WO2005092498A1 - 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法 - Google Patents

炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法 Download PDF

Info

Publication number
WO2005092498A1
WO2005092498A1 PCT/JP2005/005099 JP2005005099W WO2005092498A1 WO 2005092498 A1 WO2005092498 A1 WO 2005092498A1 JP 2005005099 W JP2005005099 W JP 2005005099W WO 2005092498 A1 WO2005092498 A1 WO 2005092498A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
group
metal
mass
hydrotreating
Prior art date
Application number
PCT/JP2005/005099
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Kiriyama
Takashi Fujikawa
Masahiro Kato
Minoru Hashimoto
Original Assignee
Cosmo Oil Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co., Ltd. filed Critical Cosmo Oil Co., Ltd.
Priority to DK05721249.0T priority Critical patent/DK1733787T3/da
Priority to EP05721249A priority patent/EP1733787B1/en
Priority to CN2005800096893A priority patent/CN1938087B/zh
Priority to US10/594,451 priority patent/US7737071B2/en
Priority to KR1020067020620A priority patent/KR101186753B1/ko
Priority to CA2560925A priority patent/CA2560925C/en
Publication of WO2005092498A1 publication Critical patent/WO2005092498A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Definitions

  • Hydrotreating catalyst for hydrocarbon oil method for producing the same, and method for hydrotreating hydrocarbon oil
  • the present invention relates to a hydrotreating catalyst for hydrocarbon oil (hereinafter, also simply referred to as “hydrotreating catalyst”), a method for producing the same, and a method for hydrotreating hydrocarbon oil using the hydrotreating catalyst.
  • hydrotreating catalyst for hydrocarbon oil
  • it has a superior desulfurization activity that can reduce sulfur compounds and nitrogen compounds in hydrocarbon oils compared to using conventional hydrotreating catalysts of this type.
  • the present invention relates to a hydrotreating catalyst having denitrification activity, a method for producing the same, and a hydrotreating method using the hydrotreating catalyst.
  • the concentration of the Group 8 metal is not there is known a catalyst having a concentration of 220 mass% and a concentration of a Group 6 metal of 550 mass% with respect to the carrier, and substantially free of free water (see Patent Document 3).
  • hydroxycarboxylic acid was added in an amount of 0.3 to 5.0 times the total mole number of the Group 6 metal and the Group 8 metal, and then 200 ° C.
  • a catalyst obtained by drying at a temperature of C or lower is known (see Patent Document 4).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-299960
  • Patent Document 2 WO04054712A1
  • Patent Document 3 JP-A-6-31176
  • Patent Document 4 Japanese Patent No. 3244692
  • an inorganic oxide carrier containing a predetermined amount of a phosphate contains a Group 6 metal compound, a Group 8 metal compound, and an organic acid.
  • the present invention provides the following catalyst for hydrotreating hydrocarbon oil, a method for producing the catalyst, and a method for hydrotreating hydrocarbon oil using the catalyst. Offer.
  • a hydrotreating catalyst for hydrocarbon oils characterized in that it has 6 ml / g and an average pore diameter of 50-200A.
  • Imax is the maximum value of the measured concentration of phosphorus atoms by EPMA line analysis.
  • Imin is the minimum value of the measured concentration of phosphorus atoms by EPMA line analysis, and lave is the average value of the measured values of phosphorus atoms by EPMA line analysis.
  • Inorganic oxide carrier with specific surface area of 230-500m 2 / g, pore volume of 0.5-lml / g, average pore diameter of 40-18OA, and containing 15% by mass or less of phosphor oxide based on the carrier
  • the metal is supported at 10 to 40% by mass of Group 6 metal in the periodic table, 11 to 15% by mass of Group 8 metal in the periodic table, and 2 to 14% by mass of carbon in terms of oxide, and 200 °
  • the oil to be treated according to the present invention includes, for example, straight run naphtha, catalytic reforming naphtha, catalytic cracking naphtha, catalytic cracking gasoline, straight running kerosene, straight running gas oil, catalytic cracking gas oil, pyrolysis gas oil, and hydroprocessing.
  • Distillates such as light oil, desulfurized gas oil, and vacuum distilled light oil (VG ⁇ ) are suitable.
  • Typical properties of these feedstocks include those having a boiling point range of 30 to 560 ° C and a sulfur compound concentration of 5% by mass or less.
  • an inorganic oxide carrier containing a predetermined amount of a phosphate is used as the inorganic oxide carrier in order to improve the desulfurization activity.
  • an inorganic oxide whose main component is alumina is preferable because various inorganic oxides can be used.
  • the inorganic oxide mainly composed of alumina as a carrier contain phosphorus oxide, it can be carried out by an equilibrium adsorption method, a coprecipitation method, a kneading method, etc., which do not particularly limit the preparation method.
  • the kneading method of kneading alumina gel which is the raw material of the carrier, with the raw material of phosphorus oxide.
  • the raw material of phosphorus oxide should be used as an aqueous solution Is preferred.
  • the content of the phosphorus oxide in the inorganic oxide carrier is not particularly limited as long as it is 15% by mass or less based on the carrier, and is usually in the range of 0.1 to 15% by mass, preferably 0.515% by mass. %, More preferably 11 to 13% by mass, and still more preferably 1 to 10% by mass.
  • the phosphoric acid power is 15% by mass or less, the place where molybdenum disulfide should be disposed on the alumina surface does not become narrow.
  • a catalyst having a high desulfurization activity can be obtained.
  • Various compounds can be used as a raw material of the phosphorus oxide used in the catalyst of the present invention.
  • orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid can be mentioned, and orthophosphoric acid is preferable.
  • Alumina used for the carrier includes a force S that can use various aluminas such as ⁇ -anoremina, ⁇ -anoremina, ⁇ -alumina, and alumina hydrate, and alumina which is porous and has a high specific surface area.
  • ⁇ -alumina is suitable among these.
  • Alumina having a purity of about 98% by mass or more, preferably about 99% by mass or more is suitable.
  • Impurities in alumina include SO 2—, Cl—, Fe ⁇ , Na ⁇ , etc. Force S. These impurities should be as small as possible.
  • the total amount of desired impurities is 2% by mass or less, preferably 1% by mass or less.
  • the other oxide component to which alumina is preferably added is preferably at least one selected from zeolite, polya, silica and dinorecoure. These By forming a composite, lamination of molybdenum disulfide forming desulfurization active sites becomes advantageous.
  • zeolite has an average pore diameter of 2.5-6 / im, preferably 3 to 1, as measured by a coal counter method (1 mass 0 / oNaCl aqueous solution, aperture-30 / im, ultrasonic treatment for 3 minutes). Things. Further, the zeolite has a particle size of 6 xm or less with respect to all the zeolite particles in a proportion of about 70 98%, preferably about 75 98%, more preferably about 80-98%.
  • Zeolite having such characteristics is preferable in that the pore diameter for facilitating diffusion of the non-desulfurizable substance into the pores is precisely controlled.
  • the average particle diameter is too large or the content of the large particle diameter is large, for example, the amount of water absorbed and the crystallinity of alumina hydrate (alumina precursor) and zeolite in the process of preparing the inorganic oxide carrier are increased.
  • the inorganic oxide carrier is calcined to increase the strength, the shrinkage ratio of alumina hydrate and zeolite is different, and relatively large meso or macropores tend to be generated as the pores of the inorganic oxide carrier. .
  • these large pores are not a force if the specific surface area is reduced, but facilitate the internal diffusion of a metal component that becomes a catalyst poison when treating residual oil, and thus desulfurization and denitrification. And a tendency to reduce the decomposition activity.
  • preferred zeolites to be added to alumina include faujasite X-type zeolite, faujasite ⁇ -type zeolite, ⁇ -zeolite, mordenite-type zeolite, ZSM zeolite (ZSM-4, 5, 8, 11) , 12, 20, 21, 23, 34
  • UTD_1, CIT-15, VPI-6, TS-1, TS-2, etc. can be used, and Y-type zeolite, stabilized Y-zeolite and ⁇ -zeolite are particularly preferable.
  • the zeolite is preferably a proton type.
  • silica and zirconia those generally used as a catalyst carrier component of this kind can be used.
  • zeolite, polya, silica, and zirconia can be used alone or in combination of two or more.
  • the amount of addition of these other oxide components is more than 65% by mass to 99.4% by mass or less and 0.1% to 15% by mass of phosphorus oxide in the inorganic oxide carrier.
  • Mass% On the other hand, the other oxide component is 0.5 to less than 20% by mass, preferably 70 to 99% by mass of alumina and 0.5 to 15% by mass of phosphorus oxide.
  • to a another oxide component 0.5 5 15 weight 0/0, more preferably, alumina force 0- 98.5 mass 0/0, to the phosphorus oxide is 1 one 10 wt%
  • the content of other oxide components is 0.510% by mass.
  • the inorganic oxide support containing a predetermined amount of phosphorus oxide in the present invention is prepared by calcining at 400 ° C 700 ° C for 0.5 to 10 hours.
  • the catalyst of the present invention is prepared by drying only at 200 ° C. or less after the active component is supported on the inorganic oxide carrier, so that the mechanical properties of the catalyst (side fracture strength (closest packed bulk) In order to obtain the density, etc., the inorganic oxide support is fired. At this time, sufficient mechanical strength cannot be obtained with baking at less than 400 ° C for less than 0.5 hours, and when baking at 700 ° C for more than 10 hours at high temperature, If the effect of this effect is saturated, baking by force will reduce the specific surface area, pore volume, and average pore diameter of the inorganic oxide carrier.
  • the specific surface area, pore volume, and average pore diameter of the inorganic oxide carrier are 230 to 500 m 2 / g, preferably 270 to allow the catalyst to have a high hydrodesulfurization activity for hydrocarbon oils. It must be 500 m 2 / g, mosquitoes volume 0.5-lml / g, preferably 0.55-0.9 ml / g, average pore diameter 40-180 A. The reason is as follows.
  • the group 6 metal and the group 8 metal form a complex in the impregnation solution
  • the specific surface area of the inorganic oxide support is less than 230 m 2 / g
  • the bulk of the complex during the impregnation is reduced. Therefore, it is presumed that it becomes difficult to highly disperse the metal, and as a result, even if the obtained catalyst is sulfurized, it is difficult to precisely control the formation of the above-mentioned active sites (CoMoS phase, NiMoS phase, etc.).
  • the specific surface area is not more than 500 m 2 / g, the pore diameter does not become extremely small, so that the pore diameter of the catalyst does not become small, which is preferable.
  • the pore diameter is small, the diffusion of the sulfur compound in the catalyst pores becomes insufficient, and the desulfurization activity decreases.
  • the pore volume is 0.5 ml / g or more, when a catalyst is prepared by a usual impregnation method, a small amount of a solvent enters the pore volume, which is preferable. If the amount of the solvent is small, the solubility of the active metal compound becomes poor, the dispersibility of the metal is reduced, and the catalyst has low activity.
  • a method of adding a large amount of an acid such as nitric acid has a certain force.
  • a pore volume force of 1 mlZg or less is preferable because the specific surface area is not reduced, the dispersibility of the active metal is improved, and the catalyst has a high desulfurization activity.
  • the average pore diameter of the catalyst supporting the active metal does not decrease, which is preferable. If the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases. When the average pore diameter is 180 A or less, the specific surface area of the catalyst is not reduced, which is preferable. If the specific surface area of the catalyst is small, the dispersibility of the active metal will be poor, and the catalyst will have low desulfurization activity. Further, in order to increase the effective number of pores satisfying the above condition of the average pore diameter, the pore distribution of the catalyst, that is, the proportion of pores having pores having an average pore diameter of ⁇ 15 A is 20 to 90%.
  • the compound to be desulfurized is not limited to a specific sulfur compound, and desulfurization can be performed uniformly, which is preferable.
  • the content is 20% or more, the pores that do not contribute to the desulfurization of the hydrocarbon oil do not increase, and as a result, the desulfurization activity is not significantly reduced.
  • a phosphor may be supported on the above-mentioned carrier.
  • the raw material of the phosphorus oxide to be supported those similar to those at the time of preparing the carrier are preferable, for example, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and onoletophosphoric acid are preferable.
  • a method for supporting the phosphorus compound there is a method of impregnating the support with these phosphorus compound raw materials.
  • the amount of the phosphorus oxide to be supported is determined by measuring the total amount of the phosphorus oxide used in preparing the carrier, including the maximum content of the phosphate (15 mass%) in the carrier specified above. Do not go over.
  • the carrier is prepared by kneading an inorganic oxide and a phosphorus oxide
  • a part of the phosphorus oxide used at the time of kneading is used as the supporting phosphorus oxide.
  • the active metal for example, when molybdenum is used, the mass of phosphorous oxide and molybdenum, it [PO] / [MoO], is preferably 0.01-1. More preferably f 0.05-1.0, More preferably, it is 0.1-0.5.
  • Co and Mo When the mass ratio is more than 0.01, Co and Mo can be completely integrated and molybdenum disulfide can be laminated after sulfidation.
  • the group 6 metal supported on the catalyst of the present invention is preferably molybdenum or tungsten, more preferably molybdenum.
  • the amount of the Group 6 metal to be supported is 1040% by mass, and preferably 1030% by mass, in terms of an oxide as a catalyst.
  • the content is 10% by mass or more, it is sufficient to exert the effect attributed to the group 6 metal, and thus it is preferable.
  • the content is less than 40% by mass, the group 6 metal compound does not aggregate in the step of impregnating (supporting) the group 6 metal, the dispersibility of the group 6 metal is improved, and the amount of the group 6 metal supported that is efficiently dispersed is improved. This is preferable because the catalyst activity is improved because the catalyst surface area does not significantly decrease and the catalyst surface area does not significantly decrease.
  • the group 8 metal is preferably cobalt or nickel.
  • the amount of the Group 8 metal to be supported is 1 to 15% by mass, and preferably 3 to 8% by mass, in terms of a catalyst and as an oxide.
  • the content is 1% by mass or more, an active site attributed to the group 8 metal is sufficiently obtained, so that it is preferable.
  • the group 8 metal compound does not agglomerate in the step of containing (supporting) the group 8 metal, the dispersibility of the group 8 metal is improved, and in addition, inert cobalt and nickel species are used.
  • Co ⁇ and Ni ⁇ which are the precursors of Group 8 metal species such as Co S and Ni S, and Co spinel species and Ni spinel species incorporated in the lattice of the carrier.
  • the catalytic ability is improved, which is preferable.
  • the molar ratio of Co / (Ni + Co) should be in the range of 0.61, more preferably 0.7-1. Hope that you do. When the ratio is 0.6 or more, a coke precursor is not generated on Ni, and the catalytically active sites are not covered with coke. As a result, the activity does not decrease.
  • the optimum mass ratio of the Group 8 metal and the Group 6 metal Is preferably 0.1 to 0.25 in terms of oxide in terms of [Group 8 metal] / [Group 8 metal + Group 6 metal].
  • this value is 0.1 or more, the formation of a CoMoS phase, a NiMoS phase, etc., which are considered to be active points for desulfurization, is not suppressed, and the degree of improvement in the desulfurization activity is high.
  • a value of 0.25 or less is preferable because the generation of the above-mentioned inactive cobalt and nickel species (CoS species, NiS species and the like) is suppressed, and the catalytic activity is improved.
  • the amount of carbon carried is 214% by mass based on the catalyst.
  • This carbon is derived from an organic acid, preferably citric acid.
  • the Group 8 metal sufficiently forms a complex compound with the organic acid on the catalyst surface, and in this case, the Group 6 metal which has not been complexed in the pre-sulfurization step, Prior to being sulfurized, a CoMoS phase and a NiMoS phase, which are considered to be active sites for desulfurization, are sufficiently formed, so that CoS and NiS, which are inactive Group 8 metals such as cobalt and nickel, are used. It is preferable that Co spinel species and Ni spinel species incorporated in the lattice of the seed and the carrier are not formed.
  • the Group 8 metal can sufficiently form a complex compound with the organic acid on the catalyst surface, while the Group 6 metal cannot form a complex compound with the organic acid, and It is more preferable that carbon derived from the organic acid does not remain on the catalyst surface.
  • the sulfuration of the Group 6 metal occurs simultaneously with the sulfuration of the Group 8 metal during activation (sulfurization), and the CoMoS phase and NiMoS phase, which are considered to be active sites for desulfurization, are formed. It is presumed that they are not efficiently formed and inactive Co S species, Ni S species, etc. are formed.
  • excess carbon poisons the desulfurization active site during the sulfurization stage as a poisoning substance of the catalyst, causing a decrease in activity.
  • a compound comprising at least one of the above-mentioned Group 6 metals on an inorganic oxide carrier comprising the above-mentioned components and containing a predetermined amount of the phosphoric acid having the above-mentioned physical properties
  • a solution containing at least one of the above-described Group 8 metals and a solution containing an organic acid the Group 6 metal, the Group 8 metal, and the carbon are supported so as to have the above-mentioned supported amounts, and the force by a drying method.
  • S specifically, for example, a method of impregnating an inorganic oxide with a solution containing these compounds and the like, and drying.
  • Examples of the compound containing a Group 6 metal used in the above impregnation solution include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and preferably molybdenum trioxide and molybdophosphoric acid.
  • the added calories in the above impregnation solution of these compounds The amount is the amount of the Group 6 metal contained within the above range in the obtained catalyst.
  • Examples of the compound containing a Group 8 metal include cobalt carbonate, nickel carbonate, cobalt citrate, nickel citrate, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, and the like. , Cobalt carbonate, nickel carbonate, cobalt citrate, and nickel citrate. Particularly preferred are cobalt citrate and nickel citrate compounds.
  • cobalt citrate examples include cobaltous citrate (Co (CHO)), cobalt hydrogen atenate (CoHC H ⁇ ), cobalt citrate oxysalt (Co (CHO.CoO)), and the like.
  • cobaltous citrate Co (CHO)
  • cobalt hydrogen atenate CoHC H ⁇
  • cobalt citrate oxysalt Co (CHO.CoO)
  • nickel nickel citrate Ni (CHO)
  • NiHCHO nickel hydrogen octoate
  • Ni (CH ⁇ ) .NiO nickel citrate
  • citrate compounds of cobalt and nickel can be obtained, for example, by dissolving cobalt carbonate in an aqueous solution of citrate in the case of cobalt. Without removing the water from the citrate compound obtained by such a production method, it can be used as it is in preparing the catalyst.
  • the amount of these compounds to be added to the above impregnating solution is such that the resulting catalyst contains the Group 8 metal within the above range.
  • Examples of the organic acid include citric acid monohydrate, citric anhydride, isocunic acid, malic acid, tartaric acid, oxalic acid, succinic acid, glutanic acid, darconic acid, adipic acid, benzoic acid, phthalic acid, and isophthalic acid. Acids, salicylic acid, malonic acid and the like, and preferably citric acid monohydrate. It is important that these organic acids use compounds that are substantially free of sulfur. When citric acid is used as the organic acid, it may be citric acid alone or a citric acid compound with a Group 8 metal such as cobalt or nickel described above.
  • the amount of the organic acid added to the total amount of the group 6 metal and the group 8 metal is molar, and the ratio of the organic acid / [group 6 metal + group 8 metal] is 0.35 or less, preferably 0.3 or less. It is suitable to be. When the value is 0.35 or less, it is preferable that an excessive organic acid that cannot be completely complexed with the metal does not remain on the catalyst surface. Excess organic acid remaining on the catalyst surface is not preferred because it may flow out together with the feed oil in the sulfurization step.
  • an acid nitric acid, organic acid (taenoic acid, malic acid, tartaric acid, etc.)] is added together with these compounds.
  • an organic acid is preferred, and when an organic acid is used, the carbon content of the catalyst may fall within the above range because carbon resulting from the organic acid may remain in the obtained catalyst. It is important that
  • the solvent used for dissolving the above components is water. If the amount of the solvent used is too small, the carrier cannot be sufficiently immersed.If the amount is too large, a part of the dissolved active metal cannot be fully supported on the carrier and adheres to the edge of the impregnation solution container. As a result, a desired amount of the carrier cannot be obtained, so that the amount is preferably 50 to 90 g per 100 g of the carrier.
  • the impregnating solution is prepared by dissolving the above components in the above solvent.If the temperature is within this range from 0 ° C to 100 ° C, the components are dissolved well in the solvent. be able to.
  • the impregnating solution thus prepared is impregnated with the above-mentioned inorganic oxide, and the above-mentioned components in these solutions are supported on the above-mentioned inorganic oxide carrier.
  • the impregnating condition is a force that can adopt various conditions.
  • the impregnating temperature is preferably more than 0 ° C and less than 100 ° C.
  • the impregnation time is 15 minutes to 3 hours, preferably 20 minutes to 12 hours, and more preferably 30 minutes to 1 hour. If the temperature is too high, drying occurs during the impregnation, and the degree of dispersion is uneven. It is preferable to stir during the impregnation.
  • the support impregnated with the impregnating solution is heated at a room temperature of about 80 ° C, in a nitrogen stream, an air stream, or in a vacuum, to a certain degree of moisture [L ⁇ I (Loss on ignition) is 50% or less.
  • a predetermined amount of a Group 6 metal, a Group 8 metal, and carbon are supported on an inorganic oxide carrier containing a predetermined amount of a phosphoric acid, and dried at a predetermined temperature.
  • the catalyst has a specific surface area of 100 to 400 m 2 / g, preferably 150 to 350 m 2 Zg, and a pore capacity of 0.2 to 0.6 ml / g, preferably f to 0.3 to 0.6 ml / g. g, more preferably f-0.3-0.5 ml / g, and the average diameter of the squid is 50 200A, preferably 50 180A, more preferably 50-150A.
  • the above physical properties of the specific surface area, pore volume, and average pore diameter of the catalyst are within the above ranges, desired catalytic activity can be obtained, and the intended purpose can be achieved.
  • the above physical properties of the catalyst are within the above ranges, in preparing the catalyst, the above physical properties of the inorganic oxide carrier containing phosphorus oxide are selected within the ranges of the above physical properties of the above carrier. It can be easily achieved by controlling the supported amount of the required supporting components such as Group 6 metal and Group 8 metal within the above range, and controlling the drying conditions after supporting the necessary supporting component within the above range.
  • phosphorus atoms are highly dispersed.
  • the S value which is an index of the dispersibility of phosphorus atoms, represented by the following equation (1) was 5%. Or less, preferably 4 or less, more preferably 3 or less. The smaller the S value, the more uniformly the phosphorus atoms are dispersed. If the S value is 5 or less, the high dispersibility of the phosphate is maintained, the active metal becomes highly dispersed, and the desulfurization activity decreases. Not preferred.
  • the carrier further supports phosphorus oxide
  • many phosphorus atoms are present on the surface layer of the catalyst.
  • the amount of phosphorus oxide supported and the amount of phosphorus oxide are determined so as to satisfy the expression (1). Adjust the loading conditions and the like.
  • Imax is the maximum value of the measured value of the concentration of phosphorus atoms by EPMA line analysis
  • Imin is the minimum value of the measured value of the concentration of phosphorus atoms by EPMA line analysis.
  • lave. Is the average of the measured values of the concentration of phosphorus atoms by EPMA line analysis.
  • the catalyst of the present invention has an average value of the number of stacked layers of a group 6 metal disulfide such as molybdenum disulfide of 2.5 when observed with a transmission electron microscope after the sulfuration treatment. — A value of 5 is preferred.
  • the layer of molybdenum disulfide or the like is formed on the inorganic oxide carrier, and plays a role of increasing the contact area of the catalyst, and active points such as the CoMoS phase and the NiMoS phase are formed in the layer.
  • a catalyst having an average value of the number of layers of 2.5 or more is preferable because the ratio of Type I such as a low-activity CoMoS phase or a NiMoS phase does not increase and high activity is exhibited. Further, with a catalyst of 5 or less, a type II such as a CoMoS phase or a NiMoS phase having high activity is formed, and the absolute number of active sites is not reduced and high activity is exhibited.
  • the length of the layer of the group 6 metal disulfide such as molybdenum disulfide in the plane direction is 11 to 3.5 nm on average, preferably 2 to 3 nm. 5 nm is suitable.
  • molecules such as molybdenum disulfide cannot exist as a single molecule only.
  • cobalt and Eckenole can form a square pyramid-type five-coordinate sulfur structure, and the active site, CoMoS Phase, NiMoS phase, etc.
  • a thickness of 3.5 nm or less is preferable because the crystal size of molybdenum disulfide or the like does not become large, so that the absolute number of edges does not decrease and the number of active sites such as CoMoS phase and NiMoS phase can be sufficiently secured.
  • the transmission electron micrograph used in the analysis should be one in which more than 200 crystals of Group 6 metal disulfide such as molybdenum disulfide can be visually observed per visual field.
  • the shape of the catalyst is not particularly limited, and a shape usually used for this type of catalyst, for example, a columnar shape, a trilobe shape, a tetralobe shape, or the like can be adopted.
  • the size of the catalyst is preferably about 1-2 mm in diameter and about 25 mm in length.
  • the mechanical strength of the catalyst is preferably about 21 bs / mm or more in side crushing strength (SCS). If the SCS is about 21 bsZmm or more, the catalyst charged in the reactor will be destroyed and a differential pressure will occur in the reactor, making it impossible to continue the hydrotreating operation. It's going to be.
  • SCS side crushing strength
  • the most packed bulk density (CBD: Compacted Bulk Density) of the catalyst is preferably 0.6-1.2 g / ml.
  • the dispersed state of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.
  • the hydrogenation treatment of the present invention is performed under the conditions of a hydrogen partial pressure of 0.78 MPa, a temperature of 220 420 ° C., a liquid space velocity of 0.3 to 10 hr 1 , and a hydrogen / oil ratio of 20 1000 m 3 (normal) Zkl.
  • the catalyst is brought into contact with a hydrocarbon oil containing a sulfur compound to perform desulfurization, thereby reducing a sulfur compound containing a hardly-desulfurized substance in the hydrocarbon oil.
  • the concentration of hydrogen sulfide in hydrogen is 4% by volume or less, preferably 1.4% by volume or less, more preferably 1% by volume or less.
  • a product oil having a sulfur content of 10 mass ppm or less for hydrocarbon oils up to naphtha, kerosene or gas oil fractions.
  • a product oil having a sulfur content of about 14% by mass of 0.3% by mass or less, preferably 0.07% by mass or less is obtained. be able to.
  • the catalyst of the present invention is formed in a fixed bed, moving bed or fluidized bed type catalyst layer in a reactor, and the raw material is placed in the reactor. Oil may be introduced and hydrotreating may be performed under the above conditions.
  • a fixed bed catalyst bed is formed in the reactor, feedstock is introduced from the top of the reactor, the fixed bed is passed from top to bottom, and the product flows out from the bottom of the reactor. Chino.
  • a single-stage hydrotreating method in which the catalyst of the present invention is charged into a single reactor and a multi-stage continuous hydrotreating method in which the catalyst is charged into several reactors may be used. You may use it.
  • the catalyst of the present invention is activated by sulfidation in a reactor before use (that is, before performing the hydrotreating method of the present invention).
  • This sulfurization method is carried out at 200 ° C. to 400 ° C., preferably 250 ° C. to 350 ° C. in a hydrogen atmosphere at normal pressure or higher, in a distillate of oil containing sulfur compounds, dimethyl disulfide, carbon disulfide, etc.
  • the reaction is carried out by adding a sulfurizing agent or by using hydrogen sulfide.
  • Silica, alumina hydrate, and orthophosphoric acid are kneaded, extruded, and fired at 600 ° C for 2 hours to form a 1/16 inch diameter columnar shaped phosphor oxide-silica-alumina composite carrier (phospho- A silica / alumina mass ratio of 4/1/95, a pore volume of 0.70 m 2 / g, a specific surface area of 398 m 2 / g, and an average pore diameter of 62 A) were obtained.
  • zeolite-alumina composite carrier (phosphorus oxide Z zeolite / alumina mass ratio: 4Z 7/89, pore volume 0.70 ml / g, specific surface area 412 m 2 Zg, average pore diameter 63 A) was obtained.
  • zeolite-alumina composite carrier (phosphorus oxide Z zeolite / alumina mass ratio: 4Z 7/89, pore volume 0.70 ml / g, specific surface area 412 m 2 Zg, average pore diameter 63 A) was obtained.
  • the above zeolite-alumina composite carrier (50.0 g) was charged into an eggplant-shaped flask, and the entire amount of the above impregnating solution was added thereto by a pipette, followed by immersion at about 25 ° C for 3 hours.
  • Silica, alumina hydrate and orthophosphoric acid are kneaded, extruded, and baked at 600 ° C for 2 hours to form a 1/16 inch diameter columnar shaped phosphor oxide-silica-alumina composite oxide (phosphor oxide).
  • / Silica / alumina mass ratio 3/5/92, pore volume 0.68 ml / g, specific surface area 417 m 2 / g, average pore diameter 64 A).
  • Silica, alumina hydrate and orthophosphoric acid are kneaded, extruded, and baked at 600 ° C for 2 hours to form a 1/16 inch diameter columnar shaped phosphor oxide-silica-alumina composite oxide (phosphor oxide).
  • / Silica Z alumina mass ratio 4.4 / 5 / 90.5, pore volume 0.78mlZg, ratio table An area of 324 m 2 / g and an average pore diameter of 98 A) were obtained.
  • Catalyst G was air-dried with a stream of nitrogen and dried in a Matsufuru furnace at 120 ° C for about 16 hours to obtain Catalyst G.
  • Comparative Example 1 A solution for impregnation was prepared by dissolving 3.31 g of konole carbonate, 11.41 g of molybdophosphoric acid, and 1.17 g of talented oleic acid in 21.6 g of fresh water.
  • ⁇ -alumina carrier (pore volume 0.69ml / g, specific surface area 364m2 / g, average pore diameter 64A) 30. Og is charged into an eggplant-shaped flask, and the entire amount of the above impregnating solution is pipetted there. And immersed at about 25 ° C for 1 hour.
  • a solution for impregnation was prepared by dissolving 7.69 g of primary quinoconate, 12.91 g of molybdophosphoric acid, and 1.46 g of orthophosphoric acid in 21.4 g of hot water.
  • ⁇ -alumina carrier (pore volume 0.69 ml Zg, specific surface area 364 m 2 / g, average pore diameter 64 A) 30. Og is charged into an eggplant-shaped flask, and the entire amount of the above impregnating solution is pipetted there. And immersed at about 25 ° C for 1 hour.
  • catalyst b was air-dried in a stream of nitrogen and dried in a Matsufuru furnace at 120 ° C for about 1 hour to obtain catalyst b.
  • Table 1 shows the chemical properties and physical properties of each of the catalysts obtained above.
  • the number of layers of the molybdenum disulfide layer was measured using a transmission electron microscope (TEM) (trade name “JEM-2010” manufactured by JEOL Ltd.) in the following manner.
  • TEM transmission electron microscope
  • the obtained suspension was dropped on a microgrid and dried at room temperature to obtain a sample.
  • the sample was set on the measuring section of the TEM and measured at an acceleration voltage of 200 kV. Direct magnification was 200,000, and 5 visual fields were measured.
  • the JXA-8200 device manufactured by JEOL was used to cross the cross section of the catalyst from one surface to the center and from the surface on the other side to phosphorus atoms.
  • EPMA line analysis was performed under the following conditions.
  • the catalyst sample was embedded in MMA resin, a smooth catalyst section was obtained by a cutting method, and carbon was vapor-deposited on the surface.
  • P 2 OsMo0 3 is a value comprising P 2 0 5 in the carrier.
  • the catalyst was filled in a high-pressure flow reactor to form a fixed-bed catalyst layer, and the pretreatment catalyst was sulfurized under the following conditions.
  • a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions. It was discharged from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.
  • Atmosphere Hydrogen and feed oil (Liquid space velocity 1.5 r Hydrogen / oil ratio 200m 3 (normal) kl)
  • Oil type Middle eastern straight gas oil
  • reaction results were analyzed by the following method.
  • the reactor was operated at 350 ° C, and after 6 days, the produced oil was collected and its properties were prayed.
  • the ratio of the sulfur content lost from the feedstock was defined as the desulfurization rate, and was calculated from the sulfur analysis values of the feedstock and product oil by the following formula: .
  • Table 2 shows the results.
  • Desulfurization rate (%) [(3-Sp) / Sf] x 100
  • Desulfurization reaction rate constant [1 / 0.3] X [l / (Sp) ° -3 -l / (Sf) ° -3 ] X
  • LHSV Liquid space velocity (hr- 1 )
  • the catalyst of the present invention can be used in the desulfurization reaction and desulfurization of gas oil in the ultra-deep desulfurization region at almost the same hydrogen partial pressure and reaction temperature as in the conventional gas oil hydrotreatment. It turns out that it has a very excellent activity with respect to a nitrogen reaction.
  • the catalyst was filled in a high-pressure flow reactor to form a fixed-bed catalyst layer, and the pretreatment catalyst was sulfurized under the following conditions.
  • a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions. It was discharged from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.
  • Atmosphere hydrogen and feed oil (liquid space velocity 1.5 r hydrogen / oil ratio 200m 3
  • reaction results were analyzed by the following method.
  • the reactor was operated at 310 ° C, and after 6 days, the produced oil was collected and its properties were prayed.
  • the ratio of the sulfur content lost from the feedstock was defined as the desulfurization rate, and was calculated from the sulfur analysis values of the feedstock and product oil by the following formula: .
  • Table 3 shows the results.
  • Desulfurization rate (%) [(Sf_Sp) ZSf] X 100
  • Desulfurization reaction rate constant [1 / 0.3] X [l / (Sp) ° -3 -l / (Sf) ° -3 ] X (LHSV)
  • Desulfurization specific activity (%) Desulfurization reaction rate constant / Desulfurization reaction rate constant of catalyst a X 100
  • catalyst D was air-dried in a nitrogen atmosphere and dried at 120 ° C. for about 16 hours in a matsufur furnace to obtain catalyst D.
  • a solution for impregnation was prepared by dissolving 3.8 g of cono-noreth carbonate, 13.4 g of molybdophosphoric acid, and 1.5 g of thio-norretophosphoric acid in 20.3 g of fresh water.
  • ⁇ _alumina carrier pore volume 0.7 ml / g, specific surface area 187 m 2 / g, average pore diameter 98 A 30. Og is charged, and the entire amount of the above impregnating solution is transferred. It was added with a pipette and immersed at about 25 ° C for 1 hour.
  • Table 4 shows the chemical and physical properties of Catalysts D and c.
  • the measurement method for TEM and EPMA is the same as described above.
  • P 2 Os / Mo0 3 is a value comprising P 2 0 5 in the carrier.
  • Example 8 The catalysts D and c prepared in Example 8 and Comparative Example 3 were used, and a reduced pressure gas oil having the following properties was subjected to hydrogenation treatment in the following manner.
  • the catalyst was filled in a high-pressure flow reactor to form a fixed-bed catalyst layer, and the pretreatment catalyst was sulfurized under the following conditions.
  • a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions. It was discharged from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.
  • Atmosphere hydrogen and feed oil (liquid hourly space velocity: 0. Hydrogen / oil ratio 500m 3
  • Oil type Middle East vacuum gas oil
  • Nitrogen component 650 mass ppm
  • reaction results were analyzed by the following method.
  • the reactor was operated at 360 ° C, and after 6 days, the produced oil was collected and its properties were prayed.
  • the ratio of the sulfur content lost from the feedstock was defined as the desulfurization rate, and was calculated from the sulfur analysis values of the feedstock and product oil by the following formula: .
  • Table 5 shows the results.
  • the desulfurization reaction rate constant (ks) is defined as the constant of the reaction rate equation that gives the 1.5th-order reaction order with respect to the decrease in the sulfur content (Sp) of the produced oil.
  • Desulfurization rate (%) [(3-Sp) / Sf] x 100
  • Desulfurization reaction rate constant 2 X [l / (Sp ) ° - 5 -l / (Sf) ° - 5] X (LHSV)
  • Desulfurization specific activity (%) desulfurization reaction rate constant of catalyst D / desulfurization reaction rate constant of catalyst c
  • Table 5 As is clear from Table 5, it is found that the use of the catalyst D according to the production method of the present invention can achieve a high degree of desulfurization even for vacuum gas oil. [0074] As is clear from the above results, the catalyst of the present invention can be subjected to desulfurization reaction and denitrification reaction of hydrocarbon oil at substantially the same hydrogen partial pressure and reaction temperature as in the case of conventional hydrocarbon oil hydrotreating. It can be seen that the composition has extremely excellent activity.
  • a sulfur compound in a hydrocarbon oil can be highly desulfurized without severe operating conditions, and a nitrogen compound can be reduced at the same time.
  • the present invention provides a catalyst for hydrotreating a hydrocarbon oil which can be produced by the method described above.
  • This hydrotreating catalyst is extremely resistant to hydrocarbon oil desulfurization and denitrification reactions in the ultra-deep desulfurization region at the same hydrogen partial pressure and reaction temperature as in conventional hydrocarbon oil hydrotreatment. It has excellent activity.
  • the above-mentioned hydrotreating catalyst can be easily produced, and the use of the above-mentioned hydrotreating catalyst further reduces sulfur compounds and nitrogen compounds without requiring severe operating conditions. Also provided is a method for hydrotreating hydrocarbon oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

 一定量のリン酸化物を含む無機酸化物担体上に、一定量の周期律表第6族金属の少なくとも1種、周期律表第8族金属の少なくとも1種、及び炭素を担持してなり、一定の比表面積、細孔容積、及び平均細孔直径を有する炭化水素油の水素化処理触媒、その製法、それを用いた炭化水素油の水素化処理法を提供する。  これにより、簡便な手段で製造し得て、かつ過酷な運転条件を必要とせずに、炭化水素油中の硫黄化合物を高度に脱硫することができ、同時に窒素化合物を低減することができる、

Description

明 細 書
炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の 水素化処理方法
技術分野
[0001] 本発明は、炭化水素油の水素化処理触媒 (以下、単に「水素化処理触媒」ともいう) 及びその製造方法と、この水素化処理触媒を用いた炭化水素油の水素化処理方法 に関する。詳しくは、炭化水素油を水素化処理する際に、炭化水素油中の硫黄化合 物及び窒素化合物を従来のこの種の水素化処理触媒を使用する場合よりも低減可 能である優れた脱硫活性、脱窒素活性を有する水素化処理触媒及びその製造方法 と、この水素化処理触媒を用いる水素化処理方法に関する。
背景技術
[0002] 近年、大気環境改善のために、石油製品(炭化水素油)の品質規制値が世界的に 厳しくなる傾向にある。例えば、軽油中の硫黄化合物は、排ガス対策として期待され ている酸化触媒、窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子 除去フィルタ一等の後処理装置の耐久性に影響を及ぼす懸念があるため、軽油中 の硫黄化合物の低減が要請されてレ、る。
このような状況下で、炭化水素油中の硫黄化合物を大幅に低減する超深度脱硫技 術の開発が重要視されている。炭化水素油中の硫黄化合物の低減化技術として通 常、水素化脱硫の運転条件、例えば、反応温度、液空間速度等を過酷にすることが 考えられる。しかし、反応温度を上げると、触媒上に炭素質が析出して触媒活性が急 速に低下する。また、液空間速度を低下させると、脱硫能は向上するものの精製処 理能力が低下するため、設備規模を拡張する必要が生じる。
[0003] 従って、運転条件を過酷にすることなしに炭化水素油の超深度脱硫を達成し得る 最も良い方法は、優れた脱硫活性を有する触媒を開発することである。
近年、活性金属の種類、活性金属の含浸方法、触媒担体の改良、触媒細孔構造 制御、活性化法等について多くの検討が多方面において進められており、一例とし て軽油の新規深度脱硫について、以下の開発成果が報告され、知られている。 例えば、周期律表 6族金属(以下、単に「6族金属」とも記す)化合物、リン成分、周 期律表 8族金属(以下、単に「8族金属」とも記す)化合物及び有機酸を含む溶液を 用いて担体に含浸担持し、その後、 200°C以下の温度で乾燥する触媒の製造方法 が知られている(特許文献 1、 2参照)。
また、酸化物担体上に、コバルト及びニッケルから選択される 8族金属の塩又は錯 体、及びモリブデン及びタングステンから選択させる 6族金属のへテロポリ酸を含む 触媒において、 8族金属の濃度が担体に関して 2 20質量%、 6族金属の濃度が担 体に関して 5 50質量%であり、実質的に自由水のない触媒が知られている(特許 文献 3参照)。
また、担体上に 6族金属及び 8族金属を担持した触媒に、ヒドロキシカルボン酸を 6 族金属と 8族金属の金属総モル数の 0. 3-5. 0倍量添加し、次いで 200°C以下の 温度で乾燥させて得た触媒が知られている(特許文献 4参照)。
上記のように種々の触媒ないしその製造方法が提案されており、簡便な方法で製 造し得て、しかも運転条件を過酷にせずに炭化水素油の超深度脱硫を実現すること ができる脱硫活性の高い触媒も提案されているが、更なる活性の向上、かつ長い触 媒寿命が求められている。
[0004] 特許文献 1 :特開 2003 - 299960号公報
特許文献 2: WO04054712A1公報
特許文献 3:特開平 6 - 31176号公報
特許文献 4:特許第 3244692号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明の目的は、簡便な手段で製造し得て、かつ過酷な運転条件を必要とせずに 、炭化水素油中の硫黄化合物を高度に脱硫することができ、同時に窒素化合物を低 減することができる水素化処理触媒、及びその製造方法を提供することである。また 、本発明の他の目的は、この触媒を使用して炭化水素油を高効率で水素化処理す る方法を提供することである。
課題を解決するための手段 [0006] 本発明者は、上記の目的を達成するために検討を行ったところ、リン酸化物を所定 量含有する無機酸化物担体に、 6族金属化合物、 8族金属化合物、有機酸を含む溶 液を含浸させて、これら成分の所定量を担持させ、 200°C以下の温度で乾燥させて 得られるような特定の組成、物性の触媒は、不活性なコバルト、ニッケル種等の 8族 金属の金属種を形成しておらず、高活性な脱硫活性金属点(CoMoS相タイプ II、 Ni MoS相タイプ II等(二硫化モリブデンの 2層目以上のエッジ部に存在する Co、 Ni活 性点を指し、タイプ Iは、二硫化モリブデンの 1層目のエッジに存在する Co、 Ni活性 点を指し、タイプ Πよりも活性が低い))が精密に制御されており、これらの結果、炭化 水素油の脱硫反応及び脱窒素反応を効率的に進行させるので、反応条件を過酷に せずに高度な脱硫反応を容易に達成することができる高活性脱硫触媒であることを 知見して本発明を完成した。
[0007] すなわち、本発明は、上記目的を達成するために、次の炭化水素油の水素化処理 触媒、該触媒の製造方法、及び該触媒を用いた炭化水素油の水素化処理方法を提 供する。
( 1 )リン酸化物を担体基準で 15質量%以下含む無機酸化物担体上に、触媒基準 、酸化物換算で周期律表第 6族金属から選ばれた少なくとも 1種を 10— 40質量%、 周期律表第 8族金属から選ばれた少なくとも 1種を 1一 15質量%、炭素を 2— 14質量 %担持してなり、かつ、比表面積が 100— 400m2/g、細孔容積が 0. 2-0. 6ml/ g、平均細孔直径が 50— 200Aであることを特徴とする炭化水素油の水素化処理触 媒。
(2)前記周期律表第 8族金属と周期律表第 6族金属との質量比が、酸化物換算で 、 [8族金属] Z[8族金属 + 6族金属]の値で、 0. 1 -0. 25であることを特徴とする上 記(1 )に記載の炭化水素油の水素化処理触媒。
(3)エレクトロンプローブ 'マイクロアナリシス(EPMA)装置を使用して、中心を通る 断面幅方向における線分析を行ったときに、リン原子の分布が下記の式(1 )を満足 することを特徴とする上記(1 )または(2)に記載の炭化水素油の水素化処理触媒。
S=exp(0.04 X Iave.+0.013 X Imax-0.014 X Imin)≤ 5.0 式(1 )
(式(1 )において、 Imaxは EPMA線分析によるリン原子の濃度測定値の最大値であ り、 Iminは EPMA線分析によるリン原子の濃度測定値の最小値であり、 laveは EPM A線分析によるリン原子の濃度測定値の平均値である。 )
(4)比表面積 230— 500m2/g、細孔容積 0· 5— lml/g、平均細孔直径 40— 18 OAであり、リン酸化物を担体基準で 15質量%以下含む無機酸化物担体上に、周期 律表第 8族金属から選ばれた少なくとも 1種を含む化合物、周期律表第 6族金属から 選ばれた少なくとも 1種を含む化合物及び有機酸を含有する溶液を用レ、、触媒基準
、酸化物換算で周期律表第 6族金属を 10— 40質量%、周期律表第 8族金属を 1一 1 5質量%、炭素を 2— 14質量%となるように担持させ、 200°C以下で乾燥させることを 特徴とする上記(1)一 (3)の何れか 1項に記載の炭化水素油の水素化処理触媒の 製造方法。
(5)前記リン酸化物を含む無機酸化物担体が、無機酸化物担体の原料とリン酸化 物の原料とを混練する混練法により調製されたことを特徴とする上記 (4)に記載の炭 化水素油の水素化処理触媒の製造方法。
(6)前記リン酸化物を含む無機酸化物担体が、 400°C— 700°Cで 0. 5— 10時間 焼成して調製されたことを特徴とする上記 (4)または(5)に記載の炭化水素油の水素 化処理触媒の製造方法。
(7)上記(1)一 (3)の何れか 1項に記載の炭化水素油の水素化処理触媒の存在下 、水素分圧 0. 7— 8MPa、温度 220— 420°C、液空間速度 0. 3— 10hr— 1の条件で 接触反応を行うことを特徴とする炭化水素油の水素化処理方法。
発明を実施するための最良の形態
[0008] 本発明の処理対象油は、例えば、直留ナフサ、接触改質ナフサ、接触分解ナフサ 、接触分解ガソリン、直留灯油、直留軽油、接触分解軽油、熱分解軽油、水素化処 理軽油、脱硫処理軽油、減圧蒸留軽油 (VG〇)等の留分が適している。これらの原 料油の代表的な性状例として、沸点範囲が 30— 560°C、硫黄化合物濃度が 5質量 %以下のものが挙げられる。
[0009] 本発明では、無機酸化物担体として、脱硫活性を向上させるために、所定量のリン 酸化物を含む無機酸化物担体が用いられる。無機酸化物担体としては、各種無機 酸化物を用いることができる力 主成分がアルミナである無機酸化物が好ましい。 担体とするアルミナを主成分とする無機酸化物にリン酸化物を含有させるには、特 に調製法を限定するものではなぐ平衡吸着法、共沈法、混練法等により行うことが できるが、脱硫活性の高い触媒が得られる点で、担体の原料であるアルミナゲルとリ ン酸化物の原料とを混練する混練法によることが好ましぐその際、リン酸化物の原料 は水溶液として用いることが好ましい。
無機酸化物担体中のリン酸化物の含有量は、担体を基準として 15質量%以下で あれば特に制限はなぐ通常 0. 1— 15質量%の範囲であり、好ましくは 0. 5 15質 量%、より好ましくは 1一 13質量%、更に好ましくは 1一 10質量%である。リン酸化物 力 15質量%以下の場合、二硫化モリブデンが配置すべきアルミナ表面上の場所が 狭くならない。その結果、二硫化モリブデンのシンタリング (凝集)が起こらず、二硫化 モリブデン結晶のエッジ部の面積は減少せず、脱硫活性点である CoMoS相、 ΝΪΜ oS相の絶対数が減少せず、高い脱硫活性を保有することができる。一方、リン酸化 物が 0. 1質量%以上であれば、その添カ卩による脱硫活性向上効果が得られ、好まし レ、。
リン酸化物の含有量が上記範囲であることにより、脱硫活性の高い触媒が得られる 本発明の触媒で使用するリン酸化物の原料としては、種々の化合物を用いることが できる。例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられる がオルトリン酸が好ましい。
[0010] 担体に用いるアルミナは、 α—ァノレミナ、 γ—ァノレミナ、 δ—アルミナ、アルミナ水和 物等の種々のアルミナを使用することができる力 S、多孔質で高比表面積であるアルミ ナが好ましぐ中でも γ—アルミナが適している。アルミナの純度は、約 98質量%以上 、好ましくは約 99質量%以上のものが適している。アルミナ中の不純物としては、 SO 2—、 Cl—、 Fe〇、 Na〇等が挙げられる力 S、これらの不純物はできるだけ少ないことが
4 2 3 2
望ましぐ不純物全量で 2質量%以下、好ましくは 1質量%以下で、成分毎では、 SO
4
2—く 1. 5質量%、 CK Fe〇
2 3、 Na〇く 0. 1質量%であることが好ましい。
2
[0011] アルミナには他の酸化物成分を添加することが好ましぐ他の酸化物成分としては、 ゼォライト、ポリア、シリカ及びジノレコユアから選ばれる一種以上が好ましい。これらを 複合化させることにより、脱硫活性点を形成する二硫化モリブデンの積層化が有利に なる。このうちゼォライトは、コールカウンタ一法(1質量0 /oNaCl水溶液、アパーチャ- 30 /i m、超音波処理 3分)での測定により平均細孔径が 2. 5— 6 /i m、好ましくは 3 一 のものである。また、このゼォライトは粒子径 6 x m以下のものがゼォライト全 粒子に対して占める割合力 約 70 98%、好ましくは約 75 98%、より好ましくは 約 80— 98%のものである。
このような特性のゼォライトは、難脱硫性物質の細孔内拡散を容易にするための細 孔直径を精密に制御する上で好ましい。これに対し、例えば平均粒子径が大きすぎ たり、大きな粒子径の含有量が多かったりすると、無機酸化物担体を調製する過程で アルミナ水和物(アルミナ前駆体)とゼオライトの吸着水量や結晶性の違いから、強度 を増すために無機酸化物担体を焼成する場合、アルミナ水和物とゼォライトの収縮 率が異なり、無機酸化物担体の細孔として比較的大きなメゾあるいはマクロポア一が 生じる傾向がある。またこれらの大きな細孔は、比表面積を低下させるば力りではなく 、残油を処理するような場合には触媒毒となるメタル成分の内部拡散を容易ならしめ 、延いては脱硫、脱窒素及び分解活性を低下させる傾向を生じさせる。
[0012] 本発明では、アルミナに添加させる好ましいゼォライトとしては、フォージャサイト X 型ゼオライト、フォージャサイト Υ型ゼオライト、 βゼォライト、モルデナイト型ゼオライト 、 ZSM系ゼオライト(ZSM- 4、 5、 8、 11、 12、 20、 21、 23、 34
、 35、 38、 46等力 Sある)、 MCM— 41、 MCM_22、 MCM— 48、 SSZ—
33、 UTD_1、 CIT一 5、 VPI— 6、 TS— 1、 TS—2等が使用でき、特に Y型ゼオライト、 安定化 Yゼォライト、 βゼォライトが好ましい。また、ゼォライトは、プロトン型が好まし レ、。
上記のポリア、シリカ、ジルコニァは、一般に、この種の触媒担体成分として使用さ れるものを使用することができる。
上記のゼォライト、ポリア、シリカ、及びジルコユアは、それぞれ単独で、あるいは 2 種以上を組合せて使用できる。
[0013] これら他の酸化物成分の添加量は、一般に、無機酸化物担体中に、アルミナが 65 質量%より多く 99. 4質量%以下であり、リン酸化物が 0. 1質量%から 15質量%であ るのに対し、他の酸化物成分が 0. 5質量%から 20質量%未満であり、好ましくは、ァ ルミナが 70— 99質量%、リン酸化物が 0. 5— 15質量%であるのに対し、他の酸化 物成分が 0. 5— 15質量0 /0であり、より好ましくは、アルミナ力 0— 98. 5質量0 /0、リン 酸化物が 1一 10質量%であるのに対して、他の酸化物成分が 0. 5 10質量%であ る。
これら他の酸化物成分の添カ卩量が上記の範囲であれば、細孔直径の制御を好適 に行うことができ、またブレンステッド酸点やルイス酸点を十分に付与でき、 6族金属 、特にモリブデンを高分散できる。
[0014] 本発明における所定量のリン酸化物を含む無機酸化物担体は、 400°C 700°Cで 0. 5— 10時間焼成して調製される。
本発明の触媒は、後述するように、無機酸化物担体に活性成分を担持させた後は 、 200°C以下で乾燥だけで調製するため、触媒の機械特性 (側面破壊強度ゃ最密 充填かさ密度等)を得るために、無機酸化物担体を焼成する。このとき、 400°C未満 で 0. 5時間未満の焼成では十分な機械強度を得ることができず、 700°Cを超えると 高温度下で 10時間を超える長時間の焼成を行っても、この効果が飽和するば力りで なぐ焼き締めにより、無機酸化物担体の比表面積、細孔容積、平均細孔直径と言つ た特生を却って低下してしまう。
[0015] 無機酸化物担体の比表面積、細孔容積、平均細孔直径は、炭化水素油に対する 水素化脱硫活性の高い触媒にするために、比表面積 230— 500m2/g、好ましくは 270— 500m2/g、細孑し容積 0. 5— lml/g、好ましくは 0. 55-0. 9ml/g、平均 細孔直径 40— 180 Aである必要がある。この理由については次の通りである。
[0016] 含浸溶液中で 6族金属と 8族金属は錯体を形成していると考えられるため、無機酸 化物担体の比表面積が 230m2/g未満では、含浸の際、錯体の嵩高さのために金 属の高分散化が困難となり、その結果、得られる触媒を硫化処理しても、上記の活性 点(CoMoS相、 NiMoS相等)形成の精密な制御が困難になると推測される。比表 面積が 500m2/g以下であれば、細孔直径が極端に小さくならないため、触媒の細 孔直径も小さくならず、好ましい。細孔直径が小さいと、硫黄化合物の触媒細孔内拡 散が不十分となり、脱硫活性が低下する。 細孔容積が 0. 5ml/g以上では、通常の含浸法で触媒を調製する場合、細孔容 積内に入り込む溶媒が少量とならないため、好ましい。溶媒が少量であると、活性金 属化合物の溶解性が悪くなり、金属の分散性が低下し低活性な触媒となる。活性金 属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法がある力 余 り加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。細孔容積 力 lmlZg以下であれば、比表面積が小さくならず、活性金属の分散性が良くなり、 脱硫活性の高い触媒となるため、好ましい。
平均細孔直径が 40A以上では、活性金属を担持した触媒の細孔直径も小さくなら ず、好ましい。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が不 十分となり、脱硫活性が低下する。平均細孔直径が 180A以下であれば、触媒の比 表面積が小さくならず、好ましい。触媒の比表面積が小さいと、活性金属の分散性が 悪くなり、脱硫活性の低い触媒となる。また、上記の平均細孔直径の条件を満たす細 孔の有効数を多くするために、触媒の細孔分布すなわち平均細孔径 ± 15 Aの細孔 を有する細孔の割合は、 20— 90%、好ましくは 35— 85%とする。 90%以下では、 脱硫される化合物が特定の硫黄化合物に限定されず、満遍なく脱硫することができ るため好ましい。一方、 20%以上では、炭化水素油の脱硫に寄与しない細孔が増加 せず、その結果、脱硫活性が大幅に低下することがないため好ましい。
[0017] また、後述する 6族金属、 8族金属の分散性を向上させるために、上記担体にリン 酸化物を担持させてもよい。担持させるリン酸化物の原料としては、担体調製時と同 様のものが好ましく、例えばオルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸 が挙げられ、ォノレトリン酸が好ましい。また、リン化合物を担持させる方法としては、担 体にこれらのリン化合物原料を含浸させる方法がある。
[0018] なお、担持させるリン酸化物の量は、担体調製時に使用したリン酸化物を含めた合 計量が、上記で規定した担体中のリン酸化物の最大含有量値(15質量%)を越えな レ、ようにする。例えば、担体を、無機酸化物とリン酸化物とを混練法で調製した場合 は、混練時に使用するリン酸化物の一部を担持用のリン酸化物に使用する。また、活 性金属に対しては、例えばモリブデンを用いる場合は、リン酸化物とモリブデンとの質 量 it[P O ]/[MoO ]のィ直で、好ましく ίま 0. 01- 1. 5、より好ましく fま 0. 05—1. 0、 更に好ましくは 0. 1 -0. 5である。この質量比が 0. 01以上では、 Coと Moの渾然ー 体化が図れること、また、硫化後、二硫化モリブデンの積層化が図れることの 2点から 、最終的に脱硫活性点と考えられる CoMoS相、 NiMoS相、特に脱硫活性点の中で 高い脱硫活性を示す CoMoS相、 NiMoS相のタイプ IIが得られ易ぐ高活性な触媒 となりやすく好ましい。 1. 5以下では、触媒の表面積及び細孔容積が減少せず、触 媒の活性が低下せずに、また酸量が増えず、炭素析出を招かないため、活性劣化を 引き起こしにくくなるため、好ましい。
[0019] 本発明の触媒に担持させる 6族金属は、モリブデン、タングステンが好ましく、より好 ましくは、モリブデンである。
6族金属の担持量は、触媒基準、酸化物換算で、 10 40質量%、好ましくは 10 30質量%である。 10質量%以上では、 6族金属に起因する効果を発現させるのに 十分であり、好ましい。また、 40質量%以下では、 6族金属の含浸(担持)工程で 6族 金属化合物の凝集が生じず、 6族金属の分散性が良くなり、また、効率的に分散する 6族金属担持量の限度を超えず、触媒表面積が大幅に低下しない等により、触媒活 性の向上がみられ、好ましい。
[0020] 8族金属は、コバルト、ニッケルが好ましい。
8族金属の担持量は、触媒基準、酸化物換算で、 1一 15質量%、好ましくは、 3— 8 質量%である。 1質量%以上では、 8族金属に帰属する活性点が十分に得られるた め好ましい。また、 15質量%以下では、 8族金属の含有 (担持)工程で 8族金属化合 物の凝集が生じず、 8族金属の分散性が良くなることに加え、不活性なコバルト、ニッ ケル種等の 8族金属種である Co S種、 Ni S種等の前駆体である Co〇種、 Ni〇種 等や担体の格子内に取り込まれた Coスピネル種、 Niスピネル種等が生成しないと考 えられるため、触媒能の向上が見られ、好ましい。また、 8族金属としてコバルトとニッ ケノレを使用するときは、 Co/ (Ni + Co)のモル比が 0. 6 1の範囲、より好ましくは、 0. 7— 1の範囲になるように使用することが望ましレ、。この比が 0. 6以上では、 Ni上 でコーク前駆体が生成せず、触媒活性点がコークで被覆されず、その結果活性が低 下しないため、好ましい。
[0021] 8族金属と 6族金属の上記した含有量において、 8族金属と 6族金属の最適質量比 は、好ましくは、酸化物換算で、 [8族金属]/ [8族金属 + 6族金属]の値で、 0. 1-0 . 25である。この値が 0. 1以上では、脱硫の活性点と考えられる CoMoS相、 NiMo S相等の生成が抑制されず、脱硫活性向上の度合いが高くなるため、好ましい。 0. 2 5以下では、上記の不活性なコバルト、ニッケル種等(Co S種、 Ni S種等)の生成 が抑制され、触媒活性が向上されるので好ましい。
[0022] 炭素の担持量は、触媒基準で、 2 14質量%である。この炭素は、有機酸、好まし くはクェン酸由来の炭素である。 2質量%以上では、触媒表面上で 8族金属が有機 酸と錯化合物を十分に形成して、この場合、予備硫化工程において錯体化されてい なレ、 6族金属が 8族金属の硫化に先立って硫化されることにより、脱硫活性点と考え られる CoMoS相、 NiMoS相が十分に形成されるので、不活性なコバルト、ニッケル 種等の 8族金属の金属種である Co S種、 Ni S種、及び担体の格子内に取り込まれ た Coスピネル種、 Niスピネル種等が形成されないと推測されるため、好ましレ、。 14質 量%以下では、触媒表面上で 8族金属が有機酸と十分に錯体化合物を形成すること ができるが、一方、 6族金属が有機酸と錯化合物を形成することはなぐまた、余剰の 有機酸由来の炭素が触媒表面上に残ることはなぐ好ましい。 6族金属が有機酸と錯 体化した場合は、活性化 (硫化)の際に、 6族金属の硫化が 8族金属の硫化と同時に 起こり、脱硫活性点と考えられる CoMoS相、 NiMoS相が効率的に形成されず、不 活性な Co S種、 Ni S種等が形成されると推定される。また、過剰な炭素は、触媒の 被毒物質として硫化段階で脱硫活性点を被毒するため、活性低下の原因となる。
[0023] 本発明の触媒を得るには、前記した成分からなり、前記した物性を有するリン酸化 物を所定量含む無機酸化物担体に、前記した 6族金属を少なくとも 1種を含む化合 物、前記した 8族金属を少なくとも 1種を含む化合物、有機酸を含有する溶液を用い 、 6族金属、 8族金属、炭素を上記した担持量となるように担時させ、乾燥する方法に よる力 S、具体的には、例えば、無機酸化物を、これらの化合物等を含有する溶液に含 浸し、乾燥する方法により行う。
[0024] 上記の含浸溶液中に使用する 6族金属を含む化合物としては、三酸化モリブデン、 モリブドリン酸、モリブデン酸アンモニゥム、モリブデン酸等が挙げられ、好ましくは、 三酸化モリブデン、モリブドリン酸である。これらの化合物の上記含浸溶液中の添カロ 量は、得られる触媒中に上記した範囲内で 6族金属が含有する量とする。
[0025] 8族金属を含む化合物としては、炭酸コバルト、炭酸ニッケル、クェン酸コバルト、ク ェン酸ニッケル、硝酸コバルト 6水和物、硝酸ニッケル 6水和物等が挙げられ、好まし くは、炭酸コバルト、炭酸ニッケル、クェン酸コバルト、クェン酸ニッケルィヒ合物である 。特に好ましくは、クェン酸コバルト、クェン酸ニッケル化合物である。
上記のクェン酸コバルトとしては、クェン酸第一コバルト(Co (C H O ) )、タエン酸 水素コバルト(CoHC H〇)、クェン酸コバルトォキシ塩(Co (C H O . CoO)等が 挙げられ、クェン酸ニッケルとしては、クェン酸第一ニッケル(Ni (C H O ) )、タエン 酸水素ニッケル(NiHC H O ) ,クェン酸ニッケルォキシ塩(Ni (C H〇) .NiO)等 が挙げられる。
これらのコバルトとニッケルのクェン酸化合物の製造は、例えば、コバルトの場合、 クェン酸の水溶液に炭酸コバルトを溶かすことにより得られる。このような製法で得ら れたクェン酸化合物の水分を除去しないで、そのまま、触媒調製に用いても力まわな レ、。
これらの化合物の上記含浸溶液中への添加量は、得られる触媒中に上記した範囲 内で 8族金属が含有される量とする。
[0026] 有機酸としては、クェン酸一水和物、無水クェン酸、イソクェン酸、リンゴ酸、酒石酸 、シユウ酸、コハク酸、グルタン酸、ダルコン酸、アジピン酸、安息香酸、フタル酸、ィ ソフタル酸、サリチル酸、マロン酸等が挙げられ、好ましくはクェン酸一水和物である 。これらの有機酸は、硫黄を実質的に含まない化合物を使用することが重要である。 有機酸としてクェン酸を使用する場合は、クェン酸単独であってもよいし、上記した コバルトやニッケル等の 8族金属とのクェン酸化合物であってもよい。
有機酸の添加量は、得られる触媒中に前記の炭素含有量で炭素が残る量とするこ とが重要であり、また 8族金属に対して有機酸の添力卩量をモル比で、有機酸 /8族金 属 =0. 2-1. 2とすることが適している。このモル比が 0. 2以上では、 8族金属に帰 属する活性点が十分に得られるため好ましい。また、 1. 2以下では、含浸液が高粘 度とならないため、担持工程に時間を要することがなぐ活性金属が担体ペレットの 内部まで含浸されるため、活性金属の分散状態は良好となり好ましレ、。 さらに、 6族金属と 8族金属の総量に対して有機酸の添加量は、モルで、有機酸/ [ 6族金属 + 8族金属]が 0. 35以下、好ましくは、 0. 3以下となることが適している。 0. 35以下では、金属と錯体化しきれない余剰な有機酸が触媒表面に残ることがなぐ 好ましい。触媒表面上に余剰な有機酸が残っていると、硫化工程で原料油とともに流 れ出す場合があるので好ましくない。
[0027] なお、上記の 6族金属、 8族金属の化合物が含浸溶液に十分に溶解しない場合に は、これらの化合物とともに酸 [硝酸、有機酸 (タエン酸、リンゴ酸、酒石酸等) ]を使用 してもよく、好ましくは有機酸の使用であり、有機酸を用いる場合は、得られる触媒中 にこの有機酸による炭素が残存することがあるため、触媒中の炭素含有量が上記範 囲内となるようにすることが重要である。
[0028] 上記の含浸溶液において、上記の各成分を溶解させるために用いる溶媒は、水で ある。溶媒の使用量は、少なすぎれば、担体を十分に浸漬することができず、多すぎ れば、溶解した活性金属の一部が担体上に担持しきれず、含浸溶液容器のへりなど に付着してしまい、所望の担持量が得られないため、担体 100gに対して、 50— 90g が好ましい。上記溶媒に上記成分を溶解させて含浸溶液を調製するが、このとき温 度は、 0°Cを超え 100°C以下でよぐこの範囲であれば、上記溶媒に各成分を良好に 溶解させることができる。
[0029] このようにして調製した含浸溶液を、上記の無機酸化物に含浸させて、これらの溶 液中の上記の各成分を上記の無機酸化物担体に担持させる。含浸条件は、種々の 条件を採ることができる力 通常、含浸温度は、好ましくは 0°Cを超え 100°C未満が適 している。含浸時間は、 15分一 3時間、好ましくは、 20分一 2時間、さらに好ましくは 、 30分一 1時間である。なお、温度が高すぎると、含浸中に乾燥が起こり、分散度が 偏ってしまう。また、含浸中は攪拌することが好ましい。
[0030] 含浸溶液を含浸させた担持は、常温一約 80°C、窒素気流中、空気気流中、あるい は真空中で、水分をある程度 [L〇I (Loss on ignition)が 50%以下と
なるように]除去し、その後、空気気流中、窒素気流中、あるいは真空中で 200°C以 下
、 5時間一 20時間の乾燥を行う。乾燥を 200°C以下の温度で行うと、金属と錯体化し ていると思われる有機酸が触媒表面上から脱離せず、その結果、得られる触媒を硫 化処理したときに上記の活性点と考えられる CoMoS相、 NiMoS相の形成の精密制 御が容易になるため、好ましい。ただし、真空中で乾燥を行う場合は、圧力 760mm Hg換算で上記の温度範囲になるようにして乾燥を行うことが好ましい。
[0031] 本発明においては、上記のようにして、リン酸化物を所定量含む無機酸化物担体 に、所定量の 6族金属、 8族金属、炭素を担持させ、所定温度で乾燥させて得た触媒 は、その比表面積が 100 400m2/g、好ましくは 150— 350m2Zgであり、細孔容 積力 0. 2-0. 6ml/g、好ましく fま 0. 3-0. 6ml/g、より好ましく fま 0. 3—0. 5ml /g、平均糸田孑し直径力 50 200A、好ましくは 50 180A、より好ましくは 50— 150 Aである。触媒の比表面積、細孔容積、及び平均細孔直径の各物性が上記範囲で あるときに、所望の触媒活性が得られ、所期の目的を達成できる。触媒の上記各物 性を上記範囲にすることは、触媒調製に当って、用レ、るリン酸化物を含む無機酸化 物担体の上記各物性を上記した担体に関する上記各物性の範囲内で選択し、 6族 金属、 8族金属などの必要担持成分の担持量を上記範囲内で制御し、必要担持成 分を担持した後の乾燥条件を上記範囲内で制御することによって容易に達成できる
[0032] さらに本発明における触媒では、リン原子が高度に分散している。触媒の断面を一 方の表面から中心を通り、反対側の表面までリン原子の EPMA線分析を行ったとき、 下記式(1)で示されるリン原子の分散性の指標である S値が 5以下、好ましくは 4以下 、より好ましくは 3以下である。 S値は小さいほどリン原子が均一に分散していることを 示し、 S値が 5以下の場合、リン酸化物の高度な分散性が保たれ、活性金属は高分 散となり、脱硫活性が低下せず好ましい。担体にリン酸化物をさらに担持させた場合 は、触媒の表層にリン原子が多く存在するようになるが、その場合も、式(1)を満足す るように、リン酸化物の担持量や担持条件等を調製する。
なお、式(1)において、 Imaxは、 EPMA線分析によるリン原子の濃度測定値の最 大値であり、 Iminは EPMA線分析によるリン原子の濃度測定値の最小値である。また 、 lave.は、 EPMA線分析によるリン原子の濃度測定値の平均値である。
S=exp(0.04 X Iave.+0.013 X Imax— 0.014 X Imin)≤ 5.0 式(1) [0033] また、本発明の触媒は、硫化処理した後に、透過型電子顕微鏡で観察した場合に おける二硫化モリブデン等の 6族金属の二硫化物の層の積層数の平均値が 2. 5— 5 であるものが好ましい。
すなわち、この二硫化モリブデン等の層は、無機酸化物担体上に形成されて、触 媒の接触面積を大きくする役割をなすと共に、該層内に CoMoS相、 NiMoS相等の 活性点が形成される。積層数の平均値が 2. 5以上の触媒では、低活性な CoMoS 相や NiMoS相等のタイプ Iの割合が多くならず、高活性を発現するため好ましい。ま た、 5以下の触媒では、高活性な CoMoS相や NiMoS相等のタイプ IIが形成され、 活性点の絶対数が少なくならず、高活性を発現するため好ましい。
なお、分析に用いる透過型電子顕微鏡写真には、 1視野当たり 200以上の二硫化 モリブデン等の 6族金属の二硫化物の結晶が目視できるものを用いる。
[0034] 更に、透過型電子顕微鏡で観察した場合における二硫化モリブデン等の 6族金属 の二硫化物の層の面方向の長さが、平均値で 1一 3. 5nm、好ましくは 2— 3. 5nmで あるものが適している。
lnm以上では、二硫化モリブデン等の分子が単分子のみで存在することはなレ、た め、コバルト及びエッケノレはスクェアピラミッド型の 5配位硫黄構造を形成することが でき、活性点である CoMoS相や NiMoS相等となることができるため、好ましレ、。 3. 5nm以下では、二硫化モリブデン等の結晶が大きくならないため、エッジ部分の絶対 数が減少せず、活性点である CoMoS相や NiMoS相等の数を十分に確保すること ができるため、好ましい。
なお、分析に用いる透過型電子顕微鏡写真には、同じぐ 1視野当たり 200以上の 二硫化モリブデン等の 6族金属の二硫化物の結晶が目視できるものを用いる。
[0035] また、本発明において、触媒の形状は、特に限定されず、通常、この種の触媒に用 いられている形状、例えば、円柱状、三葉状、四葉状等を採用することができる。触 媒の大きさは直径が約 1一 2mm、長さは約 2 5mmが好ましレ、。
触媒の機械的強度は、側面破壊強度(SCS : Side Crushing Strength)で約 21 bs/mm以上が好ましレ、。 SCSが約 21bsZmm以上であれば、反応装置に充填した 触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能と なることはなレ、。
触媒の最充填かさ密度(CBD : Compacted Bulk Density)は、 0· 6— 1. 2g/ mlが好ましい。
また、触媒中の活性金属の分散状態は、触媒中で活性金属が均一に分布している ユニフォーム型がこの好ましレ、。
[0036] 本発明の水素化処理は、水素分圧 0. 7 8MPa、温度 220 420°C、液空間速 度 0. 3— 10hr 1、水素/オイル比 20 1000m3 (normal) Zklの条件で、上記の触 媒と硫黄化合物を含む炭化水素油とを接触させて脱硫を行い、炭化水素油中の難 脱硫物質を含む硫黄化合物を減少させる方法である。また、水素中の硫化水素濃度 は 4容量%以下、好ましくは 1. 4容量%以下、より好ましくは 1容量%以下である。 本発明の水素化処理により、ナフサ、灯油または軽油留分までの炭化水素油につ いては、硫黄分 10質量 ppm以下の生成油を得ることができる。また、減圧軽油につ いては、原油種によっても異なるが、 1一 4質量%程度の硫黄分を 0. 3質量%以下、 好ましくは 0. 07質量%以下の硫黄分とする生成油を得ることができる。
[0037] 本発明の水素化処理方法を商業規模で行う場合には、本発明の触媒を固定床、 移動床あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料 油を導入し、上記の条件で水素化処理を行えばよい。
最も一般的には、固定床式触媒床を反応装置内に形成し、原料油を反応装置の 上部より導入し、固定床を上から下に通過させ、反応装置の下部から生成物を流出 させるちのである。
また、本発明の触媒を、単独の反応装置に充填して行う一段の水素化処理方法で あってもよいし、レ、くつかの反応装置に充填して行う多段連続水素化処理方法であ つてもよい。
さらに、本発明の触媒は、使用前 (即ち、本発明の水素化処理方法を行う前)、反 応装置中で硫化処理して活性化する。この硫化方法は、 200°C 400°C、好ましく は、 250 350°C、常圧あるいはそれ以上の水素雰囲気下で、硫黄化合物を含む石 油蒸留物、それにジメチルジスルフイドや二硫化炭素等の硫化剤を加えてもの、ある いは硫化水素を用いて行う。 実施例
[0038] 以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例に何ら限定さ れるものではない。
[0039] 実施例 1
シリカとアルミナ水和物とオルトリン酸を混練し、押出成形後、 600°Cで 2時間焼成 して直径 1 / 16インチの柱状成形物のリン酸化物—シリカ—アルミナ複合担体(リン酸 化物一シリカ/アルミナ質量比 = 4/1/95、細孔容積 0. 70m2/g、比表面積 3 98m2/g、平均細孔直径 62 A)を得た。
イオン交換水 20. lgに、硝酸コバルト 6水和物 7. 98gとクェン酸 1水和物 3. 84gと モリブデン酸アンモニゥム 11. 09gを投入し、 80°Cにカ卩温して 10分間攪拌して含浸 溶液を得た。
ナス型フラスコ中に、上記のリン酸化物一シリカ一アルミナ複合担体 30. Ogを投入し 、そこへ上記の含浸溶液の全量をピペットで添加し、約 25°Cで 3時間浸漬した。 この後、窒素気流中で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 A を得た。
[0040] 実施例 2
SiO /Al Oモル比 6の SHYゼォライト粉末(平均粒子径 3. 5 μ m、粒子径
6 μ m以下のものがゼォライト全粒子の 87%)とアルミナ水和物とオルトリン酸を混練 し、押出成形後、 600°Cで 2時間焼成して直径 1Z16インチの柱状成形物のリン酸 化物—ゼオライト一アルミナ複合担体 (リン酸化物 Zゼォライト/アルミナ質量比: 4Z 7/89、細孔容積 0. 70ml/g、比表面積 412m2Zg、平均細孔直径 63 A)を 得た。
ィ才ン交換水 38. 9gに、炭酸コノ ノレト 5. 44gとクェン酸 1水禾ロ物 12. 81gと三酸ィ匕 モリブデン 15. 07gを投入し、 80°Cに加温して 10分間攪拌して含浸溶液を得た。 ナス型フラスコ中に、上記のゼォライト一アルミナ複合担体 50· Ogを投入し、そこへ 上記の含浸溶液の全量をピペットで添加し、約 25°Cで 3時間浸漬した。
この後、窒素気流中で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 Bを 得た。 [0041] 実施例 3
SiO /Al Oモル比 6の SHYゼォライト粉末(平均粒子径 3. 5 /i m、粒子径
6 μ m以下のものがゼォライト全粒子の 87%)とアルミナ水和物とオルトリン酸を混練 し、押出成形後、 600°Cで 2時間焼成して直径 1Z16インチの柱状成形物のリン酸 化物—ゼオライト一アルミナ複合担体 (リン酸化物 Zゼォライト/アルミナ質量比: 4Z 7/89、細孔容積 0. 70ml/g、比表面積 412m2Zg、平均細孔直径 63 A)を 得た。
ィ才ン交換水 34. 98g (こ、クェン酸第一コノ ノレト 16. 07g、モリブドリン酸 27. 59g を投入し、 80°Cに加温して 10分間攪拌して含浸溶液を得た。
ナス型フラスコ中に、上記のゼォライト一アルミナ複合担体 50. 0gを投入し、そこへ 上記の含浸溶液の全量をピペットで添加し、約 25°Cで 3時間浸漬した。
この後、窒素気流中で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 C を得た。
[0042] 実施例 4
シリカとアルミナ水和物とオルトリン酸を混練し、押出成形後、 600°Cで 2時間焼成 して直径 1/16インチの柱状成形物のリン酸化物-シリカ-アルミナ複合酸化物(リン 酸化物/シリカ/アルミナ質量比: 3/5/92、細孔容積 0. 68ml/g、比表面積 41 7m2/g、平均細孔直径 64 A)を得た。
ィ才ン交換水 24. 60g【こ、クェン酸第一コ/ ノレ卜 7. 32g、モリブドリン酸 12. 59gを 投入し、 80°Cに加温して 10分間攪拌して含浸溶液を得た。
ナス型フラスコ中に、上記リン酸化物 -シリカ-アルミナ複合化合物 30gを投入し、そ こへ上記の含浸溶液を全量ピペットで添カ卩し、約 25°Cで 3時間浸漬した。
その後、窒素気流で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 Eを 得た。
[0043] 実施例 5
シリカとアルミナ水和物とオルトリン酸を混練し、押出成形後、 600°Cで 2時間焼成 して直径 1/16インチの柱状成形物のリン酸化物-シリカ-アルミナ複合酸化物(リン 酸化物/シリカ Zアルミナ質量比: 4. 4/5/90. 5、細孔容積 0. 78mlZg、比表 面積 324m2/g、平均細孔径 98 A)を得た。
ィ才ン交換水 26. 40g【こ、クェン酸第一コ/ ノレ卜 9. 81g、モリブドリン酸 26. 40gを 投入し、 80°Cに加温して 10分間攪拌して含浸溶液を得た。
ナス型フラスコ中に、上記リン酸化物-シリカ -アルミナ複合化合物 30gを投入し、そ こへ上記の含浸溶液を全量ピペットで添カ卩し、約 25°Cで 3時間浸漬した。
その後、窒素気流で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 Fを 得た。
[0044] 実施例 6
ィ才ン交換水 25. 99g (こ、クェン酸第一コノ ノレ卜 10. 35g、モリブドリン酸 25. 99g、 とリン酸(85%水溶液)を投入し、 80°Cに加温して 10分間攪拌して含浸溶液を得た。 ナス型フラスコ中に、実施例 6で得られたリン酸化物-シリカ-アルミナ複合化合物 3 0gを投入し、そこへ上記の含浸溶液を全量ピペットで添加し、約 25°Cで 3時間浸漬 した。
その後、窒素気流で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 Gを 得た。
[0045] 実施例 7
アルミナ水和物を押出成形後、 600°Cで 2時間焼成して直径 1/16インチの柱状 成形物を調製した。イオン交換水 200gにオルトリン酸 1. 5gを投入し、十分に攪拌後 、上記の柱状成形物を投入して 24時間放置した。その後、 600°Cで 2時間焼成して リン酸化物を含むアルミナ担体 (リン酸化物/アルミナ質量比: 2/98、細孔容積 0. 70ml/g、比表面積 362m2/g、平均細孔径 69 A)を得た。
イオン交換水 20. 3gに、クェン酸第一コバルト 7. 27g、モリブドリン酸 11. 10gを投 入し、 80°Cに加温して 10分間攪拌して含浸溶液を得た。
ナス型フラスコ中に、上記リン酸化物を含むアルミナ担体 30gを投入し、そこへ上記 の含浸溶液を全量ピペットで添カ卩し、約 25°Cで 3時間浸漬した。
その後、窒素気流で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 Hを 得た。
[0046] 比較例 1 ィ才ン交換水 21. 6gに、炭酸コノくノレト 3. 31gと、モリブドリン酸 11. 41gと、才ノレ卜リ ン酸 1. 17gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、 γ—アルミナ担体(細孔容積 0. 69ml/g、比表面積 364m2 /g、平均細孔直径 64 A) 30. Ogを投入し、そこへ上記の含浸溶液の全量をピペット で添加し、約 25°Cで 1時間浸漬した。
この後、窒素気流中で風乾し、マツフル炉中 120°Cで約 1時間乾燥させ、 500°Cで 4時間焼成し、触媒 aを得た。
[0047] 比較例 2
ィ才ン交換水 21. 4gに、クェン酸第一コノ ノレト 7. 69gと、モリブドリン酸 12. 91gと 、オルトリン酸 1. 46gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、 γ—アルミナ担体(細孔容積 0. 69mlZg、比表面積 364m2 /g、平均細孔直径 64 A) 30. Ogを投入し、そこへ上記の含浸溶液の全量をピ ペットで添加し、約 25°Cで 1時間浸漬した。
この後、窒素気流中で風乾し、マツフル炉中 120°Cで約 1時間乾燥させ、触媒 bを 得た。
[0048] 上記で得られた各触媒の化学性状及び物理性状を表 1に示した。
二硫化モリブデン層の積層数は、透過型電子顕微鏡 (TEM) (日本電子社製商品 名" JEM-2010")を用いて、次の要領で測定した。
1.触媒を流通式反応管に詰め、室温で窒素気流中に 5分間保持し、雰囲気ガスを H 3 (5容量%) /11に切替え、速度 5°C/minで昇温し、 400°Cに達した後、 1時間
2 2
保持した。その後、同雰囲気下で 200°Cまで降温し、雰囲気ガスを窒素に切替え、 常温まで降温し、硫化処理を終了した。
2.この硫化処理後の触媒をメノウ乳鉢で粉砕した。
3.粉砕した触媒の少量をアセトン中に分散させた。
4.得られた懸濁液をマイクログリッド上に滴下し、室温で乾燥して試料とした。
5.試料を TEMの測定部にセットし、加速電圧 200kVで測定した。直接倍率は 20 万倍で、 5視野を測定した。
6.写真を 200万倍になるように引き延ばし(サイズ 16. 8cm X 16. 8cm)、写真上 で目視できる二硫化モリブデン層の積層数を測り取った。
また、触媒が含有するリンの分散性の指標 S値を算出するため、 日本電子製 JXA-8200装置を用い、触媒の断面を一方の表面から中心を通り、反対側の表面ま でリン原子の EPMA線分析を以下の条件で行った。
◎試料作成
触媒試料を MMA樹脂に包埋し、切削法により、平滑な触媒断面を得た後、表面 にカーボン蒸着した。
◎測定条件
加速電圧 ;15kV
照射電流 ;1 X 10— 7A
データ点数; 250
測定間隔 ;12 x m
[表 1]
表 1
Figure imgf000022_0001
注 2) P2OsMo03は、 担体中の P205を含む値である。
注 3) SAは比表面積、 PVは細孔容積、 MPDは平均細孔直径の略である。 注 4) MPD±15Aは、 平均細孔直径 ±15Aの細孔割合である。
[0050] 〔直留軽油の水素化処理反応〕
上記の実施例及び比較例で調製した触媒 A— C、 a、 bおよび E— Hを用い、以下 の要領にて、下記性状の直留軽油の水素化処理を行った。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の 条件で前処理の触媒の硫化を行った。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上 部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、 反応装置の下部より流出させ、気液分離器で生成油を分離した。
[0051] 触媒の硫化:原料油による液硫化を行った。
圧力(水素分圧);4. 9MPa
雰囲気;水素及び原料油(液空間速度 1. 5 r 水素/オイル比 200m3 (n ormal) kl)
温度 ;常温約 22°Cで水素及び原料油を導入し、 20°C/hrで昇温し、 300°C にて 24hr維持、次いで反応温度である 350°Cまで 20°C/hrで昇温
[0052] 水素化反応条件:
反応温度 ;350°C
圧力(水素分圧) ; 4. 9MPa
液空間速度 ;1. 3hr— 1
水素/オイル比 ; 200m3 (normal) /kl
[0053] 原料油の性状:
油種 ;中東系直留軽油
密度(15Z4°C) ; 0. 8623
蒸留性状 ;初留点が 186. 0°C、 50%点が 316. 0°C、
90%点力 55. 5°C 終点が 371. 5°C
硫黄成分 1. 74質量%
窒素成分 210¾ftppm
動粘度(@ 30°C) 7. 026cSt
流動点 ; 0. o。c くもり点 ;4. 0°C
セタン指数 ;55. 4
[0054] 反応結果について、以下の方法で解析した。
350°Cで反応装置を運転し、 6日経過した時点で生成油を採取し、その性状を分 祈した。
〔1〕脱硫率 (HDS) (%):
原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消 失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下 の式により算出した。これらの結果は、表 2の通りであった。
〔2〕脱硫反応速度定数 (ks) :
生成油の硫黄分(Sp)の減少量に対して、 1. 3次の反応次数を得る反応速度式の 定数を脱硫反応速度定数 (ks)とする。
なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの 結果は、表 2の通りであった。
[0055] 脱硫率(%) =〔(3 一 Sp) /Sf〕 X 100
脱硫反応速度定数 = [1/0. 3] X [ l/ (Sp) °-3-l/ (Sf) °-3] X
(LHSV)
式中、 Sf:原料油中の硫黄分 (質量%)
Sp:反応生成油中の硫黄分 (質量%)
LHSV:液空間速度 (hr一1)
脱硫比活性(%) =各脱硫反応速度定数/触媒 aの脱硫反応速度定数 X 100 [0056] [表 2] 表 2
Figure imgf000025_0001
[0057] 表 2から明らかなように、本発明の製造法による触媒 A— C、 E— Hを用いれば、軽 油の超深度脱硫領域を容易に達成できることが判る。
また、以上の結果から明らかなように、本発明の触媒は、従来の軽油水素化処理の 場合とほぼ同じ水素分圧や反応温度等で、超深度脱硫領域での軽油の脱硫反応及 び脱窒素反応に対して、極めて優れた活性を有することが判る。
[0058] 〈直留灯油の水素化処理反応〉
上記の実施例及び比較例で調製した触媒 A、 B、 C、 a、 bを用い、以下の要領にて 、下記性状の直留灯油の水素化処理を行った。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の 条件で前処理の触媒の硫化を行った。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上 部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、 反応装置の下部より流出させ、気液分離器で生成油を分離した。
[0059] 触媒の硫化:直留軽油による液硫化を行った。
圧力(水素分圧) ; 4. 9MPa
雰囲気;水素及び原料油(液空間速度 1. 5 r 水素/オイル比 200m3
(normal) / kl)
温度 ;常温約 22°Cで水素及び原料油を導入し、 20°C/hrで昇温し、 300°C にて 24hr維持、次レ、で反応温度である 350°Cまで 20°C/hrで昇温 水素化反応条件:
反応温度 ;310°C
圧力(水素分圧);3. 5MPa
液空間速度 ;3. Ohr— 1
水素 Zオイル比 ; 60m3 (normal) Zkl
原料油の性状:
油種 ;中東系直留灯油
密度(15°CZ4°C) ; 0. 7945g/cm3
蒸留性状 ;初留点力 S141°C、 50%点が 199°C、
90%点力 55°C、終点が 280°C
硫黄成分 ;0. 25質量%
窒素成分 ;5質量 ppm
動粘度(@ 30。C) ; 1. 398cSt
[0060] 反応結果について、以下の方法で解析した。
310°Cで反応装置を運転し、 6日経過した時点で生成油を採取し、その性状を分 祈した。
〔1〕脱硫率 (HDS) (%):
原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消 失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下 の式により算出した。これらの結果は、表 3の通りであった。
〔2〕脱硫反応速度定数 (ks) :
生成油の硫黄分(Sp)の減少量に対して、 1. 3次の反応次数を得る反応速度式の 定数を脱硫反応速度定数 (ks)とする。
なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの 結果は、表 3の通りであった。
[0061] 脱硫率(%) =〔(Sf_Sp) ZSf〕X 100
脱硫反応速度定数 = [1/0. 3] X [l/ (Sp) °-3-l/ (Sf) °-3] X (LHSV)
式中、 Sf:原料油中の硫黄分 (質量%)
Sp:反応生成油中の硫黄分 (質量%)
LHSV:液空間速度 (hr—
脱硫比活性(%) =各脱硫反応速度定数/触媒 aの脱硫反応速度定数 X 100
[0062] [表 3] 表 3
Figure imgf000027_0001
[0063] 表 3から明ら力なように、本発明の触媒を用いれば、灯油についても高度な脱硫を 達成できることが判る。
[0064] 実施例 8
アルミナ水和物とオノレトリン酸を混練し、押出成形後、 600°Cで 2時間焼成して直径 1/16インチの柱状成形物のリン酸化物 -アルミナ複合担体(リン酸化物/アルミナ 質量比 = 3/97、細孔容積 0. 7ml/g、比表面積 187m2/g、平均細孔直径 98 A)を得た。
ィ才ン交換水 20· 3gに、石肖酸コノくノレト 6水禾ロ物 9· 3gとクェン酸 1水禾ロ物 4· 6gとモリ ブデン酸アンモニゥム 12. Ogを投入し、 80°Cに加温して 10分間攪拌した。
ナス型フラスコ中に、上記のリン酸化物—アルミナ複合担体 30. Ogを投入し、そこへ 上記の含浸溶液の全量をピペットで添加し、約 25°Cで 3時間浸漬した。
この後、窒素雰囲気中で風乾し、マツフル炉中 120°Cで約 16時間乾燥させ、触媒 Dを得た。
[0065] 比較例 3
ィ才ン交換水 20. 3gに、炭酸コノ ノレト 3. 8gと、モリブドリン酸 13. 4gと、才ノレトリン 酸 1. 5gを溶解させた含浸用の溶液を調製した。 ナス型フラスコ中に、 γ _アルミナ担体(細孔容積 0. 7ml/g、比表面積 187m2/g 、平均細孔直径 98 A) 30. Ogを投入し、そこえ上記の含浸溶液の全量をピペットで 添加し、約 25°Cで 1時間浸漬した。
この後、窒素気流中で風乾し、マツフル炉中 120°Cで約 1時間乾燥させ、 500°Cで 4時間焼成し、触媒 cを得た。
[0066] 触媒 Dおよび cの化学性状及び物理性状を表 4に示した。 TEMおよび EPMAの測 定方法は前記と同様である。
[0067] [表 4]
表 4
Figure imgf000029_0001
注 2) P2Os/Mo03は、 担体中の P205を含む値である。
注 3) SAは比表面積、 PVは細孔容積、 MPDは平均細孔直径の略である。 注 4) MPD±15Aは、 平均細孔直径 ±15 Aの細孔割合である。
[0068] 〔減圧軽油の水素化処理反応〕
上記の実施例 8及び比較例 3で調製した触媒 D、 cを用レ、、以下の要領にて、下記 性状の減圧軽油の水素化処理を行なった。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の 条件で前処理の触媒の硫化を行った。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上 部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、 反応装置の下部より流出させ、気液分離器で生成油を分離した。
[0069] 触媒の硫化:原料油による液硫化を行った。
圧力(水素分圧);4. 9MPa
雰囲気;水素及び原料油(液空間速度 0.
Figure imgf000030_0001
水素/オイル比 500m3
i,normal) /kl)
温度 ;常温約 22°Cで水素及び原料油を導入し、 25°C/hrで昇温し、 290°C にて 15hr維持、次いで 320°Cで 15hr維持した後、反応温度である 360°Cまで 20°C/hrで昇温
水素化反応条件:
反応温度 ;360°C
圧力(水素分圧) ;4. 9MPa
液空間速度 ;0. 66hr— 1
水素/オイル比 ; 500m3 (normal) /kl
原料油の性状:
油種 ;中東系減圧軽油
密度(15Z4°C) ; 0. 9185
蒸留性状 ;初留点が 349. 0°C、 50%点が 449. 0°C、
90ο/ο ^^力 S529. 0CC、 ^¾力 S556. 0°C
硫黄成分 ;2. 45質量%
窒素成分 ;650質量 ppm
流動点 ;35°Cァスフアルテン;く lOOOppm ァニリン点 ;82°C
[0070] 反応結果について、以下の方法で解析した。
360°Cで反応装置を運転し、 6日経過した時点で生成油を採取し、その性状を分 祈した。
〔1〕脱硫率 (HDS) (%):
原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消 失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下 の式により算出した。これらの結果は、表 5の通りであった。
〔2〕脱硫反応速度定数 (ks) :
生成油の硫黄分(Sp)の減少量に対して、 1. 5次の反応次数を得る反応速度式の 定数を脱硫反応速度定数 (ks)とする。
なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの 結果は、表 5の通りであった。
[0071] 脱硫率(%) =〔(3 一 Sp) /Sf〕 X 100
脱硫反応速度定数 = 2 X [l/ (Sp) °-5-l/ (Sf) °-5] X (LHSV)
式中、 Sf:原料油中の硫黄分 (質量%)
Sp:反応生成油中の硫黄分 (質量%)
LHSV:液空間速度 (hr—
脱硫比活性(%) =触媒 Dの脱硫反応速度定数/触媒 cの脱硫反応速度定数
X 100
[0072] [表 5] 表 5
Figure imgf000031_0001
表 5から明らかなように、本発明の製造法による触媒 Dを用いれば、減圧軽油につ いても高度な脱硫を達成できることが判る。 [0074] 以上の結果から明らかなように、本発明の触媒は、従来の炭化水素油水素化処理 の場合とほぼ同じ水素分圧や反応温度等で、炭化水素油の脱硫反応及び脱窒素反 応に対して、極めて優れた活性を有することが判る。
産業上の利用可能性
[0075] 本発明によれば、過酷な運転条件を必要とせずに、炭化水素油中の硫黄化合物を 高度に脱硫することができ、同時に窒素化合物も低減することができ、かつ簡便な手 段で製造し得る炭化水素油の水素化処理触媒が提供される。この水素化処理触媒 は、従来の炭化水素油水素化処理の場合とほぼ同じ水素分圧や反応温度等で、超 深度脱硫領域での炭化水素油の脱硫反応及び脱窒素反応に対して、極めて優れた 活性を有するものである。また、本発明によれば、上記水素化処理触媒を簡便に製 造でき、更には上記水素化処理触媒を用いて苛酷な運転条件を必要とすることなぐ 硫黄化合物及び窒素化合物を従来よりも低減できる炭化水素油の水素化処理方法 も提供される。

Claims

請求の範囲
[1] リン酸化物を担体基準で 15質量%以下含む無機酸化物担体上に、触媒基準、酸 化物換算で周期律表第 6族金属から選ばれた少なくとも 1種を 10— 40質量%、周期 律表第 8族金属から選ばれた少なくとも 1種を 1一 15質量%、炭素を 2— 14質量%担 持してなり、かつ、比表面積が 100— 400m2/g、細孔容積が 0. 2-0. 6ml/g、平 均細孔直径が 50 200Aであることを特徴とする炭化水素油の水素化処理触媒。
[2] 前記周期律表第 8族金属と周期律表第 6族金属との質量比が、酸化物換算で、 [8 族金属]/ [8族金属 + 6族金属]の値で、 0. 1-0. 25であることを特徴とする請求項 1に記載の炭化水素油の水素化処理触媒。
[3] エレクトロンプローブ 'マイクロアナリシス(EPMA)装置を使用して、中心を通る断 面幅方向における線分析を行ったときに、リン原子の分布が下記の式(1)を満足す ることを特徴とする請求項 1または 2に記載の炭化水素油の水素化処理触媒。
S=exp(0.04 X Iave.+0.013 X Imax- 0.014 X Imin)≤5.0 式(1)
(式(1)において、 Imaxは EPMA線分析によるリン原子の濃度測定値の最大値であ り、 Iminは EPMA線分析によるリン原子の濃度測定値の最小値であり、 laveは EPM A線分析によるリン原子の濃度測定値の平均値である。 )
[4] 比表面積 230— 500m2Zg、細孔容積 0. 5— lmlZg、平均細孔直径 40 180 A であり、リン酸化物を担体基準で 15質量%以下含む無機酸化物担体上に、周期律 表第 8族金属から選ばれた少なくとも 1種を含む化合物、周期律表第 6族金属から選 ばれた少なくとも 1種を含む化合物及び有機酸を含有する溶液を用レ、、触媒基準、 酸化物換算で周期律表第 6族金属を 10— 40質量%、周期律表第 8族金属を 1一 15 質量%、炭素を 2— 14質量%となるように担持させ、 200°C以下で乾燥させることを 特徴とする請求項 1一 3の何れ力 4項に記載の炭化水素油の水素化処理触媒の製 造方法。
[5] 前記リン酸化物を含む無機酸化物担体が、無機酸化物担体の原料とリン酸化物の 原料とを混練する混練法により調製されたことを特徴とする請求項 4に記載の炭化水 素油の水素化処理触媒の製造方法。
[6] 前記リン酸化物を含む無機酸化物担体が、 400°C— 700°Cで 0. 5— 10時間焼成 して調製されたことを特徴とする請求項 4または 5に記載の炭化水素油の水素化処理 触媒の製造方法。
請求項 1一 3の何れか 1項に記載の炭化水素油の水素化処理触媒の存在下、水素 分圧 0. 7— 8MPa、温度 220— 420°C、液空間速度 0. 3 10hr— 1の条件で接触反 応を行うことを特徴とする炭化水素油の水素化処理方法。
PCT/JP2005/005099 2004-03-26 2005-03-22 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法 WO2005092498A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK05721249.0T DK1733787T3 (da) 2004-03-26 2005-03-22 Katalysator til hydrogeneringsbehandling af kulstofolie og fremgangsmåde til fremstilling deraf, og fremgangsmåde til hydrogeneringsbehandling af kulstofolie
EP05721249A EP1733787B1 (en) 2004-03-26 2005-03-22 Catalyst for hydrogenation treatment of hydrocarbon oil and method for preparation thereof, and method for hydrogenation treatment of hydrocarbon oil
CN2005800096893A CN1938087B (zh) 2004-03-26 2005-03-22 用于加氢处理烃油的催化剂及其制备方法以及加氢处理烃油的方法
US10/594,451 US7737071B2 (en) 2004-03-26 2005-03-22 Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
KR1020067020620A KR101186753B1 (ko) 2004-03-26 2005-03-22 탄화수소유의 수소화 처리 촉매 및 그 제조 방법 및탄화수소유의 수소화 처리 방법
CA2560925A CA2560925C (en) 2004-03-26 2005-03-22 Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-092795 2004-03-26
JP2004092795 2004-03-26
JP2005-051761 2005-02-25
JP2005051761A JP4472556B2 (ja) 2004-03-26 2005-02-25 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法

Publications (1)

Publication Number Publication Date
WO2005092498A1 true WO2005092498A1 (ja) 2005-10-06

Family

ID=35056027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005099 WO2005092498A1 (ja) 2004-03-26 2005-03-22 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法

Country Status (8)

Country Link
US (1) US7737071B2 (ja)
EP (1) EP1733787B1 (ja)
JP (1) JP4472556B2 (ja)
KR (1) KR101186753B1 (ja)
CN (1) CN1938087B (ja)
CA (1) CA2560925C (ja)
DK (1) DK1733787T3 (ja)
WO (1) WO2005092498A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1960101A2 (en) * 2005-12-14 2008-08-27 Advanced Refining Technologies, LLC Method of making hydroprocessing catalyst
EP2072127A4 (en) * 2006-09-14 2009-11-18 Cosmo Oil Co Ltd HYDROGENIC WELDING AND GROUNDING CATALYST FOR HYDROCARBON OIL, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR HYDROGEN TREATMENT OF HYDROCARBON OIL WITH THE CATALYST
US20120083643A1 (en) * 2010-10-05 2012-04-05 Research Institute Of Petroleum Industry (Ripi) Alumina Nanotube/Nanorod Supported Hydrodesulfurization Nanocatalyst, Method of Preparation and Application

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156859B2 (ja) * 2001-06-20 2008-09-24 コスモ石油株式会社 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
AU2003289408A1 (en) * 2002-12-18 2004-07-09 Cosmo Oil Co., Ltd. Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP4246673B2 (ja) * 2004-06-07 2009-04-02 新日本石油株式会社 炭化水素油の水素化処理触媒及び該触媒を用いた水素化処理方法
JP4689198B2 (ja) * 2004-06-16 2011-05-25 財団法人石油産業活性化センター 炭化水素油の水素化処理触媒及びその製造方法、並びに炭化水素油の水素化処理方法
WO2007084438A2 (en) * 2006-01-17 2007-07-26 Exxonmobil Research And Engineering Company Selective catalysts for naphtha hydrodesulfurization
CA2636177C (en) * 2006-01-17 2015-10-06 Exxonmobil Research And Engineering Company Selective catalysts having silica supports for naphtha hydrodesulfurization
WO2007084437A2 (en) * 2006-01-17 2007-07-26 Exxonmobil Research And Engineering Company Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization
JP5654720B2 (ja) * 2006-02-22 2015-01-14 出光興産株式会社 灯油留分の水素化脱硫触媒及び水素化脱硫方法
JP4685668B2 (ja) * 2006-03-14 2011-05-18 日揮触媒化成株式会社 炭化水素流動接触分解用触媒組成物およびその製造方法
JP5508856B2 (ja) * 2006-12-19 2014-06-04 エクソンモービル リサーチ アンド エンジニアリング カンパニー 高活性の担持留出油水素処理触媒
JP5337978B2 (ja) * 2007-05-28 2013-11-06 一般財団法人石油エネルギー技術センター 水素化処理触媒及び減圧軽油の水素化処理方法
JP4891937B2 (ja) * 2008-02-28 2012-03-07 Jx日鉱日石エネルギー株式会社 再生水素化処理用触媒の製造方法及び石油製品の製造方法
BRPI0911062B1 (pt) * 2008-04-10 2018-06-05 Shell Internationale Research Maatschappij B.V. Sistema catalítico, método para tratamento de uma alimentação crua e catalasidor compreendendo metais de hidrogenação e um suporte
US8734634B2 (en) 2008-04-10 2014-05-27 Shell Oil Company Method for producing a crude product, method for preparing a diluted hydrocarbon composition, crude products, diluents and uses of such crude products and diluents
DE102009015883B4 (de) 2009-04-01 2011-01-05 Ecs Engineered Control Systems Ag Vorrichtung zur Erfassung der Position eines Fahrstufenwählhebels, Kraftfahrzeug
US20100264067A1 (en) * 2009-04-16 2010-10-21 General Electric Company Method for removing impurities from hydrocarbon oils
AU2010288616B9 (en) * 2009-08-24 2014-12-18 Albemarle Europe Sprl Solutions and catalysts comprising Group VI metal, Group VIII metal, phosphorous and an additive
SG10201406228YA (en) 2009-09-30 2014-11-27 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
US9061265B2 (en) 2010-06-25 2015-06-23 Jx Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
FR2969645B1 (fr) * 2010-12-22 2012-12-28 IFP Energies Nouvelles Procede d'hydrodesulfuration de coupes gazoles utilisant un catalyseur a base d'heteropolyanions pieges dans un support silicique mesostructure
US9340733B2 (en) 2010-12-22 2016-05-17 Centre National De La Recherche Scientifique Process for Hydrodesulphuration of gasoil cuts using a catalyst based on heteropolyanions trapped in a mesostructured silica support
FR2969646B1 (fr) 2010-12-22 2012-12-28 IFP Energies Nouvelles Procede d'hydrodesulfuration de coupes essences utilisant un catalyseur a base d'heteropolyanions pieges dans un support silicique mesostructure
RU2610869C2 (ru) * 2011-06-22 2017-02-17 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор гидропереработки и способы получения и применения такого катализатора
CN102495088A (zh) * 2011-12-07 2012-06-13 江苏省沙钢钢铁研究院有限公司 电子探针线/面分析结果的定量化方法
KR101431953B1 (ko) * 2012-01-11 2014-08-19 주식회사 엘지화학 카본나노튜브용 균질 담지 촉매의 제조방법
CN103468303B (zh) * 2012-06-07 2015-07-01 中国石油化工股份有限公司 一种汽油选择性加氢脱硫方法
MA35368B1 (fr) * 2013-01-09 2014-09-01 Taibah University Méthode de synthèse de précurseurs pour la production de l'oxyde de molybdène moo3 et de matériaux conséquents
EP3056271B8 (en) * 2013-10-11 2022-02-16 Cosmo Oil Co., Ltd. Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and use in a hydroprocessing method for heavy hydrocarbon oil
FR3018702B1 (fr) * 2014-03-20 2017-10-20 Ifp Energies Now Catalyseur fischer-tropsch a base d'un metal du groupe viiib et d'un support d'oxydes comprenant de l'alumine, de la silice, une spinelle et du phosphore
JP6302814B2 (ja) * 2014-10-06 2018-03-28 Jxtgエネルギー株式会社 脱硫反応に供する炭化水素油の評価方法、炭化水素油の脱硫方法、及び脱硫油の製造方法
WO2016189982A1 (ja) * 2015-05-27 2016-12-01 日揮触媒化成株式会社 炭化水素油の水素化処理触媒、その製造方法及び水素化処理方法
US20180016505A1 (en) * 2015-05-29 2018-01-18 Jxtg Nippon Oil & Energy Corporation Method for producing hydrotreated oil and method for producing catalytic cracked oil
JP6744099B2 (ja) * 2016-01-13 2020-08-19 コスモ石油株式会社 炭化水素留分の製造方法
JP6744098B2 (ja) * 2016-01-13 2020-08-19 コスモ石油株式会社 炭化水素留分の製造方法
RU2626401C1 (ru) * 2016-11-09 2017-07-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Способ гидроочистки сырья гидрокрекинга
RU2629358C1 (ru) * 2016-11-09 2017-08-29 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор гидроочистки сырья гидрокрекинга
RU2626400C1 (ru) * 2016-11-09 2017-07-27 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") Способ получения малосернистого сырья каталитического крекинга
CN108074256B (zh) * 2016-11-11 2022-03-04 中国石油化工股份有限公司抚顺石油化工研究院 基于分布处理的硫化物信息提取方法、装置及系统
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
JP7080693B2 (ja) * 2018-03-28 2022-06-06 日揮触媒化成株式会社 炭化水素油の水素化処理触媒、その製造方法、および水素化処理方法
RU2689735C1 (ru) * 2018-12-20 2019-05-30 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Катализатор гидроочистки дизельного топлива
CN112717959B (zh) * 2019-10-28 2023-01-10 中国石油化工股份有限公司 一种加氢处理催化剂及其制备方法和应用
RU2716165C1 (ru) * 2019-11-28 2020-03-06 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ получения малосернистого дизельного топлива и малосернистого бензина
RU2727189C1 (ru) * 2019-11-28 2020-07-21 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ получения малосернистого дизельного топлива
RU2726634C1 (ru) * 2020-03-19 2020-07-15 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Катализатор гидроочистки дизельного топлива
RU2732944C1 (ru) * 2020-03-19 2020-09-24 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Способ получения малосернистого дизельного топлива
KR20240075108A (ko) 2022-11-21 2024-05-29 한국세라믹기술원 다공성 지오폴리머의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135438A (ja) * 1998-10-30 2000-05-16 Catalysts & Chem Ind Co Ltd 水素化処理触媒およびその製造方法
WO2003006156A1 (en) * 2001-07-10 2003-01-23 Japan Energy Corporation Hydro-refining catalyst, carrier for use therein and method for production thereof
JP2003299960A (ja) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE756834A (nl) * 1969-10-08 1971-03-30 Shell Int Research Werkwijze voor het bereiden van aluminiumoxyde bevattende katalysatordragers
JPS5022992B1 (ja) * 1970-05-29 1975-08-04
US4066572A (en) * 1976-10-12 1978-01-03 Nalco Chemical Company Phospha-alumina gel and method of preparation
JPS59152262A (ja) * 1983-02-14 1984-08-30 住友金属鉱山株式会社 多孔性アルミナ成形体の製造方法
US4727209A (en) * 1985-06-11 1988-02-23 Uop Inc. Hydrocarbon alkylation processes employing a phosphorus-modified alumina composite
JPH06339635A (ja) * 1993-06-01 1994-12-13 Japan Energy Corp 水素化処理触媒の製造方法
EP0665280B1 (en) * 1993-12-30 2000-05-10 Cosmo Oil Company, Ltd Process for producing a hydrodesulfurization catalyst
JPH07305077A (ja) * 1994-05-13 1995-11-21 Idemitsu Kosan Co Ltd 原油の水素化処理方法
JP2000000470A (ja) 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd 水素化処理触媒及び重質油の水素化処理方法
SG87095A1 (en) * 1999-04-02 2002-03-19 Akzo Nobel Nv Process for effecting ultra-deep hds of hydrocarbon feedstocks
EP1043069B1 (en) 1999-04-08 2005-05-25 Albemarle Netherlands B.V. Process for sulphiding a hydrotreating catalyst comprising an organic compound comprising N and carbonyl
JP4743739B2 (ja) * 1999-07-05 2011-08-10 アルベマーレ ネザーランズ ビー.ブイ. 添加剤含有触媒の再生・若返りを行なう方法
JP2005262063A (ja) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology 水素化処理触媒
JP4313265B2 (ja) 2004-07-23 2009-08-12 新日本石油株式会社 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135438A (ja) * 1998-10-30 2000-05-16 Catalysts & Chem Ind Co Ltd 水素化処理触媒およびその製造方法
JP2003299960A (ja) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
WO2003006156A1 (en) * 2001-07-10 2003-01-23 Japan Energy Corporation Hydro-refining catalyst, carrier for use therein and method for production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1960101A2 (en) * 2005-12-14 2008-08-27 Advanced Refining Technologies, LLC Method of making hydroprocessing catalyst
EP1960101A4 (en) * 2005-12-14 2010-04-14 Advanced Refining Technologies PROCESS FOR MANUFACTURING HYDROTREATING CATALYST
US8877671B2 (en) 2005-12-14 2014-11-04 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
EP2823886A3 (en) * 2005-12-14 2015-03-11 Advanced Refining Technologies, LLC Method of making hydroprocessing catalyst
US9248438B2 (en) 2005-12-14 2016-02-02 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
US9566572B2 (en) 2005-12-14 2017-02-14 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
EP2072127A4 (en) * 2006-09-14 2009-11-18 Cosmo Oil Co Ltd HYDROGENIC WELDING AND GROUNDING CATALYST FOR HYDROCARBON OIL, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR HYDROGEN TREATMENT OF HYDROCARBON OIL WITH THE CATALYST
JP5217034B2 (ja) * 2006-09-14 2013-06-19 コスモ石油株式会社 炭化水素油の水素化脱硫・脱ろう触媒及びその製造方法、並びに該触媒を用いた炭化水素油の水素化処理方法
US20120083643A1 (en) * 2010-10-05 2012-04-05 Research Institute Of Petroleum Industry (Ripi) Alumina Nanotube/Nanorod Supported Hydrodesulfurization Nanocatalyst, Method of Preparation and Application
US9006130B2 (en) * 2010-10-05 2015-04-14 Research Institute Of Petroleum Industry (Ripi) Alumina nanotube/nanorod supported hydrodesulfurization nanocatalyst, method of preparation and application

Also Published As

Publication number Publication date
JP2005305418A (ja) 2005-11-04
KR20070008622A (ko) 2007-01-17
JP4472556B2 (ja) 2010-06-02
EP1733787A4 (en) 2009-06-10
EP1733787A1 (en) 2006-12-20
EP1733787B1 (en) 2013-01-09
CN1938087A (zh) 2007-03-28
DK1733787T3 (da) 2013-02-04
CA2560925A1 (en) 2005-10-06
CN1938087B (zh) 2011-02-02
CA2560925C (en) 2013-04-16
US7737071B2 (en) 2010-06-15
KR101186753B1 (ko) 2012-09-28
US20080017551A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
WO2005092498A1 (ja) 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法
JP4201795B2 (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
KR100664895B1 (ko) 경유의 수소화 처리 촉매, 이의 제조방법 및 경유의수소화 처리방법
JP5928970B2 (ja) 軽油の水素化脱硫触媒、水素化脱硫触媒の製造方法、及び軽油の水素化処理方法
JP4864106B2 (ja) 炭化水素油の水素化処理触媒の製造方法
WO2009105749A2 (en) Catalyst to attain low sulfur gasoline
Zhang et al. Improving both the activity and selectivity of CoMo/δ-Al2O3 by phosphorous modification for the hydrodesulfurization of fluid catalytic cracking naphtha
JP5815321B2 (ja) 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法及び炭化水素油の水素化処理方法
JP2002239385A (ja) 炭化水素油用水素化処理触媒の製造方法及び炭化水素油の水素化処理方法
JP4689198B2 (ja) 炭化水素油の水素化処理触媒及びその製造方法、並びに炭化水素油の水素化処理方法
JP4954095B2 (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
JP2006306974A (ja) 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法
TWI611015B (zh) 烴油的氫化脫硫催化劑
JP2004290728A (ja) 軽油の水素化処理触媒の製造方法及び軽油の水素化処理方法
JP2001062304A (ja) 軽油の水素化脱硫触媒の製造方法及び軽油の水素化処理方法
JP2014111233A (ja) 炭化水素油の水素化脱硫触媒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2560925

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580009689.3

Country of ref document: CN

Ref document number: 2005721249

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067020620

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 5898/DELNP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005721249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10594451

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067020620

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10594451

Country of ref document: US