WO2005082946A1 - 末端官能化ポリマーの製造方法 - Google Patents

末端官能化ポリマーの製造方法 Download PDF

Info

Publication number
WO2005082946A1
WO2005082946A1 PCT/JP2005/002887 JP2005002887W WO2005082946A1 WO 2005082946 A1 WO2005082946 A1 WO 2005082946A1 JP 2005002887 W JP2005002887 W JP 2005002887W WO 2005082946 A1 WO2005082946 A1 WO 2005082946A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
group
carbon atoms
formula
general formula
Prior art date
Application number
PCT/JP2005/002887
Other languages
English (en)
French (fr)
Inventor
Kotaro Satoh
Toshinori Kato
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US10/591,180 priority Critical patent/US20070167587A1/en
Priority to JP2006519364A priority patent/JPWO2005082946A1/ja
Priority to EP05710580A priority patent/EP1721912A4/en
Publication of WO2005082946A1 publication Critical patent/WO2005082946A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • C08F12/24Phenols or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • C08F12/28Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated

Definitions

  • the present invention relates to a terminal-functionalized polymer and a method for producing the same, a functional anion polymerization initiator used for producing the terminal-functionalized polymer, and a method for producing the same. More specifically, the present invention provides a method for easily and smoothly producing a polymer having a functional group at a terminal by using a specific organolithium compound which has not been conventionally used in anion polymerization as an anion polymerization initiator, and The present invention relates to a functional anion polymerization initiator used therein.
  • the terminal-functionalized polymer produced by the method of the present invention in which anionic polymerization is carried out using the functional anionic polymerization initiator includes a tacky adhesive, a sealant, a coating ij, a film, a tire, a thermoplastic part, a thermosetting It can be used effectively for a wide range of applications such as parts.
  • Terminal-functionalized polymers have been used for a wide range of applications, but if the number and molecular weight distribution of functional terminal groups are not controlled, sufficient functional group effects and physical properties cannot be obtained.
  • the resulting polymer may contain polymers with extremely wide molecular weight distribution and extremely low molecular weight, or polymers with no functional group introduced at the terminal. Often the quality of the polymer is difficult to be constant.
  • an anion polymerization method particularly a living anion polymerization method, is used, the reaction can be controlled, so that a polymer having a narrow molecular weight distribution and a clear structure can be easily obtained.
  • Patent Documents 1 to 3 and the like In response to living anion polymerization, a method is known in which a living anion growth terminal is reacted with a functional cabbing agent to introduce a functional group into a polymer terminal (see Patent Documents 1 to 3 and the like). ).
  • the methods of Patent Documents 13 to 13 all involve a method of introducing a functional group to a polymer terminal by reacting a growing end with a functional cabbing agent after conducting a living anion polymerization using a polymerization initiator.
  • a process in which a functional group cannot be directly introduced into a polymer terminal by living anion polymerization, and is reacted with a functional cabbing agent after polymerization. Is indispensable, and the process is complicated.
  • Patent Document 4 As another method for introducing a functional group into a polymer terminal, there is known a method in which living anion polymerization is performed using a specific organic lithium-based polymerization initiator having a functional group (Patent Document 4). See 1-6 mag.).
  • Patent Documents 416 one functional group can always be introduced at the starting terminal of the polymerization reaction, and a telechelic polymer can be obtained by using a coupling agent or a functional capping agent in combination.
  • a functional cabbing agent is used in combination, a heterotelechelic polymer having different functional groups at two terminals can be produced.
  • an organic lithium polymerization initiator in which a functional group is bonded to an aromatic ring by reacting an organolithium compound having no functional group with a styrene derivative having a functional group blocked by a siloxy group.
  • a polymer having a functional group is produced by anionic polymerization using the organolithium polymerization initiator (see Patent Documents 7 and 8).
  • Patent Documents 7 or 8 there is a problem that two or more functional groups are introduced into the polymerization initiator because the styrene derivative used for preparing the polymerization initiator is polymerizable. This is problematic because many polymers without functional groups are by-produced in the polymer formed when anion polymerization is carried out using the obtained polymerization initiator.
  • 1,1-diphenylethylene having a functional group bonded to an organolithium compound and an aromatic ring there is known a method of producing a polymer having a functional group by performing anion polymerization using a functional group-containing organolithium polymerization initiator prepared by reacting a derivative (see Patent Document 9 and Non-Patent Document 1).
  • a polymer having a functional group effectively introduced at the start terminal can be produced, but the preparation of a 1,1-diphenylethylene derivative having a functional group is complicated. The power is also expensive, and polymers having functional groups cannot be produced easily and at low cost.
  • Patent Document 1 US Patent No. 4,417,029
  • Patent Document 2 U.S. Pat.No. 4,518,753
  • Patent Document 3 U.S. Pat.No. 4,753,991
  • Patent Document 4 Japanese Patent Publication No. 5-504164
  • Patent Document 5 Japanese Patent Publication No. 9-505351
  • Patent Document 6 JP-A-7-268012
  • Patent Document 7 JP-A-6-336505
  • Patent Document 8 U.S. Pat.No. 5,336,726
  • Patent Document 9 JP-A-2-58505
  • Non-Patent Document 1 "Makromol. Chem.”, Macromol. Symp. (1992), 63, 259-269
  • An object of the present invention is to provide a multi-step reaction process in which anionic polymerization is carried out using a polymerization initiator, and then the growth terminal is further reacted with a functional cabbing agent to introduce a functional group into the polymer terminal.
  • An object of the present invention is to provide a method capable of easily and smoothly directly obtaining a polymer having a functional group at a terminal by anionic polymerization without performing the method.
  • An object of the present invention is to provide a method for producing an end-functionalized polymer in a simple process and economically using a specific functional anion polymerization initiator which has not been used conventionally.
  • an object of the present invention is to use a stable organolithium compound without using an alkali metal which is in danger of explosion and the like and is inferior in handling, and to provide a simple and low-cost governmental apparatus.
  • An organolithium polymerization initiator having a functional group is prepared, and the resulting organolithium polymerization initiator is used in the anion polymerization in the form of the reaction mixture without isolation or purification from the reaction mixture. Accordingly, it is an object of the present invention to provide a method capable of easily and economically producing an end-functionalized polymer.
  • Another object of the present invention is to provide a specific functional anion polymerization initiator useful for producing a terminal-functionalized polymer and to provide a method capable of easily producing the functional anionic polymerization initiator. It is.
  • An object of the present invention is to provide a terminal-functionalized polymer produced by the above-mentioned method, which can be effectively used for a wide range of applications.
  • the present inventors have intensively studied to achieve the above object.
  • a functional anion polymerization initiator can be easily and efficiently prepared, and
  • anionic polymerization is carried out using the functional anionic polymerization initiator, the multi-step process of reacting the growing end of the polymer with the functional cabbing agent after the anionic polymerization to functionalize the polymer end can be performed without using a multi-step process. It has been found that end-functionalized polymers can be produced directly by anionic polymerization.
  • the present inventors can isolate and use the functional anion polymerization initiator prepared as described above, but use the polymerization initiator after isolating or purifying the polymerization initiator from the reaction mixture before use in the anion polymerization. It is not always necessary to use it directly in the anion polymerization in the form of a reaction mixture containing the polymerization initiator, in which case the desired end-functionalized polymer can be obtained smoothly and in high yield. It was found that it can be manufactured.
  • the present inventors manufactured using the specific functional anion polymerization initiator described above. Reacting the growing end of the end-functionalized polymer with a specific functional cabling agent or with a multifunctional coupling agent can modify the end functional groups of the end-functionalized polymer to more diverse functional groups. They found that the use and performance of the terminal-functionalized polymer could be further diversified, and completed the present invention based on those findings.
  • the present invention provides:
  • An anion polymerizable monomer is represented by the following general formula (i):
  • A is a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom
  • Ar is an aryl group which may have a substituent
  • R 1 is an alkyl group having 11 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms
  • R 3 represents an alkyl group having 1 to 10 carbon atoms or a protecting group of a functional group 1 A-H (A is the above-described hetero atom)
  • the hetero atom A is When oxygen atom or sulfur atom, m and n are each 0 or 1 and are the total force of m and n.When hetero atom A is nitrogen atom or phosphorus atom, m and n are 0, 1 respectively. Or 2 and the sum of m and n is 2.
  • a method for producing a terminal-functionalized polymer characterized by performing anionic polymerization using an organolithium compound represented by the formula (1) as a polymerization initiator.
  • A is a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom
  • Ar is an aryl group which may have a substituent
  • R 2 is an alkylene group having 1 to 10 carbon atoms
  • R 3 is an alkyl group having 1 to 10 carbon atoms or a functional group -AH (A is as described above.
  • a heteroatom when heteroatom A is an oxygen atom or a sulfur atom, m and n are each 0 or 1, and the sum of m and n is 1, and heteroatom A is In the case of a nitrogen atom or a phosphorus atom, m and n are each 0, 1 or 2, and the sum of m and n is 2.
  • R 1 represents an alkyl group having 110 carbon atoms.
  • the amount of the organolithium compound represented by the above general formula (iii) is more than n mol. After reacting with the amount obtained (where n represents the same number as n in the above general formula ( ⁇ )), and then anionically polymerizable monomer is subjected to anion polymerization in the presence of the obtained reaction mixture.
  • a method for producing a terminal-functionalized polymer is
  • A is a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom
  • Ar is an aryl group which may have a substituent
  • R 1 is an alkyl group having 11 to 10 carbon atoms
  • R 2 is an alkylene group having 1 to 10 carbon atoms
  • R 3 is an alkyl group having 1 to 10 carbon atoms or a protecting group of a functional group _A_H (A is the above-described hetero atom)
  • the hetero atom A is an oxygen atom.
  • m and n are each 0 or 1 when it is a sulfur atom and the total force of m and n, and when heteroatom A is a nitrogen atom or a phosphorus atom, m and n are each 0, 1 or 2 And the sum of m and n is 2. ]
  • A is a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom
  • Ar is an aryl group which may have a substituent
  • R 2 is an alkylene group having 11 to 10 carbon atoms
  • R 3 represents an alkyl group having 1 to 10 carbon atoms or a protecting group of a functional group -AH (A is the above-described hetero atom)
  • m and n are each represented by the following when the hetero atom A is an oxygen atom or a sulfur atom: Each of which is 0 or 1 and the sum of m and n is 1, and when heteroatom A is a nitrogen atom or a phosphorus atom, m and n are each 0, 1 or 2, and the sum of m and n is 2
  • m ⁇ -substituted styrene derivative represented by the following formula (m):
  • R 1 represents an alkyl group having 11 to 10 carbon atoms.
  • a functional anion polymerization initiator characterized by reacting the organolithium compound represented by the formula with an amount exceeding n moles, where n is the same number as n in the above general formula (ii). Manufacturing method;
  • A is a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom
  • Ar is an aryl group which may have a substituent
  • R 2 is an alkylene group having 11 to 10 carbon atoms
  • R 3 represents an alkyl group having 1 to 10 carbon atoms or a protecting group of a functional group -AH (A is the above-described hetero atom)
  • m and n are each represented by the following when the hetero atom A is an oxygen atom or a sulfur atom: Each of which is 0 or 1 and the sum of m and n is 1, and when heteroatom A is a nitrogen atom or a phosphorus atom, m and n are each 0, 1 or 2, and the sum of m and n is 2 ]
  • R 1 represents an alkyl group having 110 carbon atoms.
  • organolithium compound represented by the formula is reacted in an amount of more than n moles and not more than (n + 1) moles, where n is the same number as n in the above general formula (ii).
  • the present invention provides
  • a multi-step reaction step of conducting anionic polymerization using a polymerization initiator and then further reacting the growth terminal with a functional cabbing agent to introduce a functional group into the polymer terminal Using an organolithium conjugate represented by the above general formula (i) or a ⁇ -substituted styrene derivative represented by the above general formula (ii) and a compound represented by the following general formula (iii)
  • a reaction mixture obtained by reacting with an organolithium compound By using a reaction mixture obtained by reacting with an organolithium compound, a terminal-functionalized polymer can be directly and simply produced in an anion polymerization step with high efficiency.
  • a stable organolithium compound is used without using an alkali metal which is in danger of explosion or the like and is inferior in handling, and an organolithium compound having a functional group can be more easily and at lower cost than before.
  • the end-functionalized polymer can be easily and simply prepared by preparing a polymerization initiator and isolating the resulting organolithium-based polymerization initiator from the reaction mixture or using it as it is without isolation or purification. It can be manufactured economically.
  • the functional anion polymerization initiator of the present invention is easily produced by reacting a ⁇ -substituted styrene derivative represented by the general formula (ii) with an organolithium compound represented by the general formula (iii). And can be used effectively to produce terminally functionalized polymers.
  • the terminal-functionalized polymer obtained by the method of the present invention is used for improving, for example, the impact resistance and flexibility of other adhesives, sealants, coating agents, films and other molded products, and other polymers. Best mode for carrying out the invention that can be effectively used for a wide range of applications such as modifiers
  • the present invention provides an anion polymerizable monomer by the following general formula (i): [0023] [Formula 6]
  • A is a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom
  • Ar is an aryl group which may have a substituent
  • R 1 is an alkyl group having 11 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms
  • R 3 represents an alkyl group having 1 to 10 carbon atoms or a protecting group of a functional group _A_H (A is the above-mentioned hetero atom)
  • the hetero atom A is an oxygen atom Or m and n are each 0 or 1 when it is a sulfur atom and the total force of m and n, and when heteroatom A is a nitrogen atom or a phosphorus atom, m and n are each 0, 1 or 2 And the sum of m and n is 2.
  • organic lithium compound (i) a method for directly producing a terminal-functionalized polymer by anionic polymerization using a polymerization initiator consisting of an organic lithium compound represented by the following formula [hereinafter referred to as “organic lithium compound (i)”.
  • A may be any of a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom, of which A is an oxygen atom or A nitrogen atom is preferred from the viewpoints of easy production, polymerization initiation ability, and reactivity of the obtained polymer.
  • Ar is an aryl group which may have a substituent, and specific examples thereof include phenyl having one or more substituents such as a phenyl group, an alkyl group, a halogen, and an alkoxyl group. Group, naphthyl group, and the like.Among them, a phenyl group substituted with a phenyl group or an alkyl group, and particularly a substituted or unsubstituted phenyl group may be used to form a desired terminal-functionalized polymer. Preferred from the viewpoints of smooth production and easy production of the organolithium compound (i).
  • R 1 is a linear or branched ⁇ Norekiru group 1 one 10 carbon atoms, and specific examples, Mechinore group, Echiru group, a propyl group, an isopropyl group, Butyl group, isobutyl group, sec_butyl group, tert-butyl group, pentyl group, isopench Examples include a nore group, a neopentyl group, a tert-pentyl group, a 1-methylbutyl group, a 1-methylheptinol group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • R 1 is a straight-chain or a straight-chain having 115 carbon atoms in terms of availability, economy, ease of production of organolithium compound (i), and ease of production of terminal-functionalized polymer. It is more preferably a propyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a methinole group, or an ethyl group, which is preferably a branched alkyl group.
  • R 2 is a linear or branched alkylene group having 110 carbon atoms, and specific examples include a methylene group, an ethylene group, a linear or branched alkylene group. Propylene group, butylene group, pentylene group, hexylene group, heptylene group, otaylene group, nonylene group and the like. Among them, R 2 is preferably a linear alkylene group having 114 carbon atoms in view of the easiness of production of the organolithium compound (i) and the easiness of production of the terminal-functionalized polymer. More preferably, it is a methylene group, an ethylene group, a propylene group, or a butylene group.
  • R 3 is an alkyl group having a carbon number of 110 or a protective group of a functional group AH (A is the above-mentioned hetero atom).
  • R 3 is an alkyl group having 1 to 10 carbon atoms, specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butynole group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a pentyl group.
  • R 3 is a protecting group for the functional group A—H
  • R 3 is a protecting group for the functional group A—H
  • alkylsilyl groups such as trimethylsilyl, tert-butyldimethylsilyl, and isopropyldimethylsilyl; benzinole; it can.
  • R 3 is an alkyl group having 1 to 10 carbon atoms, such as a tert-butyl monobutyl group, an isopropyl group, or an isoamyl group, these also function as a protecting group for the functional group _A_H.
  • R 3 is a trimethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyl group, it functions well as a protecting group.
  • R 3 is selected from the viewpoints of easy production of organolithium compound (i), availability of raw material compounds for producing organolithium compound (i), and production of terminal-functionalized polymer.
  • the organic lithium compound (i) when the hetero atom A is an oxygen atom or a sulfur atom, m and n are each 0 or 1, and the sum of m and n is 1. .
  • m is 0 and n is 1 to facilitate the production of the organolithium compound (i) and to produce the organolithium compound (i). It is preferable in view of the availability of the starting compound [particularly the ⁇ -substituted styrene derivative represented by the above general formula ( ⁇ )].
  • the hetero atom A when the hetero atom A is a nitrogen atom or a phosphorus atom, m and n are each 0, 1 or 2, and the sum of m and n is 2.
  • m When the atom A is a nitrogen atom or a phosphorus atom, m is 0, n is 2, m is 1, n is 1, and m is m, depending on the type of functional group to be introduced into the terminal of the polymer. In 2, n may be 0.
  • organolithium compound (i) that can be used in the present invention include the following (ia) to (ik).
  • R 1 and R 4 are linear or branched alkyl groups having 14 carbon atoms
  • R 5 and R 6 are linear or branched alkyl groups or alkyl groups having 14 carbon atoms.
  • a silyl group, p is preferably an integer of 1 to 5, and q is preferably an integer of 0 to 3.
  • an organolithium compound in which the hetero atom A is an oxygen atom or a nitrogen atom in the above general formula (i) is used for producing the organolithium compound (i). It is preferably used in terms of easiness, polymerization initiation ability, reactivity of the obtained polymer and the like, and is therefore represented by the above formula (ia), (ib), (ie), (if) or (ig) Organic lithium compounds are preferably used.
  • R 1 is a butyl group or a sec-butyl group, q is 0, and p is 1-4.
  • R 1 is a butyl or sec-butyl group in the above formula (ie), (if) or (ig), R 6 is an alkyl group having 14 to 14 carbon atoms, and q is An organic lithium compound in which 0 and p are integers of 14 is preferably used.
  • the production method of the organolithium compound (i) is not particularly limited, but is represented by the following general formula (ii);
  • A is a heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom
  • Ar is an aryl group which may have a substituent
  • R 2 is an alkylene group having 11 to 10 carbon atoms
  • R 3 represents an alkyl group having 1 to 10 carbon atoms or a protecting group of a functional group -AH (A is the above-described hetero atom)
  • m and n are each represented by the following when the hetero atom A is an oxygen atom or a sulfur atom: Each of which is 0 or 1 and the sum of m and n is 1, and when heteroatom A is a nitrogen atom or a phosphorus atom, m and n are each 0, 1 or 2, and the sum of m and n is 2 ]
  • a ⁇ -substituted styrene derivative [hereinafter referred to as “ ⁇ -substituted styrene derivative ( ⁇ )”] and a compound represented by the following general formula (iii);
  • R 1 represents an alkyl group having 110 carbon atoms.
  • organolithium compound (iii) represented by the formula [hereinafter referred to as “organic lithium compound (iii)”] is converted to the organolithium compound (iii) in an amount exceeding n mol per mol of ⁇ -substituted styrene derivative (ii). [n represents the same number as n in the above general formula (ii)].
  • the organolithium compound (i) formed by the above-mentioned reaction between the ⁇ -substituted styrene derivative (ii) and the organolithium compound (iii) is isolated or isolated and purified from the reaction mixture to produce a terminal-functionalized polymer.
  • the terminal-functionalized polymer may be produced as it is for the polymerization.
  • the present invention provides a method of producing an end-functionalized polymer by performing anion polymerization using an isolated or isolated 'purified organolithium compound (i) as a polymerization initiator, It includes both a method of producing an end-functionalized polymer by carrying out anionic polymerization using the reaction mixture obtained by reacting the substituted styrene derivative (ii) with the organolithium compound (m) as it is.
  • anionic polymerization is carried out using the reaction mixture containing the organolithium compound (i) formed by the reaction of the ⁇ -substituted styrene derivative ( ⁇ ) and the organolithium compound (m).
  • the step of isolating the organolithium compound (i) from the product and the step of purifying the same are not required, and the terminal-functionalized polymer can be produced more easily.
  • the types (contents), specific examples and preferred examples of the hetero atoms A, Ar, R 2 and R 3 , M and n are preferably the hetero atoms A, Ar, and heteroatoms in the organolithium compound (i). Same as described above for m and n.
  • substituted styrene derivative (ii) include those shown in (iia)-(iik) below.
  • R 4 is a linear or branched alkyl group having 14 to 14 carbon atoms
  • R 5 and R 6 are a linear or branched alkyl group or alkyl silyl group having 14 to 14 carbon atoms
  • p is 1 is an integer of 5 and q is preferably an integer of 0-3.
  • an organolithium compound in which the hetero atom A is an oxygen atom or a nitrogen atom in the general formula (ii) is a ⁇ -substituted styrene derivative (ii)
  • a j3-substituted styrene derivative (ii) represented by (iia), (iib), (iie), (M) or (iig) is preferably used.
  • R 1 is an n-butyl group or an s-butyl group
  • R 6 is an alkyl group having 1 to 4 carbon atoms
  • q is 0, and
  • Organolithium compounds having an integer of 14 are preferably used.
  • ⁇ -substituted styrene derivatives (ii) in which the heteroatom A is an oxygen atom preferred are ⁇ -substituted styrene derivatives (ii) in which the heteroatom A is an oxygen atom.
  • 2_propene-1-octane 4-feninole 3-butene 1-ol, 5-feninole 4-pentene 1-ol, 6-feninole 1-hexene 1 1-ol, 7-phenyl-1,6-hepten-1-ol, 4_phenyl-1,3-buten-2-ol, 2-methynole-1,4-phenyl-1,3-butene1-1, ol 5_ phenylene Honoré one 4 - pentene one 2 - and the like ol.
  • kedamine (3-phenyl-2-propene).
  • Primary amines such as phenyl-3-butenylamine; N-methylcarbamine [N-methyl- (3-phenyl-2-propyl) amine], N-ethylethylamine [N-ethynoley (3- N-propylcinnamine [N-propyl-1- (3-phenyl-2-propyl) amine],
  • the type (contents), specific examples and preferred examples of the group R 1 are the same as those in the organolithium compound (i). 1 is the same as described above.
  • Preferred specific examples of the organolithium compound (m) include butyllithium, sec-butyllithium, tert_butyllithium and the like. These compounds may be used alone or in combination of two or more. You may.
  • sec-butyl lithium is preferably used because of its ease of production of the organolithium compound (i).
  • the reaction between the ⁇ -substituted styrene derivative (ii) and the organolithium compound (iii) is generally carried out by reacting the active hydrogen atom (hydrogen atom bonded to the hetero atom ⁇ ) and the organic lithium in the ⁇ -substituted styrene derivative ( ⁇ ).
  • the compound (iii) is first formed and lithiated at the active hydrogen atom portion, and then one molecule of an organolithium compound (m
  • organolithium compounds having a ⁇ -substituted styrene derivative (ii) and an organolithium compound (m) terminal functional groups produced by reaction with [One A (Li) n (R 3 ) m] (i) a heavy during Anion polymerization Acts as a coalescence initiator to introduce a functional group at the end of the polymer.
  • the reaction mixture is used.
  • the organolithium compound (i) but also the unreacted organolithium compound (m) acts as a polymerization initiator, so that together with the terminal-functionalized polymer, a polymer having no functional group at the end is used. Generate at the same time.
  • the organolithium compound (i) represented by the general formula (i) obtained by the addition reaction of the dimethyl compound (iii) the / 3 substituted styrene derivative (ii) More than n moles of the organic lithium compound (iii) [n is the active hydrogen bonded to the heteroatom A at the ⁇ -substituted styrene derivative (ii) represented by the general formula (ii). The same as the number n of atoms H].
  • the reaction mixture obtained by the reaction between the ⁇ -substituted styrene derivative (ii) and the organolithium compound (iii) is used as it is to carry out anion polymerization, and contains no polymer having no functional group at the terminal or contains the polymer.
  • the unreacted organolithium compound (iii) is not allowed to remain in the reaction mixture used as a polymerization initiator, or the unreacted organolithium compound ( In order to minimize the residual amount of m), the organolithium compound (m
  • the organolithium compound (iii) is mixed with n moles of the organolithium compound (iii) per mole of the ⁇ -substituted styrene derivative (ii). (n is the same as above), it is necessary to use it in a proportion exceeding, and it is preferable to use it in an amount of more than n mol and not more than (n + 1) mol. Is more preferable.
  • the reaction between the ⁇ -substituted styrene derivative (ii) and the organolithium compound (iii) is preferably performed in an organic solvent in order to make the reaction proceed smoothly.
  • the organic solvent is not particularly limited as long as it has no reactivity with carbon anion, and among them, a non-polar solvent is preferably used.
  • Preferred examples of the organic solvent include aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-hexane, and n -heptane; and aromatic hydrocarbon solvents such as benzene, toluene, and xylene. . These may be used alone or in combination of two or more.
  • the amount of the organic solvent used in the reaction of the ⁇ -substituted styrene derivative (ii) with the organolithium compound (iii) is not particularly limited, and the solubility or dispersibility of the resulting organolithium compound (i) is determined.
  • An appropriate amount can be selected according to various conditions such as the amount of the monomer to be added and the type of the monomer, but it is usually preferably about 1 to 100 liter per 1 mol of the j3-substituted styrene derivative (ii). .
  • a polar compound When reacting the ⁇ -substituted styrene derivative ( ⁇ ) and the organolithium compound (m) in a nonpolar solvent, the reaction between the two is promoted, and further, the solvent is added to the solvent of the organolithium compound (i) generated by the reaction.
  • a small amount of a polar compound may be added to improve the solubility of the compound.
  • the polar compound has no functional group (hydroxyl group, carbonyl group, etc.) that reacts with anion species, Compounds having a heteroatom such as an oxygen atom or a nitrogen atom in the molecule are preferably used.
  • getyl ether monoglyme, diglyme, N, N, ⁇ ′, N′-tetramethynoleethylenediamine, dimethoxyethane, tetrahydrofuran and the like. Can be mentioned. These compounds may be used alone or in combination of two or more.
  • the temperature at which the ⁇ -substituted styrene derivative (ii) is reacted with the organolithium compound (iii) is _80 ° C 60 ° C in view of not prolonging the time required for the reaction and suppressing side reactions. It is more preferable that the temperature be within the range of 0 ° C.
  • the operation for reacting the substituted styrene derivative (ii) with the organolithium compound (iii) is not particularly limited, but the ⁇ -substituted styrene derivative (ii) is dissolved in an organic solvent (preferably a non-polar hydrocarbon solvent). While stirring the solution at a predetermined temperature, slowly add a solution of an organic lithium compound in an organic solvent (preferably a non-polar hydrocarbon solution) dropwise, and after the addition is complete, mix the reaction mixture. It is preferable that the stirring is continued for an arbitrary time so that the reaction is sufficiently performed.
  • an organic solvent preferably a non-polar hydrocarbon solvent
  • the active hydrogen atom (the hydrogen atom bonded to the hetero atom A) in the ⁇ -substituted styrene derivative (ii) is first lithiated. Then, the addition reaction of the organolithium compound (iii) to the unsaturated ethylene bond proceeds, and the organolithium compound (iii) is added dropwise slowly and slowly until the active hydrogen atoms are completely lithiated. Is preferred.
  • the progress of the reaction between the ⁇ -substituted styrene derivative (ii) and the organolithium compound (iii) can be confirmed by gas chromatography (GC), proton nuclear magnetic resonance spectroscopy (NMR), and the like.
  • the reaction is usually preferably carried out within a range of 0.1 to 40 hours.
  • the compounds used in the reaction such as the ⁇ -substituted styrene derivative ( ⁇ ), the organic lithium compound (iii), the organic solvent, and the polar compound, be sufficiently dehydrated and dried beforehand.
  • the reaction between the ⁇ -substituted styrene derivative ( ⁇ ⁇ ) and the organolithium compound (iii) is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas that does not contain moisture or oxygen.
  • Anion polymerization can be carried out using the reaction mixture formed by the reaction of the ⁇ or / 3-substituted styrene derivative (ii) with the organolithium compound (iii) as it is. Initiate anionic polymerization of functional monomers to produce end-functionalized polymers.
  • the terminally functionalized polymer produced thereby is a linear or branched polymer having at least one terminal functional group, and a telechelic polymer, a heterotelechelic polymer, a terminal polymer having a reactive functional group at both ends. And a terminal functional radial polymer having a functional group derived from a functional anion polymerization initiator.
  • the type of anion-polymerizable monomer for producing the terminal-functionalized polymer is not particularly limited, and any anion-polymerizable monomer used in ordinary living anion polymerization can be used.
  • the anion-polymerizable monomer that can be used in the present invention include styrene, permethylstyrene, o-methylstyrene, m-methylstyrene, p-methylenstyrene, 4_propynolestyrene, 2,4-dimethynolestyrene, Aromatic compounds such as vinylinolephthalene and vinylinolethracene; 1,3_butadiene, isoprene, 2,3_dimethylene-1,3_butadiene, 3,4dimethylino-1,3_pentadiene, 1,3-cyclohexane Conjugated gen compounds such as hexadene; acrylate compounds such as methyl acrylate
  • the bonding form of the monomer units in the polymer (copolymer) obtained by polymerization is not particularly limited. , A block shape, a random shape, or a tapered shape.
  • the first monomer may be an organic lithium compound (i) acting as an anion polymerization initiator, or a ⁇ -substituted styrene derivative.
  • a block copolymer can be produced by successively repeating the polymerization reaction.
  • the linear block copolymer having a functional group at the end obtained by the method of the present invention include polystyrene-polyisoprene-polystyrene block copolymer having a functional group at the end, and polystyrene-polybutadiene having a functional group at the end.
  • Examples include a polystyrene block copolymer, a polystyrene-polyisoprene block copolymer having a terminal functional group, and a polystyrene-polybutadiene block copolymer having a terminal functional group.
  • the amount of the anion-polymerizable monomer used for producing the terminal-functionalized polymer can be stoichiometrically determined according to the molecular weight of the terminal-functionalized polymer to be produced.
  • the method of the present invention which does not limit the molecular weight of the end-functionalized polymer, makes it possible to produce end-functionalized polymers having various molecular weights, for example, having a number average molecular weight in the range of 1,000 to 500,000.
  • the anion polymerization reaction is preferably performed in an organic solvent in order to allow the reaction to proceed smoothly.
  • anionic polymerization is performed using the reaction mixture of the ⁇ -substituted styrene derivative (ii) and the organolithium compound (iii) as it is, the organic solvent contained in the reaction mixture can be used as it is. An organic solvent can be added if necessary.
  • the polymerization is carried out using an isolated or isolated / purified organolithium compound (i) as a polymerization initiator, it is preferable to carry out the polymerization by dissolving the polymerization initiator, the monomer, and the like in an organic solvent.
  • the organic solvent used in the polymerization is not particularly limited as long as it does not react with the carbon anion present at the growth terminal of the polymer formed by the polymerization, but a nonpolar organic solvent is preferably used.
  • a nonpolar organic solvent examples thereof include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane, and n-heptane; and aromatic hydrocarbons such as benzene, toluene, and xylene. These may be used alone or in combination of two or more.
  • a polymerization initiator such as the organolithium compound (i) is added to the organic solvent.
  • a small amount of a polar compound may be added to the polymer before adding the monomer.
  • the polar compound include: a functional group (a hydroxyl group, a carbonyl group, and the like) that reacts with an anion species, which can be used in the reaction between the trisubstituted styrene derivative (ii) and the organolithium compound (iii).
  • Compounds having a hetero atom such as an oxygen atom or a nitrogen atom in the molecule can be used. Specific examples thereof include getyl ether, monoglyme, diglyme, tetramethylethylenediamine, dimethoxyethane, and the like. Tetrahydrofuran and the like can be mentioned.
  • the polymerization temperature is within the range of _80 ° C and 100 ° C in view of not prolonging the time required for the reaction and suppressing side reactions according to the method employed in ordinary living anion polymerization. Industrially, it is more preferable that the temperature be in the range of 0 to 60 ° C.
  • the operation at the time of the polymerization reaction is not particularly limited, but an organic solvent solution containing the organic lithium compound (i) dissolved therein or the reaction mixture obtained by the reaction between the ⁇ -substituted styrene derivative (ii) and the organic lithium compound (iii) is used. It is preferable that the anionic polymerizable monomer be slowly added dropwise thereto while stirring at a predetermined temperature, and that the polymerization of the reaction mixture be continued for an arbitrary period of time after completion of the addition so that the polymerization is sufficiently performed.
  • the progress of the polymerization reaction can be confirmed by gas chromatography (GC), proton nuclear magnetic resonance spectroscopy (H-NMR), or the like.
  • the polymerization time is usually preferably in the range of 0.1 to 100 hours.
  • compounds used for the polymerization reaction such as an anion polymerizable monomer, a polymerization initiator, an organic solvent, and a polar compound, be sufficiently dehydrated and dried in advance. Further, it is preferable to carry out the polymerization in an inert gas atmosphere such as a nitrogen gas or an argon gas containing no moisture or oxygen.
  • R 3 in group (iv) bonded to the initiation terminal of polymerization is a functional group RCI_A_H protecting group (for example, trimethylsilyl group, t-butyldimethylsilyl group).
  • alkylsilyl group such as isopropyldimethylsilyl group, benzyl group
  • an alkyl group that functions as a protecting group for example, t-butyl group, isopropyl group, isoamyl group, etc.
  • the functional group can be formed at the starting terminal of the polymer by deprotecting the polymer after the production of the terminal-functionalized polymer.
  • Examples of the deprotecting agent in this case include protonic acid compounds such as hydrochloric acid, sulfonic acid, and carboxylic acid; Lewis acidic compounds such as boron trifluoride and tin chloride; tetrabutyl ammonium fluoride, ammonium fluoride Alkaline fluorine ion-containing compounds such as monium and potassium fluoride can be used.
  • protonic acid compounds such as hydrochloric acid and sulfonic acid are preferably used from the viewpoint of ease of the deprotection reaction.
  • n 1 or 2
  • the terminal is cationized.
  • delithiation can increase the ability to form a functional group at the starting end of the polymer.
  • the delithiation can be usually performed by converting to hydrogen using a protic compound such as methanol, ethanol, propanol, or acetic acid.
  • a protic compound such as methanol
  • a protic compound such as methanol
  • methanol a protic compound
  • an agent a (hetero) telechelic polymer having functional groups at both the polymerization initiation terminal and the growth terminal can be produced.
  • the long-end cabbing reaction can be carried out according to the method employed in ordinary living anion polymerization, and by selecting the type of functional cabbing agent, a hydroxyl group, a carboxyl group, or an amino group can be added to the growing end of the polymer.
  • Functional groups such as epoxy groups, mercapto groups, sulfonyl groups, halogen atoms, butyl groups, vinylidene groups, etc.
  • Examples of the functional cabbing agent capable of introducing a hydroxyl group into the growth terminal of the polymer include alkylene oxide compounds such as ethylene oxide, propylene oxide, trimethylene oxide, butylene oxide, and styrene oxide; Aldehyde compounds such as acetoaldehyde, propionaldehyde and n-butyraldehyde; ketone compounds such as acetone, methyl ethyl ketone and getyl ketone and derivatives thereof, and oxygen atoms.
  • alkylene oxide compounds such as ethylene oxide, propylene oxide, trimethylene oxide, butylene oxide, and styrene oxide
  • Aldehyde compounds such as acetoaldehyde, propionaldehyde and n-butyraldehyde
  • ketone compounds such as acetone, methyl ethyl ketone and getyl ketone and derivatives thereof, and oxygen atoms.
  • Examples of the functional cabbing agent capable of introducing a carboxy group at the growth terminal of the polymer include carbon dioxide.
  • Examples of the functional cabbing agent capable of introducing an amino group to the growth terminal of the polymer include imine compounds such as ethyleneimine, propyleneimine and cyclohexenimine.
  • Examples of the functional cabbing agent capable of introducing a mercapto group at the growth terminal of a polymer include carbon disulfide, ethylene sulfide, propylene sulfide, and a sulfur atom.
  • Examples of functional cabbing agents capable of introducing a halogen atom at the growth terminal of the polymer include, for example, chlorine atoms and bromine atoms.
  • Examples of cabbing agents capable of introducing an epoxy group include, e.g., epichlorohydrin, and a sulfonyl group.
  • Examples of the cabbing agent into which can be introduced are, for example, propane sultone.
  • an appropriate one can be selected in accordance with a method adopted in ordinary living anion polymerization, and examples thereof include phenyl benzoate and methyl benzoate.
  • Examples thereof include p-xylene, bis (chloromethinole) ether, dibromomethane, iodomethane, dimethyl phthalate, dichlorodimethylsilane, dichlorodiphenylsilane, trichloromethylsilane, tetrachlorosilane, and dibutylbenzene.
  • the terminal-functionalized polymer obtained by the above-described method of the present invention may be used as an adhesive, a coating agent, a sealant, or the like conventionally known as a use of the terminal-functionalized polymer, or a polyurethane, polyester, polyamide, It can be used as a modifier for modifying polymers such as polycarbonate and epoxy resin.
  • terminal-functionalized polymers obtained by the method of the present invention in particular, telechelic polymers having functional groups at both ends are used as adhesives (pressure-sensitive adhesives, contact adhesives, laminating adhesives, and assembly adhesives). ), Sealant (for example, urethane sealant for construction, etc.), and coating agent (for example, automotive topcoat agent, metal epoxy primer, polyester coil coating agent, alkyd maintenance coating agent, etc.) And films (for example, those that require heat resistance and solvent resistance), various thermoplastic resin molded products and thermosetting resin molded products (for example, thermoplastic polyurethane rollers by injection molding or reaction injection molding thermosetting) (Bumpers, partition boards, etc. made of conductive resin). Further, the terminal-functionalized polymer obtained by the method of the present invention can be used as a composition containing the polymer and suitable for the above application.
  • the terminal-functionalized polymer produced by the method of the present invention may be blended with another polymer as a modifier for improving impact resistance and / or flexibility.
  • Other polymers at this time include, for example, polyamide, polyurethane, bul alcohol-based polymer, Polyalkylenearyl ethers, including butyl ester polymers, polysulfones, polycarbonates, polyesters, polyacetones having a repeating ester bond in the molecule, and polyalkylene terephthalates having a structure formed by polycondensation of dicarboxylic acid and dalicol And condensation polymers containing polyester.
  • composition of the end-functionalized polymer and the other polymer may be prepared by polishing the other polymer during the production process of the end-functionalized polymer, or after preparing the end-functionalized polymer, It may be prepared by mixing with a polymer.
  • the degree of the reaction in the production process of the terminal-functionalized polymer using the same the number average molecular weight of the obtained terminal-functionalized polymer
  • the molecular weight distribution, the functional group introduction rate in the terminal-functionalized polymer, and the measurement or identification of the functional anion polymerization initiator and the organolithium compound were determined by the following methods.
  • GC gas chromatography
  • NMR proton nuclear magnetic resonance spectrometer
  • the peak molecular weight was measured using gel permeation chromatography (GPC) ("HLC_8020” manufactured by Tosoh Corporation) calibrated with a known polystyrene standard (solvent: tetrahydrofuran, temperature: 40. C).
  • GPC gel permeation chromatography
  • TLC Thin-layer chromatography
  • HPLC high-performance liquid chromatography
  • MALDI-TOF-MS matrix-assisted laser desorption / ionization mass spectrometer
  • the prepared initiator was sampled, collected in a glass tube for NMR measurement, and fully dehydrated and purified with deuterated cyclohexane (CD; Wako).
  • reaction mixture (ia) a heterogeneous red-brown dispersion
  • organolithium compound (i) is formed, which may be referred to as “organolithium compound (ia)” or “functional anion polymerization initiator (ia)”. It was confirmed that the power was good. Further, from the NMR spectrum, a peak was observed at around -0.097 ppm, and it was confirmed that unreacted sec-butyl lithium was contained in the reaction mixture.
  • reaction mixture (ib) a uniform orange solution
  • A is a nitrogen atom
  • Ar is a phenyl group
  • R 1 is a sec butyl group
  • R 2 is an ethylene group
  • R 2 An organolithium compound (i) having 3 as an ethyl group, m as 2, and n as 0 (hereinafter referred to as “organic lithium compound (ib)” or “functional anion polymerization initiator (ib)”) is formed. It was confirmed that
  • N_Jethyl cake skin was added, and then 19 mL of cyclohexane and 6 mL of hexane as a solvent were added to dissolve the N, N_Jethyl cake skin amine.
  • the temperature inside the system was cooled to 0 ° C while stirring the obtained solution, and then cyclohexane solution of sec-butyllithium 1. OmKsec-1.0 milliliter as butyllithium) was slowly applied for 5 minutes. And added dropwise. The reaction was continued for 6 hours with stirring while maintaining the temperature in the system at 0 ° C., to obtain a uniform orange solution (reaction mixture).
  • the reaction mixture [the organolithium compound (i Reaction Mixture Containing a)] (about 28 ml) was heated to 40 ° C., and 11.5 ml (100 mmol) of a styrene monomer was added to carry out anion polymerization.
  • the liquid in the reaction vessel gradually changed from a heterogeneous red-brown state to a homogeneous red-brown solution, and a slight precipitate was formed.
  • methanol lm1 was added to the liquid after the reaction to terminate the polymerization.
  • the solution after the reaction was analyzed by GC and 1 H-NMR. As a result, no unreacted styrene monomer was detected, and the monomer conversion was 100%.
  • the number of terminal hydroxyl groups in the produced polystyrene was determined by HPLC and found to be 1.0 per molecule.
  • Example 1 Except that in (1) of Example 1, the initial temperature at which the styrene monomer was added was 0 ° C, and the system temperature was raised to 40 ° C after anionic polymerization at 0 ° C for 10 minutes. , Anion polymerization was carried out in the same manner as in Example 1 (1), and the polymerization reaction was stopped in the same manner as in Example 1 (1). During this polymerization, the liquid in the reaction vessel gradually changed from a heterogeneous red-brown state to a homogeneous red-brown solution without any precipitate. The solution after the reaction was analyzed by GC and 1 H-NMR. As a result, no unreacted styrene monomer was detected, and the monomer conversion was 100%.
  • the number of terminal hydroxyl groups in the produced polystyrene was determined by HPLC and MALDI-TOF_MS, and was found to be 0.95 per molecule.
  • Example 1 In (1) of Example 1, except that 1 ml of propylene oxide was added before stopping the reaction with methanol, the same operation as in (1) and (2) of Example 1 was performed. Polystyrene was produced.
  • the number of terminal hydroxyl groups in the produced polystyrene was determined by HPLC. As a result, it was 1.95 per molecule, and it was confirmed that the polystyrene had hydroxyl groups at both ends.
  • the number of terminal hydroxyl groups in the produced polystyrene was determined by HPLC and found to be 0.4 per molecule.
  • the number of terminal tertiary amino groups in the produced polystyrene was determined by HPLC and found to be 0.8 per molecule.
  • the number of terminal tertiary amino groups in the produced polystyrene was determined by HPLC and found to be 1.0 per molecule.
  • Example 8 [Production of Block Copolymer Having Tertiary Amino Group at Terminal]
  • Example 7 Before adding methanol to terminate polymerization by adding methanol, isoprene monomer (10,000 mmol) was added, and the mixture was further reacted at 40 ° C. for 2 hours, and then, 1 ml of methanol was added. A block copolymer consisting of polystyrene having a tertiary amino group at the terminal and polyisoprene power was produced in the same manner as in Example 7 except that the polymerization was stopped by calcination. The liquid after the reaction was analyzed by GC and 1 H-NMR. No monomer or isoprene monomer was detected and the monomer conversion was 100% each.
  • Example 7 instead of stopping the polymerization by adding methanol to the reaction mixture, 1 ml of propylene oxide was added, and otherwise the same as (1) of Example 7 Polystyrene having a tertiary amino group and a hydroxyl group at the end was produced.
  • the number of terminal tertiary amino groups in the produced polyisoprene was determined by HPLC and TLC and found to be 1.0 per molecule.
  • an end-functionalized polymer can be easily, smoothly and economically produced, and has high industrial practical value.
  • the terminal-functionalized polymers obtained by the method of the present invention include, for example, adhesives (including pressure-sensitive adhesives, contact adhesives, laminating adhesives and assembly adhesives), sealants (eg, urethane sealants for construction, etc.), coating agents (For example, automotive topcoat agents, metal epoxy primers, polyester coil coatings IJ, alkyd maintenance coating agents, etc.), films (for example, those that require heat resistance and solvent resistance), and various thermoplastic resins Molded products and thermosetting resin molded products (for example, thermoplastic It can be effectively used in the production of urethane rollers or reaction injection molded thermosetting resin automobile bumpers, partition boards, etc.) and as a modifier to improve the impact resistance and flexibility of other polymers. .
  • adhesives including pressure-sensitive adhesives, contact adhesives, laminating adhesives and assembly adhesives
  • sealants eg, urethane sealants for construction, etc.
  • coating agents for example, automotive topcoat agents, metal epoxy primers, polyester coil coatings IJ, alkyd
  • the functional anion polymerization initiator of the present invention can be effectively used for producing such a terminal-functionalized polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

明 細 書
末端官能化ポリマーの製造方法
技術分野
[0001] 本発明は、末端官能化ポリマーおよびその製造方法、並びに該末端官能化ポリ マーの製造に用いられる官能性ァニオン重合開始剤およびその製造方法に関する 。より詳細には、本発明は、ァニオン重合において従来用いられていなかった特定の 有機リチウム化合物をァニオン重合開始剤として用いて末端に官能性基を有するポ リマーを簡単に且つ円滑に製造する方法およびそれに用いる官能性ァニオン重合 開始剤に関する。
該官能性ァニオン重合開始剤を用いてァニオン重合する本発明の方法によって製 造される末端官能化ポリマーは、粘'接着剤、シーラント、コーティング斉 ij、フィルム、 タイヤ、熱可塑性部品、熱硬化性部品などの広範な用途に有効に使用することがで きる。
背景技術
[0002] 末端官能化ポリマーは、従来から広範な用途に使用されているが、官能性末端 基の数や分子量分布が制御されていないと、十分な官能基の効果や物性が得られ ない。また、製造方法として、ラジカル重合法を採用すると、得られるポリマーは分子 量分布が広ぐ極端に分子量の低いポリマーが含まれたり、末端に官能基の導入さ れていないポリマーが含まれたりすることが多ぐポリマーの品質が一定になりにくい 。それに対して、ァニオン重合法、特にリビングァニオン重合法を用いると、反応制御 が可能なため、分子量分布が狭ぐ構造の明確なポリマーを得易い。
[0003] リビングァニオン重合にぉレ、て、リビングァニオン成長末端を官能性キヤッビング剤 と反応させてポリマー末端に官能基を導入する方法が知られている(特許文献 1一 3 等を参照)。しかしながら、特許文献 1一 3の方法は、いずれも重合開始剤を用いてリ ビングァニオン重合を行った後にその成長末端を官能性キヤッビング剤と反応させて ポリマー末端に官能基を導入する方法であって、リビングァニオン重合によりポリマー 末端に官能基を直接導入できず、重合後に官能性キヤッビング剤と反応させる工程 が不可欠であるため、工程が複雑である。また、特許文献 1一 3の方法において、例 えば有機ジリチウムのような 2つ以上の成長開始点を持つ化合物を重合開始剤として 用いた場合にも、リビングァニオン重合を行った後に官能性キヤッビング剤と反応さ せる必要があるが、その際に一方の成長末端が停止反応を起こすと片方の末端のみ しか官能性基を導入できず、また種類の異なる 2つ以上の官能性末端基を組み合わ せて 1つのポリマーに導入するのが困難であるという欠点がある。
[0004] ポリマー末端に官能基を導入する別の方法として、官能基を有する特定の有機リチ ゥム系重合開始剤を用いてリビングァニオン重合を行う方法が知られている(特許文 献 4一 6等を参照)。特許文献 4一 6の方法による場合は、重合反応の開始末端に必 ず 1つの官能基を導入することができ、またカップリング剤や官能性キヤッピング剤を 併用するとテレケリックポリマーが得られる。特に、官能性キヤッビング剤を併用した 場合は、 2つの末端に互いに異なった官能基を有するヘテロテレケリックポリマーを 製造すること力できる。しかし、特許文献 4一 6の方法による場合は、リビングァニオン 重合に使用する重合開始剤の調製操作が複雑で、しかも重合開始剤の調製時に爆 発などの危険があって取扱性に劣るアルカリ金属を直接使用しなければならない。そ の上、重合開始剤の調製時にハロゲン化金属などの副生物を生ずるため、生成した 重合開始剤をそのままリビングァニオン重合に直接使用することができず、濾過やそ の他の方法で精製してから使用する必要があるという問題がある。
[0005] 更に別の方法として、官能基を持たない有機リチウム化合物とシロキシ基で封鎖さ れた官能基を有するスチレン誘導体を反応させて芳香族環に官能基が結合した有 機リチウム重合開始剤を調製し、その有機リチウム重合開始剤を用いてァニオン重合 を行って官能基を有するポリマーを製造する方法が知られている(特許文献 7および 8を参照)。しかしながら、特許文献 7または 8の方法による場合は、重合開始剤の調 製に用レ、るスチレン誘導体に重合性があるために、 2つ以上の官能基が重合開始剤 に導入されるという問題が生じ易ぐまた得られた重合開始剤を用いてァニオン重合 した際に生成したポリマー中に官能基を持たないポリマーが多く副生するなどの問題 力 Sある。
[0006] また、有機リチウム化合物と芳香環に官能基が結合した 1 , 1ージフエニルエチレン 誘導体を反応させて調製した官能基含有有機リチウム重合開始剤を用いてァニオン 重合を行って官能基を有するポリマーを製造する方法が知られている(特許文献 9、 非特許文献 1を参照)。特許文献 9または非特許文献 1の方法による場合は、開始末 端に効果的に官能基を導入したポリマーを製造できるが、官能基を有する 1, 1ージフ ヱニルエチレン誘導体は調製操作が複雑で、し力も高価であり、官能基を有するポリ マーを簡単に且つ低コストで製造することができない。
[0007] 特許文献 1 :米国特許第 4, 417, 029号明細書
特許文献 2 :米国特許第 4, 518, 753号明細書
特許文献 3 :米国特許第 4, 753, 991号明細書
特許文献 4 :特表平 5 - 504164号公報
特許文献 5:特表平 9 - 505351号公報
特許文献 6 :特開平 7 - 268012号公報
特許文献 7:特開平 6 - 336505号公報
特許文献 8 :米国特許 5, 336, 726号明細書
特許文献 9:特開平 2 - 58505号公報
非特許文献 1: "Makromol. Chem. ", Macromol. Symp. (1992年), 63卷, 25 9一 269頁
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、重合開始剤を用いてァニオン重合を行った後にその成長末端を 官能性キヤッビング剤と更に反応させてポリマー末端に官能基を導入するというような 多段の反応工程を行わなくても、ァニオン重合によって末端に官能基を有するポリマ 一を簡単に且つ円滑に直接得ることのできる方法を提供することである。
そして、本発明の目的は、従来用いられていなかった特定の官能性ァニオン重合 開始剤を用いて、簡単な工程で且つ経済的に末端官能化ポリマーを製造する方法 を提供することである。
さらに、本発明の目的は、爆発などの危険があって取扱性に劣るアルカリ金属を使 用せずに、安定な有機リチウム化合物を用いて、従来よりも簡単に且つ低コストで官 能基を有する有機リチウム系重合開始剤を調製し、生成した有機リチウム系重合開 始剤を反応混合物から単離したり精製したりしなくても、反応混合物の形態でそのま まァニオン重合に使用して、末端官能化ポリマーを簡単に且つ経済的に製造するこ とのできる方法を提供することである。
また、本発明の目的は、末端官能化ポリマーの製造に有用な特定の官能性ァニォ ン重合開始剤の提供、および該官能性ァニオン重合開始剤を容易に製造することの できる方法を提供することである。
[0009] また、本発明の目的は、官能基を有する重合開始剤の調製に際して、 2つ以上の 官能基が重合開始剤に導入されるという問題が生じず、更には官能基を有する重合 開始剤を用いてァニオン重合した際に生成したポリマー中に官能基を持たないポリ マーが多く副生するという問題などを生ずることなぐ末端官能化ポリマーを簡単に且 つ効率よく製造し得る方法を提供することである。
そして、本発明の目的は、上記した方法により製造される、広範囲な用途に有効に 用いることのできる末端官能化ポリマーを提供することにある。
課題を解決するための手段
[0010] 本発明者らは、上記の目的を達成すべく鋭意研究を重ねてきた。その結果、有機リ チウム化合物を、アルキレン基を介して ω位に官能基が結合した特定の β置換スチ レン誘導体と反応させると、官能性ァニオン重合開始剤が簡単に且つ効率良く調製 できること、そしてその官能性ァニオン重合開始剤を用いてァニオン重合を行うと、ァ 二オン重合後にポリマーの成長末端を官能性キヤッビング剤と反応させてポリマー末 端を官能化するという多段工程を経なくても、末端官能化ポリマーをァニオン重合に よって直接製造できることを見出した。
さらに、本発明者らは、前記で調製した官能性ァニオン重合開始剤は単離して使 用することもできるが、該重合開始剤を反応混合物から単離や精製してからァニオン 重合に使用することは必ずしも必要ではなぐ該重合開始剤を含有する反応混合物 の形態のままでァニオン重合に直接使用することができ、その場合にも目的とする末 端官能化ポリマーを円滑に且つ高収率で製造できることを見出した。
[0011] そして、本発明者らは、上記特定の官能性ァニオン重合開始剤を用いて製造した 末端官能化ポリマーの成長末端を特定の官能性キヤッビング剤と反応させるか、また は多官能性カップリング剤と反応させると、末端官能化ポリマーの末端官能基をより 多様な官能性基に変性でき、末端官能化ポリマーの用途や性能などを一層多様化 できることを見出し、それらの知見に基づいて本発明を完成した。
[0012] すなわち、本発明は、
(1)ァニオン重合可能なモノマーを、下記の一般式 (i);
[0013] [化 1]
R1
„ I
(L i ) n -A-R -CH-CH-L i ( i )
f a I
(R )m Ar
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R1は炭素数 1一 10のアルキル基 、 R2は炭素数 1一 10のアルキレン基、 R3は炭素数 1一 10のアルキル基または官能基 一 A— H(Aは前記したヘテロ原子)の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原 子または硫黄原子のときに mおよび nはそれぞれ 0または 1であって且つ mと nの合計 力 であり、ヘテロ原子 Aが窒素原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの合計が 2である。 ]
で表される有機リチウム化合物を重合開始剤として用いてァニオン重合することを特 徴とする、末端官能化ポリマーの製造方法である。
そして、本発明は、
(2) 下記の一般式 (ii);
[0014] [化 2]
(H) n -A-R2 -CH=CH (ii)
I 3 I
(R )m Ar
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R2は炭素数 1一 10のアルキレン 基、 R3は炭素数 1一 10のアルキル基または官能基- A-H (Aは前記したヘテロ原子 )の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原子または硫黄原子のときに mおよ び nはそれぞれ 0または 1であつて且つ mと nの合計が 1であり、ヘテロ原子 Aが窒素 原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの 合計が 2である。 ]
で表される β置換スチレン誘導体と、下記の一般式 (m);
R -Li (iii)
(式中、 R1は炭素数 1一 10のアルキル基を示す。)
で表される有機リチウム化合物を、上記の一般式 (ii)で表される β置換スチレン誘導 体 1モル当りにつき、上記の一般式 (iii)で表される有機リチウム化合物を、 nモルを超 える量 [但し nは上記の一般式 (Π)における nと同じ数を示す]で反応させた後、得ら れた反応混合物の存在下に、ァニオン重合可能なモノマーをァニオン重合すること を特徴とする、末端官能化ポリマーの製造方法である。
さらに、本発明は、
(3) 上記の一般式 (ii)で表される β置換スチレン誘導体 1モル当りにつき、上記の 一般式 (iii)で表される有機リチウム化合物を、 nモルを超え (n+ 1)モル以下の量 [但 し nは上記の一般式 (ii)における nと同じ数を示す]で反応させた後、得られた反応混 合物の存在下に、ァニオン重合可能なモノマーをァニオン重合する前記(2)の製造 方法;
(4) 生成した末端官能化ポリマーの成長末端をアルキレンォキシド化合物、カルボ ニル化合物、ィミン化合物、メルカプトィ匕合物およびェピクロルヒドリンから選ばれる少 なくとも 1種の官能性キヤッビング剤と反応させる工程を更に含む前記(1)一(3)のい ずれかの製造方法;および、
(5) 生成した末端官能化ポリマーに多官能性カップリング剤を反応させる工程を更 に含む前記(1)一 (3)のレ、ずれかの製造方法;
である。
また、本発明は、 (6) 下記の一般式 (i)
[0016] [化 3]
R1
„ I
(L i) n -A-R -CH-CH-L i ( i )
I 3 I
(R )m Ar
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R1は炭素数 1一 10のアルキル基 、 R2は炭素数 1一 10のアルキレン基、 R3は炭素数 1一 10のアルキル基または官能基 _A_H(Aは前記したヘテロ原子)の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原 子または硫黄原子のときに mおよび nはそれぞれ 0または 1であって且つ mと nの合計 力^であり、ヘテロ原子 Aが窒素原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの合計が 2である。 ]
で表される官能性ァニオン重合開始剤である。
そして、本発明は、
(7) 下記の一般式 (ii);
[0017] [化 4]
(H) n -A-R2 -CH=CH (ii)
(R )m Ar
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R2は炭素数 1一 10のアルキレン 基、 R3は炭素数 1一 10のアルキル基または官能基- A-H(Aは前記したヘテロ原子 )の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原子または硫黄原子のときに mおよ び nはそれぞれ 0または 1であつて且つ mと nの合計が 1であり、ヘテロ原子 Aが窒素 原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの 合計が 2である。 ] で表される β置換スチレン誘導体 1モルに対して、下記の一般式 (m);
R -Li (iii)
(式中、 R1は炭素数 1一 10のアルキル基を示す。 )
で表される有機リチウム化合物を、 nモルを超える量 [但し nは上記の一般式 (ii)にお ける nと同じ数を示す]で反応させることを特徴とする官能性ァニオン重合開始剤の 製造方法;および、
(8) 下記の一般式 (ii) ;
[0018] [化 5]
(H) n - A - R2 - C H= C H (i i )
I a I
(R ) m A r
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R2は炭素数 1一 10のアルキレン 基、 R3は炭素数 1一 10のアルキル基または官能基- A-H (Aは前記したヘテロ原子 )の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原子または硫黄原子のときに mおよ び nはそれぞれ 0または 1であつて且つ mと nの合計が 1であり、ヘテロ原子 Aが窒素 原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの 合計が 2である。 ]
で表される β置換スチレン誘導体 1モルに対して、下記の一般式 (m);
R -Li (iii)
(式中、 R1は炭素数 1一 10のアルキル基を示す。)
で表される有機リチウム化合物を、 nモルを超え(n+ 1)モル以下の量 [但し nは上記 の一般式 (ii)における nと同じ数を示す]で反応させることを特徴とする官能性ァニォ ン重合開始剤の製造方法;
である。
[0019] そして、本発明は、
(9) 前記(1)一(5)のいずれかの製造方法により得られる末端官能化ポリマーであ る。
発明の効果
[0020] 本発明の方法による場合は、重合開始剤を用いてァニオン重合を行った後にその 成長末端を官能性キヤッビング剤と更に反応させてポリマー末端に官能基を導入す るという多段の反応工程を経ることなぐ上記の一般式 (i)で表される有機リチウムィ匕 合物を用いて、または上記の一般式 (ii)で表される β置換スチレン誘導体と一般式( iii)で表される有機リチウム化合物とを反応させて得られる反応混合物を用いて、末 端官能化ポリマーをァニオン重合工程で、簡単に且つ効率よぐ直接製造することが できる。
本発明による場合は、爆発などの危険があって取扱性に劣るアルカリ金属を使用 せずに、安定な有機リチウム化合物を用いて、従来よりも簡単に且つ低コストで官能 基を有する有機リチウム系重合開始剤を調製し、それにより生成した有機リチウム系 重合開始剤を反応混合物から単離して、または単離したり精製せずに反応混合物の 形態でそのまま用いて、末端官能化ポリマーを簡単に且つ経済的に製造することが できる。
さらに、本発明の方法による場合は、ァニオン重合した際にポリマー中に官能基を 持たないポリマーが多く副生するという問題などを生ずることなぐ末端官能化ポリマ 一を簡単に且つ効率よく製造することができる。
[0021] 本発明の官能性ァニオン重合開始剤は、一般式 (ii)で表される β置換スチレン誘 導体と一般式 (iii)で表される有機リチウム化合物とを反応させることにより簡単に製 造することができ、しかも末端官能化ポリマーの製造に有効に使用することができる。 そして、本発明の方法により得られる末端官能化ポリマーは、例えば、接着剤、シ 一ラント、コーティング剤、フィルムやその他の成形品、他のポリマーの耐衝撃性ゃ柔 軟性などを改善するための改質剤などの広範な用途に有効に使用することができる 発明を実施するための最良の形態
[0022] 以下、本発明について詳細に説明する。
本発明は、ァニオン重合可能なモノマーを、下記の一般式 (i); [0023] [化 6]
R1
(L i ) n - A - R - C H - C H - L i ( i )
(R ) m A
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R1は炭素数 1一 10のアルキル基 、 R2は炭素数 1一 10のアルキレン基、 R3は炭素数 1一 10のアルキル基または官能基 _A_H (Aは前記したヘテロ原子)の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原 子または硫黄原子のときに mおよび nはそれぞれ 0または 1であって且つ mと nの合計 力^であり、ヘテロ原子 Aが窒素原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの合計が 2である。 ]
で表される有機リチウム化合物 [以下「有機リチウム化合物 (i)」とレ、う]からなる重合開 始剤を用いてァニオン重合することによって末端官能化ポリマーを直接製造する方 法を包含する。
[0024] 有機リチウム化合物 (i)におレ、て、 Aは酸素原子、窒素原子、硫黄原子および燐原 子から選ばれるヘテロ原子のいずれであってもよぐそのうちでも Aは酸素原子また は窒素原子であることが、製造の容易性、重合開始能、得られるポリマーの反応性な どの点から好ましい。
また、 Arは置換基を有していてもよいァリール基であり、具体例としては、フエ二ノレ 基、アルキル基、ハロゲン、アルコキシル基などの置換基を 1個または 2個以上有す るフエニル基、ナフチル基などを挙げることができ、そのうちでもフエニル基またはァ ルキル基で置換されたフヱニル基、特に置換されてレ、なレ、フヱニル基であることが、 目的とする末端官能化ポリマーを円滑に製造し得る点、有機リチウム化合物 (i)の製 造の容易性などの点から好ましレ、。
[0025] 有機リチウム化合物(i)において、 R1は炭素数 1一 10の直鎖状または分岐状のァ ノレキル基であり、具体例としては、メチノレ基、ェチル基、プロピル基、イソプロピル基、 ブチル基、イソブチル基、 sec_ブチル基、 tert—ブチル基、ペンチル基、イソペンチ ノレ基、ネオペンチル基、 tert—ペンチル基、 1一メチルブチル基、 1一メチルへプチノレ 基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基などを挙げることがで きる。そのうちでも、入手容易性、経済性、有機リチウム化合物 (i)の製造の容易性、 末端官能化ポリマーの製造の容易性などの点から、 R1は炭素数 1一 5の直鎖状また は分岐状のアルキル基であることが好ましぐプロピル基、ブチル基、イソブチル基、 s ec_ブチル基、 tert—ブチル基、メチノレ基、ェチル基であることがより好ましい。
[0026] 有機リチウム化合物(i)において、 R2は炭素数 1一 10の直鎖状または分岐状のァ ルキレン基であり、具体例としては、メチレン基、エチレン基、直鎖状または分岐状の プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オタチレン 基、ノニレン基などを挙げることができる。そのうちでも、有機リチウム化合物(i)の製 造の容易性、末端官能化ポリマーの製造の容易性などの点から、 R2は、炭素数 1一 4 の直鎖状アルキレン基であることが好ましぐメチレン基、エチレン基、プロピレン基、 ブチレン基であることがより好ましレ、。
[0027] 有機リチウム化合物(i)において、 R3は炭素数 1一 10のアルキル基または官能基一 A-H (Aは前記したヘテロ原子)の保護基である。 R3が炭素数 1一 10のアルキル基 である場合の具体例としては、メチル基、ェチル基、プロピル基、イソプロピル基、ブ チノレ基、イソブチル基、 sec-ブチル基、 tert—ブチル基、ペンチル基、イソペンチル 基、ネオペンチル基、 tert—ペンチル基、 1一メチルブチル基、 1一メチルヘプチル基、 へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基などを挙げることができる 。また、 R3が官能基一 A— Hの保護基である場合の具体例としては、トリメチルシリル基 、 tert—ブチルジメチルシリル基、イソプロピルジメチルシリル基などのアルキルシリル 基;ベンジノレ基などを挙げることができる。 R3が炭素数 1一 10のアルキル基のうち、 te rt一ブチル基、イソプロピル基、イソアミル基などの場合は、これらは官能基 _A_Hの 保護基としても機能する。特に、 R3がトリメチルシリル基、 tert -プチルジメチルシリル 基または tert—ブチル基である場合は、保護基として良好に機能する。
そのうちでも、有機リチウム化合物 (i)の製造の容易性、有機リチウム化合物 (i)を製 造するための原料化合物の入手容易性、末端官能化ポリマーの製造の容易性など の点から、 R3は炭素数 1一 5の直鎖状または分岐状のアルキル基であるか或いはトリ メチルシリル基、 tert—プチルジメチルシリル基またはべンジノレ基であることが好ましく 、 tert—ブチル基、トリメチルシリル基または tert-ブチルジメチルシリル基であること 力はり好ましい。
[0028] 有機リチウム化合物(i)におレ、て、ヘテロ原子 Aが酸素原子または硫黄原子である 場合は、 mおよび nはそれぞれ 0または 1であって且つ mと nの合計が 1である。ヘテロ 原子 Aが酸素原子または硫黄原子である場合は、 mが 0で、 nが 1であることが、有機 リチウム化合物 (i)の製造の容易性、有機リチウム化合物 (i)を製造するための原料 化合物 [特に上記の一般式 (Π)で表される β置換スチレン誘導体]の入手容易性な どの点から好ましい。
有機リチウム化合物(i)において、ヘテロ原子 Aが窒素原子または燐原子である場 合は、 mおよび nはそれぞれ 0、 1または 2であって且つ mと nの合計が 2である。へテ 口原子 Aが窒素原子または燐原子である場合は、ポリマーの末端に導入しょうとする 官能基の種類に応じて、 mが 0で nが 2、 mが 1で nが 1、 mが 2で nが 0のいずれであつ てもよい。
[0029] 限定されるものではないが、本発明で使用し得る有機リチウム化合物(i)の具体例 としては、以下の(ia)— (ik)に示すものなどを挙げることができる。
R
Figure imgf000015_0001
° — O— (CHJ - (i b)
L i一 S— (CHJ -CH-CH-L i (i c)
R — S— (CHJ - ( i d)
L i -N- (CHJ -
Figure imgf000015_0002
(i e)
Li
[0031] [化 8]
L i一 N— (CHJ —
Figure imgf000016_0001
( i f )
L
Figure imgf000016_0002
i -P- (CHJ - ( i h)
Li
Figure imgf000016_0003
R — P— (CHJ -
Figure imgf000016_0004
(i k)
(上記式中、 R1および R4は炭素数 1一 4の直鎖状または分岐状アルキル基、 R5およ び R6は炭素数 1一 4の直鎖状または分岐状アルキル基或いはアルキルシリル基、 p は 1一 5の整数、 qは 0— 3の整数であることが好ましレ、。 )
[0032] 本発明では、有機リチウム化合物 (i)として、上記の一般式 (i)において、ヘテロ原 子 Aが酸素原子または窒素原子である有機リチウム化合物が、有機リチウム化合物 (i )の製造の容易性、重合開始能、得られるポリマーの反応性などの点から好ましく用 レ、られ、したがって上記の式 (ia)、(ib)、 (ie)、 (if)または(ig)で表される有機リチウ ム化合物が好ましく用いられる。そのうちでも、本発明では、有機リチウム化合物 (i)と して、上記の式(ia)において、 R1がブチル基または sec—ブチル基、 qが 0、 pが 1一 4 の整数である有機リチウム化合物、上記の式 (ie)、(if)または (ig)で R1がブチル基ま たは sec—ブチル基、 R6が炭素数 1一 4のアルキル基、 qが 0、 pが 1一 4の整数である 有機リチウム化合物が好ましく用いられる。
[0033] 有機リチウム化合物 (i)の製法は特に制限されないが、下記の一般式 (ii);
[0034] [化 9]
(H) n - A - R2 - C H= C H (i i )
I 3 I
(R ) m A r
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R2は炭素数 1一 10のアルキレン 基、 R3は炭素数 1一 10のアルキル基または官能基- A-H (Aは前記したヘテロ原子 )の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原子または硫黄原子のときに mおよ び nはそれぞれ 0または 1であつて且つ mと nの合計が 1であり、ヘテロ原子 Aが窒素 原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの 合計が 2である。 ]
で表される β置換スチレン誘導体 [以下「 β置換スチレン誘導体 (Π)」とレ、う]と、下記 一般式 (iii) ;
R -Li (iii)
(式中、 R1は炭素数 1一 10のアルキル基を示す。)
で表される有機リチウム化合物 [以下「有機リチウム化合物(iii)」とレ、う]を、 β置換ス チレン誘導体 (ii) lモル当りにつき、有機リチウム化合物(iii)を、 nモルを超える量 [n は上記の一般式 (ii)における nと同じ数を示す]で反応させることにより円滑に製造す ること力 Sできる。
[0035] β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)との上記反応で生成した有機 リチウム化合物 (i)は反応混合物から単離または単離,精製して末端官能化ポリマー を製造するためのァニオン重合開始剤として用いてもよいし、または反応混合物から 単離または単離 ·精製せずに有機リチウム化合物 (i)を含有する反応混合物をァニォ ン重合にそのまま用いて末端官能化ポリマーを製造してもよい。
β置換スチレン誘導体 (ii)と有機リチウム化合物(m)との反応により得られた反応 混合物はそのまま用いてァニオン重合を行っても、重合阻害などが生じず、 目的とす る末端官能化ポリマーを高収率で円滑に製造することができる。
[0036] したがって、本発明は、単離または単離 '精製した有機リチウム化合物 (i)を重合開 始剤として使用してァニオン重合を行って末端官能化ポリマーを製造する方法と共 に、 β置換スチレン誘導体 (ii)と有機リチウム化合物 (m)との反応により得られた反応 混合物をそのまま用いてァニオン重合を行って末端官能化ポリマーを製造する方法 の両方を包含する。
β置換スチレン誘導体 (π)と有機リチウム化合物(m)の反応により生成した有機リチ ゥム化合物 (i)を含有する反応混合物をそのまま用いてァニオン重合を行う後者の方 法による場合は、反応混合物から有機リチウム化合物 (i)を単離する工程および精製 する工程が不要になり、末端官能化ポリマーをより簡単に製造することができる。
[0037] 上記の一般式 (ii)で表される β置換スチレン誘導体 (ii)におレ、て、ヘテロ原子 A、 A r、 R2および R3の種類(内容)、具体例、好ましい例、 mおよび nの好ましい数などは、 有機リチウム化合物(i)におけるヘテロ原子 A、 Ar、
Figure imgf000018_0001
mおよび nついて上記で 説明したのと同じである。
限定されるものではないが、 置換スチレン誘導体 (ii)の具体例としては、以下の( iia)一 (iik)に示すものなどを挙げることができる。
]
H-O- (CH ) 一 CH
Figure imgf000019_0001
(iia)
R。 -O- (CHJ
Figure imgf000019_0002
(iib)
Figure imgf000019_0003
R 一 S— (CHJ -CH
Figure imgf000019_0004
(iid)
Figure imgf000019_0005
[0039] [化 11]
Figure imgf000020_0001
R6 - P - (C H9) - C H = C H (i i k )
R6
(上記式中、 R4は炭素数 1一 4の直鎖状または分岐状アルキル基、 R5および R6は炭 素数 1一 4の直鎖状または分岐状アルキル基或いはアルキルシリル基、 pは 1一 5の 整数、 qは 0— 3の整数であることが好ましレ、。 )
[0040] 本発明では、 β置換スチレン誘導体 (ii)として、上記の一般式 (ii)において、ヘテロ 原子 Aが酸素原子または窒素原子である有機リチウム化合物が、 β置換スチレン誘 導体 (ii)の製造または入手の容易性、有機リチウム化合物 (iii)との反応性、得られる 有機リチウム化合物 (i)の重合開始能、得られるポリマーの反応性などの点から好ま しく用いられ、したがって上記の式(iia)、 (iib) , (iie) , (M)または(iig)で表される j3 置換スチレン誘導体 (ii)が好ましく用いられる。そのうちでも、本発明では、 j3置換ス チレン誘導体(ii)として、上記の式(ia)において、 R1が n ブチル基または s ブチル 基、 qが 0、 pが 1一 4の整数である有機リチウム化合物、上記の式 (ie)、(if)または (ig
)で R1が n -ブチル基または s -ブチル基、 R6が炭素数 1一 4のアルキル基、 qが 0、 が
1一 4の整数である有機リチウム化合物が好ましく用いられる。
[0041] 上記の一般式 (ii)におレ、てへテロ原子 Aが酸素原子である β置換スチレン誘導体( ii)の好ましレ、具体例としては、ケィ皮アルコール(3—フエ二ルー 2_プロペン— 1—ォー ノレ)、 4—フエ二ノレ一 3—ブテン一 1—オール、 5—フエ二ノレ一 4—ペンテン一 1—オール、 6— フエ二ノレ一5—へキセン一 1—オール、 7—フエ二ノレ一6—ヘプテン一1—オール、 4_フエ二 ノレ一3—ブテン一 2—オール、 2—メチノレ一4—フエ二ノレ一3—ブテン一 1—オール、 5_フエ二 ノレ一 4—ペンテン一 2—オールなどを挙げることができる。
[0042] 上記の一般式 (ii)におレ、てへテロ原子 Aが窒素原子である β置換スチレン誘導体( ii)の好ましい具体例としては、ケィ皮ァミン(3—フエ二ルー 2_プロぺニルァミン)、 4_ フエニノレー 3—ブテニルァミン、 5—フエニノレー 4—ペンテニルァミン、 6—フエニノレー 5—へ キセニルァミン、 7—フエニノレー 6—ヘプテニルァミン、 1ーメチノレー 3—フエニノレー 2—プロ ぺニルァミン、 2—メチルー 4—フエ二ルー 3—ブテニルァミンなどの 1級ァミン; N メチル ケィ皮ァミン [N—メチルー(3—フエ二ルー 2_プロぺニル)—ァミン]、 N—ェチルケィ皮ァ ミン [N—ェチノレー(3—フエ二ルー 2_プロぺニル)—ァミン]、 N—プロピルケイ皮アミン[ N—プロピル一(3—フエ二ルー 2_プロぺニル)—ァミン]、 N—ブチルケィ皮ァミン [N—ブ チノレー(3—フエニノレー 2—プロぺニノレ)一ァミン]、 N—メチルー(4—フエニノレー 3—ブテニ ノレ)ーァミン、 N—ェチノレー(4 フエ二ルー 3—ブテニノレ)ーァミン、 N—プロピル _ (4 フエ 二ルー 3—ブテニル)—ァミン、 N—ブチルー(4—フエ二ルー 3—ブテニル)—ァミンなどの 2 級ァミン; N, N—ジメチルケィ皮ァミン [N, N—ジメチル _ (3—フエニル— 2_プロぺニ ノレ)—ァミン]、 N, N—ジェチルケィ皮ァミン [N, N—ジェチル _ (3—フエニル—2—プロ ぺニル)—ァミン]、 N, N—ジプロピルケイ皮ァミン [N, N—ジプロピル—(3—フエニル— 2_プロぺニル)—ァミン]、 N, N—ジブチルケィ皮ァミン [N, N—ジブチル—(3—フエ二 ノレ—2—プロぺニル)—ァミン]、 N, N—ジメチル _ (4—フエニル—3—ブテュル)—ァミン、 N, N—ジェチル—(4—フエニル _3—ブテュル)—ァミン、 N, N—ジプロピル—(4—フエ 二ノレ一 3_ブテニノレ)一ァミン、 N, N—ジブチノレ _ (4—フエ二ノレ一 3_ブテニノレ)一ァミンな どの 3級ァミンを挙げることができる。
[0043] β置換スチレン誘導体 (ii)と反応させる有機リチウム化合物 (iii)におレ、て、基 R1の 種類(内容)、具体例、好ましい例などは、有機リチウム化合物 (i)における R1につい て上記で説明したのと同じである。有機リチウム化合物 (m)の好ましい具体例として は、ブチルリチウム、 sec—ブチルリチウム、 tert_ブチルリチウムなどを挙げることがで き、これらの化合物は単独で用いてもよいしまたは 2種以上使用してもよい。
そのうちでも、 sec—ブチルリチウムが有機リチウム化合物(i)の製造の容易性の点 力 好ましく用いられる。
[0044] β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)との反応は、一般に、 β置換 スチレン誘導体 (Π)中の活性水素原子 (ヘテロ原子 Αに結合した水素原子)と有機リ チウム化合物(iii)との間で最初に生じて活性水素原子部分でリチォ化され、次に β 置換スチレン誘導体 (π)のエチレン性不飽和結合に 1分子の有機リチウム化合物(m
)が付加反応して、上記の一般式 (i)で表される有機リチウム化合物 (i)が生成する。 β置換スチレン誘導体 (ii)と有機リチウム化合物 (m)との反応により生成する末端 に官能基 [一 A (Li) n (R3) m]を有する有機リチウム化合物 (i)はァニオン重合時に重 合開始剤として働いて、ポリマーの末端に官能基を導入する。
また、 β置換スチレン誘導体 (ii)と有機リチウム化合物(i)との反応により得られる反 応混合物中に未反応の有機リチウム化合物 (m)が残存してレ、ると、該反応混合物を 用いてァニオン重合したときに、有機リチウム化合物 (i)だけではなぐ未反応の有機 リチウム化合物 (m)も重合開始剤として働くために、末端官能化ポリマーと共に、末 端に官能基を持たないポリマーが同時に生成する。
[0045] 上記の点から、 β置換スチレン誘導体 (ii)と有機リチウム化合物 (m)を反応させる に当っては、 /3置換スチレン誘導体 (Π)のエチレン性不飽和結合に 1分子の有機リチ ゥム化合物 (iii)が付加反応した上記の一般式 (i)で表される有機リチウム化合物 (i) が確実に生成するようにするために、 /3置換スチレン誘導体 (ii) lモル当りにつき、有 機リチウム化合物 (iii)を nモルを超える量 [nは上記の一般式 (ii)で表される β置換ス チレン誘導体 (ii)におレ、てへテロ原子 Aに結合した活性水素原子 Hの数 nと同じ]で 反応させる必要がある。 [0046] また、 β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)の反応により得られる反 応混合物をそのまま用いてァニオン重合して、末端に官能基を持たないポリマーを 含有しないか又は該ポリマーの含有量の少ない末端官能化ポリマーを製造するには 、重合開始剤として用いる前記反応混合物中に未反応の有機リチウム化合物 (iii)が 残存しないようにするため又は未反応の有機リチウム化合物(m)の残存量を極力少 なくするために、 置換スチレン誘導体 Gi) iモル当りにつき、有機リチウム化合物 (m
)の使用量を (n+ l)モル以下の量 [nは前記と同じぐ j3置換スチレン誘導体 (ii)に おけるヘテロ原子 Aに結合した活性水素原子 Hの数)にすることが好ましい。
[0047] したがって、 j3置換スチレン誘導体 (ii)と有機リチウム化合物(iii)との反応に当たつ ては、 β置換スチレン誘導体 (ii) 1モルに対して、有機リチウム化合物(iii)を nモノレ (n は上記と同じ)を超える割合で使用することが必要であり、 nモルを超え (n+ 1 )モル 以下の量で使用することが好ましぐ(n + 1)モルの量で使用することがより好ましい。
[0048] β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)との反応は、反応を円滑に進 行させるために有機溶媒中で行うことが好ましい。有機溶媒としては、炭素ァニオンと の反応性がないものであれば特に制限されず、そのうちでも非極性溶媒が好ましく用 レ、られる。好ましい有機溶媒の例としては、シクロへキサン、メチルシクロへキサン、 n 一へキサン、 n—ヘプタンなどの脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレンな どの芳香族炭化水素溶媒などを挙げることができる。これらは単独で用いてもよいし、 2種以上使用してもよい。
[0049] β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)を反応させる際の有機溶媒の 使用量は特に限定されず、生成する有機リチウム化合物 (i)の溶解性または分散性、 その後に添加するモノマーの量やモノマーの種類などの諸条件に応じて適当な量を 選択できるが、通常は、 j3置換スチレン誘導体 (ii) lモルに対して 1一 100リットル程 度であるのが好ましい。
[0050] 非極性溶媒中で β置換スチレン誘導体 (π)と有機リチウム化合物(m)を反応させる 際に、両者の反応を促進させ、さらに反応により生成する有機リチウム化合物 (i)の溶 媒への溶解性を向上させるために、少量の極性化合物を添加してもよい。極性化合 物としては、ァニオン種と反応する官能基 (水酸基、カルボニル基など)を持たず、一 方分子内に酸素原子、窒素原子などの複素原子を有する化合物が好ましく用いられ 、例えば、ジェチルエーテル、モノグライム、ジグライム、 N, N, Ν' , N'—テトラメチノレ エチレンジァミン、ジメトキシェタン、テトラヒドロフランなどを挙げることができる。これ らの化合物は単独で用いてもよいし、 2種以上使用してもよい。
[0051] β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)を反応させる際の温度は、反 応の所要時間を長引かせない点、副反応を抑制する点から、 _80°C 60°Cの範囲 内であることが好ましぐ 0 50°Cの範囲内であることがさらに好ましい。
[0052] 置換スチレン誘導体 (ii)と有機リチウム化合物(iii)を反応させる際の操作は特に 限定されないが、 β置換スチレン誘導体 (ii)を有機溶媒 (好ましくは非極性炭化水素 溶媒)に溶解して溶液を調製し、その溶液を所定温度で攪拌しながら、そこに有機リ チウム化合物の有機溶媒溶液 (好ましくは非極性炭化水素溶液)をゆっくり滴下して 添加し、添加終了後も反応混合液の攪拌を任意の時間継続し反応を十分に行わせ ることが好ましい。
β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)の反応は、上記したように、 β 置換スチレン誘導体 (ii)中の活性水素原子(ヘテロ原子 Aに結合した水素原子)が 先ずリチォ化され、その後に不飽和エチレン結合部への有機リチウム化合物 (iii)の 付加反応が進行するので、活性水素原子が完全にリチォ化するまでは有機リチウム 化合物(iii)を十分にゆっくり滴下して添加することが好ましい。
β置換スチレン誘導体 (ii)と有機リチウム化合物(iii)との反応の進行度は、ガスクロ マトグラフィー(GC)、プロトン核磁気共鳴分光法( 一 NMR)などによって確認する こと力 Sできる。
反応は、通常 0. 1— 40時間の範囲内で行うことが好ましい。
β置換スチレン誘導体 (Π)、有機リチウム化合物 (iii)、有機溶媒、極性化合物など の反応に使用する化合物は、事前に十分に脱水 ·乾燥しておくことが好ましい。 また、 β置換スチレン誘導体 (Π)と有機リチウム化合物(iii)の反応は、湿気や酸素 を含まない窒素ガス、アルゴンガスなどの不活性ガス雰囲気下に行うことが好ましい。
[0053] 有機リチウム化合物(i)を用いる力 \または /3置換スチレン誘導体 (ii)と有機リチウ ム化合物(iii)との反応により生成した反応混合物をそのまま用いて、ァニオン重合可 能なモノマーのァニオン重合を開始して、末端官能化ポリマーを製造する。
これにより製造される末端官能化ポリマーは、少なくとも 1個の末端官能基を有する 線状または分枝のポリマーであり、両末端に反応性官能基を有するテレケリックポリ マー、ヘテロテレケリックポリマー、末端に官能性ァニオン重合開始剤由来の官能基 を有する末端官能性ラジアルポリマーなどを含む。
[0054] 末端官能化ポリマーを製造するためのァニオン重合性モノマーの種類は特に制限 されず、通常のリビングァニオン重合で用いられているァニオン重合性を有するモノ マーのいずれもが使用できる。本発明で使用し得るァニオン重合性モノマーの例とし ては、スチレン、 ひーメチルスチレン、 o—メチルスチレン、 m—メチルスチレン、 p—メチ ノレスチレン、 4_プロピノレスチレン、 2, 4—ジメチノレスチレン、ビニノレナフタレン、ビニノレ アントラセンなどの芳香族ビュル化合物; 1, 3_ブタジエン、イソプレン、 2, 3_ジメチ ノレ一 1, 3_ブタジエン、 3, 4ジメチノレ一 1, 3_ペンタジェン、 1 , 3—シクロへキサジェン 等の共役ジェン化合物;アクリル酸メチル、アクリル酸ェチル、アクリル酸 n プロピル 、アクリル酸 i プロピル、アクリル酸 n—ブチル、アクリル酸フエニル、アクリル酸ベンジ ルなどのアクリル酸エステル化合物;メタクリル酸メチル、メタクリル酸ェチル、メタタリ ノレ酸 n プロピル、メタクリル酸 i プロピル、メタクリル酸 n—ブチル、メタクリル酸フエ二 ノレ、メタクリル酸べンジルなどのメタクリル酸エステル化合物;アクリロニトリル、メタタリ ロニトリルなどの二トリル化合物; 2-ビエルピリジンなどのへテロ芳香族ビエル化合物 合物;へキサメチルシクロトリシロキサンなどの含ケィ素へテロ環状化合物などを挙げ ること力 Sできる。これらのモノマーは、単独で使用してもよいしまたは 2種類以上を併 用してもよい。
[0055] ァニオン重合性モノマーを 2種以上併用して本発明の方法により末端官能化ポリマ 一を製造する場合は、重合により得られるポリマー(コポリマー)におけるモノマー単 位の結合形態は特に制限されず、ブロック状、ランダム状またはテーパード状のいず れであってもよい。例えば、末端に官能基を有する線状または分枝状のブロックコポ リマーを製造する場合は、第 1のモノマーを、ァニオン重合開始剤として働く有機リチ ゥム化合物(i)、または β置換スチレン誘導体 (Η)と有機リチウム化合物 (m)との反応 により得られた反応混合物を重合系に加えて重合を開始し、所定時間重合を行って 第 1のモノマーを完全に重合させた後、第 2のモノマーを添加して重合を行い、必要 に応じて更に重合反応を順次繰り返すことによってブロックコポリマーを製造すること ができる。本発明の方法により得られる末端に官能基を有する線状のブロックコポリ マーとしては、例えば、末端に官能基を有するポリスチレン一ポリイソプレン一ポリスチ レンブロックコポリマー、末端に官能基を有するポリスチレン一ポリブタジエン一ポリス チレンブロックコポリマー、末端に官能基を有するポリスチレン—ポリイソプレンブロッ クコポリマー、末端に官能基を有するポリスチレン一ポリブタジエンブロックコポリマー などを挙げることができる。
[0056] 末端官能化ポリマーを製造するためのァニオン重合性モノマーの使用量は、製造 を目的とする末端官能化ポリマーの分子量などに応じて化学量論的に決めることが できる。末端官能化ポリマーの分子量に制限はなぐ本発明の方法によって、例えば 、数平均分子量が 1, 000— 500, 000の範囲の種々の分子量の末端官能化ポリマ 一を製造することができる。
[0057] ァニオン重合反応は、反応を円滑に進行させるために有機溶媒中で行うことが好ま しレ、。 β置換スチレン誘導体 (ii)と有機リチウム化合物 (iii)との反応混合物をそのま ま用いてァニオン重合を行う場合は、該反応混合物中に含まれる有機溶媒をそのま ま使用することができるが、必要に応じて有機溶媒を追加することができる。また、単 離または単離'精製した有機リチウム化合物 (i)を重合開始剤として用いて重合を行 う場合は、重合開始剤、モノマーなどを有機溶媒中に溶解して重合するのが好ましい
[0058] 重合時に使用する有機溶媒は、重合により生成するポリマーの成長末端に存在す る炭素ァニオンとの反応性がなレ、ものであれば特に制限されないが、非極性有機溶 媒が好ましく用いられ、例えば、シクロへキサン、メチルシクロへキサン、 n—へキサン 、 n—ヘプタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭 化水素などを挙げることができる。これらは単独で用いてもよいし、 2種以上使用して あよい。
[0059] モノマーの重合時に、有機リチウム化合物 (i)などの重合開始剤の有機溶媒中への 溶解性を向上させて重合を円滑に進行させるために、モノマーを添加する前に、重 合系に少量の極性化合物を添加してもよい。その際の極性化合物としては、 ;3置換 スチレン誘導体 (ii)と有機リチウム化合物 (iii)との反応の際に用い得るのと同様の、 ァニオン種と反応する官能基 (水酸基、カルボニル基など)を持たず、一方分子内に 酸素原子、窒素原子などの複素原子を有する化合物を用いることができ、具体例とし ては、ジェチルエーテル、モノグライム、ジグライム、テトラメチルエチレンジァミン、ジ メトキシェタン、テトラヒドロフランなどを挙げることができる。
[0060] 重合温度は、通常のリビングァニオン重合で採用されている手法に準じ、反応の所 要時間を長引かせない点、副反応を抑制する点から、 _80°C 100°Cの範囲内であ ることが好ましぐ工業的には 0— 60°Cの範囲内であることがより好ましい。
重合反応時の操作は特に限定されないが、有機リチウム化合物 (i)を溶解含有する 有機溶媒溶液、または β置換スチレン誘導体 (ii)と有機リチウム化合物 (iii)との反応 により得られた反応混合物を所定温度で攪拌しながら、そこにァニオン重合性モノマ 一をゆっくり滴下して添加し、次いで添加終了後も反応混合液の攪拌を任意の時間 継続し重合を十分に行うことが好ましい。
重合反応の進行度は、ガスクロマトグラフィー(GC)、プロトン核磁気共鳴分光法 H-NMR)などによって確認することができる。
重合時間は通常 0. 1— 100時間の範囲内であることが好ましい。
ァニオン重合性モノマー、重合開始剤、有機溶媒、極性化合物などの重合反応に 使用する化合物は、事前に十分に脱水 ·乾燥しておくことが好ましい。また、湿気や 酸素を含まない窒素ガス、アルゴンガスなどの不活性ガス雰囲気下で重合を行うこと が好ましい。
[0061] 上記したァニオン重合によって、通常、重合の開始末端に下記の一般式 (iv)で表 される基 [以下「基 (iv)」とレ、うことがある]を有し、一方成長末端が炭素ァニオンであ るポリマーが生成する。生成したポリマーにメタノール、エタノール、プロパノール、酢 酸などのプロトン性化合物を重合停止剤として添加することにより、成長末端の炭素 ァニオンが水素へと変換されてポリマーの成長(重合)が停止する。 [0062] [化 12]
1
H - C H - ( iv)
I
し A r
1 •
(式中、 A、 Ar、
Figure imgf000028_0001
R n 2および R3は上記と同じ基であり、 mおよび nは上記と同じ数で ある。 ) A.RI
一 3
[0063] 上記したァニオン重合によって m 2生成したポリマーにおいて、重合の開始末端に結合 している基 (iv)における R3が官能基 RCI _A_Hの保護基 (例えば、トリメチルシリル基、 t一 ブチルジメチルシリル基、イソプロピルジメチルシリル基などのアルキルシリル基、ベ ンジノレ基など)または保護基として機能するアルキル基 (例えば t一ブチル基、イソプロ ピル基、イソアミル基など)であり、 m力 または 2である場合 (前記した保護基で保護 されている官能基がある場合)は、末端官能化ポリマーの製造後に脱保護することで 、ポリマーの開始末端に官能基を形成させることができる。その際の脱保護剤として は、例えば、塩酸、スルホン酸、カルボン酸などのプロトン酸性化合物; 3フッ化ホウ 素、 4塩化錫などのルイス酸性化合物;フッ化テトラブチルアンモニゥム、フッ化アン モニゥム、フッ化カリウムなどのアルカリ性フッ素イオン含有化合物などを用いることが できる。これらの中でも、塩酸、スルホン酸などのプロトン酸性化合物が脱保護反応 の容易性の点から好ましく用いられる。
[0064] また、上記したァニオン重合によって生成した末端官能化ポリマーにおいて、重合 の開始末端に結合している基 (iv)において、 nが 1または 2であって末端カ^チォ化さ れている場合は、脱リチォ化することにより、ポリマーの開始末端に官能基を形成す ること力 Sできる。脱リチォ化は、通常、メタノール、エタノール、プロパノール、酢酸など のプロトン性化合物を用いて水素へと変換することにより行うことができる。
[0065] 上記において、ァニオン重合により生成したポリマーにメタノールなどのプロトン性 化合物(重合停止剤)をカ卩えてその成長末端の炭素ァニオンを水素に変換する代り に、成長末端を適当な官能性キヤッビング剤と反応させると、重合開始末端と成長末 端の両方に官能基を有する(ヘテロ)テレケリックポリマーを製造することができる。成 長末端のキヤッビング反応は、通常のリビングァニオン重合で採用されている手法に 準じて行うことができ、官能性キヤッビング剤の種類を選択することによってポリマー の成長末端に水酸基、カルボキシル基、アミノ基、エポキシ基、メルカプト基、スルホ ニル基、ハロゲン原子、ビュル基、ビニリデン基などの官能基を導入することができる
[0066] ポリマーの成長末端に水酸基を導入できる官能性キヤッビング剤としては、例えば 、エチレンォキシド、プロピレンォキシド、トリメチレンォキシド、ブチレンォキシド、スチ レンォキシドなどのアルキレンォキシド化合物;ホノレムァノレデヒド、ァセトアルデヒド、 プロピオンアルデヒド、 n—ブチルアルデヒド等のアルデヒド化合物;アセトン、メチルェ チルケトン、ジェチルケトンなどのケトン化合物およびその誘導体や酸素原子を挙げ ること力 Sできる。
[0067] ポリマーの成長末端にカルボキシノレ基を導入できる官能性キヤッビング剤としては、 例えば、二酸化炭素を挙げることができる。
ポリマーの成長末端にアミノ基を導入できる官能性キヤッビング剤としては、例えば 、エチレンィミン、プロピレンィミン、シクロへキセンイミンなどのィミン化合物を挙げる こと力 Sできる。
ポリマーの成長末端にメルカプト基を導入できる官能性キヤッビング剤としては、例 えば、二硫化炭素、エチレンスルフイド、プロピレスルフイド、硫黄原子などを挙げるこ とができる。
ポリマーの成長末端にハロゲン原子を導入できる官能性キヤッビング剤としては、 例えば塩素原子、臭素原子などを、エポキシ基を導入できるキヤッビング剤としては、 例えばェピクロルヒドリンなどを、またスルホ二ル基を導入できるキヤッビング剤として は、例えば、プロパンスルトンなどを挙げることができる。
[0068] また、上記において、ァニオン重合により生成したポリマーにメタノールなどのプロト ン性化合物(重合停止剤)を加えてその成長末端の炭素ァニオンを水素に変換する 代りに、成長末端を適当な多官能性カップリング剤と反応させると、有機リチウム化合 物(iii)由来の官能基をすベての末端に有するテレケリックポリマーまたは末端官能 性ラジアルポリマーを製造することができる。それにより得られる末端官能性ポリマー は、多官能性カップリング剤の使用量を調製することにより得られる、片末端官能性 ポリマー、テレケリックポリマーおよび/または末端官能性ラジアルポリマーを任意の 割合で含む混合物であってもよい。
[0069] その際の多官能性カップリング剤としては、通常のリビングァニオン重合で採用され ている手法に準じて適当なもの選択することができ、例えば、安息香酸フエニル、安 息香酸メチル、安息香酸ェチル、酢酸ェチル、酢酸メチル、ピバリン酸メチル、ピバリ ン酸フエニル、ピバリン酸ェチル、 ひ,ひしジクロ口一 o—キシレン、 ひ, a,一ジクロ口一 m —キシレン、 ひ,ひ '一ジクロ口一 p—キシレン、ビス (クロロメチノレ)エーテル、ジブロモメタン 、ジョードメタン、フタル酸ジメチル、ジクロロジメチルシラン、ジクロロジフエ二ルシラン 、トリクロロメチルシラン、テトラクロロシラン、ジビュルベンゼンなどを挙げることができ る。
[0070] 上記した本発明の方法により得られる末端官能化ポリマーは、末端官能化ポリマー の用途として従来から知られている接着剤、コーティング剤、シーラントなどとして、ま たはポリウレタン、ポリエステル、ポリアミド、ポリカーボネート、エポキシ樹脂などのポ リマーを改質するための改質剤などとして使用することができる。
[0071] 本発明の方法により得られる末端官能化ポリマーのうち、特に両末端に官能基を有 するテレケリックポリマーは、接着剤 (感圧接着剤、接触接着剤、積層接着剤および アセンブリ接着剤を含む)、シーラント(例えば建築用ウレタンシーラント等)、コーティ ング剤(例えば、自動車のトップコート剤、金属のエポキシプライマー、ポリエステルコ ィルコーティング剤、アルキドメンテナンスコーティング剤など)として有効に使用する ことができ、またフィルム(例えば、耐熱性および耐溶媒性が要求されるもの)、各種 熱可塑性樹脂成形品や熱硬化性樹脂成形品 (例えば射出成形などによる熱可塑性 ポリウレタンローラーまたは反応射出成形熱硬化性樹脂製自動車バンパー、仕切り 板等)などの製造に用いることができる。また、本発明の方法により得られる末端官能 化ポリマーは、該ポリマーを含む上記用途に適した組成物として用いることができる。
[0072] さらに、本発明の方法で製造された末端官能化ポリマーは、耐衝撃性および/また は柔軟性を改善するための改質剤として他のポリマーに配合してもよい。その際の他 のポリマーとしては、例えば、ポリアミド、ポリウレタン、ビュルアルコール系ポリマー、 ビュルエステル系ポリマー、ポリスルホン、ポリカーボネート、ポリエステル、分子中に 反復エステル結合を有するポリアセトン、ジカルボン酸とダリコールとの縮重合によつ て形成された構造を有するポリアルキレンテレフタレートを含むポリアルキレンァリル エーテル、ポリエステルを含む縮合ポリマーなどを挙げることができる。
末端官能化ポリマーと他のポリマーとの組成物は、末端官能化ポリマーの製造工程 中に他のポリマーをカ卩えることによって調製してもよいし、または末端官能化ポリマー を製造した後に他のポリマーと混合することによって調製してもよい。
実施例
[0073] 以下に本発明を実施例などにより具体的に説明するが、本発明は以下の実施例な どにより何ら限定されない。
以下の例において、有機リチウム化合物 (i)またはそれを含む反応混合物の製造、 並びにそれを用いた末端官能化ポリマーの製造工程における反応の進行度、得ら れた末端官能化ポリマーの数平均分子量と分子量分布、および末端官能化ポリマー における官能基の導入率、官能性ァニオン重合開始剤および有機リチウム化合物の 測定又は同定は、以下の方法で行なった。
[0074] ( 1 ) R f¾櫞スチレン議 {本 in) Iリチウム ) iiii) の の :
ガスクロマトグラフィー(GC) (島津製作所製「GC_14A」)および Zまたはプロトン 核磁気共鳴分光装置 一 NMR) (日本電子データム社製 rjNM-LA400j )を用 いて測定した。
(2)モノマーの重合反応の進行度: 前記した GCおよび/または1 H—NMRを用い て測定した。
(3)ま ポリマーの ¾ irfcよび :
ピーク分子量が公知のポリスチレン標準で校正したゲル浸透クロマトグラフィー(GP C) (東ソー製「HLC_8020」)を用いて測定した (溶媒:テトラヒドロフラン、温度: 40 。C)。
(4)末端官能ィ hポ' Jマーにおける官能某の導人率:
薄層クロマトグラフィー(TLC) (メルク社製「TLCアルミニウムシート シリカゲル 60 F254」)、高速液体クロマトグラフィー(HPLC) (島津製作所製「LC_10AD」)また はマトリックス支援レーザ脱離イオン化法質量分析装置(MALDI— TOF— MS) (Ap plied Biosystems社製「Vorager_DE STR」)を用いて測定した。
(5)官能性ァニオン重合開始剤、および有機リチウム化合物の同定
窒素雰囲気下のグローブボックス中で、調製した開始剤をサンプリングし NMR測 定用ガラス管に採取し、十分に脱水精製した重水素化シクロへキサン (C D ;和光
6 12 純薬株式会社製)に溶解させ、前記した1 H— NMRを用いて測定した。
《製造例 1》 [有機リチウム化合物 (ia)及び該化合物を含有する反応混合物の製造]
(1) 乾燥したガラス製反応容器内の気体を窒素ガスで置換した後、反応容器にケィ 皮ァノレコーノレ 268mg (2. 0ミリモノレ)を入れ、次に溶媒としてシクロへキサン 19mlおよ びへキサン 6mlを入れてケィ皮アルコールを溶解させた。得られた溶液を攪拌しなが ら反応容器内の温度を 0°Cに冷却した後、 sec—ブチルリチウムのシクロへキサン溶液 4. 2ml (sec—ブチルリチウムとして 4. 0ミリモノレ)をゆっくりと 5分間力、けて滴下しな力 S らカ 0えた。反応容器内の温度を 0°Cに保ったまま、攪拌しながら反応を更に 24時間 継続して不均一な赤褐色の分散液 [以下、反応混合物 (ia)と呼ぶことがある」を得た
(2) 上記(1)により得られた分散液 (反応混合物)の一部を採取し、重水素化シクロ へキサンで希釈して1 H-NMR測定を行ったところ、ケィ皮アルコールに由来するェ チレン性不飽和結合のピークは完全に消失し、一方、 -CH -0-Li、 -CH (Phe) -
2
Liおよび— CH (sec_Bu) _に由来するピークがそれぞれ 3· 5ppm付近、一 0· 014ρρ m付近、および 1. 9ppm付近の位置に出現しており、ケィ皮アルコールの全量が反 応して、上記の一般式 (i)において Aが酸素原子、 Arがフエニル基、 R1が sec—ブチ ル基、 R2がエチレン基、 mが 0、 nが 1の有機リチウム化合物 (i) [以下「有機リチウム化 合物(ia)」、または「官能性ァニオン重合開始剤(ia)」とレ、う]が生成してレ、ることが確 認された。
(3) また、上記(2)の測定を終了した分散液 (反応混合物)を少量のイソプロパノー ルで処理して処理後の液について1 H—NMR測定および GC測定を行ったところ、い ずれの測定においてもケィ皮アルコールは認められず、しかも _CH _〇H、― CH (
2 2
Phe)および— CH (sec_Bu)—に由来するピークがそれぞれ 4. 3ppm付近、 2. 5pp m付近および 1. 9ppm付近の位置に出現しており、力かる点からもケィ皮アルコール の sec ブチルリチウムとの反応の進行度(反応率)は 100%であったことが確認され た。
[0076] 《比較測定例 l》[sec_ブチルリチウムの1 H—NMR測定]
sec—ブチルリチウムのシクロへキサン溶液を、重水素化シクロへキサンで希釈して1 H—NMR測定を行ったところ、 _CH_Liに由来するピークが一 0. 097ppm付近に 6 重線として出現し、 -0. 014ppm付近には何らピークは観測されな力、つた。
[0077] 《製造例 2》 [有機リチウム化合物 (ia)および sec ブチルリチウムを含有する反応混合 物の製造]
(1) 製造例 1の(1)において、 sec ブチルリチウムのシクロへキサン溶液の使用量 を 6. 3ml (sec ブチルリチウムとして 6. 0ミリモル)に変えた以外は製造例 1の(1)と 同様にして反応を行って不均一な赤褐色の分散液 (反応混合物)を得た。
(2) 上記(1)により得られた分散液 (反応混合物)の一部を採取し、重水素化シクロ へキサンで希釈して1 H-NMR測定を行ったところ、ケィ皮アルコールに由来するェ チレン性不飽和結合のピークは消失しており、一方、一 CH 〇一 Li、 -CH (Phe) -Li および CH (sec_Bu)—に由来するピークがそれぞれ 3. 5ppm付近、 0. 014ppm 付近および 1. 9ppm付近の位置に出現しており、ケィ皮アルコールの全量が反応し て、上記の一般式 (i)において Aが酸素原子、 Arがフエニル基、 R1が sec ブチル基 、 R2がエチレン基、 mが 0、 nが 1の有機リチウム化合物(i) [「有機リチウム化合物(ia) 」、または「官能性ァニオン重合開始剤(ia)」とレ、うことがある]が生成してレ、ること力 S確 認された。さらに NMRスペクトルからは、 -0. 097ppm付近にもピークが観測され、 この反応混合物液中には未反応の sec ブチルリチウムが含まれることが確認された
(3) また、上記(2)の測定を終了した分散液 (反応混合物)を少量のイソプロパノー ルで処理して処理後の液について1 H—NMR測定および GC測定を行ったところ、レヽ ずれの測定においてもケィ皮アルコールは認められず、しかも— CH _〇_H、― CH (
Phe)および— CH (sec_Bu)—に由来するピークがそれぞれ 4. 3ppm付近、 2. 5pp m付近および 1. 9ppm付近の位置に出現しており、力かる点力ももケィ皮アルコール の sec ブチルリチウムとの反応の進行度(反応率)は 100%であったことが確認され た。
[0078] 《製造例 3》 [有機リチウム化合物 (ib)を含有する反応混合物の製造]
(1) 乾燥したガラス製反応容器内の気体を窒素ガスで置換した後、反応容器に N, N—ジェチルケィ皮ァミン 380mg (2. 0ミリモル)を入れ、次に溶媒としてシクロへキサ ン 19mlおよびへキサン 6mlを入れて N, N—ジェチルケィ皮ァミンを溶解させた。得 られた溶液を攪拌しながら系内の温度を 0°Cに冷却した後、 sec—ブチルリチウムのシ クロへキサン溶液 2. lmKsec—ブチルリチウムとして 2. 0ミリモノレ)をゆっくりと 5分間 力、けて滴下しながら加えた。系内の温度を 0°Cに保ったまま、攪拌しながら、 24時間 反応を継続して、均一なオレンジ色の溶液 [以下、反応混合物(ib)と呼ぶことがある] を得た。
(2) 上記(1)により得られた溶液 (反応混合物)の一部を採取し、重水素化シクロへ キサンで希釈して1 H—NMR測定を行ったところ、 N, N ジェチルケィ皮ァミンに由 来するエチレン性不飽和結合のピークは消失しており、一方、 CH (Phe)— Liおよ び _CH (sec— Bu)—に由来するピークがそれぞれ _0· 014ppmおよび 1. 9ppmの 位置に出現しており、 N, N ジェチルケィ皮ァミンの全量が反応して、上記の一般式 (i)において Aが窒素原子、 Arがフエニル基、 R1が sec ブチル基、 R2がエチレン基、 R3がェチル基、 mが 2、 nが 0の有機リチウム化合物(i) [以下「有機リチウム化合物(ib )」、または「官能性ァニオン重合開始剤 (ib)」とレ、う]が生成してレ、ることが確認され た。
(3) また、上記(2)の測定を終了した溶液 (反応混合物)を少量のイソプロパノール 処理して処理後の液にっレ、て1 H—NMR測定および GC測定を行ったところ、レ、ずれ の測定においても N, N—ジェチルケィ皮ァミンは認められず、しかも _CH (Phe)お よび一 CH (sec_Bu)_に由来するピークがそれぞれ 2. 5ppm付近および 1. 9ppm 付近の位置に出現しており、かかる点からも N, N—ジェチルケィ皮ァミンの sec—ブチ ノレリチウムとの反応の進行度(反応率)は 100%であったことが確認された。
[0079] 《製造例 4》 [有機リチウム化合物 (ib)を含有する反応混合物の製造]
(1) 乾燥したガラス製反応容器内の気体を窒素ガスで置換した後、反応容器に N, N_ジェチルケィ皮ァミン 380mg (2. 0ミリモノレ)を入れ、次に溶媒としてシクロへキサ ン 19mlおよびへキサン 6mlを入れて N, N_ジェチルケィ皮ァミンを溶解させた。得 られた溶液を攪拌しながら系内の温度を 0°Cに冷却した後、 sec—ブチルリチウムのシ クロへキサン溶液 1. OmKsec—ブチルリチウムとして 1. 0ミリモノレ)をゆっくりと 5分間 力、けて滴下しながら加えた。系内の温度を 0°Cに保ったまま、攪拌しながら 6時間反 応を継続して、均一なオレンジ色の溶液 (反応混合物)を得た。
(2) 上記(1)により得られた溶液 (反応混合物)の一部を採取し、重水素化シクロへ キサンで希釈して1 H—NMR測定を行ったところ、 N, N—ジェチルケィ皮ァミン中の エチレン性不飽和結合の割合から、 N, N—ジェチルケィ皮ァミンのエチレン性不飽 和結合の 47%が反応していることが確認された。また、 _CH (Phe)— Liおよび— CH (sec— Bu)—に由来するピークがそれぞれ— 0. 014ppmおよび 1. 9ppmの位置に出 現しており、その結果、有機リチウム化合物 (ib)および未反応の N, N—ジェチルケィ 皮ァミンを含有する反応混合物が得られた。
[0080] 《比較製造例 1》 [ケィ皮アルコールと sec -プチルリチウムの反応混合物]
(1) 製造例 1の(1)において、 sec—ブチルリチウムのシクロへキサン溶液の使用量 を 2· 1ml (sec—ブチルリチウムとして 2· 0ミリモル)に変えた以外は製造例 1の(1)と 同様にして反応を行って、不均一な白色の溶液 (反応混合物)を得た。
(2) 上記(1)により得られた溶液 (反応混合物)の lmlを採取し、重水素化シクロへ キサンで希釈して1 H-NMR測定を行ったところ、ケィ皮アルコールに由来するェチ レン性不飽和結合のピークは反応前と同じままで存在していて消失 (低減)しておら ず、一方、 _CH _〇_Liに由来するピークが 3· 5ppmの位置に出現していた力 _0
2
. 014ppm付近には何らピークは存在していなかった。この結果から、ケィ皮アルコ ールと sec—ブチルリチウムとの反応では、アルコール性水酸基側で sec—ブチルリチ ゥムとの反応が先ず生じ、その反応後に余剰の sec—ブチルリチウムが残っている場 合には次にケィ皮アルコールのエチレン性不飽和結合に残余の sec—ブチルリチウム の付加反応が生ずることが確認された。
[0081] 《実施例 1》 [末端に水酸基を有するポリスチレンの製造]
(1) 製造例 1の( 1 )と同じ操作を行つて製造した反応混合物 [有機リチウム化合物 (i a)を含有する反応混合物] (約 28ml)を収容した反応容器内の温度を 40°Cにした後 、スチレンモノマー 11 · 5ml (100ミリモル)を加えてァニオン重合を行った。反応容器 内の液は不均一な赤褐色な状態から徐々に均一な赤褐色溶液へと変化し、若干の 沈殿が生成した。 40°Cで 2時間重合反応を継続した後、反応後の液にメタノール lm 1を加えて重合を停止させた。反応後の液について GCおよび1 H—NMRで分析を行 つたところ、未反応のスチレンモノマーは検出されず、モノマー転化率は 100%であ つた。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレンを析出させ、それを回収し乾燥した後、 GPC測定を行ったとこ ろ、数平均分子量(Mn)は 26, 200であり、分子量分布(Mw/Mn)は 1. 10であつ た。ケィ皮アルコールと sec—ブチルリチウムとの反応により生成した有機リチウム化合 物(ia) l分子当りにつきポリスチレン 1分子が生成すると仮定すると、有機リチウム化 合物(ia)の重合開始剤効率は 20%であった。
また、生成したポリスチレンにおける末端水酸基数を HPLCにて求めたところ、 1分 子当り 1. 0個であった。
《実施例 2》 [末端に水酸基を有するポリスチレンの製造]
(1) 実施例 1の(1)において、スチレンモノマーを加える際の当初の温度を 0°Cとし て 0°Cで 10分間ァニオン重合した後に系の温度を 40°Cに昇温したこと以外は実施 例 1の(1)と同様にしてァニオン重合を行レ、、以下実施例 1の(1)と同様にして重合 反応を停止させた。この重合時に、反応容器内の液は不均一な赤褐色な状態から徐 々に沈殿のない均一な赤褐色溶液へと変化した。反応後の液について GCおよび1 H —NMRで分析を行ったところ、未反応のスチレンモノマーは検出されず、モノマー転 化率は 100%であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレンを析出させ、それを回収して乾燥した後、 GPC測定を行ったと ころ、数平均分子量(Mn)は 13, 000であり、分子量分布(MwZMn)は 2. 29であ つた。ケィ皮アルコールと sec—ブチルリチウムとの反応により生成した有機リチウム化 合物(ia) l分子当りにつきポリスチレン 1分子が生成すると仮定すると、有機リチウム 化合物(ia)の重合開始剤効率は 41 %であった。
また、生成したポリスチレンにおける末端水酸基数を HPLCおよび MALDI— TOF _MSにより求めたところ、 1分子当り 0. 95個であった。
[0083] 《実施例 3》 [両末端に水酸基を有するテレケリックポリスチレンの製造]
(1) 実施例 1の(1)において、メタノールで反応を停止する前にプロピレンォキサイ ド 1 mlをカ卩えた以外は、実施例 1の( 1 )および( 2)と同じ操作を行つてポリスチレンを 製造した。
(2) 上記(1)で得られたポリスチレンについて GPC測定を行ったところ、数平均分 子量(Mn)は 26, 200であり、分子量分布(MwZMn)は 1. 10であった。ケィ皮ァ ルコールと sec_ブチルリチウムとの反応により生成した有機リチウム化合物(ia) 1分 子当りにつきポリスチレン 1分子が生成すると仮定すると、有機リチウム化合物 (ia)の 重合開始剤効率は 20%であった。
また、生成したポリスチレンにおける末端水酸基数を HPLCにより求めたところ、 1 分子当り 1. 95個であり、両末端に水酸基を有することが確認された。
[0084] 《実施例 4》 [末端に水酸基を有するポリイソプレンの製造]
(1) 製造例 1の(1)と同じ操作を行って製造した有機リチウム化合物 (ia)を含有する 反応混合物(約 28ml)を収容した反応容器内の温度を 40°Cにした後、イソプレンモ ノマー 10ml (100ミリモル)を加えてァニオン重合を行った。系内は不均一な赤褐色 な状態から徐々に均一な薄黄色へと変化し、若干の沈殿が生成した。 40°Cで 3時間 重合反応を継続した後、反応後の液にメタノール lmlを加えて重合を停止させた。反 応後の液について GCおよび1 H—NMRで分析を行ったところ、未反応のイソプレン モノマーは検出されず、モノマー転化率は 100%であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリイソプレンを析出させ、それを回収し乾燥した後、 — NMR測定を行つ たところ、数平均分子量 (Mn)は 26, 000であり、 GPC測定から求めた分子量分布( Mw/Mn)は 1. 10であった。ケィ皮アルコールと sec—ブチルリチウムとの反応によ り生成した有機リチウム化合物(ia) l分子当りにつきポリイソプレン 1分子が生成する と仮定すると、有機リチウム化合物(ia)の重合開始剤効率は 13%であった。 また、生成したポリイソプレンにおける末端水酸基数を HPLCにて求めたところ、 1 分子当り 0. 95個であった。
[0085] 《実施例 5》 [末端に水酸基を有するポリスチレンの製造]
(1) 製造例 2の(1)と同じ操作を行って製造した有機リチウム化合物 (ia)を含有する 反応混合物(約 30ml)を収容した反応容器内の温度を 40°Cにした後、スチレンモノ マー 11. 5ml (100ミリモル)を加えてァニオン重合を行った。系内は不均一な白褐 色な状態から徐々に均一な赤褐色溶液へと変化し、若干の沈殿が生成した。 40°C で 1時間重合反応を継続した後、反応後の液にメタノール lmlをカ卩えて重合を停止さ せた。反応後の液について GCおよび1 H—NMRで分析を行ったところ、未反応のス チレンモノマーは検出されず、モノマー転化率は 100%であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレンを析出させ、それを回収し乾燥した後、 GPC測定を行ったとこ ろ、数平均分子量(Mn)は 7, 200であり、分子量分布(Mw/Mn)は 1. 10であった 。ケィ皮アルコールと sec—ブチルリチウムとの反応により生成した有機リチウム化合物 (ia) l分子当りにつきポリスチレン 1分子が生成すると仮定すると、有機リチウム化合 物(ia)の重合開始剤効率は 70%であった。
また、生成したポリスチレンにおける末端水酸基数を HPLCにて求めたところ、 1分 子当り 0. 4個であった。
[0086] 《実施例 6》 [末端に 3級アミノ基を有するポリスチレンの製造]
(1) 製造例 3の(1)と同じ操作を行って製造した有機リチウム化合物 (ib)を含有す る反応混合物 (約 30ml)を収容した反応容器内の温度を 40°Cにした後、スチレンモ ノマー 11. 5ml (100ミリモル)を加えてァニオン重合を行った。系内はオレンジ色溶 液から徐々に赤色溶液へと変化した。 40°Cで更に 2時間重合反応を継続した後、反 応後の液にメタノール lmlを加えて重合を停止させた。反応後の液にっレ、て GCおよ び1 H—NMRで分析を行ったところ、未反応のスチレンモノマーは検出されず、モノマ 一転化率は 100%であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレンを析出させ、それを回収し乾燥した後、 GPC測定を行ったとこ ろ、数平均分子量(Mn)は 15, 200であり、分子量分布(Mw/Mn)は 1. 52であつ た。 N, N—ジェチルケィ皮ァミンと sec—ブチルリチウムとの反応により生成した有機リ チウム化合物 (ib) 1分子当りにつきポリスチレン 1分子が生成すると仮定すると、有機 リチウム化合物 (ib)の重合開始剤効率は 34。/。であった。
また、生成したポリスチレンにおける末端 3級ァミノ基数を HPLCにて求めたところ、 1分子当り 0. 8個であった。
[0087] 《実施例 7》 [末端に 3級アミノ基を有するポリスチレンの製造]
(1) 製造例 4の(1)と同じ操作を行って製造した有機リチウム化合物 (ib)を含有す る反応混合物 (約 29ml)を収容した反応容器内の温度を 40°Cにした後、スチレンモ ノマー 11. 5ml (100ミリモル)を加えてァニオン重合を行った。系内はオレンジ色溶 液から徐々に赤色溶液へと変化した。 40°Cで更に 2時間重合反応を継続した後、反 応後の液にメタノール lmlを加えて重合を停止させた。反応後の液にっレ、て GCおよ び1 H-NMRで分析を行ったところ、未反応のスチレンモノマーは検出されず、モノマ 一転化率は 100%であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレンを析出させ、それを回収し乾燥した後、 GPC測定を行ったとこ ろ、数平均分子量(Mn)は 13, 400であり、分子量分布(Mw/Mn)は 1. 65であつ た。 N, N—ジェチルケィ皮ァミンと sec—ブチルリチウムとの反応により生成した有機リ チウム化合物 (ib) 1分子当りにつきポリスチレン 1分子が生成すると仮定すると、有機 リチウム化合物 (ib)の重合開始剤効率は 78%であった。
また、生成したポリスチレにおける末端 3級ァミノ基数を HPLCにて求めたところ、 1 分子当り 1. 0個であった。
[0088] 《実施例 8》 [末端に 3級アミノ基を有するブロックコポリマーの製造]
(1) 実施例 7の(1)において、メタノールをカ卩えて重合を停止させる前にイソプレン モノマー 10. Om lOOミリモル)を加えて 40°Cでさらに 2時間反応させ、次いでメタノ ール lmlをカ卩えて重合を停止したこと以外は、実施例 7と同様にして末端に 3級ァミノ 基を有するポリスチレンおよびポリイソプレン力、ら成るブロックコポリマーを製造した。 反応後の液について GCおよび1 H—NMRで分析を行ったところ、未反応のスチレン モノマーおよびイソプレンモノマーは検出されず、モノマー転化率はそれぞれ 100% であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレン一ポリイソプレンブロックコポリマーを析出させ、それを回収し乾 燥した後、 GPC測定を行ったところ、数平均分子量 (Mn)は 27, 000であり、分子量 分布(Mw/Mn)は 1. 30であった。ポリマーの数平均分子量(Mn)が、実施例 6で 得られたポリマーよりも高レ、ことから、この実施例 8で得られたポリマーがブロックコポリ マーであることが確認された。
生成したブロックコポリマーにおける末端 3級ァミノ基数を HPLCにて求めたところ、 1分子当り 1. 0個であった。
[0089] 《実施例 9》 [末端に 3級ァミノ基と水酸基を有するヘテロテレケリックポリスチレンの 製造]
(1) 実施例 7の(1)において、反応混合物にメタノールをカ卩えて重合を停止させる 代わりに、プロピレンォキシド lmlをカ卩え、それ以外は実施例 7の(1)と同様にして末 端に 3級ァミノ基および水酸基を有するポリスチレンを製造した。
反応後の液について GCおよび1 H—NMRで分析を行ったところ、スチレンモノマー の転化率は 100%であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレンを析出させ、それを回収し乾燥した後、 GPC測定を行ったとこ ろ、数平均分子量(Mn)は 13, 400であり、分子量分布(Mw/Mn)は 1. 65であつ 生成したポリスチレンにおける末端 3級ァミノ基数および水酸基を HPLCおよび TL Cにて求めたところ、 1分子当りの末端 3級ァミノ基および水酸基はいずれでも 0. 95 個であった。
[0090] 《実施例 10》 [末端に 3級アミノ基を有するポリイソプレンの製造]
(1) 製造例 4の(1)と同じ操作を行って製造した有機リチウム化合物 (ib)を含有す る反応混合物 (約 29ml)を収容した反応容器内の温度を 40°Cにした後、イソプレン モノマー 30. 0ml (300ミリモル)を加えてァニオン重合を行った。系内はオレンジ色 溶液のままであった。 40°Cで更に 2時間重合反応を継続した後、反応後の液にメタノ ール lmlを加えて重合を停止させた。反応後の液について GCおよび1 H—NMRで 分析を行ったところ、未反応のイソプレンモノマーは検出されず、モノマー転化率は 1 00%であった。
(2) 上記(1 )で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリイソプレンを析出させ、それを回収し乾燥した後、 — NMR測定を行つ たところ、数平均分子量 (Mn)は 29, 000であり、 GPC測定から求めた分子量分布( Mw/Mn)は 1. 14であった。 N, N—ジェチルケィ皮ァミンと sec—ブチルリチウムと の反応により生成した有機リチウム化合物(ib) 1分子当りにつきポリイソプレン 1分子 が生成すると仮定すると、有機リチウム化合物(ib)の重合開始剤効率は 70%であつ た。
また、生成したポリイソプレンにおける末端 3級ァミノ基数を HPLCおよび TLCにて 求めたところ、 1分子当り 1. 0個であった。
[0091] 《比較例 1》
( 1 ) 比較製造例 1の(1 )と同じ操作を行って得られた反応混合物(約 26ml)を収容 した反応容器内の温度を 40°Cにした後、スチレンモノマー 1 1 · 5ml ( 100ミリモル)を 加えて同温度に 2時間保った後、それにメタノール lmlをカ卩えた。それにより得られた 液について GCおよび1 H—NMRで分析を行ったところ、スチレンモノマーのほぼ全 量が未反応のまま残っており、重合転化率は 0%であった。そのため、得られた液を 過剰量のメタノール中に投入してもポリマーを析出しな力 た。
(2) 上記の比較製造例 1およびこの比較例 1の結果から、ケィ皮アルコールなどの j3置換スチレン誘導体 (ii)と sec—ブチルリチウムなどの有機リチウム化合物(iii)とを 反応させて有機リチウム化合物 (i)を形成させる [有機リチウム化合物 (i)を含有する 反応混合物を製造する]ためには、 β置換スチレン誘導体 (ii) 1モルに対して、有機 リチウム化合物(iii)を、 nモルを超える量 [nは上記の一般式 (m)においてヘテロ原子 Aに結合している水素原子の数 n]で使用する必要があることがわかる。
[0092] 《比較例 2》
( 1 ) 乾燥したガラス製反応容器内の気体を窒素ガスで置換した後、反応容器にケィ 皮アルコーノレ 268mg (2. 0ミリモル)を入れ、次に溶媒としてシクロへキサン 19mlおよ びへキサン 6mlを入れてケィ皮アルコールを溶解させた。得られた溶液を攪拌しなが ら系内の温度を 0°Cに冷却した後、スチレンモノマー 11 · 5ml (100ミリモル)を加えた 。次いで sec—ブチルリチウムのシクロへキサン溶液 4. 2ml (sec_ブチルリチウムとし て 4. 0ミリモル)をゆっくりと 5分間かけて滴下しながら加え、系内の温度を 0°Cに保つ たまま撹拌下に 1時間反応させた後、 40°Cに加熱して更に撹拌下に 2時間反応させ 、続いてメタノール lmlを加えて重合を停止させた。上記で sec—ブチルリチウムのシ クロへキサン溶液をカ卩えた時点で、系内は赤褐色溶液に変化した。反応後の液につ いて GCおよび1 H—NMRで分析を行ったところ、未反応のスチレンモノマーは検出さ れず、モノマー転化率は 100%であった。
(2) 上記(1)で得られた反応後の液を過剰量のメタノール中に投入して重合により 生成したポリスチレンを析出させ、それを回収し乾燥した後、 GPC測定を行ったとこ ろ、数平均分子量(Mn)は 7, 200であり、分子量分布(Mw/Mn)は 1. 10であった 。生成したポリスチレンにおける末端水酸基数を HPLCにて求めたところ、 1分子当り 0個であり、末端水酸基を有していなかった。
(3) この比較例 2の結果から、ケィ皮アルコールなどの β置換スチレン誘導体 (ii)と sec—ブチルリチウムなどの有機リチウム化合物(iii)とは反応系に不飽和モノマーが 存在すると円滑に反応しないこと、それに伴って有機リチウム化合物 (i)が形成されな レ、ために、末端官能化ポリマーが製造されなレ、ことがわかる。
産業上の利用可能性
本発明の方法により、末端官能化ポリマーが簡単に、円滑に且つ経済的に製造す ること力 Sでき、産業上の実用価値が高い。
本発明の方法により得られる末端官能化ポリマーは、例えば、接着剤 (感圧接着剤 、接触接着剤、積層接着剤およびアセンブリ接着剤を含む)、シーラント (例えば建築 用ウレタンシーラント等)、コーティング剤(例えば、 自動車のトップコート剤、金属のェ ポキシプライマー、ポリエステルコイルコーティング斉 IJ、アルキドメンテナンスコーティ ング剤など)、フィルム(例えば、耐熱性および耐溶媒性が要求されるもの)、各種熱 可塑性樹脂成形品や熱硬化性樹脂成形品 (例えば射出成形などによる熱可塑性ポ リウレタンローラーまたは反応射出成形熱硬化性樹脂自動車バンパー、仕切り板等) などの製造に、また他のポリマーの耐衝撃性や柔軟性などを改善するための改質剤 として有効に使用することができる。
また、本発明の官能性ァニオン重合開始剤は、そのような末端官能化ポリマーの製 造に有効に用いることができる。

Claims

請求の範囲
[1] ァニオン重合可能なモノマーを、下記の一般式 (i);
[化 13]
R1
„ I
(L i ) n -A-R -CH-CH-L i ( i )
f a I
(R )m Ar
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R1は炭素数 1一 10のアルキル基 、 R2は炭素数 1一 10のアルキレン基、 R3は炭素数 1一 10のアルキル基または官能基 一 A— H(Aは前記したヘテロ原子)の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原 子または硫黄原子のときに mおよび nはそれぞれ 0または 1であって且つ mと nの合計 力 であり、ヘテロ原子 Aが窒素原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの合計が 2である。 ]
で表される有機リチウム化合物を重合開始剤として用いてァニオン重合することを特 徴とする、末端官能化ポリマーの製造方法。
[2] 下記の一般式 (ii);
[化 14]
(H) n -A-R2 -CH=CH (ii)
I 3 I
(R )m Ar
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R2は炭素数 1一 10のアルキレン 基、 R3は炭素数 1一 10のアルキル基または官能基- A-H(Aは前記したヘテロ原子 )の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原子または硫黄原子のときに mおよ び nはそれぞれ 0または 1であつて且つ mと nの合計が 1であり、ヘテロ原子 Aが窒素 原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの 合計が 2である。 ]
で表される β置換スチレン誘導体と、下記の一般式 (m);
R-Li (iii)
(式中、 R1は炭素数 1一 10のアルキル基を示す。)
で表される有機リチウム化合物を、上記の一般式 (ii)で表される β置換スチレン誘導 体 1モル当りにつき、上記の一般式 (iii)で表される有機リチウム化合物を、 nモルを超 える量 [但し nは上記の一般式 (Π)における nと同じ数を示す]で反応させた後、得ら れた反応混合物の存在下に、ァニオン重合可能なモノマーをァニオン重合すること を特徴とする、末端官能化ポリマーの製造方法。
[3] 上記の一般式 (ii)で表される /3置換スチレン誘導体 1モル当りにつき、上記の一般 式 (iii)で表される有機リチウム化合物を、 nモルを超え (n+1)モル以下の量 [但し n は上記の一般式 (ii)における nと同じ数を示す]で反応させた後、得られた反応混合 物の存在下に、ァニオン重合可能なモノマーをァニオン重合する請求項 2に記載の 製造方法。
[4] 生成した末端官能化ポリマーの成長末端をアルキレンォキシド化合物、カルボニル 化合物、ィミン化合物、メルカプト化合物およびェピクロルヒドリンから選ばれる少なく とも 1種の官能性キヤッビング剤と反応させる工程を更に含む請求項 1一 3のいずれ 力 1項に記載の製造方法。
[5] 生成した末端官能化ポリマーに多官能性カップリング剤を反応させる工程を更に含 む請求項 1一 3のいずれ力 1項に記載の製造方法。
[6] 下記の一般式 (i) ;
[化 15]
R1
„ I
(L i ) n -A-R -CH-CH-L i ( i )
f a I
(R )m Ar
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R1は炭素数 1一 10のアルキル基 、 R2は炭素数 1一 10のアルキレン基、 R3は炭素数 1一 10のアルキル基または官能基 一 A— H (Aは前記したヘテロ原子)の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原 子または硫黄原子のときに mおよび nはそれぞれ 0または 1であって且つ mと nの合計 力^であり、ヘテロ原子 Aが窒素原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの合計が 2である。 ]
で表される官能性ァニオン重合開始剤。
[7] 下記の一般式 (ii) ;
[化 16]
(H) n - A - R2 - C H= C H (i i )
I a I
(R ) m A r
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R2は炭素数 1一 10のアルキレン 基、 R3は炭素数 1一 10のアルキル基または官能基- A-H (Aは前記したヘテロ原子 )の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原子または硫黄原子のときに mおよ び nはそれぞれ 0または 1であつて且つ mと nの合計が 1であり、ヘテロ原子 Aが窒素 原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの 合計が 2である。 ]
で表される β置換スチレン誘導体 1モルに対して、下記の一般式 (m);
R -Li (iii)
(式中、 R1は炭素数 1一 10のアルキル基を示す。)
で表される有機リチウム化合物を、 nモルを超える量 [但し nは上記の一般式 (ii)にお ける nと同じ数を示す]で反応させることを特徴とする官能性ァニオン重合開始剤の 製造方法。
[8] 下記の一般式 (ii) ;
[化 17] (H) n — A— R2— C H= C H (i i )
I a I
(R ) m A r
[式中、 Aは酸素原子、窒素原子、硫黄原子および燐原子から選ばれるヘテロ原子 であり、 Arは置換基を有していてもよいァリール基、 R2は炭素数 1一 10のアルキレン 基、 R3は炭素数 1一 10のアルキル基または官能基- A-H (Aは前記したヘテロ原子 )の保護基をそれぞれ示し、ヘテロ原子 Aが酸素原子または硫黄原子のときに mおよ び nはそれぞれ 0または 1であつて且つ mと nの合計が 1であり、ヘテロ原子 Aが窒素 原子または燐原子のときに mおよび nはそれぞれ 0、 1または 2であって且つ mと nの 合計が 2である。 ]
で表される β置換スチレン誘導体 1モルに対して、下記の一般式 (m);
R -Li (iii)
(式中、 R1は炭素数 1一 10のアルキル基を示す。)
で表される有機リチウム化合物を、 nモルを超え(n+ 1)モル以下の量 [但し nは上記 の一般式 (ii)における nと同じ数を示す]で反応させることを特徴とする官能性ァニォ ン重合開始剤の製造方法。
請求項 1一 5のいずれ力 4項に記載の製造方法により得られる末端官能化ポリマー
PCT/JP2005/002887 2004-03-01 2005-02-23 末端官能化ポリマーの製造方法 WO2005082946A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/591,180 US20070167587A1 (en) 2004-03-01 2005-02-23 Process for producing polymer with functional end
JP2006519364A JPWO2005082946A1 (ja) 2004-03-01 2005-02-23 末端官能化ポリマーの製造方法
EP05710580A EP1721912A4 (en) 2004-03-01 2005-02-23 PROCESS FOR PRODUCING A POLYMER HAVING AN END WITH A FUNCTIONAL GROUP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-056341 2004-03-01
JP2004056341 2004-03-01

Publications (1)

Publication Number Publication Date
WO2005082946A1 true WO2005082946A1 (ja) 2005-09-09

Family

ID=34908910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002887 WO2005082946A1 (ja) 2004-03-01 2005-02-23 末端官能化ポリマーの製造方法

Country Status (4)

Country Link
US (1) US20070167587A1 (ja)
EP (1) EP1721912A4 (ja)
JP (1) JPWO2005082946A1 (ja)
WO (1) WO2005082946A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007766A (ja) * 2006-06-02 2008-01-17 Nippon Soda Co Ltd 重合体の製造方法
EP2022822A1 (en) * 2006-08-01 2009-02-11 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and tire using the same
WO2010052916A1 (ja) * 2008-11-07 2010-05-14 日本曹達株式会社 官能基を有する重合体の製造方法及びそれにより得られるスターポリマー
JP2014145079A (ja) * 2007-08-31 2014-08-14 Bridgestone Corp 液状重合体及び官能基化重合体の合成

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123713A1 (en) * 2008-05-09 2009-11-25 E.I. Du Pont De Nemours And Company Melt-extruded articles with smooth surfaces
CN102459377B (zh) 2009-06-03 2013-11-27 可乐丽股份有限公司 氢化嵌段共聚物的制造方法、由该制造方法得到的氢化嵌段共聚物及其组合物
CN102924638B (zh) * 2011-08-12 2014-04-02 中国石油天然气股份有限公司 一种双端巯基聚合物的制备方法
US9127109B2 (en) * 2012-05-01 2015-09-08 Bridgestone Corporation Preparation of functional polymers phosphorus-containing organometal initiators
BR112014027422B1 (pt) * 2012-05-01 2020-12-29 Bridgestone Corporation polidienos e copolímeros de dieno com funcionalidade organofosfina

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194910A (ja) * 1982-04-26 1983-11-14 ブリティッシュ・テクノロジー・グループ・リミテッド 共役ジエンのアニオン重合方法
DE3710468A1 (de) * 1987-03-30 1988-10-13 Basf Ag Lithiumorganischer initiator fuer die anionische polymerisation, verfahren zur herstellung des initiators und verwendung des initiators zur herstellung von polymeren
JPH01132607A (ja) * 1987-10-15 1989-05-25 Goodyear Tire & Rubber Co:The キャップ付ポリジエン
JPH07196713A (ja) * 1993-12-29 1995-08-01 Bridgestone Corp 環状第二アミンと共役ジエンとの付加体を含んでいるアニオン重合開始剤およびそれから得られる製品
JPH0848707A (ja) * 1994-07-18 1996-02-20 Bridgestone Corp 低下したヒステリシスを示すエラストマー類と製品およびそれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216801A (ja) * 1985-07-16 1987-01-26 Sumitomo Metal Ind Ltd 鋼片の表面割れを防止した熱間圧延法
DE3720322A1 (de) * 1987-06-19 1988-12-29 Basf Ag Verfahren zur herstellung von mercapto-endgruppen aufweisenden homo- oder copolymerisaten und deren verwendung
JPH075649B2 (ja) * 1988-08-25 1995-01-25 日本ペイント株式会社 アニオン重合方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194910A (ja) * 1982-04-26 1983-11-14 ブリティッシュ・テクノロジー・グループ・リミテッド 共役ジエンのアニオン重合方法
DE3710468A1 (de) * 1987-03-30 1988-10-13 Basf Ag Lithiumorganischer initiator fuer die anionische polymerisation, verfahren zur herstellung des initiators und verwendung des initiators zur herstellung von polymeren
JPH01132607A (ja) * 1987-10-15 1989-05-25 Goodyear Tire & Rubber Co:The キャップ付ポリジエン
JPH07196713A (ja) * 1993-12-29 1995-08-01 Bridgestone Corp 環状第二アミンと共役ジエンとの付加体を含んでいるアニオン重合開始剤およびそれから得られる製品
JPH0848707A (ja) * 1994-07-18 1996-02-20 Bridgestone Corp 低下したヒステリシスを示すエラストマー類と製品およびそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1721912A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007766A (ja) * 2006-06-02 2008-01-17 Nippon Soda Co Ltd 重合体の製造方法
EP2022822A1 (en) * 2006-08-01 2009-02-11 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and tire using the same
EP2022822A4 (en) * 2006-08-01 2010-07-14 Sumitomo Rubber Ind RUBBER COMPOSITION FOR TIRES AND TIRES THEREOF
US7956130B2 (en) 2006-08-01 2011-06-07 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and tire using the same
JP2014145079A (ja) * 2007-08-31 2014-08-14 Bridgestone Corp 液状重合体及び官能基化重合体の合成
WO2010052916A1 (ja) * 2008-11-07 2010-05-14 日本曹達株式会社 官能基を有する重合体の製造方法及びそれにより得られるスターポリマー
US8481650B2 (en) 2008-11-07 2013-07-09 Nippon Soda Co., Ltd. Process for production of polymers having functional groups, and star polymers obtained thereby
KR101285499B1 (ko) * 2008-11-07 2013-07-12 닛뽕소다 가부시키가이샤 관능기를 갖는 중합체의 제조 방법 및 그것에 의해 얻어지는 스타 폴리머
JP5572098B2 (ja) * 2008-11-07 2014-08-13 日本曹達株式会社 官能基を有する重合体の製造方法及びそれにより得られるスターポリマー

Also Published As

Publication number Publication date
JPWO2005082946A1 (ja) 2007-11-15
EP1721912A1 (en) 2006-11-15
EP1721912A4 (en) 2008-07-16
US20070167587A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
WO2005082946A1 (ja) 末端官能化ポリマーの製造方法
KR100329159B1 (ko) 저점도의말단이작용화된이소프렌중합체
Hirao et al. Recent advance in living anionic polymerization of functionalized styrene derivatives
EP0599671B1 (fr) Procédé de préparation de copolymères séquences dérivés de diènes conjugués et de méthacrylate de méthyle
US10487182B2 (en) Diene copolymer including at least two blocks, method for synthesizing same and rubber composition containing same
JP4057649B2 (ja) アニオンポリマーとケイ素−水素結合を有するトリアルコキシシランとのカップリング
JP2010255008A (ja) 星型ブロックコポリマー
US10889676B2 (en) Method for synthesizing a thermoplastic elastomer comprising at least one poly(α-methylstyrene) block
CN110914313B (zh) 星型支化二烯橡胶
JP2001139647A (ja) 星型ブロックコポリマー
Takahata et al. Synthesis of chain end acyl-functionalized polymers by living anionic polymerization: versatile precursors for H-shaped polymers
Charleux et al. Styrene-terminated poly (vinyl alcohol) macromonomers: 1. Synthesis by aldol group transfer polymerization
Sato et al. Precise synthesis of α, ω-chain-end functionalized poly (dimethylsiloxane) with azide groups based on metal-free ring-opening polymerization and a quantitative azidation reaction
JP3157033B2 (ja) 末端変性共役ジエン系重合体の製造方法
CN112759730B (zh) 一类胺基多功能化sebs热塑性弹性体及其制备方法
EP1349887B1 (en) Method for synthesis of graft polymers
CA2594650A1 (en) End-capped polymer chains and products thereof
US10774185B2 (en) Centrally functionalizable living cationic polymer or copolymer and methods of synthesizing the same
CN117186325A (zh) 一类基于共轭烯烃聚合物的多官能大分子引发剂制备星形聚合物的方法
Hadjikyriacou et al. Coupling and linking reactions of living polyisobutylene by allylsilanes
JP6709533B2 (ja) 高分子化合物、その変性物及びその製造方法、並びに、高分子材料
US9481755B2 (en) Anionic polymerization initiator, use thereof for synthesizing a diene elastomer having an alkyne function at the chain end, and functionalized diene elastomer
JPH06322013A (ja) 重合開始剤、重合方法および重合体
Neubauer et al. Synthesis of Poly (Styrene)-block-poly (methacrylate)-block-poly (styrene) via Site Transformation Reaction
Sugiyama et al. Synthesis of well-defined highly branched and graft copolymers having one branch per repeating unit based on living anionic polymerization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519364

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007167587

Country of ref document: US

Ref document number: 10591180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005710580

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005710580

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10591180

Country of ref document: US