベンゼン(以後、 F P h ρ yOXDmと略称する) ( 1 6 ) の合成)
2— ( 2—フルオロフェニル) — 6— ( 2 H—テトラゾ一ル— 5—ィ ル) ピリジン 3. 0 gを脱水ピリジン 1 2 5 m 1 に溶解し、 1 2 0 °Cに 加温して 7 5 m 1 を共沸脱水した。 5 0°Cまで冷却した後、 二塩化イソ フタロイル 1. 3 0 gを加え、 1 0 0°Cに加温して 1時間攪拌を行った。 室温まで冷却した後、 反応溶液を水 3 0 0 m l 中に注ぎ、 2 0 %水酸化 ナトリゥム水溶液で p H 1 2とした後、 1時間攪拌を行った。 析出した 黄色固体を吸引ろ過によって取り出し、 水洗した。 7 0°Cで 2 0時間真 空乾燥して、 得られた固形物を吸着精製 (担体: NHシリカゲル、 溶離 液: クロ口ホルム) によって精製して、 F P h p y〇XDm2. 2 1 g (収率 6 3 %) を得た。 NMR分析によつて生成物の同定を行った。 N MR分析 (CD C 1 3 ) の結果は以下の通りであった。 9. 0 5 p p m ( 1 H)、 8. 44 p pm ( 2 H)、 8. 3 0 p pm ( 2 H)、 8. 2 2 p pm ( 2 H)、 7. 9 6 - 8. 0 5 p pm (4 H)、 7. 7 7 p p m ( 1 H)、 7. 1 6 - 7. 4 8 p p m (6 H)0 実施例 1 6
( 1, 3—ビス [ 〔 2— ( 2,, 4, -ジフルオロフェニル) ピリジン一 6 -ィル〕一 1, 3 , 4一ォキサジァゾ一ルー 5一ィル]ベンゼン (以後、 D F P h p y OXDmと略称する) ( 1 7) の合成)
2— ( 2 , 4—ジフルオロフェニル) — 6— ( 2 H—テトラゾ一ル— 5—ィル) ピリジン 3. 0 gを脱水ピリジン 1 2 5 m 1 に溶解し、 1 2 0 °Cに加温して 7 5 m 1 を共沸脱水した。 5 0 °Cまで冷却した後、 二塩 化イソフタロイル 1. 2 0 gを加え、 1 0 0 °Cに加温して 1時間攪拌を 行った。室温まで冷却した後、反応溶液を水 3 0 0 m l 中に注ぎ、 2 0 % 水酸化ナトリウム水溶液で P H 1 2とした後、 1時間攪拌を行った。 析 出した褐色固体を吸引ろ過によって取り出し、 水洗した。 7 0 °Cで 2 0 時間真空乾燥して、得られた固形物を吸着精製(担体: NHシリカゲル、 溶離液: クロ口ホルム) によって精製して、 D F P h p y OXDm2. 7 9 g (収率 8 1 %) を得た。 NMR分析によって生成物の同定を行つ た。 NMR分析 (C D C 1 3 ) の結果は以下の通りであった。 9. 0 5 p pm ( l H)、 8. 4 5 p pm ( 2 H)、 8. 2 1 - 8. 3 1 p p m ( 4 Η)、 7. 9 8 - 8. 0 1 p pm (4 H)、 7. 7 9 p pm ( l H)、 6. 9 2 - 7. 0 9 p p m (4 H)。 実施例 1 7
本発明の化合物について、 高感度示差走査熱量計 (ブルカー * ェイエ ックスエス製、 D S C 3 1 0 0 S) によって融点とガラス転移点を求め
SHIハ占、ヽ ガラス転移
B p y O X D m 2 4 3 °C 1 0 6 °C
B p y OXD P y 2 5 3。C 1 1 4
B p y OXDm ( 5 t B u ) 2 7 4。C 1 0 5 °C
C P B〇 3 4 1。C 1 3 6 t:
T p y O X Dm 2 7 6 °C 1 1 9 °C
P h p y OXD B P 2 6 2 °C 1 0 I V
P h p y OXDT P 2 8 5。C 1 1 6。C
本発明の化合物はガラス転移点が高く 、 薄膜状態が安定である 実施例 1 8
本発明の化合物を用いて、 I TO基板の上に膜厚 1 0 0 nmの蒸着膜 を作製して、 大気中光電子分光装置 (理研計器製、 AC 2型) で仕事関 数を測定した。 本発明の化合物はすべて測定装置の計測限界の 6. 2 e Vを越えた値であった。
このよう に本発明の化合物は正孔輸送材料より明らかに深い仕事関 数を有しており、 大きな正孔阻止能力を有している。 実施例 1 9
有機 E L素子は、 第 1図に示すように、 ガラス基板 1上に透明陽極 2 として I T O電極をあらかじめ形成したものの上に、 正孔輸送層 4、 発 光層 5、 電子輸送層 7、 陰極 (アルミニウムマグネシウム電極) 9の順 に蒸着して作製した。 膜厚 1 5 0 nmの I T Oを成膜したガラス基板 1 を有機溶媒洗浄後に、 酸素プラズマ処理にて表面を洗浄した。 これを、 真空蒸着機内に取り付け 0. 0 0 1 P a以下まで減圧した。
続いて、 正孔輸送層 4として、 T P Dを蒸着速度 6 nmZm i nで約 5 0 nm形成した。 次に、 発光層 5として A 1 qを蒸着速度 6 nmXm i nで約 2 0 n m形成した。 この発光層 5の上に、 電子輸送層 7として 本発明の B p y O XDm ( 2 ) を蒸着速度 6 nm/m i nで約 3 0 nm 形成した。ここまでの蒸着をいずれも真空を破らずに連続して行なった。 最後に、 陰極蒸着用のマスクを挿入して、 M g A gの合金を 1 0 : 1の 比率で約 2 0 0 nm蒸着して陰極 9を形成した。 作成した素子は、 真空 デシケ一夕一中に保存し、 大気中、 常温で特性測定を行なった。
このように形成された本発明の有機 E L素子の特性を 1 0 0 c dZm 2の発光が得られる印加電圧、 2 0 OmA/c m2の電流を負荷した場合 の発光輝度、 発光輝度/電圧で定義される発光効率で評価した。
有機 E L素子に直流電圧を印加した結果、 3. 7 Vから l O O c dZ m2の発光が見られ、 7. 8 Vでは 2 0 0 mA/ c m2の電流が流れ、 1 1 9 0 0 c d/m2の安定な緑色発光を得た。 この輝度での発光効率は 6. 0 c d /Aと高効率であった。 実施例 2 0
第 1図の素子において、 電子輸送層 7の材料を B p y OXDm (2 ) から、 B p yOXD P y (4) に代えて、 実施例 1 9と同じ条件で有機 E L素子を作製してその特性を調べた。 4. 0 Vから l O O c dZm2 の発光が見られ、 8. 5 Vでは 2 0 0 mA/ c m2の電流が流れ、 1 1 5 0 0 c dZm2の安定な緑色発光を得た。 この輝度での発光効率は 5. 8 c dZAと高効率であった。 比較例 1
比較のために、 電子輸送層 7の材料を A 1 qに代えて、 実施例 1 9と 同じ条件で有機 E L素子を作製してその特性を調べた。 すなわち発光層 兼電子輸送層 5および 7として A l q 3を蒸着速度 6 nm/m i nで約 5 0 nm形成した。 7. 2 Vから 1 0 0 c d /m 2の発光が見られ、 1 3. 3 Vでは 2 0 0 mA/ c m2の電流が流れ、 9 6 0 0 c d/m2の緑 色発光を得た。 この輝度での発光効率は 4. 6 c d/Aであった。
このように本発明の有機 E L素子は、 一般的な電子輸送材料として用 いられている A 1 qを用いた素子と比較して、 発光効率に優れており、 さらに駆動電圧の顕著な低下が達成できるため、 耐久性に優れているこ とがわかった。
上記の比較試験において、 明らかな駆動電圧の低下が認められること から、 本発明の化合物の電子移動の速度は、 従来からの電子輸送材料で ある A 1 qより各段に速いと予測される。 実施例 2 1
第 2図に示すような有機 E L素子を、 ガラス基板 1上に透明陽極 2と して I TO電極をあらかじめ形成したものの上に、 正孔輸送層 4、 発光 層 5、 正孔阻止層 6、 電子輸送層 7、 陰極 (アルミニウムマグネシウム 電極) 9の順に蒸着して作製した。 膜厚 1 5 0 nmの I TOを成膜した ガラス基板 1を有機溶媒洗浄後に、 酸素プラズマ処理にて表面を洗浄し た。 これを、真空蒸着機内に取り付け 0. 0 0 1 P a以下まで減圧した。 続いて、 正孔輸送層 4として、 T P Dを蒸着速度 6 nmZm i nで約 5 0 nm形成した。 次に、 発光層 5として A 1 qを蒸着速度 6 n m/m
1 nで約 3 0 nm形成した。 この発光層 5の上に、 正孔阻止層 6として 本発明である B p y〇XDm ( 2 ) を蒸着速度 6 n m/m i nで約 2 0 nm形成した。 さらに、 電子輸送層 7'として A 1 qを蒸着速度 6 nmZ m i nで約 2 0 nm形成した。 ここまでの蒸着をいずれも真空を破らず に連続して行なった。 最後に、 陰極蒸着用のマスクを挿入して、 MgA gの合金を 1 0 : 1の比率で約 2 0 0 nm蒸着して陰極 9を形成した。 作製した素子は、 真空デシケ一夕一中に保存し、 大気中常温で特性測定 を行なった。
このように形成された本発明の有機 E L素子に直流電圧を印加した 結果、 5. 7 Vから 1 0 0 c d/m2の発光が見られ、 1 1. 4 Vでは
2 0 0 mA/c m2の電流が流れ、 1 1 6 0 0 c d/m2の安定な緑色発 光を得た。 この輝度での発光効率は 6. 0 c dZAと高効率であった。 さらに印加電圧を増大させて破過前の最大輝度 2 2 0 5 0 c dZm2を 得た。測定された最大輝度は素子の電気的な安定性を反映しているため、 有機 E L素子の耐久性の指標となる。 比較例 2
比較のために、 正孔阻止層 6の材料を B C Pに代えて、 実施例 2 1 と 同じ条件で有機 E 素子を作製してその特性を調べた。 すなわち正孔阻 止層 6として B C Pを蒸着速度 6 n m/m i nで約 2 0 nm形成した。 1 2. 0 Vから 1 0 0 c d/m2の発光が見られ、 1 9. 4 Vでは 2 0 0 mAZ c m2の電流が流れ、 1 0 9 0 0 c d /m 2の緑色発光を得た。 この輝度での発光効率は 5. 3 c d/Aであった。 破過前の最大輝度は 1 2 7 9 0 c dZm2であった。
このように本発明の有機 E L素子は、 一般的な正孔阻止材料として用 いられている B C Pを用いた素子と比較して、 耐久性に優れていること がわかった。 さらに、 高輝度発光に適した有機 E L素子であることがわ かった。 実施例 2 2
第 3図に示すような有機 E L素子を、 ガラス基板 1上に透明陽極 2と して I T〇電極をあらかじめ形成したものの上に、 正孔注入層 3、 正孔 輸送層 4、 発光層 5、 正孔阻止層 6、 電子輸送層 7、 陰極 (アルミニゥ ムマグネシウム電極) 9の順に蒸着して作製した。 膜厚 1 5 0 nmの I TOを成膜したガラス基板 1 を有機溶媒洗浄後に、 酸素プラズマ処理に て表面を洗浄した。 これを、 真空蒸着機内に取り付け 0. O O l P a以 下まで減圧した。
続いて、 正孔注入層 3として、 C u P cを蒸着速度 6 nm/m i nで 約 1 5 nm形成した。 その上に正孔輸送層 4として、 TP Dを蒸着速度 6 nm/m i nで約 5 0 nm形成した。 ここまでの蒸着をいずれも真空 を破らずに連続して行なった。 ボ一卜を入れ替えて再び減圧にして、 正 孔輸送層 4の上に、 発光層 5として A 1 qを蒸着速度 6 n m/m i nで 約 2 0 nm形成した。 この発光層 5の上に、 正孔阻止層兼電子輸送層 6 および 7として本発明である B p y〇XDm ( 2 ) を蒸着速度 6 nm/ m i nで約 3 0 nm形成した。 最後に、 大気圧に戻して陰極蒸着用のマ スクを挿入し、 再び減圧にして、 M gA gの合金を 1 0 : 1の比率で約 2 0 0 nm蒸着して陰極 9を形成した。 作成した素子作製は、 真空デシ ケ一夕一中に保存し、 大気中、 常温で特性測定を行なった。
このように形成された本発明の有機 E L素子に直流電圧を印加した 結果、 3. 8 Vから 1 0 0 c dノ m2の緑色発光が見られた。 この素子 の破過前の最大輝度は 40 66 0 c dZm2であった。 比較例 3
比較のために、本発明である B p yOXDm ( 2 )を A l Qに代えて、 実施例 2 2と同じ条件で有機 E L素子を作製してその特性を調べた。 す なわち発光層兼正孔阻止層兼電子輸送層 5、 6および 7として A I Qを 蒸着速度 6 nmZm i nで約 5 0 nm形成した。 7. 2 Vから 1 0 0 c dZm 2の緑色発光が見られた。 この素子の破過前の最大輝度は 1 4 9 9 0 c d /m2であつた。
このように本発明の有機 EL素子は耐久性に優れており、 高輝度発光 に適した有機 E L素子であることがわかった。 実施例 2 3
第 4図に示すような有機 EL素子を、 ガラス基板 1上に透明陽極 2と して I TO電極をあらかじめ形成したものの上に、 正孔輸送層 4、 発光 層 5、 電子輸送層 7、 電子注入層 8、 陰極 (アルミニウム電極) 9の順 に蒸着して作製した。 膜厚 1 5 0 nmの I T〇を成膜したガラス基板 1 を有機溶媒洗浄後に、 酸素プラズマ処理にて表面を洗浄した。 これを、 真空蒸着機内に取り付け 0. 0 0 1 P a以下まで減圧した。
続いて、 正孔輸送層 4として、 N P Dを蒸着速度 6 nm/m i nで約 5 0 nm形成した。 次に、 発光層 5として A 1 qを蒸着速度 6 nm/m i nで約 2 0 nm形成した。 この発光層 5の上に、 電子輸送層 7として 本発明である C P BO ( 6 ) を蒸着速度 6 nm/m i nで約 3 0 nm形 成した。 さらに、 電子注入層 8と してフッ化リチウムを蒸着速度 0. 6 nm m i nで約 0. 5 nm形成した。 ここまでの蒸着をいずれも真空 を破らずに連続して行なった。最後に、陰極蒸着用のマスクを挿入して、 アルミニウムを約 2 0 0 nm蒸着して陰極 9を形成した。 作製した素子 は、 真空デシケ一夕一中に保存し、 大気中常温で特性測定を行なった。
このように形成された本発明の有機 E L素子に直流電圧を印加した 結果、 3. 5 Vから 1 0 0 c d Zm2の発光が見られ、 6. 5 Vで 1 0 0 0 0 c dZm2の安定な緑色発光を得た。 実施例 24
第 4図の素子において、 電子輸送層 7の材料を同じく本発明である P h p y 0 X D m ( 1 1 ) に代えて、 実施例 2 3と同じ条件で有機 E L素 子を作製してその特性を調べた。
3. 4 Vから 1 0 0 c d /m2の発光が見られ、 6. 3 Vで 1 0 0 0 0 c d/m2の安定な緑色発光を得た。 実施例 2 5
第 4図の素子において、 電子輸送層 Ίの材料を同じく本発明である F P h p y OXDm ( 1 6 ) に代えて、 実施例 2 3と同じ条件で有機 E L 素子を作製してその特性を調べた。
3. 3 Vから 1 0 0 c d/m2の発光が見られ、 6. 5 Vで 1 0 0 0 0 c dZm2の安定な緑色発光を得た。 比較例 4
比較のために、 電子輸送層 7の材料を A 1 qに代えて、 実施例 2 3と 同じ条件で有機 E L素子を作製してその特性を調べた。 すなわち発光層 兼電子輸送層 5および 7として A 1 d 3を蒸着速度 6 nm/m i nで約 5 0 nm形成した。 1 0 0 c dZm2の発光は 3. 9 Vで見られ、 1 0 0 0 0 c d/m2の発光は 7. 8 Vで得られた。
電子注入材料を用いた場合の比較試験においても、 駆動電圧の低下が 明らかに認められることから、 本発明の化合物の電子移動の速度は、 従 来からの電子輸送材料である A 1 qより各段に速いと予測される。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の 精神と範囲を逸脱することなく様々な変更や修正を加えることができる ことは当業者にとって明らかである。
本出願は、 2 0 0 4年 3月 2 5 日出願の日本特許出願 (特願 2 0 0 4
— 0 8 8 9 0 9)、 2 0 0 4年 3月 2 5 日出願の日本特許出願(特願 2 0 0 4 - 0 8 9 2 7 7 ) に基づくものであり、 その内容はここに参照とし て取り込まれる。 産業上の利用の可能性
本発明の置換されたピリジル基が連結したォキサジァゾール環構造を 有する化合物は、 電子の注入が良く、 電子の移動速度が速く、 薄膜状態 が安定であるため、 有機 E L素子用の化合物として優れている。 該化合 物を用いて有機 E L素子を作製することにより、 駆動電圧を格段に低下 させることができ、 耐久性を改善させることができる。 例えば、 家庭電 化製品や照明の用途への展開が可能となった。

Claims

請 求 の 範 囲
1. 下記一般式 ( 1 ) で表される、 置換されたピリジル基が連結 したォキサジァゾ一ル環構造を有する化合物。-
Figure imgf000036_0001
(式中、 A rは置換もしくは無置換の芳香族炭化水素基、 置換もしくは 無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基 を表し、 R1 R2、 R3、 R4および R5は、 それらのうちの 1つが結合 基であり、 他は同一でも異なってもよく水素原子、 フッ素原子、 シァノ 基、 アルキル基、 置換もしくは無置換のフエニル基、 置換もしくは無置 換のナフチル基を表し、 R6、 R7、 R'8、 R 9および 。は、 それらの うちの 2つが結合基であり、 他は同一でも異なってもよく水素原子、 フ ッ素原子、 シァノ基、 アルキル基、 置換もしくは無置換のフエニル基、 置換もしくは無置換のナフチル基を表し、 mは 1〜 3の整数を表し、 n は 0〜4の整数を表す。 但し、 n = 0の場合、 R 、 R2、 R3、 R4お よび R 5から結合基を除いた 4つの基は同時に水素原子ではないものと する。)
2. 上記一般式 ( 1 ) において n= lである、 請求項 1記載のォ キサジァゾール環構造を有する化合物。
3. 上記一般式 ( 1 ) において n= 2である、 請求項 1記載のォ キサジァゾール環構造を有する化合物。
4. 上記一般式 ( 1 ) において n= 0であり、 Rい R2、 R3、 R4および R 5から結合基を除いた 4つの基のうち 1つがフエニル基で ある、 請求項 1記載のォキサジァゾール環構造を有する化合物。
5. 一対の電極とその間に挟まれた少なくとも一層の有機層を有 する有機エレク ト口ルミネッセンス素子において、 下記一般式 ( 1 ) で 表される、 置換されたピリジル基が連結したォキサジァゾ一ル環構造を 有する化合物を、 少なくとも 1つの有機層の構成材料として含有する有 機エレクトロルミネッセンス素子。
Figure imgf000037_0001
(式中、 A rは置換もしくは無置換の芳香族炭化水素基、 置換もしくは 無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基 を表し、 R p R2、 R3、 R4および R5は、 それらのうちの 1つが結合 基であり、 他は同一でも異なってもよく水素原子、 フッ素原子、 シァノ 基、 アルキル基、 置換もしくは無置換のフエニル基、 置換もしくは無置 換のナフチル基を表し、 R 6、 R7、 R8、 R9および 。は、 それらの うちの 2つが結合基であり、 他は同一でも異なってもよく水素原子、 フ ッ素原子、 シァノ基、 アルキル基、 置換もしくは無置換のフエニル基、 置換もしくは無置換のナフチル基を表し、 mは 1〜 3の整数を表し、 n は 0〜4の整数を表す。 但し、 n = 0の場合、 R 、 R 2、 R 3、 R4お よび R 5から結合基を除いた 4つの基は同時に水素原子ではないものと する。)
6. 上記一般式 ( 1 ) において n = lである、 請求項 5記載の有 機エレクトロルミネッセンス素子。
7. 上記一般式 ( 1 ) において n= 2である、 請求項 5記載の有 機エレクトロルミネッセンス素子。
8. 上記一般式 ( 1 ) において n= 0であり、 Rい R2、 R 3、 R4および R 5から結合基を除いた 4つの基のうち 1つがフエニル基で ある、 請求項 5記載の有機エレクト口ルミネッセンス素子。
9. 上記一般式 ( 1 ) で表される化合物を電子輸送層中に含有す る、 請求項 5記載の有機エレクト口ルミネッセンス素子。
1 0. 上記一般式 ( 1 ) で表される化合物を正孔阻止層中に含有 する、 請求項 5記載の有機エレクト口ルミネッセンス素子。
1 1. 上記一般式( 1 )で表される化合物を発光層中に含有する、 請求項 5記載の有機エレクト口ルミネッセンス素子。
PCT/JP2005/006420 2004-03-25 2005-03-25 ピリジル基で置換されたオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子 WO2005092888A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2005800091777A CN1938297B (zh) 2004-03-25 2005-03-25 具有取代有吡啶基的噁二唑环结构的化合物和有机电致发光装置
EP05727286A EP1746094A4 (en) 2004-03-25 2005-03-25 CONNECTION WITH A PYRIDYL GROUP OF SUBSTITUTED OXADIAZOLRING STRUCTURE, AND ORGANIC ELECTROLUMINESCENT DEVICE
KR1020067019559A KR101160706B1 (ko) 2004-03-25 2005-03-25 피리딜기로 치환된 옥사디아졸환 구조를 갖는 화합물 및유기 전계 발광 소자
US10/594,241 US7812341B2 (en) 2004-03-25 2005-03-25 Compound having oxadiazole ring structure substituted with pyridyl group, and organic electroluminescent device
JP2006511602A JP4879734B2 (ja) 2004-03-25 2005-03-25 ピリジル基で置換されたオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
US12/622,125 US7977671B2 (en) 2004-03-25 2009-11-19 Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescence device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004089277A JP4610918B2 (ja) 2004-03-25 2004-03-25 ピリジル基で置換されたオキサジアゾール環構造を有する化合物
JP2004-089277 2004-03-25
JP2004088909 2004-03-25
JP2004-088909 2004-03-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/594,241 A-371-Of-International US7812341B2 (en) 2004-03-25 2005-03-25 Compound having oxadiazole ring structure substituted with pyridyl group, and organic electroluminescent device
US12/622,125 Division US7977671B2 (en) 2004-03-25 2009-11-19 Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2005092888A1 true WO2005092888A1 (ja) 2005-10-06

Family

ID=35056126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006420 WO2005092888A1 (ja) 2004-03-25 2005-03-25 ピリジル基で置換されたオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
US (2) US7812341B2 (ja)
EP (2) EP1746094A4 (ja)
KR (1) KR101160706B1 (ja)
CN (1) CN1938297B (ja)
TW (1) TWI371452B (ja)
WO (1) WO2005092888A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026847A1 (ja) * 2005-08-31 2007-03-08 Hodogaya Chemical Co., Ltd. ピリジル基で置換されたトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2007032357A1 (ja) * 2005-09-12 2007-03-22 Hodogaya Chemical Co., Ltd. 芳香族複素環が結合したオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
EP1793435A2 (en) * 2005-11-30 2007-06-06 Samsung SDI Co., Ltd. Organic light emitting device
JP2007291092A (ja) * 2006-03-30 2007-11-08 Chisso Corp 新規ビピリジン誘導体、およびこれを含む有機電界発光素子
JP2008108995A (ja) * 2006-10-27 2008-05-08 Shinshu Univ 有機発光ダイオードデバイス
JP2008150365A (ja) * 2006-11-20 2008-07-03 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008214307A (ja) * 2007-03-07 2008-09-18 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
US8153277B2 (en) * 2006-03-24 2012-04-10 Hodogaya Chemical Co., Ltd. Compound having thiadiazole ring structure substituted with pyridyl group and organic electroluminescent device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286367B1 (ko) 2005-08-31 2013-07-15 고쿠리츠 다이가쿠 호우징 신슈 다이가쿠 아릴아민 화합물 및 유기 전계 발광 소자
FR2921062A1 (fr) 2007-09-17 2009-03-20 Commissariat Energie Atomique Composes utiles comme ligands et notamment comme chromophores organiques de complexation des lanthanides et leurs applications
KR101431465B1 (ko) * 2007-11-23 2014-08-21 삼성디스플레이 주식회사 옥사디아졸계 화합물 및 이를 포함한 유기막을 구비한 유기발광 소자
CN102047061A (zh) * 2008-05-30 2011-05-04 福斯特韦勒能源股份公司 通过氧化燃料燃烧发电的方法和系统
EP2186810A1 (en) * 2008-10-31 2010-05-19 Institut Curie Poly-heteroaryl derivatives for the treatment of cancer
JP5684206B2 (ja) * 2012-09-14 2015-03-11 株式会社東芝 有機電界発光素子
US10112133B2 (en) 2015-07-20 2018-10-30 Caterpillar Inc. Filter housing with end cap seal
WO2022177358A1 (ko) * 2021-02-19 2022-08-25 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542739A (en) * 1977-06-09 1979-01-10 Ricoh Co Ltd Electrophotographic photoreceptor
JPH08176148A (ja) * 1994-12-27 1996-07-09 Chisso Corp ヘテロ環を有するオキサジアゾール誘導体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194657A (ja) 1989-12-22 1991-08-26 Mitsubishi Electric Corp 図形処理装置
JP2721442B2 (ja) 1991-02-27 1998-03-04 株式会社リコー 電界発光素子
JP3316236B2 (ja) 1992-10-29 2002-08-19 三洋電機株式会社 電界発光素子
JP2734341B2 (ja) 1993-03-26 1998-03-30 住友電気工業株式会社 有機エレクトロルミネッセンス素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JP3828595B2 (ja) 1994-02-08 2006-10-04 Tdk株式会社 有機el素子
JP3518816B2 (ja) 1994-06-16 2004-04-12 株式会社リコー オキサジアゾール化合物およびその製造方法
JP3537869B2 (ja) 1994-06-16 2004-06-14 株式会社リコー オキサジアゾール化合物およびその製造方法
JP3525227B2 (ja) 1994-06-16 2004-05-10 株式会社リコー オキサジアゾール化合物およびその製造方法
JP3486994B2 (ja) 1994-12-27 2004-01-13 チッソ株式会社 オキサジアゾール誘導体を用いた有機電界発光素子
US7294849B2 (en) * 2001-03-14 2007-11-13 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
JP4254164B2 (ja) 2002-08-27 2009-04-15 パナソニック株式会社 ブラシレスモータ
JP2004089277A (ja) 2002-08-29 2004-03-25 Nippon System Group:Kk 医療用カートリッジの洗浄装置
CN101253170B (zh) 2005-08-31 2012-10-24 保土谷化学工业株式会社 具有被吡啶基取代的三唑环结构的化合物和有机电致发光器件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542739A (en) * 1977-06-09 1979-01-10 Ricoh Co Ltd Electrophotographic photoreceptor
JPH08176148A (ja) * 1994-12-27 1996-07-09 Chisso Corp ヘテロ環を有するオキサジアゾール誘導体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATALANO V. ET AL: "Monometallic and Dimetallic Ruthenium(II)-Terpyridine Complexes Employing the Tetradentate Ligands Dipyridylpyrazol 1, Dipyridyloxadiazole, and their Dimethyl Derivatives.", INORGANIC CHEMISTRY., vol. 42, no. 2, 2003, pages 321 - 334, XP002990156 *
See also references of EP1746094A4 *
WANG C. ET AL: "Polymeric Alkoxy PBD (2-(4-Biphenylyl)-5-Phenyl-1,3,4-Oxadiazole) for ligh-Emitting Diodes.", ADVANCED FUNCTIONL MATERIALS., vol. 11, no. 1, 2001, pages 47 - 50, XP001043651 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026847A1 (ja) * 2005-08-31 2007-03-08 Hodogaya Chemical Co., Ltd. ピリジル基で置換されたトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5175099B2 (ja) * 2005-08-31 2013-04-03 保土谷化学工業株式会社 ピリジル基で置換されたトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2007032357A1 (ja) * 2005-09-12 2007-03-22 Hodogaya Chemical Co., Ltd. 芳香族複素環が結合したオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
US8247087B2 (en) 2005-09-12 2012-08-21 Hodogaya Chemical Co., Ltd. Compound having oxadiazole ring structure bonded with aromatic heterocyclic ring and organic electroluminescent device
JP5291340B2 (ja) * 2005-09-12 2013-09-18 保土谷化学工業株式会社 芳香族複素環が結合したオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
EP1793435A2 (en) * 2005-11-30 2007-06-06 Samsung SDI Co., Ltd. Organic light emitting device
EP1793435A3 (en) * 2005-11-30 2010-07-07 Samsung Mobile Display Co., Ltd. Organic light emitting device
US8153277B2 (en) * 2006-03-24 2012-04-10 Hodogaya Chemical Co., Ltd. Compound having thiadiazole ring structure substituted with pyridyl group and organic electroluminescent device
JP2007291092A (ja) * 2006-03-30 2007-11-08 Chisso Corp 新規ビピリジン誘導体、およびこれを含む有機電界発光素子
JP2008108995A (ja) * 2006-10-27 2008-05-08 Shinshu Univ 有機発光ダイオードデバイス
JP2008150365A (ja) * 2006-11-20 2008-07-03 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008214307A (ja) * 2007-03-07 2008-09-18 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子

Also Published As

Publication number Publication date
US20080017846A1 (en) 2008-01-24
TW200604194A (en) 2006-02-01
US7812341B2 (en) 2010-10-12
EP2385052A1 (en) 2011-11-09
US20100066244A1 (en) 2010-03-18
KR101160706B1 (ko) 2012-06-28
TWI371452B (en) 2012-09-01
EP1746094A4 (en) 2009-06-10
EP1746094A1 (en) 2007-01-24
CN1938297A (zh) 2007-03-28
US7977671B2 (en) 2011-07-12
EP2385052B1 (en) 2013-11-13
CN1938297B (zh) 2011-09-14
KR20070027522A (ko) 2007-03-09

Similar Documents

Publication Publication Date Title
WO2005092888A1 (ja) ピリジル基で置換されたオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5175099B2 (ja) ピリジル基で置換されたトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
TWI429730B (zh) A substituted bipyridyl group and a pyridoindole ring structure, and an organic electroluminescent element
KR101411135B1 (ko) 치환된 피리딜기가 연결된 피리도인돌환 구조를 갖는 화합물 및 유기 전계발광 소자
EP2463287B1 (en) Compound having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
JP6731355B2 (ja) ピリミジン誘導体および有機エレクトロルミネッセンス素子
JPWO2008023628A1 (ja) ピリジル基で置換されたトリアジン環構造を有する化合物および有機エレクトロルミネッセンス素子
TWI464167B (zh) A substituted pyridyl group and a pyridoindole ring structure, and an organic electroluminescent element
JPWO2009107651A1 (ja) 置換されたビピリジル化合物および有機エレクトロルミネッセンス素子
JP5955228B2 (ja) 置換されたビピリジル基とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5291340B2 (ja) 芳香族複素環が結合したオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2009051764A (ja) 置換されたフェナントレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5203935B2 (ja) ピリジル基で置換されたチアジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2012114746A1 (ja) 置換されたオルトターフェニル構造を有する化合物および有機エレクトロルミネッセンス素子
JP4879734B2 (ja) ピリジル基で置換されたオキサジアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP4610918B2 (ja) ピリジル基で置換されたオキサジアゾール環構造を有する化合物
JP6451140B2 (ja) トリアジン化合物、その製造方法、およびその用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019559

Country of ref document: KR

Ref document number: 200580009177.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005727286

Country of ref document: EP

Ref document number: 2006511602

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005727286

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019559

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594241

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594241

Country of ref document: US