WO2005073388A1 - 光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法 - Google Patents

光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法 Download PDF

Info

Publication number
WO2005073388A1
WO2005073388A1 PCT/JP2005/000575 JP2005000575W WO2005073388A1 WO 2005073388 A1 WO2005073388 A1 WO 2005073388A1 JP 2005000575 W JP2005000575 W JP 2005000575W WO 2005073388 A1 WO2005073388 A1 WO 2005073388A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
optically active
enzyme
represented
Prior art date
Application number
PCT/JP2005/000575
Other languages
English (en)
French (fr)
Inventor
Akira Nishiyama
Naoaki Taoka
Narumi Kishimoto
Nobuo Nagashima
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP05703812A priority Critical patent/EP1715054A4/en
Priority to JP2005517417A priority patent/JP4647502B2/ja
Priority to US10/586,337 priority patent/US7807426B2/en
Publication of WO2005073388A1 publication Critical patent/WO2005073388A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P11/00Preparation of sulfur-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric

Definitions

  • the present invention relates to a method for producing an optically active 1-substituted 1-2-methylpyrrolidine useful as an intermediate for pharmaceuticals, agricultural chemicals and the like.
  • the present invention also relates to a method for producing optically active 1,4-pentanediol useful as a synthetic intermediate in the production method.
  • L-prolinker The hydroxyl group of L-prolinol to be derived is converted to a chloro group with a salted zionyl group, and the nitrogen atom is protected with a benzyloxycarbol group.
  • (R) -1-benzyloxycarbol-2-methylpyrrolidine by radical reduction with the use of a non-patent document 1.
  • Non-Patent Document 2 A method of optically resolving racemic 2-methylpyrrolidine using tartaric acid.
  • the method (1) uses a toxic tin compound which has a long process and is highly toxic.
  • the method (2) is complicated because the crystallization must be repeated a plurality of times. As described above, none of these methods is industrially advantageous.
  • optically active 1,4-pentanediol is used as a raw material to induce optically active 1-substituted 2-methylpyrrolidine, it is considered that the above-mentioned problem can be solved and optically active 1-substituted 2-methylpyrrolidine can be produced efficiently.
  • the conventional method for producing optically active 1,4-pentanediol is difficult in terms of V ⁇ deviation, but it is difficult!
  • Non-Patent Document 6 After protecting the hydroxyl group at the 1-position of racemic 1,4 pentanediol with a trityl group, asymmetric acylation is carried out with lipase, and the ester is separated from the obtained mixture of the ester and alcohol. And a method for producing (R) -l, 4-pentanediol by deprotection with tosylic acid (Non-Patent Document 6).
  • the methods (3) and (4) described above require long steps and use many expensive reagents.
  • the yield of the reduction reaction by the microorganism is as low as 60% at the maximum.
  • the method (6) is inefficient because it involves resolution of the racemate.
  • Non-Patent Document 1 J. Org.Chem., 1989, 54, 209-216.
  • Non-Patent Document 2 Acta.Pharm.Suec, 1978, 15, 255-263.
  • Non-Patent Document 3 J. Chem. Soc, Chem. Commun., 1994, 483-484.
  • Non-Patent Document 4 J. Med.Chem., 1982, 25, 943-946.
  • Non-Patent Document 5 Synthetic Communications, 1990, 20, 999-1010.
  • Non-Patent Document 6 Bioorganic & Medicinal Chemistry Letters, 1996, 6, 71-76.
  • an object of the present invention is to provide an efficient method for producing optically active 1,4-pentanediol, and furthermore, to easily and efficiently produce optically active 1,4-pentanediol from optically active 1,4-pentanediol. It is to provide a method for producing 2-methylpyrrolidine.
  • the present inventors have conducted intensive studies, and as a result, have found that 5-hydroxy-2 pen is inexpensive and easily available.
  • the optically active 1,4 pentanediol can be easily produced by asymmetric reduction of the tanone, and is further converted into an optically active sulfonatoi conjugate by sulfonylation, and then reacted with amine to obtain an optically active 1,4-pentanediol.
  • the present invention provides a compound represented by the following formula (3) by sulfolating the optically active 1,4 pentanediol represented by the formula (2): [0015] [Formula 8]
  • R 1 represents an alkyl group having 11 to 12 carbon atoms which may have a substituent, an optionally substituted V, an aralkyl group having 7 to 12 carbon atoms, or a substituent. May represent an aryl group having 6 to 12 carbon atoms, and * represents an asymmetric carbon atom.
  • the compound is converted to an optically active disulfonate compound and further reacted with an amine.
  • equation (4) characterized by:
  • R 2 may have a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a substituent, V ⁇ an alkyl group having 11 to 12 carbon atoms, a substituent, Represents an aralkyl group having 7 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms which may have a substituent, and * represents an asymmetric carbon atom.
  • Optically active 1-substituted 2-methylpyrrolidine represented by It is a manufacturing method.
  • optically active 1,4 pentanediol and optically active 1-substituted 2-methylpyrrolidine useful as a pharmaceutical intermediate or an agricultural chemical intermediate can be obtained easily and inexpensively from starting materials that are inexpensive and easily available. Can be manufactured.
  • the starting material of the present invention has the following formula (1):
  • the present danizoide can be procured inexpensively, but is more inexpensive and easily available.
  • the 5-hydroxy-2-pentanone represented by the above formula (1) may be reduced in its purity by self-dehydration condensation when stored at a high concentration.
  • the 2-acetyl-2-pentanone represented by the above formula (5) If an acidic aqueous solution of the compound (1) obtained by acid hydrolysis of ratatotone or an aqueous solution neutralized as necessary is stored, such a problem does not occur, and It can be used as a raw material for a simultaneous reduction reaction.
  • optically active 1,4 pentanediol which is a product of the present invention has the following formula (2): [0027] [Formula 12]
  • * represents an asymmetric carbon atom, and its absolute configuration is R or S.
  • R represents all the enantiomers containing an excess of the R-form
  • S represents all the enantiomers containing the S-form in excess.
  • an optically active disulfonate-to-animal conjugate which is a product of the present invention, has the following formula (3):
  • R 1 is an alkyl group having 11 to 12 carbon atoms which may have a substituent, an aralkyl group having 7 to 12 carbon atoms which may have a substituent, or a carbon atom which may have a substituent. Represents the aryl group of the number 6-12.
  • R 1 is preferably a methyl group, an ethyl group, a chloromethyl group, a trifluoromethyl group, a benzyl group, a phenyl group, a 4-methylphenyl group, a 4-chlorophenyl group, a 2-trophyl group. And more preferably a methyl group or a 4-methylphenyl group, and more preferably a methyl group or a 4-methylphenyl group. * Is the same as above.
  • optically active 1-substituted 2-methylpyrrolidine which is the product of the present invention is represented by the following formula (4) [0034] [Formula 14]
  • R 2 may have a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a substituent, an alkyl group having 11 to 12 carbon atoms, a substituent, Represents an aralkyl group or an aryl group having 6 to 12 carbon atoms which may have a substituent.
  • R 2 is preferably a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methyl group, an ethyl group, an n-propyl group, a tert-butyl group, an aryl group, a benzyl group, a 1-phenethyl group or a phenyl group And a methoxyphenyl group, and more preferably a benzyl group. * Is the same as above.
  • the asymmetric reduction method in this step is not particularly limited, and includes a method using a hydride reducing agent modified with an optically active compound, a method using hydrogenation in the presence of an asymmetric transition metal catalyst, a method using an asymmetric transition metal catalyst
  • the method includes a method of performing a hydrogen transfer type reduction in the presence, and a method of performing a reduction using a microorganism or an enzyme derived from a microorganism.
  • the hydride reducing agent modified by the optically active conjugate includes an optically active tartaric acid and a reducing agent prepared from sodium borohydride, an optically active oxaborolidin derivative and borane. Reducing agents, optically active ketoiminate-type cobalt complex, sodium borohydride and tetrahydrofuran 2-methanol power are also prepared, optically active 1,1-b-2-naphthol and lithium aluminum hydride are prepared. No.
  • a metal complex of a Group VIII element of the periodic table such as ruthenium, rhodium, iridium or platinum is preferable. Ruthenium complexes are more preferred from the viewpoints of stability, availability, and economy of the magus complex.
  • the asymmetric ligand in the metal complex is preferably a phosphine-based ligand, and a phosphine-based ligand is preferably a bidentate ligand.
  • a bidentate ligand preferably, BINAP (2,2,1-bisdiphenylphosphino 1,1, -binaphthyl); Tol—BINAP (2,2,1-bis (d-p-tolylphosphino-1,1, -1, binaphthyl)) BIPP derivative of; BDPP (2,4 bis (diphenylphosphino) pentane); DIOP (4,5-bis (diphenylphosphinomethyl) -2,2-dimethyl-1,3-dioxane; BPPFA (1— [1,, 2-Bis (diphenylphosphine) phenyl] ethylamine; CHIRAPHOS (2,3bis (diphenylphosphino) butane); D
  • Asymmetric reduction can be performed using hydrogen gas or a compound having a hydrogen donating ability, for example, isopropanol, formic acid, or ammonium formate in the presence of the asymmetric transition metal catalyst.
  • the carbonyl of the above formula (1) By stereoselectively reducing the group, the optically active 1,4-pentanediole represented by the formula (2) can also be produced.
  • the “enzyme source” includes not only the enzyme having the reducing activity itself, but also a culture of a microorganism having the reducing activity.
  • the term “culture of microorganisms” means a culture solution containing bacterial cells, cultured bacterial cells, or a processed product thereof.
  • the “treated product” means, for example, a crude extract, freeze-dried cells, acetone-dried cells, or a ground product of these cells.
  • these enzyme sources can be used in the form of immobilized enzyme or immobilized cells by known means. The immobilization can be performed by a method known to those skilled in the art (for example, a crosslinking method, a physical adsorption method, an inclusive method, etc.).
  • the enzyme source having the activity of stereoselectively reducing the carboxyl group of the compound represented by the formula (1) includes Candida spp.
  • Rhodococcus sp. Rhodococcus sp.
  • Rhodococcus sp. As an enzyme source having an activity of selectively reducing the carbonyl group of the compound represented by the formula (1).
  • An enzyme source derived from a microorganism such as Rhodotorula glutinis may be used.
  • Examples of the enzyme source having the activity of R-selectively reducing the carbonyl group of the compound represented by the formula (1) include Candida magnoliae and Candida maris. (Candida malis) or a microorganism-derived enzyme source such as Devosia riboflavina.
  • the microorganism capable of producing a reductase derived from the above microorganism may be a wild-type or mutant strain! Microorganisms induced by genetic techniques such as cell fusion or genetic manipulation can also be used.
  • the microorganism producing the enzyme of the present invention is, for example, a step of isolating and / or purifying the enzyme to determine a part or all of the amino acid sequence of the enzyme, and encoding the enzyme based on the amino acid sequence.
  • a method comprising a step of obtaining a DNA sequence, a step of introducing this DNA into another microorganism to obtain a recombinant microorganism, and a step of culturing the recombinant microorganism to obtain the present enzyme.
  • WO98 / 35025 A method comprising a step of obtaining a DNA sequence, a step of introducing this DNA into another microorganism to obtain a recombinant microorganism, and a step of culturing the recombinant microorganism to obtain the present enzyme.
  • the culture medium for the microorganism used as the enzyme source is not particularly limited as long as the microorganism can grow.
  • carbohydrates such as glucose and sucrose; alcohols such as ethanol and glycerol; fatty acids such as oleic acid and stearic acid and esters thereof; oils such as rapeseed oil and soybean oil; and sulfuric acid as a nitrogen source
  • Inorganic salts such as ammonium sulfate, sodium nitrate, peptone, casamino acid, corn steep liquor, bran, yeast extract, etc., as inorganic salts such as magnesium sulfate, sodium salt, calcium carbonate, potassium hydrogen phosphate, potassium hydrogen phosphate
  • Ordinary liquid media containing malt extract, meat extract and the like can be used as other nutrient sources.
  • the cultivation is performed aerobically. Usually, the cultivation can be performed at a culturing time of about 15 days, a medium pH of 3-9, and a culturing temperature of 10-50 ° C.
  • 5-hydroxy-2-pentanone as a substrate, a coenzyme NAD (P) H, a culture of the above microorganism, or a processed product thereof are added to an appropriate solvent, and the pH is adjusted. It can be performed by stirring.
  • a reaction solvent an aqueous medium such as water or a buffer solution is usually used, but the reaction can be performed in a two-phase system of an organic solvent such as ethyl acetate or toluene and an aqueous medium.
  • the reaction conditions vary depending on the enzyme source used, the substrate concentration, etc., but usually the substrate concentration is about 0.1 to 100% by weight, preferably 1 to 60% by weight, and the coenzyme NAD (P) H
  • the reaction temperature is 10-60 ° C, preferably 20-50 ° C
  • the pH of the reaction is 0.00000001-1.0 times the molar amount, preferably ⁇ 0.00000001-0.001 times the molar amount. It is 4-9, preferably 5-8.
  • the reaction time can be generally 11 to 120 hours, preferably 1 to 72 hours.
  • the substrate can be added all at once or continuously.
  • the reaction can be performed in a batch mode or a continuous mode.
  • a typical NAD (P) H regeneration system includes, for example, a method using glucose dehydrogenase and Darcos.
  • an enzyme source a culture of a transformed microorganism into which a reductase gene and a gene of an enzyme (for example, glucose dehydrogenase) having the ability to regenerate a coenzyme dependent on the enzyme are introduced into the same host microorganism. If a reduction reaction is carried out using this method, it is not necessary to separately prepare an enzyme source required for regeneration of the coenzyme, so that optically active 1,4 pentanediol can be produced at lower cost.
  • an enzyme source for example, glucose dehydrogenase
  • the above-mentioned transformed microorganisms include those transformed with a plasmid having a DNA encoding the reductase and a DNA encoding an enzyme capable of regenerating a coenzyme depending on the enzyme. Converted microorganisms are included.
  • the enzyme having the ability to regenerate a coenzyme glucose dehydrogenase derived from Bacillus megaterium, which is preferred by glucose dehydrogenase, is more preferable.
  • Escherichia coH is preferred as the host microorganism! / ⁇ .
  • Escherichia coli HB101 transformed with a reductase gene from Candida malis IFO10003 and a glucose dehydrogenase gene from Bacillus megaterium (Accession No. FERM BP-7117, original deposit) April 11, 2000),
  • Escherichia coli HB101 transformed with a reductase gene from Devosia riboflavina IF013584 and a glucose dehydrogenase gene from Bacillus megaterium (Accession No. FERM BP-08458, original Deposit date: Transferred domestic deposits on May 29, 2002 to international deposits based on the Budapest Treaty)
  • Escherichia coli HB101 which has been translocated with a reductase gene from Rhodococcus sp. KNK01 (Accession No. FERM BP-08545, original deposit date: February 13, 2002 Is transferred to an international deposit under the Budapest Treaty) or a revertase gene derived from Rhodotorula elutinis IF0415 and a glucose dehydrogenase gene derived from Bacillus megaterium.
  • Escherichia coli HB101 pNTRGGl
  • FERM BP-7858 original deposit date January 22, 2002
  • the reduction step of the present invention is performed in combination with a coenzyme regeneration system, or when a culture of the above-mentioned transformed microorganism or a processed product thereof is used as an enzyme source, the coenzyme is more inexpensive. It is also possible to carry out the reaction by adding an oxidized NAD (P).
  • the optically active 1,4 pentanediol generated by the reduction reaction can be purified by a conventional method. For example, when using microorganisms, etc., if necessary, centrifugation, filtration, etc., are performed to remove suspensions of cells, etc., and then extracted with an organic solvent such as ethyl acetate, toluene, etc., and the organic solvent is removed. Removal under reduced pressure gives the desired product. Obtained in this way Although the target product has sufficient purity to be used in the subsequent step, general purpose methods such as fractional distillation and column chromatography are used to further increase the yield of the subsequent step or the purity of the compound obtained in the subsequent step. The purity may be further increased by a typical purification technique.
  • an organic solvent such as ethyl acetate, toluene, etc.
  • optically active 1,4 pentanediol represented by the formula (2) is converted into an optically active disulfonate compound represented by the formula (3) by sulfolation.
  • This step can be performed by using a sulfolating agent in the presence of a base.
  • examples of the sulfolating agent include halogenated sulfol, sulfonic anhydride and the like.
  • examples of the halogenated sulfonyl include methanesulfonyl chloride, ethanesulfonyl chloride, chloromethanesulfonyl chloride, benzylsulfol chloride, benzenesulfonyl chloride, 4-methylbenzenesulfonyl chloride, 4-methylbenzenesulfonyl chloride, and 2-chlorobenzene.
  • Preferred are methanesulfonyl chloride and shiridani 4-methylbenzenesulfol.
  • the amount of the sulfolating agent to be used is preferably 2 to 10 moles, more preferably 2 to 4 moles per mole of the compound (2).
  • the base is not particularly limited, but tertiary amines are preferred.
  • tertiary amines are preferred.
  • the amount of the base to be used is preferably 2 to 100-fold molar amount, more preferably 2 to 4-fold molar amount, relative to compound (2).
  • a base may be used as it is, or an ether solvent such as tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether; an ester solvent such as ethyl acetate and isopropyl acetate.
  • Solvents Hydrocarbon solvents such as benzene, toluene and hexane; Ketone solvents such as acetone and methyl ethyl ketone; -Tolyl solvents such as acetonitrile and propio-tolyl; Halogen such as methylene chloride and chloroform.
  • Amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; Sulfoxide solvents such as methylsulfoxide; urea solvents such as dimethylpropylene urea; phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide may be used.
  • tetrahydrofuran, ethyl acetate, and toluene are used. These may be used alone or in combination of two or more. When two or more kinds are used in combination, the mixing ratio is not particularly limited.
  • the amount of the reaction solvent to be used is preferably not more than 50 times, more preferably 5 to 20 times, the weight of the compound (2).
  • the reaction temperature is preferably from 20 to 150 ° C, more preferably from 0 to 100 ° C, from the viewpoint of shortening the reaction time and improving the yield.
  • the method for adding the optically active 1,4-pentanediol represented by the formula (2), the sulfonylating agent, the base and the solvent, and the order of addition are not particularly limited.
  • a general treatment for obtaining a reaction hydraulic product may be performed.
  • the reaction solution after completion of the reaction is neutralized by adding water and, if necessary, an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous sodium hydrogen carbonate solution, or an aqueous acid solution such as an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution.
  • the extraction operation is performed using a common extraction solvent, for example, ethyl acetate, getyl ether, methylene chloride, toluene, hexane and the like.
  • the reaction solvent and the extraction solvent are distilled off from the obtained extract by an operation such as heating under reduced pressure to obtain the desired product.
  • the target compound obtained in this way has sufficient purity to be used in the subsequent step, but it is intended to further increase the yield of the subsequent step or the purity of the compound obtained in the subsequent step.
  • the purity may be further increased by general purification techniques such as precipitation, fractional distillation, and column chromatography.
  • the optically active disulfonate compound represented by the above formula (3) is produced by reacting the optically active disulfonate compound represented by the above formula (3) with amamine.
  • the optically active 1-substituted 2-methylpyrrolidine represented by the above formula (4) is produced.
  • the steps to be performed will be described. This step can be carried out by reacting with amine in the presence of a base capable of reacting with an excess of amine or in the presence of a base.
  • examples of the amine include ammonia, hydroxylamine, methoxyamine, benzyloxyamine, methylamine, ethylamine, n-propylamine, tert-butylamine, arylamine, benzylamine, 1-phenethylamine, ⁇ -amine.
  • examples include phosphorus and 4-methoxyaurine, and benzylamine is preferred.
  • Examples of the base include alkali metal hydrogen such as sodium hydride and potassium hydride.
  • Alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium tert-butoxide;
  • Alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide;
  • Alkali metals such as sodium carbonate and potassium carbonate Carbonates;
  • tertiary amines such as triethylamine, tree n-butylamine, N-methylmorpholine, N-methylbiperidine, diisopropylethylamine, pyridine and N, N-dimethylaminopyridine.
  • Preferred are sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, and pyridine.
  • the amount of the amine to be used is preferably 1 to 100 times the molar amount of the compound (3), more preferably 1 to 10 times the molar amount.
  • the amount of the base to be used is preferably 110-fold molar amount, more preferably 115-fold molar amount, relative to compound (3).
  • an amine may be used as it is, or water; an alcohol solvent such as methanol, ethanol, and isopropanol; an ether solvent such as tetrahydrofuran, 1,4-dioxane, and ethylene glycol dimethyl ether.
  • Solvents such as ethyl acetate and isopropyl acetate; hydrocarbon solvents such as benzene, toluene and hexane; ketone solvents such as acetone and methyl ethyl ketone; -tolyl such as acetonitrile and propio-tolyl Halogen solvents such as methylene chloride and chloroform; Amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; Sulfoxide solvents such as dimethylsulfoxide; Urea solvents such as rare; phos- phos such as hexamethylphosphonic triamide It is used phosphate triamide-based solvents,.
  • tetrahydrofuran, ethyl acetate, and toluene are used. These may be used alone or in combination of two or more. When two or more kinds are used in combination, the mixing ratio is not particularly limited.
  • the amount of the above-mentioned reaction solvent to be used is preferably not more than 50 times, more preferably 5 to 20 times the weight of the compound (3).
  • the reaction temperature is preferably from 20 to 150 ° C, more preferably from 0 to 100 ° C, from the viewpoint of shortening the reaction time and improving the yield.
  • the method of adding the optically active disulfonate compound represented by the formula (3), the amine, the base and the solvent, and the order of addition are not particularly limited.
  • a general process for obtaining a reaction liquid power product can be performed.
  • the reaction solution after completion of the reaction is neutralized by adding water and, if necessary, an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous sodium hydrogen carbonate solution, or an aqueous acid solution such as an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution.
  • an extraction operation is performed using a common extraction solvent, for example, ethyl acetate, getyl ether, methylene chloride, toluene, hexane and the like.
  • the reaction solvent and the extraction solvent are distilled off from the obtained extract by an operation such as heating under reduced pressure to obtain the desired product.
  • the target compound thus obtained has sufficient purity as a synthetic intermediate for pharmaceuticals, agricultural chemicals, etc., but it can be further purified by general purification methods such as crystallization, fractional distillation, and column chromatography. May be increased.
  • various recombinant Escherichia coli shown in Table 1 were sterilized in a 500 mL Sakaguchi flask. And cultured with shaking at 37 ° C for 18 hours.
  • 10 mg of 5-hydroxy-2-pentanone, 1 mg of NAD or NADP, and 20 mg of glucose were added, followed by stirring at 30 ° C. for 20 hours.
  • an aqueous solution 32 g
  • 2.5 mg of NADP, and 6.6 g of glucose were added, and 7.5 M sodium hydroxide was added.
  • glucose dehydrogenase manufactured by Amano Enzym
  • OOOunits 5-hydroxy-2-pentanone obtained in Example 2
  • an aqueous solution containing 5.Og (64 g), NAD2.5 mg, 13.2 g of glucose was added, and the mixture was stirred at 30 ° C. for 24 hours while adjusting the pH to 6.5 by dropwise addition of a 7.5 M aqueous sodium hydroxide solution.
  • 100 mL of ethyl acetate was added to the reaction solution for extraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、安価に入手容易な5−ヒドロキシ−2−ペンタノンを不斉還元することにより、光学活性1,4−ペンタンジオールを製造する方法に関する。また本発明は、光学活性1,4−ペンタンジオールをスルホニル化することにより光学活性スルホナート化合物に変換し、次いでアミンと反応させることにより、光学活性1−置換−2−メチルピロリジンを製造する方法に関する。本発明の方法によれば、医薬中間体及び農薬中間体として有用な光学活性1,4−ペンタンジオール及び光学活性1−置換−2−メチルピロリジンを、安価な原料から簡便に製造することができる。                                                                                     

Description

明 細 書
光学活性 1一置換— 2—メチルピロリジンおよびその中間体の製造法 技術分野
[0001] 本発明は医薬及び農薬等の中間体として有用な光学活性 1 置換一 2—メチルピロ リジンの製造法に関する。また、本発明は、該製造法において合成中間体として有用 な光学活性 1, 4-ペンタンジオールの製造法に関する。
背景技術
[0002] 従来、光学活性 1 置換 2—メチルピロリジンの製造法としては以下の方法が知ら れている。
(1) L プロリンカ 誘導される L プロリノールの水酸基を塩ィ匕チォニルでクロ口基に 変換し、窒素原子をべンジルォキシカルボ-ル基により保護した後、水素化トリプチ ル錫を用 、てラジカル的に還元することにより、(R)—1—べンジルォキシカルボ-ルー 2 -メチルピロリジンを製造する方法 (非特許文献 1)。
(2)ラセミ体の 2—メチルピロリジンを、酒石酸を用いて光学分割する方法 (非特許文 献 2)。
[0003] し力しながら、上記(1)の方法は工程が長ぐ毒性の高い錫化合物を使用している 。また、上記(2)の方法は晶析を複数回繰り返す必要があるために操作が煩雑であ る。このように、いずれの方法も工業的に有利な方法とは言い難い。
[0004] 光学活性 1, 4 ペンタンジオールを原料として光学活性 1 置換 2 メチルピロリジ ンに誘導すれば、上記の問題を解決して光学活性 1 置換 2—メチルピロリジンを効 率良く製造しうると考えられる力 従来の光学活性 1, 4—ペンタンジオールの製法は Vヽずれも工業的に有利な方法とは言 、難!/、。
[0005] 例えば、光学活性 1, 4 ペンタンジオールの製造法としては下記のような方法が報 告されている。
(3) 2, 4, 4 トリメチルー 2—才キサゾリンと n ブチルリチウム力も調製したエノラートと 、(S)—ェピクロロヒドリンをカップリングさせた後、塩酸で加水分解し、次いで水素化リ チウムアルミニウムで還元することにより(S)—l, 4—ペンタンジオールを製造する方 法 (非特許文献 3)。
(4) D グルタミン酸を亜硝酸で処理することにより γ ブチロラタトン 4一力ルボン酸 を製造し、カルボン酸をボラン ジメチルスルフイド錯体でアルコールに還元し、次い で水酸基をトシル化した後、水素化リチウムアルミニウムで還元することにより(S)— 1 , 4 ペンタンジオールを製造する方法 (非特許文献 4)。
(5)レブリン酸エステル(4 ォキソペンタン酸エステル)のカルボ-ル基をパン酵母で 還元し、次いで水素化リチウムアルミニウムで還元することにより(S)—l, 4—ペンタン ジオールを製造する方法 (非特許文献 5)。
(6)ラセミ体の 1 , 4 ペンタンジオールの 1位の水酸基をトリチル基により保護した後 、リパーゼで不斉ァシル化を行い、得られたエステル体とアルコール体の混合物から エステル体を分離した後、トシル酸で脱保護することにより(R)—l, 4—ペンタンジォ ールを製造する方法 (非特許文献 6)。
[0006] し力しながら、上記(3)及び (4)の方法は工程が長いうえ高価な試剤を多用する必 要がある。上記(5)の方法は微生物による還元反応の収率が最大で 60%と低い。ま た、上記(6)の方法はラセミ体の分割であるため非効率である。
非特許文献 1 :J. Org. Chem., 1989, 54, 209-216.
非特許文献 2 : Acta. Pharm. Suec, 1978, 15, 255-263.
非特許文献 3 : J. Chem. Soc, Chem. Commun., 1994, 483-484.
非特許文献 4:J. Med. Chem., 1982, 25, 943-946.
非特許文献 5 : Synthetic Communications, 1990, 20, 999-1010.
非特許文献 6 : Bioorganic & Medicinal Chemistry Letters, 1996, 6, 71-76.
発明の開示
発明が解決しょうとする課題
[0007] 上記に鑑み、本発明の目的は光学活性 1, 4 ペンタンジオールの効率的な製造法 を提供し、更には光学活性 1, 4 ペンタンジオールから簡便かつ効率的に光学活性 1-置換- 2-メチルピロリジンを製造する方法を提供することにある。
課題を解決するための手段
[0008] 本発明者らは鋭意検討を行った結果、安価且つ入手容易な 5—ヒドロキシー 2 ペン タノンを不斉還元することにより、光学活性 1, 4 ペンタンジオールを簡便に製造でき 、更にこれをスルホニル化することにより光学活性スルホナートイ匕合物に変換し、次 いでァミンと反応させることにより、光学活性 1 置換 2—メチルピロリジンを簡便に製 造できる方法を開発するに至った。
[0009] 即ち本発明は、下記式(1):
[0010] [化 6]
Figure imgf000004_0001
[0011] で表される 5—ヒドロキシー 2 ペンタノンを不斉還元することを特徴とする、下記式(2) [0012] [化 7]
Figure imgf000004_0002
[0013] (式中、 *は不斉炭素原子を表す。)で表される光学活性 1, 4 ペンタンジオールの 製造法である。
[0014] また本発明は、前記式(2)で表される光学活性 1 , 4 ペンタンジオールをスルホ- ルイ匕することにより、下記式(3): [0015] [化 8]
Figure imgf000005_0001
[0016] (式中、 R1は置換基を有してもよい炭素数 1一 12のアルキル基、置換基を有してもよ V、炭素数 7— 12のァラルキル基、又は置換基を有してもょ 、炭素数 6— 12のァリー ル基を表し、 *は不斉炭素原子を表す。)で表される光学活性ジスルホナ一トイ匕合物 に変換し、更にァミンと反応させることを特徴とする、下記式 (4):
[0017] [化 9]
Figure imgf000005_0002
[0018] (式中、 R2は水素原子、水酸基、メトキシ基、ベンジルォキシ基、置換基を有してもよ Vヽ炭素数 1一 12のアルキル基、置換基を有してもょ 、炭素数 7— 12のァラルキル基 、又は置換基を有してもよい炭素数 6— 12のァリール基を表し、 *は不斉炭素原子 を表す。 )で表される光学活性 1 置換 2—メチルピロリジンの製造法である。
発明の効果
[0019] 本発明によれば、医薬中間体又は農薬中間体として有用な光学活性 1, 4 ペンタ ンジオール及び光学活性 1 置換 2—メチルピロリジンを安価で入手容易な出発原 料から、簡便且つ安価に製造することができる。
発明を実施するための最良の形態
[0020] まず、本発明で使用する出発原料、並びに生成物について説明する。
本発明の出発原料である 5—ヒドロキシー 2 ペンタノンは下記式(1) :
Figure imgf000006_0001
[0022] で表される。本ィ匕合物は安価に調達可能であるが、更に安価で入手容易な下記式 (
Figure imgf000006_0002
[0024] で表される 2 ァセチルー γ ブチロラタトンをリン酸、硫酸、硝酸、又はメタンスルホン 酸等の酸存在下で加水分解することにより、簡便に製造することもできる。
[0025] なお、前記式(1)で表される 5—ヒドロキシー 2 ペンタノンは高濃度で保存すると自 己脱水縮合により純度低下する場合がある力 前記式(5)で表される 2 ァセチルー Ύ プチ口ラタトンを酸加水分解して得られた前記化合物(1)の酸性水溶液、若しく は必要に応じて中和処理した水溶液を保存すれば、このような問題は発生せず、そ のまま不斉還元反応の原料として使用することが可能である。
[0026] 次に、本発明の生成物である光学活性 1, 4 ペンタンジオールは、下記式(2): [0027] [化 12]
Figure imgf000007_0001
[0028] で表される。ここで、 *は不斉炭素原子を表し、その絶対配置は R又は Sである。ここ で Rは両対掌体のうち R体を過剰に含む全ての場合を表し、同様に Sは両対掌体のう ち S体を過剰に含む全ての場合を表す。
[0029] 次に、本発明の生成物である光学活性ジスルホナ一トイ匕合物は、下記式(3):
[0030] [化 13]
Figure imgf000007_0002
[0031] で表される。ここで、 R1は置換基を有してもよい炭素数 1一 12のアルキル基、置換基 を有してもよい炭素数 7— 12のァラルキル基、又は置換基を有してもよい炭素数 6— 12のァリール基を表す。
[0032] R1として好ましくは、メチル基、ェチル基、クロロメチル基、トリフルォロメチル基、ベ ンジル基、フエ-ル基、 4 メチルフエ-ル基、 4ークロロフヱ-ル基、 2—-トロフエ-ル 基、 3—二トロフエ-ル基、 4一二トロフエ-ル基等であり、更に好ましくはメチル基、又 は 4 メチルフエ-ル基である。 *は前記に同じである。
[0033] 次に、本発明の生成物である光学活性 1 置換 2 メチルピロリジンは、下記式 (4) [0034] [化 14]
Figure imgf000008_0001
[0035] で表される。ここで、 R2は水素原子、水酸基、メトキシ基、ベンジルォキシ基、置換基 を有してもょ 、炭素数 1一 12のアルキル基、置換基を有してもょ 、炭素数 7— 12の ァラルキル基、又は置換基を有してもよい炭素数 6— 12のァリール基を表す。
[0036] R2として好ましくは、水素原子、水酸基、メトキシ基、ベンジルォキシ基、メチル基、 ェチル基、 n -プロピル基、 tert -ブチル基、ァリル基、ベンジル基、 1 フエネチル基 、フエ-ル基、メトキシフヱニル基等であり、更に好ましくはべンジル基である。 *は前 記に同じである。
[0037] 次に、前記式(1)で表される 5—ヒドロキシー 2 ペンタノンを不斉還元することにより、 前記式(2)で表される光学活性 1, 4 ペンタンジオールを製造する方法にっ 、て説 明する。本工程における不斉還元方法としては特に限定されず、光学活性化合物に よって修飾されたヒドリド還元剤を用いて還元する方法、不斉遷移金属触媒存在下 に水素化する方法、不斉遷移金属触媒存在下に水素移動型還元する方法、若しく は微生物、或いは微生物由来の酵素を用いて還元する方法等が挙げられる。
[0038] 具体的には、光学活性ィ匕合物によって修飾されたヒドリド還元剤としては、光学活 性酒石酸と水素化ホウ素ナトリウム力 調製される還元剤、光学活性ォキサボロリジ ン誘導体とボランから調製される還元剤、光学活性ケトイミナト型コバルト錯体と水素 化ホウ素ナトリウムとテトラヒドロフラン 2—メタノール力も調製される還元剤、光学活 性 1, 1 ビー 2—ナフトールと水素化アルミニウムリチウム力 調製される還元剤等が 挙げられる。
[0039] また、前記水素化又は水素移動型還元に用いる不斉遷移金属触媒としては、ルテ ユウム、ロジウム、イリジウム、又は白金等の周期律表第 VIII族元素の金属錯体が好 ましぐ錯体の安定性や入手容易さ、経済性の観点からルテニウム錯体がより好まし い。
[0040] 該金属錯体中の不斉配位子としてはホスフィン系配位子が好ましぐホスフィン系 配位子として好ましくは二座配位子である。二座配位子として好ましくは、 BINAP (2 , 2,一ビスジフエ-ルホスフィノー 1, 1,—ビナフチル); Tol— BINAP (2, 2,一ビス(ジー p—トリルホスフイノ— 1 , 1,ービナフチル)等の BINAP誘導体; BDPP (2, 4 ビス(ジフ ェ-ルホスフイノ)ペンタン); DIOP (4, 5—ビス(ジフエ-ルホスフイノメチル)—2, 2- ジメチルー 1, 3—ジォキサン; BPPFA(1— [1,, 2—ビス(ジフエ-ルホスフイノ)フエ口 セ -ル]ェチルァミン); CHIRAPHOS (2, 3 ビス(ジフエ-ルホスフイノ)ブタン); D EGPHOS (l—置換 3, 4 ビス(ジフエ-ルホスフイノ)ピロリジン); DuPHOS (l, 2 —ビス (2, 5 置換ホスホラノ)ベンゼン); DIPAMP ( 1 , 2 ビス [ (o—メトキシフエ-ル )フ ニルホスフイノ]ェタン)等が挙げられる。
[0041] 前記不斉遷移金属触媒存在下に水素ガス、若しくは水素供与能を有する化合物、 例えばイソプロパノール、蟻酸、又は蟻酸アンモ-ゥム等を用いて不斉還元すること が可能である。
[0042] また、前記式(1)で表される 5—ヒドロキシー 2 ペンタノンのカルボ-ル基を立体選 択的に還元する活性を有する酵素源の存在下、前記式(1)のカルボ二ル基を立体 選択的に還元することにより、前記式(2)で表される光学活性 1, 4 -ペンタンジォー ルを製造することもできる。
[0043] ここで、「酵素源」とは、上記還元活性を有する酵素自体はもちろんのこと、上記還 元活性を有する微生物の培養物も含まれる。「微生物の培養物」とは、菌体を含む培 養液、培養菌体、又はその処理物を意味する。ここで「その処理物」とは、例えば、粗 抽出液、凍結乾燥菌体、アセトン乾燥菌体、又はそれら菌体の磨砕物等を意味する 。さらにこれら酵素源は、公知の手段により固定ィ匕酵素あるいは固定ィ匕菌体の形態と して用いることもできる。固定ィ匕は、当業者に周知の方法 (例えば架橋法、物理的吸 着法、包括法等)で行うことができる。
[0044] 本発明の酵素還元工程において、前記式(1)で表される化合物のカルボ二ル基を 立体選択的に還元する活性を有する酵素源としては、キャンディダ (Candida)属、デ ボシァ(Devosia)属、ロドコッカス(Rhodococcus)属、又はロドトノレラ(Rhodotorula)属 力 なる群力 選ばれた微生物由来の酵素源が挙げられる。
[0045] 上記酵素源のうち、前記式(1)で表される化合物のカルボ二ル基を S選択的に還 元する活性を有する酵素源としては、ロドコッカス 'スピーシーズ (Rhodococcus sp.)、 又はロドトルラ ·ダクレチニス (Rhodotorula glutinis)等の微生物由来の酵素源が挙げら れる。
[0046] また、前記式(1)で表される化合物のカルボ二ル基を R選択的に還元する活性を有 する酵素源としては、キャンディダ ·マグノリエ(Candida magnoliae)、キャンディダ'マ リス (Candida malis)、又はデボシァ ·リボフラビナ (Devosia riboflavina)等の微生物由 来の酵素源が挙げられる。
[0047] また、上記微生物由来の還元酵素の産生能を有する微生物としては、野生株又は 変異株の!、ずれでもよ!ヽ。ある!、は細胞融合または遺伝子操作等の遺伝学的手法 により誘導される微生物も用いることができる。遺伝子操作された本酵素を生産する 微生物は、例えば、これらの酵素を単離及び Zまたは精製して酵素のアミノ酸配列 の一部または全部を決定する工程、このアミノ酸配列に基づいて酵素をコードする D NA配列を得る工程、この DNAを他の微生物に導入して組換え微生物を得る工程、 及びこの組換え微生物を培養して、本酵素を得る工程を含有する方法により得ること 力 Sできる (WO98/35025)。
[0048] 酵素源として用いる微生物の為の培養培地は、その微生物が増殖し得るものであ る限り特に限定されない。例えば、炭素源として、グルコース、シユークロース等の糖 質、エタノール、グリセロール等のアルコール類、ォレイン酸、ステアリン酸等の脂肪 酸及びそのエステル類、菜種油、大豆油等の油類、窒素源として、硫酸アンモ-ゥム 、硝酸ナトリウム、ペプトン、カザミノ酸、コーンスティープリカ一、ふすま、酵母エキス など、無機塩類として、硫酸マグネシウム、塩ィ匕ナトリウム、炭酸カルシウム、リン酸一 水素カリウム、リン酸-水素カリウムなど、他の栄養源として、麦芽エキス、肉エキス等 を含有する通常の液体培地が使用することができる。培養は好気的に行い、通常、 培養時間は 1一 5日間程度、培地の pHが 3— 9、培養温度は 10— 50°Cで行うことが できる。 [0049] 本発明の還元反応は、適当な溶媒中に基質の 5—ヒドロキシー 2 ペンタノン、補酵 素 NAD (P) H及び上記微生物の培養物またはその処理物等を添加し、 pH調整下 に攪拌することにより行うことができる。反応溶媒としては、通常、水や緩衝液等の水 性媒体を用いるが、酢酸ェチル、トルエン等の有機溶媒と水性媒体の 2相系で反応 を行うことちできる。
[0050] 反応条件は用いる酵素源や基質濃度等によって異なるが、通常、基質濃度は約 0 . 1一 100重量%、好ましくは 1一 60重量%であり、補酵素 NAD (P) Hは基質に対し て 0. 000001— 1倍モル量、好まし <は 0. 000001—0. 001倍モル量、反応温度 は 10— 60°C、好ましくは 20— 50°Cであり、反応の pHは 4一 9、好ましくは 5— 8であ る。反応時間は通常 1一 120時間、好ましくは 1一 72時間で行うことができる。基質は 一括、または連続的に添加して行うことができる。反応はバッチ方式または連続方式 で行うことができる。
[0051] 本発明の還元工程において、一般に用いられる補酵素 NAD (P) H再生系を組み 合わせて用いることにより、高価な補酵素の使用量を大幅に減少させることができる。 代表的な NAD (P) H再生系としては、例えば、グルコース脱水素酵素及びダルコ一 スを用いる方法が挙げられる。
[0052] 酵素源として、還元酵素遺伝子及びこの酵素が依存する補酵素を再生する能力を 有する酵素(例えばグルコース脱水素酵素)の遺伝子を同一宿主微生物内に導入し た形質転換微生物の培養物を用いて還元反応を行えば、別途補酵素の再生に必要 な酵素源を調製する必要がないため、より低コストで光学活性 1, 4 ペンタンジォー ルを製造することができる。
[0053] 上記のような形質転換微生物としては、上記還元酵素をコードする DNA及び該酵 素が依存する補酵素を再生する能力を有する酵素をコードする DNAを有するプラス ミドで形質転換された形質転換微生物が挙げられる。ここで、補酵素を再生する能力 を有する酵素としては、グルコース脱水素酵素が好ましぐバシラス'メガテリゥム( Bacillus megaterium)由来のグルコース脱水素酵素がより好ましい。また、宿主微生 物としては大腸菌 (Escherichia coH)が好まし!/ヽ。
[0054] より好ましくは、キャンディダ ·マグノリエ(Candida magnoliae) IFO0705由来の還元 酵素遺伝子及びバシラス'メガテリゥム (Bacillus megaterium)由来のグルコース脱水 素酵素遣伝子で形質転換された Escherichia coli HB101 (pNTSlG) (受託番号 FER M BP— 5835、原寄託曰平成 9年 2月 24曰)、
キャンディダ ·マリス(Candida malis) IFO10003由来の還元酵素遺伝子及びバシラス 'メガテリゥム(Bacillus megaterium)由来のグルコース脱水素酵素遺伝子で形質転換 された Escherichia coli HB101 (pNTFPG) (受託番号 FERM BP— 7117、原寄託日 平成 12年 4月 11日)、
デボシァ ·リボフラビナ(Devosia riboflavina) IF013584由来の還元酵素遺伝子及び バシラス'メガテリゥム (Bacillus megaterium)由来のグルコース脱水素酵素遺伝子で 开皙転椽された Escherichia coli HB101 (pNTDRGl) (受託番号 FERM BP— 08458 、原寄託日平成 14年 5月 29日の国内寄託株をブダペスト条約に基づく国際寄託に 移管)、
ロドコッカス .スピーシーズ(Rodococcus sp.) KNK01由来の還元酵素遺伝子で开質 転椽された Escherichia coli HB101 (pNTRS) (受託番号 FERM BP— 08545、原寄 託日平成 14年 2月 13日の国内寄託株をブダペスト条約に基づく国際寄託に移管)、 又は、ロドトルラ,グルチニス(Rhodotorula elutinis) IF0415由来の還^酵素遣伝子 及びバシラス'メガテリゥム (Bacillus megaterium)由来のグルコース脱水素酵素遺伝 子で形皙転椽された Escherichia coli HB101 (pNTRGGl) (受託番号 FERM BP— 7 858、原寄託日平成 14年 1月 22日)等が挙げられる。これらの形質転換微生物は、 それぞれ、独立行政法人産業技術総合研究所 特許生物寄託センター (日本国茨 城県つくば巿東 1丁目 1番地 1中央第 6)に寄託されている。
[0055] なお、本発明の還元工程を、補酵素再生系と組み合わせて実施する、又は酵素源 として上記形質転換微生物の培養物もしくはその処理物を用いる場合は、補酵素と して、より安価な酸化型の NAD (P)を添加して反応を行うことも可能である。
[0056] 還元反応で生じた光学活性 1, 4 ペンタンジオールは、常法により精製することが できる。例えば、微生物等を用いた場合には必要に応じ遠心分離、濾過等の処理を 施して菌体等の懸濁物を除去し、次いで酢酸ェチル、トルエン等の有機溶媒で抽出 し、有機溶媒を減圧下に除去することにより目的物が得られる。このようにして得られ た目的物は、後続工程に使用できる十分な純度を有しているが、後続工程の収率、 若しくは後続工程で得られる化合物の純度をさらに高める目的で、分別蒸留、カラム クロマトグラフィー等の一般的な精製手法により、さらに純度を高めてもよい。
[0057] 次に、前記式(2)で表される光学活性 1, 4 ペンタンジオールをスルホ-ル化する ことにより、前記式(3)で表される光学活性ジスルホナ一トイヒ合物に変換する工程に ついて説明する。本工程は、塩基存在下にスルホ -ル化剤を用いることにより行うこ とがでさる。
[0058] ここで、前記スルホ -ル化剤としては、ハロゲン化スルホ -ル、スルホン酸無水物等 が挙げられる。ハロゲン化スルホ-ルとしては、塩化メタンスルホ -ル、塩化エタンス ルホニル、塩化クロロメタンスルホ -ル、塩化べンジルスルホ -ル、塩化ベンゼンスル ホニル、塩化 4 メチルベンゼンスルホニル、塩化 4 クロ口ベンゼンスルホニル、塩化 2—-トロベンゼンスルホ -ル、塩化 3—-トロベンゼンスルホ -ル、塩化 4 -トロベン ゼンスルホ-ル等が挙げられ、スルホン酸無水物としては、無水トリフルォロメタンス ルホン酸等が挙げられる。好ましくは塩化メタンスルホニル、又は塩ィ匕 4 メチルベン ゼンスルホ-ルである。前記スルホ -ル化剤の使用量としては、好ましくは前記化合 物(2)に対して 2— 10倍モル量であり、更に好ましくは 2— 4倍モル量である。
[0059] また、前記塩基としては、特に制限されないが、第 3級ァミン類が好ましぐ例えばト リエチルァミン、トリー n—ブチルァミン、 N メチルモルホリン、 N—メチルビペリジン、ジ イソプロピルェチルァミン、ピリジン、 N, N—ジメチルァミノピリジン等が挙げられる。更 に好ましくはトリエチルァミン、又はピリジンである。前記塩基の使用量としては、好ま しくは前記化合物(2)に対して 2— 100倍モル量であり、更に好ましくは 2— 4倍モル 量である。
[0060] 反応溶媒としては、塩基をそのまま反応溶媒として使用してもよいし、又はテトラヒド 口フラン、 1, 4 ジォキサン、エチレングリコールジメチルエーテル等のエーテル系溶 媒;酢酸ェチル、酢酸イソプロピル等のエステル系溶媒;ベンゼン、トルエン、へキサ ン等の炭化水素系溶媒;アセトン、メチルェチルケトン等のケトン系溶媒;ァセトニトリ ル、プロピオ-トリル等の-トリル系溶媒;塩化メチレン、クロ口ホルム等のハロゲン系 溶媒; N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド等のアミド系溶媒;ジ メチルスルホキシド等のスルホキシド系溶媒;ジメチルプロピレンゥレア等のウレァ系 溶媒;へキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒を用いてもょ ヽ 。好ましくは、テトラヒドロフラン、酢酸ェチル、トルエンが挙げられる。これらは単独で 用いてもよぐ 2種以上を併用してもよい。 2種以上併用する場合、混合比は特に制 限されない。前記反応溶媒の使用量としては、前記化合物(2)に対し、好ましくは 50 倍重量以下、更に好ましくは 5— 20倍重量である。
[0061] 反応温度は、反応時間短縮、及び収率向上の観点から 20— 150°Cが好ましぐ 0 一 100°Cが更に好ましい。前記式(2)で表される光学活性 1, 4 ペンタンジオール、 スルホニル化剤、塩基および溶媒の添加方法や、添加順序に特に制限はない。
[0062] 反応後の処理としては、反応液力 生成物を取得するための一般的な処理を行え ばよい。例えば、反応終了後の反応液に水、また必要に応じて水酸ィ匕ナトリウム水溶 液、炭酸水素ナトリウム水溶液等のアルカリ水溶液、或いは塩酸水溶液、硫酸水溶 液等の酸水溶液をカ卩えて中和し、一般的な抽出溶媒、例えば酢酸ェチル、ジェチル エーテル、塩化メチレン、トルエン、へキサン等を用いて抽出操作を行う。得られた抽 出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が 得られる。このようにして得られた目的物は、後続工程に使用できる十分な純度を有 しているが、後続工程の収率、若しくは後続工程で得られる化合物の純度をさらに高 める目的で、晶析、分別蒸留、カラムクロマトグラフィー等の一般的な精製手法により 、さらに純度を高めてもよい。
[0063] 次に、前記式(3)で表される光学活性ジスルホナ一トイ匕合物をァミンと反応させるこ とにより、前記式 (4)で表される光学活性 1 置換 2 メチルピロリジンを製造するェ 程について説明する。本工程は過剰のァミンと反応させる力、若しくは塩基存在下に ァミンと反応させることにより行うことが出来る。
[0064] ここで、前記ァミンとしては例えば、アンモニア、ヒドロキシルァミン、メトキシァミン、 ベンジルォキシァミン、メチルァミン、ェチルァミン、 n プロピルァミン、 tert ブチル ァミン、ァリルァミン、ベンジルァミン、 1ーフエネチルァミン、ァ-リン、 4ーメトキシァユリ ン等が挙げられ、好ましくはベンジルァミンである。
[0065] 前記塩基としては例えば、水素化ナトリウム、水素化カリウム等のアルカリ金属水素 化物;ナトリウムメトキシド、ナトリウムエトキシド、カリウム tert ブトキシド等のアルカリ 金属アルコキシド;水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金 属水酸ィ匕物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;トリェチルァミン 、トリー n—ブチルァミン、 N メチルモルホリン、 N—メチルビペリジン、ジイソプロピルェ チルァミン、ピリジン、 N, N—ジメチルァミノピリジン等の第 3級ァミン類が挙げられる。 好ましくは水酸ィ匕ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、炭酸カリウム、トリェチル ァミン、又はピリジンである。
[0066] 前記ァミンの使用量としては、好ましくは前記化合物(3)に対して 1一 100倍モル量 であり、更に好ましくは 1一 10倍モル量である。前記塩基の使用量としては、好ましく は前記化合物(3)に対して 1一 10倍モル量であり、更に好ましくは 1一 5倍モル量で ある。
[0067] 反応溶媒としては、アミンをそのまま反応溶媒として使用してもよいし、又は水;メタ ノール、エタノール、イソプロパノール等のアルコール系溶媒;テトラヒドロフラン、 1, 4 ジォキサン、エチレングリコールジメチルエーテル等のエーテル系溶媒;酢酸ェチ ル、酢酸イソプロピル等のエステル系溶媒;ベンゼン、トルエン、へキサン等の炭化水 素系溶媒;アセトン、メチルェチルケトン等のケトン系溶媒;ァセトニトリル、プロピオ- トリル等の-トリル系溶媒;塩化メチレン、クロ口ホルム等のハロゲン系溶媒; N, N—ジ メチルホルムアミド、 N, N—ジメチルァセトアミド等のアミド系溶媒;ジメチルスルホキ シド等のスルホキシド系溶媒;ジメチルプロピレンゥレア等のウレァ系溶媒;へキサメ チルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒を用いてもよ 、。好ましくは、 テトラヒドロフラン、酢酸ェチル、トルエンが挙げられる。これらは単独で用いてもよぐ 2種以上を併用してもよい。 2種以上併用する場合、混合比は特に制限されない。前 記反応溶媒の使用量としては、前記化合物(3)に対し、好ましくは 50倍重量以下、 更に好ましくは 5— 20倍重量である。
[0068] 反応温度は、反応時間短縮、及び収率向上の観点から 20— 150°Cが好ましぐ 0 一 100°Cが更に好ましい。前記式(3)で表される光学活性ジスルホネート化合物、ァ ミン、塩基および溶媒の添加方法や、添加順序に特に制限はない。
[0069] 反応後の処理としては、反応液力 生成物を取得するための一般的な処理を行え ばよい。例えば、反応終了後の反応液に水、また必要に応じて水酸ィ匕ナトリウム水溶 液、炭酸水素ナトリウム水溶液等のアルカリ水溶液、或いは塩酸水溶液、硫酸水溶 液等の酸水溶液をカ卩えて中和し、一般的な抽出溶媒、例えば酢酸ェチル、ジェチル エーテル、塩化メチレン、トルエン、へキサン等を用いて抽出操作を行う。得られた抽 出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が 得られる。このようにして得られた目的物は、医薬、農薬等の合成中間体として十分 な純度を有しているが、晶析、分別蒸留、カラムクロマトグラフィー等の一般的な精製 手法により、さらに純度を高めてもよい。
実施例
[0070] 以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれら実施 例のみに限定されるものではない。
[0071] 施例 ί) 光学活件 ί. 4 ペンタンジオールの製诰
表 1に示す各種組換え大腸菌を 500mL容坂口フラスコ中で滅菌した 50mLの 2 X YT培地(卜リペプトン 1. 6%、イーストエキス 1. 0%、NaCl 0. 5%、pH = 7. 0) に接種し、 37°Cで 18時間振とう培養した。得られた培養液 lmLに 5-ヒドロキシ -2- ペンタノン 10mg、 NAD又は NADPlmg、グルコース 20mgを添カ卩し、 30°Cで 20時 間攪拌した。反応終了後、反応液を酢酸ェチル 2mLにて抽出し、抽出液にトリフル ォロ酢酸無水物を加えて誘導化した後、生成物の O - TFA誘導体を下記分析法に 従い分析した。その結果を表 1に示す。
[分析条件]
カラム: CHIRALDEX G—TA 20m X O. 25mml. D. (ASTEC社製)、カラム温 度: 80°C、スプリット比: 100Zl、キャリアーガス: He 40cm3/sec,検出: FID、試 料: O-TFA誘導体
変換率 (%) =生成物量 Z (基質量 +生成物量) χΐοο
光学純度(%ee) = (Α-Β) / (Α+Β) χ100
(A及び Bは対応する鏡像異性体量を表わし、 A>Bである)。
[0072] [表 1] 組換え大腸菌 補酵素 変換率 光学純度 絶対配置
( % ) ( % e e )
Escherichia coli NADP 1 0 0 9 9 ( ?) HB101 (pNTS1 G)
FERM BP-5835
Escherichia coli NAD 1 0 0 9 9 ( ?) HB101 (pNTFPG)
FERM BP-71 17
Escherichia coli NAD 1 0 0 9 9 ( /?) HB101 (pNTDRG1 )
FERM BP-08458
Escherichia coli NAD 1 0 0 9 9 ( s) HB101 (pNTRS)
FERM BP-08545
Escherichia coli NADP 1 0 0 9 9 ( 5) HB101 (pNTRGG1 )
FERM BP-7858
[0073] (実施例 2) 5—ヒドロキシー 2 ペンタノンの製诰
2 ァセチルー γ ブチロラタトン 12. 8g (100mmol)に 5%リン酸水溶液 lOOmL を加え、 100°C、 4時間攪拌した。室温まで冷却後、水酸化ナトリウム水溶液で中和 することにより、 5—ヒドロキシー 2 ペンタノン水溶液(130g、 7. 8重量0 /0)を得た。
[0074] (実施例 3) (S)— 1. 4 ペンタンジオールの製诰
組換え大腸菌 HBlOl (pNTRGGl)受託番号 FERM BP - 7858を、 500mL 容坂ロフラスコ中で滅菌した 50mLの 2 XYT培地(トリペプトン 1. 6%、イーストェ キス 1. 0%、 NaCl 0. 5%、 pH = 7. 0)に接種し、 37°Cで 20時間振とう培養した。 得られた培養液 50mLに、実施例 2で得られた 5—ヒドロキシー 2 ペンタノン 2. 5gを 含む水溶液(32g)、 NADP2. 5mg、グルコース 6. 6gを添加し、 7. 5Mの水酸化ナ トリウム水溶液を滴下することにより PH6. 5に調整しながら、 30°Cで 24時間攪拌した 。反応終了後、反応液に酢酸ェチル 50mLを加えて抽出し、有機層を減圧下で留去 することにより、薄茶色油状物の(S)— 1, 4 ペンタンジオール 2. 6gを得た(収率: 1 00%) oまた、実施例 1と同様の方法で光学純度を測定したところ、 99%ee以上であ つ 7こ。
— NMR (400MHz、 CDCl ) δ 1. 21 (3Η, d)、 1. 4— 1. 6 (4H, m)、 2. 6—3. 0
3
(2H, brs)、 3. 67 (2H, m)、 3. 86 (1H, m)。 [0075] (実施例 4) (S)— 1. 4 ペンタンジオールの製造
組換え大腸菌 HBlOl (pNTRS)受託番号 FERM BP - 08545を、 500mL容坂 口フラスコ中で滅菌した 50mLの 2 XYT培地(トリペプトン 1. 6%、イーストエキス 1. 0%、 NaCl 0. 5%、硫酸亜鉛 7水和物 50mg、 pH = 7. 0)に接種し、 30。Cで 4 0時間振とう培養した。得られた培養液 50mLにグルコース脱水素酵素(天野ェンザ ィム社製) 1, OOOunits、実施例 2で得られた 5—ヒドロキシー 2 ペンタノン 5. Ogを含 む水溶液(64g)、 NAD2. 5mg、グルコース 13. 2gを添加し、 7. 5Mの水酸化ナトリ ゥム水溶液を滴下することにより PH6. 5に調整しながら、 30°Cで 24時間攪拌した。 反応終了後、反応液に酢酸ェチル lOOmLを加えて抽出し、有機相を減圧下で留去 後、シリカゲルカラムクロマトグラフィーにより精製し、油状の(S)— 1, 4 ペンタンジォ ール 5. Ogを得た (収率: 100%)。また、実施例 1と同様の方法で光学純度を測定し たところ、 99%ee以上であった。
[0076] (実施例 5) (S)-l. 4 ビス(メタンスルホニルォキシ)ペンタンの製诰
実施例 3にて製造した(S)—l, 4 ペンタンジオール 2. 5g (24mmol)、トルェチル ァミン 7. 3g (72mmol)、酢酸ェチル 30mLからなる溶液を 5°Cに冷却し、塩化メタン スルホニル 6. 6g (58mmol)をカ卩えて 1時間攪拌した。飽和炭酸水素ナトリウム水溶 液 15mLをカ卩えて洗浄し、有機層を更に水 15mLで洗浄、無水硫酸マグネシウムで 乾燥後、減圧下に溶媒を留去することにより、(S)— 1, 4 ビス (メタンスルホ二ルォキ シ)ペンタンを淡黄色油状物として得た (6. lg、収率: 98%)。
'H-NMR (400MHz, CDC1 ) δ 1. 45 (3Η, d)、 1. 7—2. 0 (4Η, m)、 3. 03 (6Η
3
, s)、 4. 27 (2Η, m)、 4. 86 (1H, m)。
[0077] (実施例 6) (R)—1一べンジルー 2 メチルピロリジンの製造
実施例 5にて製造した(S)— 1, 4 ビス(メタンスルホ -ルォキシ)ペンタン 2. 49g (9 . 6mmol)とベンジルァミン 5. 13g (47. 9mmol)を 70°C、 3時間攪拌した。酢酸ェ チル 30mL、 20重量%水酸ィ匕ナトリウム水溶液 4. Ogを加えて抽出し、有機層を減圧 濃縮することにより、黄色油状物を得た。このものをシリカゲルカラムクロマトグラフィ 一にて精製することにより、(R)— 1一べンジルー 2—メチルピロリジンを淡黄色油状物と して得た(1. 83g、収率: 100%)。 H— NMR(400MHz、 CDCl) δ 1.17(3H, d)、 1.45 (IH, m)、 1.6—1.8(2H
3
、 m)、 1.93 (IH, m)、 2.09 (IH, dd)、 2.38 (IH, dq)、 2.89 (IH, dd)、 3.13 (IH, d)、 4.02(1H, d)、 7.2-7.4(5H, m)。

Claims

請求の範囲
[1] 下記式(1) :
[化 1]
H ひ)
Figure imgf000020_0001
で表される 5—ヒドロキシー 2 ペンタノンを不斉還元することを特徴とする、下記式(2) [化 2]
Figure imgf000020_0002
(式中、 *は不斉炭素原子を表す。)で表される光学活性 1, 4 ペンタンジオールの 製造法。
[2] 前記式(1)で表される 5—ヒドロキシー 2 ペンタノンの不斉還元を、当該化合物を立 体選択的に還元する活性を有する酵素源を作用させることにより行うことを特徴とす る請求項 1に記載の製造法。
[3] 前記酵素源がキャンディダ (Candida)属、デボシァ (Devosia)属、ロドコッカス (
Rhodococcus)属、又はロドトルラ (Rhodotorula)属に属する微生物の培着物及び Z 又はこれらの微生物力 得られる酵素である請求項 2に記載の製造法。
[4] 前記酵素源が、前記式(1)で表される化合物を S選択的に還元する活性を有し、か つ、ロドコッカス(Rhodococcus)属、又はロドトルラ(Rhodotorula)属に属する微生物の 培養物及び Z又はこれらの微生物力 得られる酵素である、請求項 2に記載の製造 法。 [5] 前記 S選択的な酵素源力 ロドコッカス'スピーシーズ(Rhodococcus sp.)、又はロド トルラ ·グルチニス (Rhodotorula glutinis)の培養物及び Z又はこれらの微生物から得 られる酵素である、請求項 4に記載の製造法。
[6] 前記 S選択的な酵素源が、 Escherichia coli HB101 (pNTRS) (FERM BP— 08545
)、又は Escherichia coli HB101 (pNTRGGl) (FERM BP— 7858)の培養物、及び Z 又はこれらの微生物力も得られる酵素である、請求項 4に記載の製造法。
[7] 前記酵素源が、前記式(1)で表される化合物を R選択的に還元する活性を有し、か つ、キャンディダ(Candida)属、又はデボシァ (te22 )属に属する微生物の培養物 及び Z又はこれらの微生物力 得られる酵素である、請求項 2に記載の製造法。
[8] 前記 R選択的な酵素源が、キャンディダ ·マリス (Candida mails)、キャンディダ ·マグ ノリエ (Candida maenoliae)、又はデボシァ ·リボフラビナ (Devosia riboflavina)の培養 物及び Z又はこれらの微生物力 得られる酵素である、請求項 7に記載の製造法。
[9] 前記 R選択的な酵素源が Escherichia coli HB101 (DNTS1G) (FERM BP— 5835)
、 Escherichia coli HB101 (pNTFPG) (FERM BP— 7117)、又は Escherichia coli HB101 (pNTDRGl) (FERM BP— 08458)の培養物及び Z又はこれらの微生物か ら得られる酵素である、請求項 7に記載の製造法。
[10] 下記式(5) :
[化 3]
Figure imgf000021_0001
で表される 2—ァセチルー γ—プチ口ラタトンを酸加水分解することにより製造された前 記式(1)で表される 5—ヒドロキシー 2—ペンタノンを出発原料に用いることを特徴とする 、請求項 1一 9のいずれかに記載の製造法。
請求項 1一 10のいずれかに記載の方法により製造した前記式(2)で表される光学 活性 1, 4 ペンタンジオールをスルホ二ルイ匕することにより、下記式(3):
[化 4]
Figure imgf000022_0001
(式中、 R1は置換基を有してもよい炭素数 1一 12のアルキル基、置換基を有してもよ V、炭素数 7— 12のァラルキル基、又は置換基を有してもょ 、炭素数 6— 12のァリー ル基を表し、 *は不斉炭素原子を表す。)で表される光学活性ジスルホナ一トイ匕合物 に変換し、更にァミンと反応させることを特徴とする、下記式 (4):
[化 5]
Figure imgf000022_0002
(式中、 R2は水素、水酸基、メトキシ基、ベンジルォキシ基、置換基を有してもよい炭 素数 1一 12のアルキル基、置換基を有してもよい炭素数 7— 12のァラルキル基、又 は置換基を有してもよい炭素数 6— 12のァリール基、を表し、 *は不斉炭素原子を 表す。 )で表される光学活性 1 置換 2—メチルピロリジンの製造法。
[12] R1がメチル基又は 4 メチルフエ-ル基であり、 R2がべンジル基である請求項 11に記 載の製造法。
PCT/JP2005/000575 2004-01-30 2005-01-19 光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法 WO2005073388A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05703812A EP1715054A4 (en) 2004-01-30 2005-01-19 PROCESS FOR THE PRODUCTION OF OPTICALLY ACTIVE 1-SUBSTITUTED 2-METHYLPYRROLIDIN AND INTERMEDIATE STEP
JP2005517417A JP4647502B2 (ja) 2004-01-30 2005-01-19 光学活性1−置換−2−メチルピロリジンおよびその中間体の製造法
US10/586,337 US7807426B2 (en) 2004-01-30 2005-01-19 Processes for producing optically active 1-substituted 2-methylpyrrolidine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-023946 2004-01-30
JP2004023946 2004-01-30

Publications (1)

Publication Number Publication Date
WO2005073388A1 true WO2005073388A1 (ja) 2005-08-11

Family

ID=34823897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000575 WO2005073388A1 (ja) 2004-01-30 2005-01-19 光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法

Country Status (4)

Country Link
US (1) US7807426B2 (ja)
EP (1) EP1715054A4 (ja)
JP (2) JP4647502B2 (ja)
WO (1) WO2005073388A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024445A1 (ja) 2008-09-01 2010-03-04 ダイセル化学工業株式会社 光学活性なアミン誘導体を製造するための方法
WO2010024444A1 (ja) 2008-09-01 2010-03-04 ダイセル化学工業株式会社 光学活性なアミン誘導体の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090254533A1 (en) * 2008-04-02 2009-10-08 Garbow Zachary A Methods, Systems, and Articles of Manufacture for Distribution of Search Metadata
JP5580625B2 (ja) * 2010-03-03 2014-08-27 住友化学株式会社 メタンスルホン酸アルキルエステル溶液の製造方法
CN104402776B (zh) * 2014-12-05 2017-06-13 中国石油天然气股份有限公司 一种二元醇磺酸酯化合物及其制备方法与应用
WO2016086837A1 (zh) * 2014-12-05 2016-06-09 中国石油天然气股份有限公司 一种二元磺酸酯化合物及其应用与烯烃聚合催化剂组分和烯烃聚合催化剂
JP6113822B1 (ja) * 2015-12-24 2017-04-12 株式会社神戸製鋼所 接続部品用導電材料
CN110256198B (zh) * 2019-07-12 2020-12-18 中国科学院兰州化学物理研究所 一种1,4-戊二醇的生产方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955629A (ja) * 1972-07-31 1974-05-30

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156603A (en) 1969-03-18 1979-05-29 Exxon Research & Engineering Co. Reductions with chelated lithium hydridoaluminates or hydridoborates
US4088666A (en) 1969-03-18 1978-05-09 Exxon Research & Engineering Co. Reductions with chelated lithium hydridoaluminates or hydridoborates
US4165330A (en) 1972-07-31 1979-08-21 Exxon Research & Engineering Co. Asymmetric synthesis via optically active chelating agents
JP3574682B2 (ja) * 1993-09-24 2004-10-06 ダイセル化学工業株式会社 新規な酵素、該酵素を製造する方法、該酵素をコードするdna、該dnaを含む形質転換体、該酵素による光学活性アルコール等の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955629A (ja) * 1972-07-31 1974-05-30

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KIM ET AL: "The efficient resolution of protected diols and hydroxy aldehydes by lipases : Steric auxiliary approach and aynthetic applications.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 6, no. 1, 1996, pages 71 - 76, XP004135126 *
LETUNOVA A.B. ET AL: "Preparation of gama-acetopropyl alcohol from gama-butyrolactone", KHIMIKO-FARMATSEVTICHESKII ZHURNAL, vol. 11, no. 12, 1977, pages 121 - 123, XP002988255 *
PETERS J. ET AL: "A novel NADH-dependent carbonyl reductase with an extremely broad substrate range from Candida parapsilosis: purification and characterization", ENZYME AND MICROBIAL TECHNOLOGY, vol. 15, 1993, pages 950 - 958, XP001094911 *
See also references of EP1715054A4 *
WERMUTH B. ET AL: "Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 256, no. 3, 10 February 1981 (1981-02-10), pages 1206 - 1213, XP002988257 *
WHITNEY T.A. ET AL: "Asymmetric Synthesis via Lithium Chelates", ADVANCES IN CHEMISTRY SERIES, vol. 130, 1974, pages 270 - 280, XP002988253 *
WHITNEY T.A. ET AL: "Asymmetric synthesis via lithium chelates", POLYMER REPRINTS, vol. 13, no. 2, 1972, pages 688 - 692, XP002988254 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024445A1 (ja) 2008-09-01 2010-03-04 ダイセル化学工業株式会社 光学活性なアミン誘導体を製造するための方法
WO2010024444A1 (ja) 2008-09-01 2010-03-04 ダイセル化学工業株式会社 光学活性なアミン誘導体の製造方法
CN102197141A (zh) * 2008-09-01 2011-09-21 大赛璐化学工业株式会社 制备光学活性胺衍生物的方法

Also Published As

Publication number Publication date
US7807426B2 (en) 2010-10-05
JPWO2005073388A1 (ja) 2008-01-10
EP1715054A1 (en) 2006-10-25
JP2011042660A (ja) 2011-03-03
JP4647502B2 (ja) 2011-03-09
EP1715054A4 (en) 2010-10-06
US20070292926A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
Koszelewski et al. Formal asymmetric biocatalytic reductive amination
WO2005073388A1 (ja) 光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法
KR20070013269A (ko) 광학활성을 가지는 알콜 또는 카본산의 제조방법
JP2010088455A (ja) 光学活性3−ヒドロキシプロピオン酸エステル誘導体の製造法
US6515134B1 (en) Substituted acetylpridine derivatives and process for the preparation of intermediates for optically active beta-3 agonist by the use of the same
KR100657212B1 (ko) 라세믹 에스테르로부터 광학활성 에스테르 유도체와 이의 산의 제조 방법
US20060046286A1 (en) Method for preparing optically active beta-butyrolactones
EP2725012A1 (en) 1-amino-2-vinyl cyclopropane carboxylic acid amide, salt of same, and method for producing same
KR101446551B1 (ko) (2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법
WO2006094800A2 (en) Cascade reaction process
Patti et al. Chemoenzymatic approach to novel chiral difunctionalised ferrocenes
JP4843813B2 (ja) 酵素を用いるR−体又はS−体のα−置換ヘテロサイクリックカルボン酸及びこれと反対鏡像の鏡像異性体のα−置換ヘテロサイクリックカルボン酸エステルの調製方法
EP1290208B1 (en) Method for optically resolving a racemic alpha-substituted heterocyclic carboxylic acid using enzyme
WO2018207888A1 (ja) ラメルテオンの製造法
US20050014818A1 (en) Process for producing optically active chroman derivative and intermediate
KR100337387B1 (ko) 키랄 알릴 알콜의 제조방법
WO2000037666A1 (fr) Procede de production de derive (r)-2-hydroxy-1-phenoxypropane
JP5506658B2 (ja) 好熱性古細菌由来エステラーゼを用いた光学活性カルボン酸の製造方法
US6475773B2 (en) Method for preparing chiral esters
KR100657204B1 (ko) 효소적 방법에 의한 광학활성 3-히드록시-감마-부티로락톤의 제조 방법
JP5092465B2 (ja) ピペコリン酸の立体選択的なエステル化方法
JP2006021999A (ja) 光学活性β−アミノニトリル化合物およびその対掌体アミド化合物の製造方法
JP2008295302A (ja) 光学活性エステル誘導体および/または光学活性カルボン酸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517417

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005703812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10586337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005703812

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10586337

Country of ref document: US