WO2005069287A1 - ホログラム素子を備える光集積ユニットおよび光ピックアップ装置 - Google Patents

ホログラム素子を備える光集積ユニットおよび光ピックアップ装置 Download PDF

Info

Publication number
WO2005069287A1
WO2005069287A1 PCT/JP2005/000182 JP2005000182W WO2005069287A1 WO 2005069287 A1 WO2005069287 A1 WO 2005069287A1 JP 2005000182 W JP2005000182 W JP 2005000182W WO 2005069287 A1 WO2005069287 A1 WO 2005069287A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
hologram element
laser
optical
unit
Prior art date
Application number
PCT/JP2005/000182
Other languages
English (en)
French (fr)
Inventor
Keiji Sakai
Renzaburoh Miki
Yukio Watanabe
Osamu Miyazaki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US10/586,021 priority Critical patent/US20080018969A1/en
Publication of WO2005069287A1 publication Critical patent/WO2005069287A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • Optical integrated unit having hologram element and optical pickup device
  • the present invention relates to an optical integrated unit and an optical pickup device for optically recording or reproducing information on an information recording medium such as an optical disc.
  • optical integration units for optically recording or reproducing information on an optical disc as an information recording medium
  • optical integration units there are optical integration units corresponding to two types of optical discs.
  • a light source that oscillates a laser beam having a wavelength of 655 nm for recording or reproducing on a DVD (Digital Versatile Disc) optical disk, and recording or reproducing on a CD (Compact Disk) optical disk
  • an optical integrated unit having a light source for emitting a laser beam having a wavelength of 785 nm.
  • an optical integrated unit In an optical integrated unit, light corresponding to two laser beams is provided by using an optical element disposed at a distance from each of these two types of light source powers and for combining and separating two laser beams.
  • An integrated unit is used (see, for example, JP-A-2000-76689).
  • FIG. 11 shows a cross-sectional view of an optical pickup device in which two semiconductor lasers are disposed in proximity to each other.
  • the semiconductor lasers 101 and 102 and the light receiving element 114 are disposed inside the laser package 115.
  • Laser light oscillated from the semiconductor lasers 101 and 102 is irradiated onto the disc 107 through the three-beam diffraction grating 103, the second hologram element 111, the first hologram element 112, the collimator lens 113 and the objective lens 106. .
  • the first hologram element 112 is formed on the upper surface of the transparent substrate 117, and by adjusting the depth of the groove of the hologram, the wavelength of the first hologram element 112 is 650 nm.
  • the light is diffracted but the laser light of wavelength 780 nm band is formed so as not to be diffracted.
  • the laser beam having a wavelength of 650 nm is diffracted by the first hologram element 112.
  • the laser light having passed through the first hologram element 112 is incident on the second hologram element 111.
  • the second hologram element 111 is formed on the upper surface of the transparent substrate 116 and is formed so as to diffract laser light of wavelength 780 nm band but not of laser light of wavelength 650 nm band.
  • the laser beam having a wavelength of 780 nm is diffracted by the second hologram element 111.
  • the laser beam having a wavelength of 650 nm diffracted by the first hologram element 112 and the laser beam having a wavelength of 780 nm diffracted by the second hologram element 111 enter the light receiving element 114.
  • the first hologram element 112 and the second hologram element 111 are disposed on the same optical axis to be oscillated, and further diffraction by two hologram elements is performed.
  • the first hologram element 112 and the second hologram element 111 are disposed on the same optical axis to be oscillated, and further diffraction by two hologram elements is performed.
  • a compact integration of the optical pickup device is performed.
  • FIG. 12 shows a cross-sectional view of an optical pickup device disclosed in Japanese Patent Laid-Open No. 2003-109243 as another optical pickup device.
  • the laser beams oscillated from the semiconductor laser chips 121 and 123 are incident on the optical recording medium 128 through the first hologram 124, the second hologram 125, the wavelength plate 130, the collimator lens 126 and the objective lens 127.
  • the reflected light from the optical recording medium 128 is incident on the second hologram 125 through the objective lens 127, the collimator lens 126 and the wavelength plate 130.
  • the wave plate 130 is formed such that the phase difference given to the laser beam having a wavelength of 660 nm is 109 ° and the phase difference S71 ° given to the laser beam having a wavelength of 780 nm.
  • the second hologram 125 is a non-polarization hologram in which the diffraction efficiency is substantially constant regardless of the polarization direction of the incident light.
  • the second hologram 125 has wavelength selectivity that does not diffract laser light having a wavelength of 660 nm, but diffracts laser light having a wavelength of 780 nm. Therefore, laser light having a wavelength of 780 nm is diffracted by the second hologram 125.
  • the laser light that has passed through the second hologram 125 enters the first hologram 124.
  • the first hologram 124 is a polarization hologram for diffracting laser light having a wavelength of 66 Onm.
  • Laser light having a wavelength of 660 nm is diffracted by the first hologram 124.
  • the laser light having a wavelength of 660 nm diffracted by the first hologram 124 and the laser light having a wavelength of 780 nm diffracted by the second hologram 125 are guided to the light receiving element 129 and detected.
  • the wave plate 130 a wave plate is used which gives a phase difference somewhat close to 90 ° to the two laser beams. As far as the given phase difference is 90 ° apart, it is accepted as a drop in the detected signal. It is also technically possible to form a wave plate which gives a phase difference of 90 ° to each of the two laser beams. However, since such a wave plate having such characteristics is not necessarily advantageous in cost, the phase difference to be given is formed so as to be an angle which is not 90 °. By passing through the wave plate, the return light from the optical recording medium 128 whose phase difference is also shifted by 90 ° is elliptically polarized for both of the two laser beams.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-76689
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-109243
  • hologram elements having wavelength selectivity in which the depth of the groove of the hologram is adjusted, are arranged on the same optical axis.
  • a first hologram element 112 for diffracting a laser beam having a wavelength of 650 nm and a second hologram element 111 for diffracting a laser beam having a wavelength of 780 nm are used.
  • each laser beam is diffracted. That is, the reflected light from the disk 107 is generated, and the laser light is also diffracted for the oscillation light directed toward the disk 107 from the semiconductor lasers 101 and 102.
  • the two laser beams emitted from the semiconductor lasers 101 and 102 and directed to the disk 107 are once diffracted by the second hologram element 111 or the first hologram element 112, and the respective hologram elements are generated.
  • the laser beam reflected by the disc 107 is again incident on the first hologram element 112 or the second holographic element 111 and diffracted, and the + first-order diffracted light or the first-order diffracted light is received by the light receiving element 114.
  • the emission efficiency from the objective lens in the forward pass is worse for any of the laser beams.
  • the light receiving efficiency of the light receiving element is also deteriorated.
  • laser light with a wavelength of 650 nm has a higher recording density than CDs and is used for reproduction and recording of DVDs, so it is necessary to increase the light receiving efficiency to increase the SZN ratio of reproduction signals.
  • the optical pickup apparatus shown in FIG. 11 there is a problem that when recording information on the optical disc, the light quantity is insufficient, which hinders high speed reproduction and high speed recording.
  • the first hologram 124 is a polarization hologram.
  • the diffracted light of the second hologram 125 preferably has a polarization direction which is not diffracted by the first hologram 124.
  • the reflected light from the optical recording medium 128 is circularly polarized light or elliptically polarized light that also has linear polarization power in two directions, part of the diffracted light of the second hologram 125 is diffracted again by the first hologram 124. . In other words, the light utilization efficiency decreases.
  • the diffracted light in the second hologram 125 is the first one.
  • the amount of light that is diffracted by the first hologram 124 and reaches the light receiving element 129 is significantly reduced.
  • a part of the force of the laser beam diffracted by the second hologram 125 forms a hologram of the first hologram 124 so as to pass through the area, the first hologram
  • the laser light passing through the area where the hologram of the ram 124 is formed is partially diffracted to reduce the light quantity, while the hologram is formed, and the laser light passing through the area has a light quantity It does not decline. Therefore, the intensity distribution in the cross section of the reflected light from the optical recording medium 128 is biased.
  • the intensity distribution of the reflected light from the optical recording medium is uneven in order to obtain the track error signal and the focus error signal using the intensity distribution of the reflected light from the optical recording medium. , I can not get these signals correctly!
  • the second hologram 125 of the above-mentioned second hologram 125 there is no reduction in the amount of diffracted light.
  • a configuration is often used in which the distance between the first hologram 124 and the second hologram 125 is increased by moving the second hologram 125 away from the semiconductor laser chips 121 and 123.
  • the size of the optical integrated unit in the direction of the optical axis of the laser light becomes large, which makes it difficult to miniaturize the optical pickup device.
  • the object of the present invention was made to solve the above problems, and has an optical integrated unit and an optical pickup device which has high efficiency of laser light, can be miniaturized, and can be miniaturized. Intended to provide.
  • An optical integrated unit comprises a light emitting unit for oscillating a plurality of laser beams having different wavelengths, a phase difference plate, and a first for diffracting a first laser beam of the plurality of laser beams. And a second hologram element for diffracting a second laser beam among the plurality of laser beams.
  • the retardation plate is formed to act as a ⁇ 4 plate for the first laser beam and to act as a ⁇ plate or a ⁇ 2 plate for the second laser beam.
  • the light emitting portion is formed such that the wavelength of the first laser beam is longer than the wavelength of the second laser beam, and the first hologram element has polarization characteristics,
  • the second hologram element is formed to be independent of the polarization state.
  • the light emitting portion is formed such that the wavelength of the first laser beam is longer than the wavelength of the second laser beam, and the first hologram element has polarization characteristics,
  • the second hologram element is formed so as to diffract the second laser beam without diffracting the first laser beam.
  • oscillation light splitting means is provided for splitting the oscillation light from the light emitting section into at least three.
  • the present invention can be applied to a tracking method using three beams.
  • the oscillation light dividing means comprises: a first oscillation light diffraction grating for dividing the first laser light; and a second oscillation light diffraction for dividing the second laser light. Including the grid.
  • the oscillation light splitting means includes a diffraction grating formed to split the first laser beam and the second laser beam.
  • one light receiving unit for receiving a plurality of laser beams is provided, and the first laser light and the second laser light are formed to be received by one light receiving unit. ing.
  • the light receiving unit can be miniaturized, and as a result, the optical integrated unit can be miniaturized.
  • a light receiving unit for receiving a plurality of laser beams is provided, and the light emitting unit, the light receiving unit, the first hologram element, and the second hologram element are integrated.
  • the position adjustment of the first hologram element and the second hologram element can be performed at the time of manufacture of the optical integrated unit, and the optical pickup device It is not necessary to adjust the position of the above components when mounting the optical integrated unit.
  • the light receiving unit for receiving a plurality of laser beams is provided, and the light emitting unit, the light receiving unit, the first hologram element, the second hologram element, and the retardation plate are integrated. ing.
  • the retardation plate can be disposed at a position close to the light emitting portion, and a good quality laser beam can be emitted toward the optical disk.
  • position adjustment of the light emitting unit, the first hologram element, and the like in the integrated optical unit becomes unnecessary.
  • a light receiving unit for receiving a plurality of laser beams is provided, and the light emitting unit, the light receiving unit, the first hologram element, the second hologram element, and the oscillation light dividing means are It has been By adopting this configuration, when the optical integrated unit is mounted on the optical pickup device, it is not necessary to adjust the position of the light emitting unit, the first hologram element, the oscillation light dividing means, etc. in the optical integrated unit.
  • a light receiving unit for receiving a plurality of laser beams is provided, and a light emitting unit, a light receiving unit, a first hologram element, a second hologram element, a retardation plate, and an oscillation light division. Means are integrated.
  • the light emitting portion is integrally formed so as to be able to separate other partial forces.
  • An optical pickup device includes the above-described optical integrated unit, and an objective lens for condensing oscillated laser light on an information surface of an optical disk. By adopting this configuration, it is possible to provide an optical pickup device that has high utilization efficiency of laser light and can be miniaturized.
  • oscillation light splitting means for splitting the oscillation light from the light emitting section into at least three, and a light receiving section for receiving a plurality of laser beams are provided.
  • the light emitting portion is formed such that the wavelength of the first laser beam is longer than the wavelength of the second laser beam
  • the first hologram element has polarization characteristics
  • the second hologram element is formed to be independent of the polarization state, and the light emitting portion, the light receiving portion, the first hologram element, the second hologram element, and the phase difference
  • the plate and the oscillation light dividing means are integrated.
  • FIG. 1 is a schematic cross-sectional view of a first optical integrated unit and a first optical pickup device in Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view of a second optical integrated unit and a second optical pickup device in Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view of the third optical integrated unit and the third optical pickup device in the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a first optical integrated unit and a first optical pickup device in Embodiment 2.
  • FIG. 5 is a schematic cross-sectional view of a second optical integrated unit and a second optical pickup device in Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view of a first optical integrated unit and a first optical pickup device in Embodiment 3.
  • FIG. 7 is a schematic cross-sectional view of a second optical integrated unit and a second optical pickup device in Embodiment 3.
  • FIG. 8 is a schematic cross-sectional view of a third optical integrated unit and a third optical pickup device in Embodiment 3.
  • FIG. 9 A schematic cross-sectional view of a fourth optical integrated unit and a fourth optical pickup device in Embodiment 3.
  • FIG. 10 The fifth optical integrated unit and the fifth optical pickup device in the third embodiment It is a schematic sectional view.
  • FIG. 11 is a cross-sectional view of an optical integrated unit and an optical pickup device based on the prior art.
  • FIG. 12 is a schematic cross-sectional view of another optical integrated unit and another optical pickup device based on the prior art.
  • FIGS. 1 to 3 An optical integrated unit and an optical pickup device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. It should be noted that the term indicating the orientation such as the upper surface or the top used in the description of the present invention indicates the relative positional relationship between each part which is not the absolute orientation.
  • FIG. 1 is a schematic cross-sectional view of a first optical integrated unit and a first optical pickup device in the present embodiment.
  • the optical integrated unit 40 includes a light emitting unit 1 for oscillating two laser beams.
  • the light emitting unit 1 includes a light source la and a light source lb.
  • the light sources la and lb are formed to be able to oscillate laser light upward in FIG.
  • the light source la and the light source lb are formed such that the optical axes of the oscillated laser light are in substantially the same direction.
  • the light emitting unit 1 emits light from the light source la from the wavelength of the second laser light oscillated from the light source lb. It is formed so that the wavelength of 1 laser beam may become short.
  • a light source la emits laser light having a wavelength of 655 nm to record and reproduce a DVD-based optical disc
  • a light source lb has a laser having a wavelength of 785 nm to record and reproduce a CD-based optical disc. Light is oscillated.
  • a substrate 22, a substrate 23 and a wave plate 5 as a phase difference plate are arranged on the optical tree of the first laser beam oscillated from the light source la.
  • a polarization hologram element 2 is formed on the upper surface of the substrate 22 as a first hologram element for diffracting the first laser beam oscillated from the light source la.
  • a non-polarization hologram element 3 is formed on the upper surface of the substrate 23 as a second hologram element for diffracting the second laser beam oscillated from the light source lb.
  • the non-polarization hologram element 3 has no polarization characteristic and is formed so that the diffraction of the laser light does not depend on the polarization state.
  • the polarization hologram element 2 is formed so as to diffract the laser light in the linearly polarized state rotated by 90 ° with respect to the polarization state of the laser light oscillated from the light source la.
  • the polarization holographic element 2 is disposed so that the light tree of the first laser light oscillated from the light source la passes through the substantially central portion of the polarization hologram element 2.
  • the non-polarization hologram element 3 is disposed such that the optical axis of the second laser light oscillated from the light source lb passes through the approximate center of the non-polarization hologram element 3.
  • the polarization hologram element 2 and the non-polarization hologram element 3 are formed on the way of the return path when the oscillated two laser beams are reflected by the optical disc 7 and return.
  • the non-polarization hologram element 3 is formed to diffract the second laser beam without diffracting the first laser beam. That is, the non-polarization hologram element 3 is formed to have wavelength selectivity. Further, the non-polarization hologram element 3 in the present embodiment is formed so that the diffraction efficiency of 0th-order diffracted light of the diffracted light is about 80%, and the diffraction efficiency of ⁇ 1st-order diffracted light is 8% each. It is done!
  • the wave plate 5 is formed to act as a ⁇ 4 plate for the first laser beam and to act as a ⁇ plate or a ⁇ 2 plate for the second laser beam.
  • a light receiving portion 4 a for receiving the diffracted light of the polarization hologram element 2 is formed on the side of the light emitting portion 1.
  • non-polarization holo A light receiver 4 b for receiving the diffracted light of the gram element 3 is disposed.
  • first-order diffracted light is used among the diffracted lights of the polarization hologram element and the non-polarization hologram element.
  • the optical integrated unit 40 includes the light emitting unit 1, the light receiving units 4 a and 4 b, the substrates 22 and 23, and the wave plate 5, and the optical pickup device 41 covers the optical integrated unit 40.
  • an objective lens 6 for condensing the oscillated laser light by the optical disc 7 is provided on the upper optical tree.
  • FIG. 2 shows a schematic cross-sectional view of the second optical integrated unit and the second optical pickup device in the present embodiment.
  • the optical integrated unit includes the light emitting unit 1, the substrates 22 and 23, and the wave plate 5 in the same manner as the first optical integrated unit and the first optical pickup device in the present embodiment.
  • the positions of the light receiving portions are different.
  • the light receiving unit 4 a and the light receiving unit 4 b are disposed on the same side of the side of the light emitting unit 1.
  • the light receiving portion 4a and the light receiving portion 4b are arranged such that their main surfaces are substantially in the same plane.
  • the optical pickup device is formed such that the diffracted light of the polarization hologram element 2 is received by the light receiving unit 4 b and the diffracted light of the non-polarization hologram element 3 is received by the light receiving unit 4 a.
  • the other configuration is the same as the first light collecting unit and the first optical pickup device in the present embodiment.
  • FIG. 3 shows a schematic cross-sectional view of the third optical integrated unit and the third optical pickup device in the present embodiment.
  • the light emitting portion 1 and the wavelength plate 5 are provided, the polarization holographic element 12 is formed on the upper surface of the substrate 24, and the non-polarization hologram element 13 is formed on the upper surface of the substrate 25 in the first embodiment. And the first optical pickup device.
  • the two light beams oscillated from the light emitting unit are formed to be received by one light receiving unit.
  • the polarization hologram element 12 formed on the upper surface of the substrate 24 and the non-polarization hologram element 13 formed on the upper surface of the substrate 25 are diffracted light 35 a of the polarization hologram element 12 and diffracted light 35 b of the non-polarization hologram element 13. Are formed to reach substantially the same position on the side of the light emitting portion 1.
  • the diffracted light 35a and the diffracted light 35b are received by one light receiving unit 4c. This As described above, in the third optical integrated unit and the third optical pickup device, one light receiving unit 4 c is formed to be able to receive both laser beams!
  • the other configuration is the same as that of the first optical integrated unit and the first optical pickup device in the present embodiment.
  • the light source la emits a laser beam having a short wavelength
  • the light source lb emits a laser beam having a long wavelength.
  • the first laser beam oscillated from the light source la passes through the non-polarization hologram element 3 formed on the substrate 23 and the polarization hologram element 2 formed on the substrate 22 and is collected by the objective lens 6 to be an optical disc Enter 7th.
  • the laser light reflected by the optical disc 7 passes through the objective lens 6 and the wave plate 5 again and is diffracted by the polarization hologram element 2 formed on the substrate 22.
  • the diffracted light 35a of the polarization hologram element 2 passes through the area where the non-polarization hologram element 3 formed on the upper surface of the substrate 23 is formed, and reaches the light receiving part 4a.
  • the light receiving section 4a receives the diffracted light 35a to detect an optical signal.
  • the wavelength plate 5 is formed to act as a ⁇ Z4 plate for the first laser beam oscillated from the light source la.
  • the first laser light oscillated from the light source la becomes circularly polarized by passing through the wave plate 5 and is incident on the optical disc 7.
  • the reflected light from the optical disk 7 passes through the wave plate 5 again to be in a linearly polarized state rotated 90 ° with respect to the polarization direction of the laser beam oscillated from the light source la, and enters the polarization hologram element 2.
  • the polarization hologram element 2 is formed so as to diffract the reflected light in the linearly polarized state rotated by 90 °. Therefore, the reflected light of the first laser light oscillated from the light source la is diffracted by the polarization hologram element 2 and is guided to the light receiving unit 4a.
  • the second laser light oscillated from the light source lb passes through the non-polarization hologram element 3, the polarization hologram element 2 and the wave plate 5, is condensed by the objective lens 6, and enters the optical disc 7.
  • the reflected light from the optical disc 7 passes through the objective lens 6, the wave plate 5 and the polarization hologram element 2 and is diffracted by the non-polarization hologram element 3.
  • the wave plate 5 is formed to act as a ⁇ 2 plate or a ⁇ plate for the second laser light.
  • the wave plate 5 acts as a ⁇ 2 plate for the second laser light
  • the oscillated second laser beam passes through the wave plate 5
  • light is incident on the optical disc 7.
  • the reflected light from the optical disc 7 is incident on the wave plate 5 again.
  • the reflected light power from the optical disk By passing again through the wave plate 5, a linearly polarized state having the same polarization direction as the laser light emitted from the light source lb is obtained.
  • the reflected light of the second laser light is transmitted without being diffracted by the polarization hologram element 2.
  • the non-polarization hologram element 3 the laser light is diffracted regardless of the polarization state, so the reflected light of the second laser light is diffracted by the non-polarization hologram element 3 and guided to the light receiving portion 4b. It is eaten.
  • the wave plate 5 acts as a ⁇ plate for the second laser light
  • the laser oscillated when the second laser light oscillated from the light source lb passes through the wave plate 5. It enters the optical disc 7 in the same polarization state as the polarization direction of light. The reflected light from the optical disc 7 passes through the wavelength plate 5 again to be in the same linear polarization state as the oscillation light. For this reason, the second laser light is not diffracted by the polarization hologram element 2 but is diffracted by the non-polarization hologram element 3 and is received by the light receiving section 4 b.
  • the wave plate force as the phase difference plate acts as a ⁇ 4 plate for the first laser light, and further acts as a front plate or a ⁇ 2 plate for the second laser light.
  • an optical integrated unit and an optical pickup device capable of increasing the utilization efficiency of laser light and further downsizing.
  • the polarization hologram element 2 as the first hologram element has polarization characteristics
  • the non-polarization hologram element 3 as the second hologram element is formed so as not to have polarization characteristics.
  • a polarization hologram element is used as the first hologram element for diffracting the first laser beam having a short wavelength, and the second laser beam having the wavelength longer than that of the first hologram element is diffracted.
  • the non-polarization hologram element is used as the second hologram element, the present invention is not particularly limited to this embodiment, and the non-polarization hologram element is used as the first hologram element.
  • a polarization hologram element may be used as the second hologram element.
  • the generated retardation ⁇ is as follows.
  • the phase difference ⁇ in the case where the retardation plate works as ⁇ / 4 plate is given by the following equation.
  • k is any positive integer.
  • the phase difference ⁇ in the case where the retardation plate acts as a ⁇ / 2 plate (or ⁇ plate) is given by the following equation.
  • j is any positive integer.
  • the first laser beam acts almost as a ⁇ 4 plate.
  • linearly polarized light is converted to circularly polarized light for one laser beam (action of ⁇ 4 plate), and for the other laser beam, It is possible to form a retardation plate having the property of being linearly polarized (the action of ⁇ 2 plate or ⁇ plate).
  • the non-polarization hologram element 3 as the second hologram element diffracts the first laser beam. It is formed so as to diffract the second laser beam. That is, the nonpolarizing holographic element 3 has wavelength selectivity.
  • the light quantity of the first laser beam emitted from the objective lens 6 can be increased. It enables high-speed recording and high-speed playback.
  • the diffracted light of the first laser beam in the first hologram element passes through the region where the second hologram element is formed. Also, since the first laser beam is transmitted without being diffracted by the second hologram element, it is possible to prevent the light quantity loss. Therefore, the first hologram element and the second hologram element can be brought close to each other while preventing the light quantity loss, and the optical integrated unit and the optical pickup device can be miniaturized.
  • the efficiency of ⁇ 1st-order diffracted light at which the efficiency of transmitted light (0th-order diffracted light) is large is small.
  • the efficiency of the zero-order diffraction of the nonpolarizing hologram element 3 is about 80%, and the efficiencies of the first-order diffraction are 8% each.
  • the second laser beam oscillated with the light source lb force is a laser beam for recording a CD
  • the light quantity of the laser beam irradiated to the optical disc (CD) can be increased, so high speed recording can be performed. It can correspond.
  • the reflected light from the optical disc (CD) has a coarser recording density than that of a DVD etc., so it is not necessary to make the light quantity extremely large. be able to.
  • the portions 4 a and 4 b are disposed on the same side of the light emitting portion 1.
  • the force is disposed such that the main surface of the light receiving portion 4a and the main surface of the light receiving portion 4b are substantially on the same plane.
  • it may be disposed above the light receiving portion 4b in the optical axis direction of the laser light of the light receiving portion 4a.
  • the two oscillated laser beams can be received by one light receiving unit 4c.
  • the optical integrated unit and the optical pickup device according to the present invention have a greater degree of freedom in arranging the light receiving portion.
  • the light source la and the light source lb included in the light emitting unit 1 are arranged side by side.
  • the light emitting points of the respective light sources la and lb are about 110 m apart.
  • the light tree of the first laser beam and the optical axis of the second laser beam are disposed at slightly different positions.
  • the hologram elements can be individually arranged according to Therefore, each laser beam can be guided to the light receiving section in an optimal state.
  • the laser light oscillated from light emitting unit 1 is two types of laser light, but the present invention is not particularly limited to this form, and a light emitting unit that oscillates three or more types of laser light
  • the present invention can also be applied to an optical integrated unit and an optical pickup device having the In this case, in order to diffract each laser beam individually, it is preferable to provide each hologram element.
  • FIGS. 4 and 5 An optical integrated unit and an optical pickup device according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5.
  • the polarization light is A program element, a non-polarization hologram element, and a phase difference plate are embodiments of the present invention.
  • oscillation light splitting means is provided for splitting the oscillation light.
  • FIG. 4 is a schematic cross-sectional view of the first optical integrated unit and the optical pickup device in the present embodiment.
  • the polarization hologram element 14 is formed on the upper surface of the substrate 26, and the non-polarization hologram element 15 is formed on the upper surface of the substrate 27.
  • a diffraction grating 8a is formed as an oscillation light dividing means for dividing the oscillation light from the light emitting unit 1 into at least three.
  • the diffraction grating 8a is formed to divide the first laser beam oscillated from the light source 1a and the second laser beam oscillated by the light source lb.
  • the diffraction grating 8 a is formed on the top surface of the substrate 28.
  • the diffraction grating 8a is formed so that the two laser beams oscillated from the light emitting unit 1 pass through the area of the diffraction grating 8a.
  • a light receiving unit 4 a and a light receiving unit 4 b are formed on the side of the light emitting unit 1.
  • the light receiving unit 4b is disposed on the light emitting unit 1 side opposite to the light receiving unit 4a.
  • the polarization hologram element 14 and the non-polarization hologram element 15 are formed so that the diffracted light used for light detection of the diffracted light of the oscillating light diffracted by the diffraction grating 8a passes through.
  • FIG. 5 shows a schematic cross-sectional view of the second optical integrated unit and the second optical pickup device in the present embodiment. That the polarization hologram element 16 is formed on the substrate 30 and the non-polarization hologram element 17 is formed on the substrate 31 is the same as the first optical integrated unit and the first optical pickup device in the present embodiment. .
  • diffraction grating 8 b and diffraction grating 8 c are formed on upper and lower main surfaces of substrate 29.
  • the diffraction grating 8b is formed as a first oscillation light diffraction grating for dividing the first laser light oscillated from the light source la.
  • the diffraction grating 8c is formed as a second oscillation light diffraction grating for dividing the second laser light.
  • the oscillation light splitting means includes two diffraction gratings.
  • Diffraction grating 8b is The diffraction grating 8c is formed in a region through which the first laser beam passes, and is formed in a region through which the second laser beam passes.
  • the diffraction grating 8b is formed so as to diffract the first laser beam without diffracting the second laser beam, and the diffraction grating 8c does not diffract the first laser beam, so that It is formed to diffract the 2 laser beams. That is, the oscillation light splitting means in the present embodiment has wavelength selectivity.
  • the polarization hologram element 16 is formed in a region through which the first laser beam passes, and the non-polarization holographic element 17 is formed in a region through which the second laser beam passes.
  • the light receiving unit 4c is disposed on the side of the light emitting unit 1, and two lasers oscillated from the light emitting unit 1 by this one light receiving unit. It is designed to receive light.
  • the first optical integrated unit and the first optical pickup device according to the present embodiment shown in FIG. 4 are provided with oscillation light splitting means for splitting the oscillation light from the light emitting portion into at least three. ing.
  • the present invention can be applied to a tracking type optical integrated unit and an optical pickup device using three beams.
  • the diffraction grating 8a as the oscillation light dividing means is formed to divide the first laser light and the second laser light. ing. That is, two laser beams are divided by one diffraction grating 8a.
  • the first laser beam oscillated from the light source la and the second laser beam oscillated from the light source lb are respectively divided into a main beam and a sub-beam by the diffraction grating 8a.
  • the main beam and the sub beam are given the same function as the laser light in the first embodiment in the polarization hologram element 14 and the non-polarization hologram element 15.
  • the main beam and the sub beam of the first laser beam oscillated from the light source la are received by the light receiving unit 4a, and the main beam and the sub beam of the second laser beam oscillated from the light source lb are received by the light receiving unit 4b.
  • diffraction gratings 8 b and 8 c are formed on substrate 29 so as to correspond to the two oscillated laser beams, respectively. There is. By adopting this configuration, it is possible to divide the oscillation light with the optimal diffraction angle and diffraction efficiency for each of the plurality of oscillated laser lights. Also, the diffraction grating 8b is formed to diffract the first laser beam without diffracting the second laser beam, and the diffraction grating 8c does not diffract the first laser beam, and the second grating It is formed to diffract laser light. By adopting this configuration, it is possible to reduce the light amount loss of the oscillation light and to improve the utilization efficiency of the laser light.
  • the second optical integrated unit and the second optical pickup device two laser beams are received by one light receiving unit 4c. Since the laser beams emitted from the light sources la and lb have different wavelengths, the diffraction angles of the two laser beams differ when passing through the same oscillation beam splitting means. For this reason, the position of the laser light falling on the light receiving unit is largely different, and it becomes difficult for one light receiving unit to receive two laser light.
  • the second optical integrated unit and the second optical pickup device shown in FIG. 5 by forming the respective diffraction gratings 8b and 8c for the respective laser beams, it is possible to The diffraction angles of the plurality of laser beams can be easily made approximately the same. Therefore, a plurality of laser beams can be easily received by one light receiving unit. That is, even in the case of using a plurality of laser beams, the positions of the plurality of laser beams falling on the light receiving unit 4c can be easily controlled individually.
  • FIGS. 6 to 10 An optical integrated unit and an optical pickup device according to a third embodiment of the present invention will be described with reference to FIGS. 6 to 10.
  • a specific apparatus form will be described for the optical integrated unit and the optical pickup apparatus described in the first and second embodiments.
  • FIG. 6 is a schematic cross-sectional view of the first optical integrated unit and the first optical pickup device in the present embodiment.
  • the first optical integrated unit and the first optical pickup device are
  • the third optical integrated unit and the third optical pickup device (see FIG. 3) in the first embodiment are attached to a fixing member.
  • the light emitting unit 1, the light receiving unit 4c, the polarization hologram element 12 and the non-polarization hologram element 13 are integrated using the holder 9.
  • a base 39 for fixing the light emitting unit 1 and the light receiving unit 4c is formed.
  • the light emitting unit 1 includes the light sources la and lb and is fixed to the upper surface of the base 39.
  • the light receiving unit 4 c is also fixed to the upper surface of the base 39.
  • the upper side of the base 39 is hollow.
  • a substrate 25 and a substrate 24 are adhesively fixed to the upper surface of the holder 9.
  • the substrate 25 and the substrate 24 are arranged to be stacked.
  • the upper surface of the holder 9 is formed flat, and the main surface of the plate-like substrate 25 is adhesively fixed to the upper surface of the holder 9.
  • a non-polarization hologram element 13 is formed on the top surface of the substrate 25.
  • the polarization hologram element 12 is formed on the upper surface of the substrate 24.
  • the main surface of the polarization hologram element 12 and the main surface of the non-polarization holographic element 13 are substantially perpendicular to the optical axes of the respective laser beams oscillated from the light emitting unit 1. It is arranged to become.
  • the wave plate 5 is disposed at a distance from the substrate 24.
  • the objective lens 6 is disposed apart from the wavelength plate 5.
  • the objective lens 6 is disposed on the optical axis of each of the laser beams oscillated from the light emitting unit 1 and is fixed by fixing means (not shown).
  • the light emitting unit 1, the light receiving unit 4c, the polarization hologram element 12 as the first hologram element, and the second hologram element As described above, in the first optical integrated unit and the first optical pickup device, the light emitting unit 1, the light receiving unit 4c, the polarization hologram element 12 as the first hologram element, and the second hologram element
  • the non-polarization hologram element 13 of FIG. The other configuration is the same as that of the third optical integrated unit and the third optical pickup device in the first embodiment.
  • FIG. 7 shows a schematic cross-sectional view of the second optical integrated unit and the second optical pickup device in the present embodiment.
  • the holder 9 is provided, and the light emitting unit 1 and the light receiving unit 4 c are fixed to the inside of the holder 9.
  • the substrate 25 and the substrate 24 are fixed to the upper surface of the dab 9, similar to the first optical integrated unit and the first optical pickup device in the present embodiment.
  • the wave plate 5 as a retardation plate is adhered and fixed to the upper surface of the substrate 24.
  • the wave plate 5 is bonded and fixed so that the main surface faces the main surface of the substrate 24.
  • the light emitting unit 1, the light receiving unit 4c, the polarization hologram element 12, the non-polarization hologram element 13 and the wave plate 5 as the phase difference plate It is organized.
  • the other configuration is the same as that of the first optical integrated sheet and optical pickup device in the present embodiment.
  • FIG. 8 shows a schematic cross-sectional view of the third optical integrated unit and the third optical pickup device in the present embodiment.
  • the third optical integrated unit and the third optical pickup device are formed so as to receive two laser beams by one light receiving unit, except that the first optical integrated in the second embodiment. It is the same as attaching the unit and the first optical pickup device (see Fig. 4) to the fixing member.
  • a diffraction grating 8a is provided as an oscillation light dividing means.
  • the diffraction grating 8 a is formed on the top surface of the substrate 28.
  • the substrate 28 is fixed to the upper surface of the holder 9, and the substrate 27 on which the nonpolarizing hologram element 15 is formed is fixed to the upper surface of the substrate 28.
  • a substrate 26 on which the polarization hologram element 14 is formed is fixed on the upper surface of the substrate 27.
  • the substrate 28, the substrate 27, and the substrate 26 are adhesively fixed on the top surface of the holder 9 so as to be laminated.
  • the wave plate 5 is disposed apart from the substrate 26.
  • the polarization hologram element 14, the non-polarization hologram element 15, and the diffraction grating 8 a are disposed such that their main surfaces are substantially perpendicular to the optical axis of the laser beam oscillated from the light emitting unit 1.
  • the light emitting unit 1, the light receiving unit 4c, the polarization hologram element 14, the non-polarization hologram element 15, and the diffraction grating 8a are integrated. It is done.
  • the light receiving unit 4 c is a diffracted light from the polarization hologram element 14 and a non-polarization hologram element It is formed to receive both of the diffracted light from 15.
  • the polarization hologram element 14 and the non-polarization hologram element 15 are formed so that the first-order diffracted light reaches the light receiving section 4c.
  • the other configuration is the same as that of the first optical integrated unit and the first optical pickup device in the second embodiment.
  • FIG. 9 shows a schematic cross-sectional view of the fourth optical integrated unit and the fourth optical pickup device in the present embodiment.
  • the holder 9 is provided, and the light emitting unit 1 and the light receiving unit 4 c are fixed to the inside of the holder 9 in the third embodiment of the present invention. It is similar to the optical integrated unit and the third optical pickup device.
  • the wave plate 5 is adhesively fixed to the upper surface of the substrate 26. That is, the wave plate 5, the substrate 26, the substrate 27 and the substrate 28 are bonded and fixed to the upper surface of the holder 9 so as to be laminated.
  • the light emitting portion 1, the light receiving portion 4c, the polarization hologram element 14, the non-polarization hologram element 15, the wave plate 5, and the diffraction grating 8a Are formed.
  • the other configuration is the same as that of the third light collecting unit and the third optical pickup device in the present embodiment.
  • FIG. 10 shows a schematic cross-sectional view of the fifth optical integrated unit and the fifth optical pickup device in the present embodiment.
  • the light emitting unit 21 is integrated so that other partial forces can be separated. Are formed.
  • the fifth light collecting unit 44 includes the holder 10 and the holder 11.
  • the holder 11 is formed in a box shape so that the inside is hollow.
  • a light receiving unit 4 c is fixed to the upper surface of the holder 10.
  • the holder 11 is disposed on the top surface of the holder 10.
  • the light receiving unit 4 c is disposed inside the holder 11.
  • the light emitting unit 21 is fixed at substantially the center of the holder 10.
  • the light emitting unit 21 is packaged alone and includes the light sources la and lb inside.
  • the light emitting unit 21 is formed to be removable from the holder 10.
  • a substrate 28, a substrate 27, a substrate 26 and a wave plate 5 are adhesively fixed on the upper surface of the holder 11 so as to be laminated.
  • the fifth optical pickup device 45 includes a fifth optical integrated unit 44 and an objective lens 6.
  • the other configuration is the same as that of the fourth optical integrated unit and the fourth optical pickup device in the present embodiment.
  • optical integrated unit and the optical pickup device according to the present embodiment are the same as the optical integrated unit and the optical pickup device according to Embodiment 1 or Embodiment 2 except for the above-described configuration. Do not repeat the explanation here.
  • a plurality of parts are modularized in the optical integrated unit according to the present embodiment, and the positional adjustment of the plurality of parts can be performed in the manufacture of the optical integration unit.
  • the light emitting unit 1, the light receiving unit 4c, the polarization hologram element 12, and the nonpolarizing hologram element 13 are provided. -It is being done. That is, these multiple parts are modularized.
  • the light sources la and lb are first positioned inside the holder 9 and the light sources la and lb are adhesively fixed. Further, the light receiving portion 4c is positioned inside the holder 9, and the light receiving portion 4c is bonded and fixed.
  • the substrate 25 is adhered and fixed to the holder 9. Thereafter, the position of the substrate 24 on which the polarization hologram element 12 is formed is adjusted, and the substrate 24 is adhered and fixed to the upper surface of the substrate 25.
  • the light emitting unit 1, the light receiving unit 4 c, and the light receiving unit 4 c are integrated for each module integrated by integrating the light emitting unit 1, the light receiving unit 4 c, the polarization hologram element 12, and the non-polarization hologram element 13.
  • the positions of the polarization hologram element 12 and the non-polarization hologram element 13 can be adjusted, and when the optical integrated unit 42 is mounted on the optical pickup device 43, the above-described components included in the optical integrated system can be adjusted. No need to adjust the position of.
  • light emitting unit 1 In the second optical integrated unit and the second optical pickup device in the present embodiment shown in FIG. 7, light emitting unit 1, light receiving unit 4c, polarization hologram element 12, non-polarization hologram element 13 and wave plate 5 is in the body.
  • the substrate 25 and the substrate 24 are adhered and fixed so as to be laminated on the upper surface of the holder 9. Do. After this, the wave plate 5 is bonded and fixed to the upper surface of the substrate 24 so as to be laminated.
  • the position adjustment of each component in the integrated module can be performed in advance, and when the optical integrated unit is mounted on the optical pickup device, each component in the module is No need to adjust the position of.
  • the wavelength plate 5 is bonded and fixed to the upper surface of the substrate 24, so that the distance between the wavelength plate 5 and the light emitting unit 1 becomes short. For this reason, the area force S of the laser light emitted from the light emitting portion 1 when transmitted through the wave plate 5 is reduced, and the aberration of the transmitted wavefront caused by the manufacturing error of the wave plate 5 can be reduced. For this reason, the laser beam irradiated to the optical disc 7 can be made good with small aberration.
  • the light emitting unit 1, the light receiving unit 4c, the polarization hologram element 14, the non-polarization hologram element 15, and the diffraction grating 8a are integrated. It is done.
  • the light emitting unit 1 and the light receiving unit 4 c are positioned inside the holder 9, and the light emitting unit 1 and the light receiving unit 4 c are bonded and fixed to the holder 9.
  • the substrate 28 on which the diffraction grating 8 a is formed and the substrate 27 on which the non-polarization hologram element 15 is formed are bonded and fixed to be integrated.
  • This member is adhesively fixed to the upper surface of the holder 9 while adjusting its position. Thereafter, the substrate 26 is bonded and fixed while the position of the substrate 26 having the polarization hologram element 14 formed on the upper surface of the substrate 27 is adjusted.
  • the positions of the polarization hologram element 14, the nonpolarizing holographic element 15 and the diffraction grating 8a can be adjusted in advance, and the optical integrated system can be used as an optical pickup. Positional adjustment for mounting on the device becomes unnecessary.
  • the non-polarization hologram element 15 and the diffraction grating 8 a are formed on different substrates, in particular, they need not be formed separately, for example, the substrate 27
  • the diffraction grating 8a may be formed in advance on the main surface of the main surface opposite to the side on which the non-polarization hologram element 15 is formed.
  • the wave plate 5 is arranged.
  • the fourth light integration unit light emission After fixing the substrates 26, 27, 28 to be stacked on the upper surface of the holder 9 in which the unit 1 and the light receiving unit 4c are disposed, the wave plate 5 is bonded and fixed.
  • the above components can be integrated and modularized, and position adjustment when the optical integrated unit is mounted on the optical pickup device becomes unnecessary.
  • the wave plate 5 can be disposed near the light emitting unit 1, so the aberration of the transparent wavefront caused by the accuracy of the wave plate 5 can be reduced. be able to.
  • the other actions and effects are similar to those of the third integrated optical unit.
  • the light emitting unit 21 is integrally formed so as to be separable from other components.
  • the light emitting unit 21 and the light receiving unit 4 c are bonded and fixed to the holder 10 while the position adjustment is performed.
  • the positions of the diffraction grating 8a, the nonpolarizing hologram element 15, the polarization hologram element 14 and the wave plate 5 are adjusted via the holder 11, the substrate 26-28 and the wave plate 5 are laminated. Adhesively fixed on top of holder 11
  • the light emitting unit 21 By integrally forming the light emitting unit 21 so that other partial forces can be separated, it is possible to easily replace only the light emitting unit 21 with a different one. Since many cases of the light emitting unit 21 have a common shape and a common size in each manufacturer, the light emitting unit 21 should be appropriately changed to one of a different manufacturer in the manufacture of the optical integrated unit. Can. That is, the degree of freedom in manufacturing can be increased. In addition, when the light emitting unit 21 breaks down, replacement becomes easy.
  • the description will be given taking one light receiving unit as an example.
  • the present invention is not particularly limited to this form, and a plurality of light receiving portions may be formed.
  • holograms that diffract laser light such as polarization hologram elements and non-polarization holographic elements, have different gratings in a plurality of regions. It may be divided to have.
  • the present invention can be applied to an optical integrated unit and an optical pickup device for optically recording or reproducing information on an information recording medium such as an optical disc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)
  • Polarising Elements (AREA)

Abstract

 光集積ユニット(40)は、波長の異なる複数のレーザ光を発振するための発光部(1)と、波長板(5)と、光源(1a)から発振された第1のレーザ光を回折させるための偏光ホログラム素子(2)と、光源(1b)から発振された第2のレーザ光を回折させるための無偏光性ホログラム素子(3)とを備える。波長板(5)は、第1のレーザ光に対してλ/4板として作用して、第2のレーザ光に対してλ板またはλ/2板として作用するように形成されている。

Description

明 細 書
ホログラム素子を備える光集積ユニットおよび光ピックアップ装置 技術分野
[0001] 本発明は、光ディスクなどの情報記録媒体に光学的に情報を記録または再生する 光集積ユニットおよび光ピックアップ装置に関する。 背景技術
[0002] 情報記録媒体としての光ディスクに対して光学的に情報を記録または再生する光 集積ユニットの中には、 2種類の光ディスクに対応する光集積ユニットがある。たとえ ば、 DVD (Digital Versatile Disc)系の光ディスクに対して記録または再生する ために波長が 655nmのレーザ光を発振する光源と、 CD (Compact Disk)系の光 ディスクに対して記録または再生するために波長が 785nmのレーザ光を発振する光 源とを有する光集積ユニットがある。
[0003] 光集積ユニットには、これらの 2種類の光源力 それぞれ離れた位置に配置され、 2 つのレーザ光を合成分離するための光学素子を用いることで、 2つのレーザ光に対 応した光集積ユニットが用いられている(たとえば、特開 2000-76689号公報参照)
[0004] 特開 2000— 76689号公報には、波長の異なる複数の半導体レーザを互いに近接 するように配置した光ピックアップ装置、および、複数の半導体レーザを 1つのパッケ ージの内部に配置した光ピックアップ装置が開示されている。図 11に、 2つの半導体 レーザが近接するように配置された光ピックアップ装置の断面図を示す。レーザパッ ケージ 115の内部に半導体レーザ 101, 102および受光素子 114が配置されている 。半導体レーザ 101, 102から発振されたレーザ光は、 3ビーム用回折格子 103、第 2のホログラム素子 111、第 1のホログラム素子 112、コリメータレンズ 113および対物 レンズ 106を通ってディスク 107に照射される。
[0005] ディスク 107からの反射光は、対物レンズ 106、コリメータレンズ 113を通って、第 1 のホログラム素子 112に入射する。第 1のホログラム素子 112は、透明基板 117の上 面に形成され、ホログラムの溝の深さを調整することにより、波長が 650nm帯のレー ザ光は回折するが、波長が 780nm帯のレーザ光は回折しないように形成されている 。波長が 650nm帯のレーザ光は、第 1のホログラム素子 112で回折される。
[0006] 第 1のホログラム素子 112を通ったレーザ光は、第 2のホログラム素子 111に入射す る。第 2のホログラム素子 111は、透明基板 116の上面に形成され、波長が 780nm 帯のレーザ光は回折するが、波長が 650nm帯のレーザ光は回折しないように形成さ れている。波長が 780nm帯のレーザ光は、第 2のホログラム素子 111で回折される。
[0007] 第 1のホログラム素子 112で回折された 650nmの波長を有するレーザ光および第 2のホログラム素子 111で回折された 780nmの波長を有するレーザ光は、受光素子 114に入射する。
[0008] 図 11に示す装置においては、第 1のホログラム素子 112と第 2のホログラム素子 11 1とを、発振される同一の光軸上に配置して、さらに、 2つのホログラム素子での回折 光を 1つの受光素子 114で受光することによって、光ピックアップ装置の小型集積ィ匕 が行なわれている。
[0009] 図 12に、別の光ピックアップ装置として、特開 2003— 109243号公報に開示された 光ピックアップ装置の断面図を示す。半導体レーザチップ 121, 123から発振された レーザ光は、第 1ホログラム 124、第 2ホログラム 125、波長板 130、コリメータレンズ 1 26および対物レンズ 127を通って、光記録媒体 128に入射する。
[0010] 光記録媒体 128からの反射光は、対物レンズ 127、コリメータレンズ 126および波 長板 130を通って、第 2ホログラム 125に入射する。波長板 130は、波長が 660nmの レーザ光に付与する位相差が 109° 、波長が 780nmのレーザ光に付与する位相差 力 S71° になるように形成されている。
[0011] 第 2ホログラム 125は、回折効率が入射光の偏光方向に関わらずほぼ一定の無偏 光性ホログラムである。第 2ホログラム 125は、波長が 660nmのレーザ光は回折しな いが、波長が 780nmのレーザ光は回折する波長選択性を有する。従って、 780nm の波長を有するレーザ光は、第 2ホログラム 125で回折される。第 2ホログラム 125を 通ったレーザ光は、第 1ホログラム 124に入射する。第 1ホログラム 124は、波長が 66 Onmのレーザ光を回折させるための偏光ホログラムである。 660nmの波長を有する レーザ光は、第 1ホログラム 124で回折される。 [0012] 第 1ホログラム 124で回折された 660nmの波長を有するレーザ光および第 2ホログ ラム 125で回折された 780nmの波長を有するレーザ光は、受光素子 129に導かれ て検出される。
[0013] 波長板 130には、 2つのレーザ光に対して、 90° にある程度近い位相差を与える 波長板が用いられている。与えられる位相差が 90° 力も離れた分については、検出 される信号の低下として許容されている。 2つのレーザ光に対して、それぞれ 90° の 位相差を付与する波長板を形成することも技術的に可能である。しかし、このような特 性の波長板はコスト的に必ずしも有利でないため、与える位相差については 90° か らずれた角度になるように形成されている。波長板を通ることによって、位相差が 90 ° 力もずれた光記録媒体 128からの戻り光は、 2つのレーザ光ともに楕円偏光である 特許文献 1:特開 2000-76689号公報
特許文献 2:特開 2003— 109243号公報
発明の開示
発明が解決しょうとする課題
[0014] 2つの光源が離れて配置された光ピックアップ装置においては、 2つのレーザ光を 合成分離するための光学素子が必要であるため、部品点数が多くなつてしまうという 問題がある。また、離れて配置された 2つの光源に対応して、光学系の調整が必要に なるため、調整箇所が多くなるという問題があった。たとえば、一方の光源を配置した のちに光学系の位置調整を行なって、さらに、他方の光源の位置調整を行なわなく てはならないという問題があった。また、離れて配置された 2つの光源力も発振された 2つのレーザ光を合成分離するための多くの光学素子が必要であるため、光ピックァ ップ装置が大型化してしまうという問題があった。
[0015] 図 11に示す光ピックアップ装置においては、ホログラムの溝の深さを調整した波長 選択性を有するホログラム素子が同一の光軸上に配置されている。波長が 650nm のレーザ光を回折するための第 1のホログラム素子 112と、波長が 780nmのレーザ 光を回折するための第 2のホログラム素子 111とが用いられて 、る。
[0016] しかし、これらのホログラム素子においては、レーザ光が入射する方向に関係なぐ それぞれのレーザ光が回折されてしまう。すなわち、ディスク 107からの反射光にカロ えて、半導体レーザ 101, 102からディスク 107に向力 発振光についても、それぞ れのレーザ光が回折されてしまう。
[0017] このため、半導体レーザ 101, 102から発振され、ディスク 107に向力う 2つのレー ザ光は、第 2のホログラム素子 111または第 1のホログラム素子 112で一度回折され、 それぞれのホログラム素子での透過光 (0次回折光)がディスク 107に入射する。ディ スク 107で反射したレーザ光は、再び第 1のホログラム素子 112または第 2のホロダラ ム素子 111に入射して回折され、 + 1次回折光または 1次回折光が受光素子 114 で受光される。このように、 2つのレーザ光は、ともに往路と復路とで 1回ずつ回折され るため、いずれのレーザ光に対しても、往路においては対物レンズからの出射効率 が悪ぐさらに、復路においては受光素子での受光効率も悪くなるという問題があつ た。
[0018] 特に、波長が 650nmのレーザ光は、 CDより記録密度が高 、DVDの再生や記録 に用いられるため、受光効率を上げて再生信号の SZN比を高くする必要がある。し かし、図 11に示す光ピックアップ装置においては、光ディスクに情報を記録する場合 に光量の不足を招いて、高速再生や高速記録の妨げになるという問題があった。
[0019] 図 12に示す光ピックアップ装置においては、第 1ホログラム 124を偏光ホログラムと している。この装置においては、第 2ホログラム 125の回折光は、第 1ホログラム 124 で回折されないような偏光方向であることが好ましい。しかし、光記録媒体 128からの 反射光が 2方向の直線偏光力もなる円偏光や楕円偏光の場合には、第 2ホログラム 1 25の回折光の一部が第 1ホログラム 124で再び回折してしまう。すなわち、光利用効 率が低下する。
[0020] したがって、上記のように、 2つのいずれのレーザ光に対しても 90° にある程度近 い位相差を与える波長板を用いた場合には、第 2ホログラム 125での回折光が第 1ホ ログラム 124を通る際に、第 1ホログラム 124で回折され、受光素子 129に到達する 光量は大幅に低下するものと予想される。
[0021] また、第 2ホログラム 125で回折されたレーザ光の一部力 第 1ホログラム 124のうち ホログラムが形成されて 、な 、領域を通るように形成されて 、る場合には、第 1ホログ ラム 124のホログラムが形成されている領域を通ったレーザ光は、その一部が回折さ れて光量が低下する一方で、ホログラムが形成されて 、な 、領域を通ったレーザ光 は、光量が低下しない。このため、光記録媒体 128からの反射光の断面における強 度分布に偏りが生じる。光ピックアップ装置においては、光記録媒体からの反射光の 強度分布を用いて、トラックエラー信号やフォーカスエラー信号などを得るため、光記 録媒体からの反射光の強度分布に偏りが生じていると、これらの信号を正しく得ること ができな!/、と!/、う問題がある。
[0022] また、第 2ホログラム 125の回折光の全てが、第 1ホログラム 124のホログラムが形成 されて ヽな 、領域を通るように形成されて 、る場合には、上記の第 2ホログラム 125 の回折光の光量の低下は生じない。この効果を得るため、第 2ホログラム 125を半導 体レーザチップ 121, 123力ら遠ざけて、第 1ホログラム 124と第 2ホログラム 125との 距離を大きくする構成が多く用いられる。しかし、このような場合には、レーザ光の光 軸方向における光集積ユニットの大きさが大きくなつて、光ピックアップ装置の小型化 が困難になるという問題があった。
[0023] 本発明の目的は、上記の問題点を解決するためになされたものであり、レーザ光の 高 、利用効率を有し、小型化を行なうことができる光集積ユニットおよび光ピックアツ プ装置を提供することを目的とする。
課題を解決するための手段
[0024] 本発明に基づく光集積ユニットは、波長の異なる複数のレーザ光を発振するための 発光部と、位相差板と、複数のレーザ光のうち第 1のレーザ光を回折させるための第 1のホログラム素子と、複数のレーザ光のうち第 2のレーザ光を回折させるための第 2 のホログラム素子とを備える。位相差板は、第 1のレーザ光に対して λ Ζ4板として作 用して、第 2のレーザ光に対して λ板または λ Ζ2板として作用するように形成されて いる。この構成を採用することにより、第 1のホログラム素子および第 2のホログラム素 子について、適切なホログラム素子を選定した場合、いずれか一方のホログラム素子 の回折光が、他方のホログラム素子を通るように形成されていても、他方のホログラム 素子で回折光が回折されることを防止できる。この結果、レーザ光の利用効率が高く なるとともに、小型化を行なうことができる光集積ユニットを提供することができる。 [0025] 上記発明において好ましくは、発光部は、第 2のレーザ光の波長より第 1のレーザ 光の波長が長くなるように形成され、第 1のホログラム素子は、偏光特性を有し、第 2 のホログラム素子は、偏光状態に依存しないように形成されている。この構成を採用 することにより、第 1のホログラム素子と第 2のホログラム素子とを容易に形成すること ができる。
[0026] 上記発明において好ましくは、発光部は、第 2のレーザ光の波長より第 1のレーザ 光の波長が長くなるように形成され、第 1のホログラム素子は、偏光特性を有し、第 2 のホログラム素子は、第 1のレーザ光を回折せずに第 2のレーザ光を回折するように 形成されている。この構成を採用することにより、第 1のホログラム素子と第 2のホログ ラム素子とを容易に形成することができる。
[0027] 上記発明において好ましくは、発光部からの発振光を、少なくとも 3つに分割するた めの発振光分割手段を備える。この構成を採用することにより、 3ビームを用いたトラ ッキング方式に本発明を適用することができる。
[0028] 上記発明において好ましくは、発振光分割手段は、第 1のレーザ光を分割するため の第 1の発振光回折格子と、第 2のレーザ光を分割するための第 2の発振光回折格 子とを含む。この構成を採用することにより、それぞれのレーザ光に対応した分割を 行なうことができる。
[0029] 上記発明において好ましくは、発振光分割手段は、第 1のレーザ光および第 2のレ 一ザ光を分割するように形成された回折格子を含む。この構成を採用することにより 、発振光分割手段の構成を容易にすることができる。
[0030] 上記発明において好ましくは、複数のレーザ光を受光するための一の受光部を備 え、第 1のレーザ光および第 2のレーザ光を、一の受光部で受光するように形成され ている。この構成を採用することにより、受光部を小型化することができ、この結果、 光集積ユニットを小型化することができる。
[0031] 上記発明において好ましくは、複数のレーザ光を受光するための受光部を備え、発 光部、受光部、第 1のホログラム素子および第 2のホログラム素子が一体ィヒされている 。この構成を採用することにより、光集積ユニットの製造時において、第 1ホログラム素 子および第 2ホログラム素子などの位置調整を行なうことができ、光ピックアップ装置 に光集積ユニットを搭載する際の上記の部品の位置調整が不要になる。
[0032] 上記発明において好ましくは、複数のレーザ光を受光するための受光部を備え、発 光部、受光部、第 1のホログラム素子、第 2のホログラム素子、および位相差板が一体 化されている。この構成を採用することにより、位相差板を発光部に近い位置に配置 することができ、良質なレーザ光を光ディスクに向けて照射することができる。また、光 ピックアップ装置に光集積ユニットを搭載する際の、光集積ユニットにおける発光部、 第 1のホログラム素子などの位置調整が不要になる。
[0033] 上記発明において好ましくは、複数のレーザ光を受光するための受光部を備え、発 光部、受光部、第 1のホログラム素子、第 2のホログラム素子、および発振光分割手段 がー体ィ匕されている。この構成を採用することにより、光集積ユニットを光ピックアップ 装置に搭載する際に、光集積ユニットにおける発光部、第 1のホログラム素子および 発振光分割手段などの位置調整が不要になる。
[0034] 上記発明において好ましくは、複数のレーザ光を受光するための受光部を備え、発 光部、受光部、第 1のホログラム素子、第 2のホログラム素子、位相差板、および発振 光分割手段が一体化されている。この構成を採用することにより、光集積ユニットの 製造時において、発光部と第 1のホログラム素子などの位置調整を行なうことができ、 光集積ユニットを光ピックアップ装置に搭載する際の上記の部品の位置調整が不要 になる。
[0035] 上記発明において好ましくは、発光部は、他の部分力 分離可能なように一体的に 形成されている。この構成を採用することにより、発光部を容易に変更することができ る。
[0036] 本発明に基づく光ピックアップ装置は、上述の光集積ユニットと、発振されるレーザ 光を光ディスクの情報面で集光させるための対物レンズとを備える。この構成を採用 することにより、レーザ光の高い利用効率を有し、小型化を行なうことができる光ピック アップ装置を提供することができる。
[0037] 上記発明において好ましくは、発光部からの発振光を、少なくとも 3つに分割するた めの発振光分割手段と、複数のレーザ光を受光するための受光部とを備える。発光 部は、第 2のレーザ光の波長より第 1のレーザ光の波長が長くなるように形成され、第 1のホログラム素子は、偏光特性を有し、第 2のホログラム素子は、偏光状態に依存し ないように形成され、発光部、受光部、第 1のホログラム素子、第 2のホログラム素子、 位相差板および発振光分割手段が一体化されている。この構成を採用することによ り、発光部と第 1のホログラム素子との位置調整など光集積ユニットを光ピックアップ 装置に搭載する際の上記の部品の位置調整が不要になる。
発明の効果
[0038] 本発明によれば、レーザ光の高い利用効率を有し、小型化を行なうことができる光 集積ユニットおよび光ピックアップ装置を提供することができる。 図面の簡単な説明
[0039] [図 1]実施の形態 1における第 1の光集積ユニットおよび第 1の光ピックアップ装置の 概略断面図である。
[図 2]実施の形態 1における第 2の光集積ユニットおよび第 2の光ピックアップ装置の 概略断面図である。
[図 3]実施の形態 1における第 3の光集積ユニットおよび第 3の光ピックアップ装置の 概略断面図である。
[図 4]実施の形態 2における第 1の光集積ユニットおよび第 1の光ピックアップ装置の 概略断面図である。
[図 5]実施の形態 2における第 2の光集積ユニットおよび第 2の光ピックアップ装置の 概略断面図である。
[図 6]実施の形態 3における第 1の光集積ユニットおよび第 1の光ピックアップ装置の 概略断面図である。
[図 7]実施の形態 3における第 2の光集積ユニットおよび第 2の光ピックアップ装置の 概略断面図である。
[図 8]実施の形態 3における第 3の光集積ユニットおよび第 3の光ピックアップ装置の 概略断面図である。
[図 9]実施の形態 3における第 4の光集積ユニットおよび第 4の光ピックアップ装置の 概略断面図である。
[図 10]実施の形態 3における第 5の光集積ユニットおよび第 5の光ピックアップ装置の 概略断面図である。
[図 11]従来の技術に基づく一の光集積ユニットおよび一の光ピックアップ装置の断面 図である。
[図 12]従来の技術に基づく他の光集積ユニットおよび他の光ピックアップ装置の概略 断面図である。
符号の説明
[0040] 1, 21 発光部、 la, lb 光源、 2, 12, 14, 16 偏光ホログラム素子、 3, 13, 15, 17 無偏光性ホログラム素子、 4a, 4b, 4c 受光部、 5 波長板、 6 対物レンズ、 7 光ディスク、 8a, 8b, 8c 回折格子、 9, 10, 11 ホルダ、 22— 31 基板、 35a, 35b 回折光、 39 基台、 40, 42, 44 光集積ユニット、 41, 43, 45 光ピックアップ装 置、 101, 102 半導体レーザ、 103 3ビーム用回折格子、 106 対物レンズ、 107 ディスク、 111 第 2のホログラム素子、 112 第 1のホログラム素子、 113 コリメータ レンズ、 114 受光素子、 115 レーザパッケージ、 116, 117 透明基板、 121, 12 3 半導体レーザチップ、 124 第 1ホログラム (偏光ホログラム)、 125 第 2ホログラム (無偏光ホログラム)、 126 コリメータレンズ、 127 対物レンズ、 128 光記録媒体、 129 受光素子、 130 波長板、 J 光軸。
発明を実施するための最良の形態
[0041] (実施の形態 1)
図 1から図 3を参照して、本発明に基づく実施の形態 1における光集積ユニットおよ び光ピックアップ装置について説明する。なお、本発明の説明に用いる上面、上方な どの向きを示す用語は、絶対的な向きを示すものではなぐ各部位の相対的な位置 関係を示すものである。
[0042] 図 1は、本実施の形態における第 1の光集積ユニットおよび第 1の光ピックアップ装 置の概略断面図である。光集積ユニット 40は、 2つのレーザ光を発振するための発 光部 1を備える。発光部 1は、光源 laおよび光源 lbを含む。光源 la, lbは、図 1にお ける上向きにレーザ光を発振できるように形成されている。光源 laおよび光源 lbは、 発振されるレーザ光の光軸が互いにほぼ同じ方向になるように形成されて 、る。発光 部 1は、光源 lbカゝら発振される第 2のレーザ光の波長より、光源 laから発振される第 1のレーザ光の波長の方が短くなるように形成されている。たとえば、光源 laからは、 DVD系の光ディスクを記録および再生するために波長 655nmのレーザ光が発振さ れ、光源 lbからは、 CD系の光ディスクを記録および再生するために 785nmの波長 を有するレーザ光が発振される。
[0043] 光源 laから発振される第 1のレーザ光の光樹上には、基板 22、基板 23および位 相差板としての波長板 5が配置されている。基板 22の上面には、光源 laから発振さ れる第 1のレーザ光を回折させるための第 1のホログラム素子として、偏光ホログラム 素子 2が形成されている。基板 23の上面には、光源 lbから発振される第 2のレーザ 光を回折させるための第 2のホログラム素子として、無偏光性ホログラム素子 3が形成 されている。無偏光性ホログラム素子 3は、偏光特性を有さず、レーザ光の回折が偏 光状態に依存しな ヽように形成されて ヽる。
[0044] 偏光ホログラム素子 2は、光源 laから発振されるレーザ光の偏光状態に対して、 90 ° 回転した直線偏光状態のレーザ光を回折するように形成されている。偏光ホロダラ ム素子 2は、光源 laから発振される第 1のレーザ光の光樹が偏光ホログラム素子 2の ほぼ中央部を通るように配置されている。無偏光性ホログラム素子 3は、光源 lbから 発振される第 2のレーザ光の光軸が、無偏光性ホログラム素子 3のほぼ中央部を通る ように配置されている。また、偏光ホログラム素子 2および無偏光性ホログラム素子 3 は、発振された 2つのレーザ光が、光ディスク 7で反射して戻る際の復路の途中に形 成されている。
[0045] 無偏光性ホログラム素子 3は、第 1のレーザ光を回折せずに、第 2のレーザ光を回 折するように形成されている。すなわち、無偏光性ホログラム素子 3は、波長選択性を 有するように形成されている。また、本実施の形態における無偏光性ホログラム素子 3は、回折光のうち 0次回折光の回折効率が約 80%、 ± 1次回折光の回折効率がそ れぞれ 8%ずつになるように形成されて!、る。
[0046] 波長板 5は、第 1のレーザ光に対して λ Ζ4板として作用して、第 2のレーザ光に対 して λ板または λ Ζ2板として作用するように形成されている。発光部 1の側方には、 偏光ホログラム素子 2の回折光を受光するための受光部 4aが形成されている。また、 発光部 1の側方のうち、受光部 4aが配置されている側の反対側には、無偏光性ホロ グラム素子 3の回折光を受光するための受光部 4bが配置されている。本実施の形態 においては、偏光ホログラム素子および無偏光性ホログラム素子の回折光のうち、一 次回折光が用いられている。
[0047] 光集積ユニット 40は、発光部 1、受光部 4a, 4b、基板 22, 23および波長板 5を備 え、光ピックアップ装置 41は、光集積ユニット 40にカ卩えて、波長板 5の上方の光樹 上に、発振されるレーザ光を光ディスク 7で集光させるための対物レンズ 6を備える。
[0048] 図 2に、本実施の形態における第 2の光集積ユニットおよび第 2の光ピックアップ装 置の概略断面図を示す。光集積ユニットが、発光部 1、基板 22, 23および波長板 5を 備えることは、本実施の形態における第 1の光集積ユニットおよび第 1の光ピックアツ プ装置と同様である。
[0049] 第 2の光集積ユニットおよび第 2の光ピックアップ装置においては、受光部の位置 が異なる。受光部 4aおよび受光部 4bは、発光部 1の側方のうち互いに同じ側に配置 されている。受光部 4aおよび受光部 4bは、それぞれの主表面がほぼ同一平面状に なるように配置されている。光ピックアップ装置は、偏光ホログラム素子 2の回折光が 受光部 4bで受光され、無偏光性ホログラム素子 3の回折光が受光部 4aで受光される ように形成されている。その他の構成については、本実施の形態における第 1の光集 積ユニットおよび第 1の光ピックアップ装置と同様である。
[0050] 図 3に、本実施の形態における第 3の光集積ユニットおよび第 3の光ピックアップ装 置の概略断面図を示す。発光部 1および波長板 5を備え、基板 24の上面に偏光ホロ グラム素子 12が形成され、基板 25の上面に無偏光性ホログラム素子 13が形成され ていることは、本実施の形態における第 1の光集積ユニットおよび第 1の光ピックアツ プ装置と同様である。
[0051] 第 3の光集積ユニットおよび第 3の光ピックアップ装置においては、発光部から発振 された 2つのレーザ光を 1つの受光部で受光するように形成されている。基板 24の上 面に形成された偏光ホログラム素子 12および基板 25の上面に形成された無偏光性 ホログラム素子 13は、偏光ホログラム素子 12の回折光 35aと無偏光性ホログラム素 子 13の回折光 35bとが、発光部 1の側方のうちほぼ同じ位置に到達するように形成さ れている。回折光 35aおよび回折光 35bは、 1つの受光部 4cで受光されている。この ように、第 3の光集積ユニットおよび第 3の光ピックアップ装置においては、 1つの受 光部 4cで、両方のレーザ光を受光できるように形成されて!、る。
[0052] その他の構成については、本実施の形態における第 1の光集積ユニットおよび第 1 の光ピックアップ装置と同様である。
[0053] 本実施の形態においては、発光部 1のうち光源 laからは波長の短いレーザ光が発 振され、光源 lbからは波長の長いレーザ光が発振される。光源 laから発振された第 1のレーザ光は、基板 23に形成された無偏光性ホログラム素子 3および基板 22に形 成された偏光ホログラム素子 2を通って、対物レンズ 6で集光され、光ディスク 7に入 射する。
[0054] 光ディスク 7で反射したレーザ光は、再び対物レンズ 6および波長板 5を通って、基 板 22に形成された偏光ホログラム素子 2で回折される。偏光ホログラム素子 2の回折 光 35aは、基板 23の上面に形成された無偏光性ホログラム素子 3が形成されている 領域を通って、受光部 4aに到達する。受光部 4aでは、回折光 35aを受光して、光信 号が検出される。
[0055] 波長板 5は、光源 laから発振される第 1のレーザ光に対して、 λ Z4板として作用 するように形成されている。光源 laから発振された第 1のレーザ光は、波長板 5を通る ことによって円偏光状態となり、光ディスク 7に入射する。光ディスク 7からの反射光は 、再び波長板 5を通ることによって、光源 laから発振されたレーザ光の偏光方向に対 して 90° 回転した直線偏光状態となり、偏光ホログラム素子 2に入射する。
[0056] 偏光ホログラム素子 2は、この 90° 回転した直線偏光状態の反射光を回折するよう に形成されている。このため、光源 laから発振された第 1のレーザ光の反射光は、偏 光ホログラム素子 2で回折され、受光部 4aに導かれる。
[0057] 光源 lbから発振された第 2のレーザ光は、無偏光性ホログラム素子 3、偏光ホログ ラム素子 2および波長板 5を通って対物レンズ 6で集光され、光ディスク 7に入射する 。光ディスク 7からの反射光は、対物レンズ 6、波長板 5および偏光ホログラム素子 2を 通って、無偏光性ホログラム素子 3で回折される。
[0058] 波長板 5は、第 2のレーザ光に対して、 λ Ζ2板または λ板として作用するように形 成されている。波長板 5が、第 2のレーザ光に対して λ Ζ2板として作用する場合に は、発振された第 2のレーザ光が波長板 5を通ることによって、光源 lbから発振され たレーザ光の偏光方向に対して 180° 回転した直線偏光状態となる。この状態で光 ディスク 7に入射する。光ディスク 7からの反射光は、再び波長板 5に入射する。光デ イスクからの反射光力 再び波長板 5を通ることによって、光源 lbから発振されたレー ザ光と同じ偏光方向を有する直線偏光状態となる。このため、第 2のレーザ光の反射 光は、偏光ホログラム素子 2で回折されずに透過する。一方で、無偏光性ホログラム 素子 3においては、偏光状態に関わらずレーザ光が回折されるため、第 2のレーザ光 の反射光は、無偏光性ホログラム素子 3で回折されて受光部 4bに導かれる。
[0059] 波長板 5が、第 2のレーザ光に対して、 λ板として作用する場合には、光源 lbから 発振された第 2のレーザ光が波長板 5を通る際に、発振されたレーザ光の偏光方向と 同じ偏光状態になって光ディスク 7に入射する。光ディスク 7からの反射光が、再び波 長板 5を通ることによって、発振光と同じ直線偏光状態になる。このため、第 2のレー ザ光は、偏光ホログラム素子 2では回折されず、無偏光性ホログラム素子 3で回折さ れて受光部 4bで受光される。
[0060] このように、位相差板としての波長板力 第 1のレーザ光に対して λ Ζ4板として作 用して、さらに、第 2のレーザ光に対してえ板または λ Ζ2板として作用するように形 成されることによって、レーザ光の利用効率を高くすることができ、さらに小型化を行 なうことができる光集積ユニットおよび光ピックアップ装置を提供することができる。
[0061] 第 1のホログラム素子としての偏光ホログラム素子 2は偏光特性を有し、第 2のホログ ラム素子としての無偏光性ホログラム素子 3は、偏光特性を有さないように形成されて いる。この構成を採用することにより、第 2のレーザ光が第 1のホログラム素子を通る際 の光量損失を小さくすることができ、第 2のレーザ光の利用効率を高くすることができ る。また、第 1のホログラム素子および第 2のホログラム素子を容易に形成することが できる。
[0062] 本実施の形態においては、波長の短い第 1のレーザ光を回折させるための第 1の ホログラム素子として偏光ホログラム素子を用い、波長の長 、第 2のレーザ光を回折 させるための第 2のホログラム素子として無偏光性ホログラム素子を用いたが、特にこ の形態に限られず、第 1のホログラム素子として無偏光性ホログラム素子を用いて、 第 2のホログラム素子として偏光ホログラム素子を用いてもょ 、。
[0063] ここで、上記の一方のレーザ光に対しては λ Ζ4板の作用を有し、他方のレーザ光 に対しては λ Ζ2板または λ板の作用を有する位相差板につ!、て詳しく説明する。
[0064] 位相差板にぉ ヽて、直交する 2方向の屈折率をそれぞれ Np、 Ns、位相差板の厚さ を dとすると発生する位相差 Δは、以下の通りになる。
[0065] Δ = (Np-Ns) X d …ひ)
たとえば、第 1のレーザ光の波長を 655nmとすると、位相差板が λ Ζ4板として作 用する場合の位相差 Δは、以下の式により与えられる。
[0066] Δ = (Np-Ns) Xd=0.655X(2k-l)/4 ·'·(2)
ここで、 kは任意の正の整数である。
[0067] 一方で、第 2のレーザ光の波長を 785nmとすると、位相差板が λ Ζ2板 (または λ 板)として作用する場合の位相差 Δは、以下の式により与えられる。
[0068] Δ = (Np-Ns) Xd=0.785Xj/2 ·'·(3)
ここで、 jは任意の正の整数である。
[0069] これらの条件を同時に満足するためには、式(2)および式(3)より、以下の条件を 満たすことが必要である。
[0070] 0.655X (2k-l)/4 = 0.785Xj/2 ·'·(4)
式 (4)を満足するような kおよび jを定めることによって、上記の特性を有する位相差 板を形成することができる。
[0071] たとえば、第 2のレーザ光において、 j = 3のときの位相差 Δは
Δ=0.785X3/2=1.1775
となる。この位相差 Δを、第 1のレーザ光の式(2)に当てはめた場合、
Δ/0.655 = 1.798 = 1.75=(2k-l)/4 (k=4)
となるため、第 1のレーザ光に対しては、ほぼ λΖ4板として作用することになる。
[0072] このように、 kおよび jを最適化することで、一方のレーザ光に対しては、直線偏光を 円偏光に変換し( λ Ζ4板の作用)、他方のレーザ光に対しては直線偏光のまま( λ Ζ2板または λ板の作用)の特性を有する位相差板を形成することができる。
[0073] 第 2のホログラム素子としての無偏光性ホログラム素子 3は、第 1のレーザ光を回折 せずに第 2のレーザ光を回折するように形成されている。すなわち、無偏光性ホログ ラム素子 3は波長選択性を有する。この構成を採用することにより、光源 laから発振 された第 1のレーザ光が無偏光性ホログラム素子 3を通るときの光量損失を小さくする ことができ、第 1のレーザ光の利用効率を高くすることができる。
[0074] たとえば、第 1のレーザ光を用いて、光ディスク 7に情報を記録する場合に、対物レ ンズ 6から照射される第 1のレーザ光の光量を大きくすることができ、光ディスク 7への 高速記録や高速再生が可能になる。
[0075] また、第 2のホログラム素子が波長選択性を有することによって、第 1のホログラム素 子における第 1のレーザ光の回折光が、第 2のホログラム素子が形成されている領域 を通ったとしても、第 1のレーザ光は第 2のホログラム素子で回折されずに透過するた め、光量損失を防止することができる。したがって、光量損失を防止しながら、第 1の ホログラム素子と第 2のホログラム素子とを近づけることができ、光集積ユニットおよび 光ピックアップ装置の小型化を図ることができる。
[0076] 無偏光性ホログラム素子 3においては、透過光 (0次回折光)の効率が大きぐ ± 1 次回折光の効率が小さいことが好ましい。たとえば、本実施の形態のように、無偏光 性ホログラム素子 3の 0次回折の効率を約 80%として、士 1次回折の効率をそれぞれ 8%ずつになるように形成する。この構成を採用することにより、無偏光性ホログラム 素子が波長選択性を有しない場合であっても、光源 laから発振された第 1のレーザ 光が無偏光性ホログラム素子 3を通るときの回折による光量損失を抑えることができる
[0077] また、光源 lb力も発振されたレーザ光が光ディスク 7に向力 際の光量損失を小さく することができる。たとえば、光源 lb力も発振された第 2のレーザ光が CDを録音する ためのレーザ光であったときには、光ディスク(CD)に照射するレーザ光の光量を大 きくすることができるため、高速記録に対応することができる。一方で、光ディスク(CD )からの反射光は、 CDの記録密度が DVDなどに比べて粗いため、光量を非常に大 きくする必要はなぐ上記の回折効率で十分に良好な再生や記録を行なうことができ る。
[0078] 図 2に示す第 2の光集積ユニットおよび光ピックアップ装置については、 2つの受光 部 4a, 4bが発光部 1の側方のうち同じ側に配置されている。この構成を採用すること により、受光部を 1箇所に集めることができ、さらに光集積ユニットおよび光ピックアツ プ装置の小型化を図ることができる。第 2の光集積ユニットおよび第 2の光ピックアツ プ装置においては、受光部 4aの主表面と受光部 4bの主表面とが、ほぼ同一の平面 上になるように配置されている力 特にこの形態に限られず、たとえば、図 2において 、受光部 4aのレーザ光の光軸方向において、受光部 4bよりも上側になるように配置 されていてもよい。
[0079] 図 3に示す第 3の光集積ユニットおよび第 3の光ピックアップ装置においては、発振 された 2つのレーザ光を 1つの受光部 4cで受光できるように形成されている。この構 成を採用することにより、受光部の小型化を行なうことができ、光集積ユニットおよび 光ピックアップ装置の小型化をさらに図ることができる。このように、本発明に基づく光 集積ユニットおよび光ピックアップ装置は、受光部を配置する自由度が大きくなる。
[0080] 本実施の形態においては、発光部 1に含まれる光源 laと光源 lbとは、互いに並ん で配置されている。それぞれの光源 la, lbの発光点同士は、約 110 m離れている 。このため、第 1のレーザ光の光樹と第 2のレーザ光の光軸とは若干異なった位置に 配置される。このような場合においても、第 1のレーザ光を回折させるための第 1のホ ログラム素子と第 2のレーザ光を回折させるための第 2のホログラム素子とを備えるこ とによって、それぞれのレーザ光に合わせて個別にホログラム素子を配置することが できる。このため、受光部に最適の状態でそれぞれのレーザ光を導くことができる。
[0081] 本実施の形態においては、発光部 1から発振されるレーザ光は、 2種類のレーザ光 であったが、特にこの形態に限られず、 3種類以上のレーザ光を発振される発光部を 備える光集積ユニットおよび光ピックアップ装置についても本願発明を適用すること ができる。この場合には、それぞれのレーザ光について個別に回折させるために、そ れぞれのホログラム素子を備えることが好ま 、。
[0082] (実施の形態 2)
図 4および図 5を参照して、本願発明に基づく実施の形態 2における光集積ユニット および光ピックアップ装置につ!、て説明する。
[0083] 本実施の形態における光集積ユニットおよび光ピックアップ装置において、偏光ホ ログラム素子、無偏光性ホログラム素子および位相差板を備えることは、実施の形態
1における光集積ユニットおよび光ピックアップ装置と同様である。発光部において、 2つのレーザ光を発振するために光源が 2つ形成されて ヽることも実施の形態 1にお ける光集積ユニットおよび光ピックアップ装置と同様である。本実施の形態にぉ 、て は、発振光を分割するための発振光分割手段を備える。
[0084] 図 4は、本実施の形態における第 1の光集積ユニットおよび光ピックアップ装置の概 略断面図である。基板 26の上面には、偏光ホログラム素子 14が形成され、基板 27 の上面に無偏光性ホログラム素子 15が形成されている。
[0085] 発光部 1と基板 27との間には、発光部 1からの発振光を少なくとも 3つに分割するた めの発振光分割手段として、回折格子 8aが形成されている。回折格子 8aは、光源 1 aから発振される第 1のレーザ光および光源 lb力 発振される第 2のレーザ光をそれ ぞれ分割するように形成されている。回折格子 8aは、基板 28の上面に形成されてい る。回折格子 8aは、発光部 1から発振される 2つのレーザ光が回折格子 8aの形成さ れて 、る領域内を通るように形成されて 、る。
[0086] 発光部 1の側方には、受光部 4aおよび受光部 4bが形成されている。受光部 4bは、 発光部 1に対して受光部 4aが配置されて 、る側と反対側に配置されて 、る。偏光ホ ログラム素子 14および無偏光性ホログラム素子 15は、回折格子 8aで回折された発 振光の回折光のうち光検出に用いられる回折光が通過するように形成されて 、る。
[0087] 図 5に、本実施の形態における第 2の光集積ユニットおよび第 2の光ピックアップ装 置の概略断面図を示す。基板 30に偏光ホログラム素子 16が形成され、基板 31に無 偏光性ホログラム素子 17が形成されていることは、本実施の形態における第 1の光 集積ユニットおよび第 1の光ピックアップ装置と同様である。
[0088] 第 2の光集積ユニットおよび第 2の光ピックアップ装置においては、基板 29の上下 の主表面に、回折格子 8bおよび回折格子 8cが形成されている。回折格子 8bは、光 源 laから発振される第 1のレーザ光を分割するための第 1の発振光回折格子として 形成されている。回折格子 8cは、第 2のレーザ光を分割するための第 2の発振光回 折格子として形成されている。このように、第 2の光集積ユニットおよび光ピックアップ 装置においては、発振光分割手段が 2つの回折格子を含んでいる。回折格子 8bは、 第 1のレーザ光が通る領域に形成され、回折格子 8cは、第 2のレーザ光が通る領域 に形成されている。
[0089] また、回折格子 8bは、第 2のレーザ光を回折せずに第 1のレーザ光を回折するよう に形成され、回折格子 8cは、第 1のレーザ光を回折せずに、第 2のレーザ光を回折 するように形成されている。すなわち、本実施の形態における発振光分割手段は、波 長選択性を有する。
[0090] 偏光ホログラム素子 16は、第 1のレーザ光が通る領域に形成され、無偏光性ホログ ラム素子 17は、第 2のレーザ光が通る領域に形成されている。また、第 2の光集積ュ ニットおよび第 2の光ピックアップ装置においては、発光部 1の側方に受光部 4cが配 置され、この 1つの受光部で発光部 1から発振される 2つのレーザ光を受光するように 形成されている。
[0091] 上記以外の構成については、実施の形態 1における光集積ユニットおよび光ピック アップ装置と同様であるのでここでは説明を繰返さない。
[0092] 図 4に示す本実施の形態における第 1の光集積ユニットおよび第 1の光ピックアップ 装置においては、発光部からの発振光を少なくとも 3つに分割するための発振光分 割手段を備えている。この構成を採用することにより、 3ビームを用いたトラッキング方 式の光集積ユニットおよび光ピックアップ装置に本発明を適用することができる。
[0093] また、第 1の光集積ユニットおよび第 1の光ピックアップ装置においては、発振光分 割手段としての回折格子 8aが第 1のレーザ光および第 2のレーザ光を分割するように 形成されている。すなわち、 1つの回折格子 8aで、 2つのレーザ光が分割されている 。この構成を採用することにより、発振光分割手段の構成を容易にすることができる。
[0094] 光源 laから発振された第 1のレーザ光および光源 lbから発振された第 2のレーザ 光は、それぞれ回折格子 8aでメインビームとサブビームとに分割される。メインビーム およびサブビームは、偏光ホログラム素子 14および無偏光性ホログラム素子 15にお いて、実施の形態 1におけるレーザ光と同様の作用が付与される。光源 laから発振さ れた第 1のレーザ光のメインビームおよびサブビームは受光部 4aで、また、光源 lbか ら発振された第 2のレーザ光のメインビームおよびサブビームは受光部 4bで受光さ れる。 [0095] 図 5における第 2の光集積ユニットおよび第 2の光ピックアップ装置においては、基 板 29に、発振される 2つのレーザ光にそれぞれ対応するように、回折格子 8b, 8cが 形成されている。この構成を採用することにより、それぞれの発振される複数のレーザ 光に対して、最適な回折角度および回折効率で発振光を分割することができる。また 、回折格子 8bは、第 2のレーザ光を回折せずに第 1のレーザ光を回折するように形 成され、回折格子 8cは、第 1のレーザ光を回折せずに、第 2のレーザ光を回折するよ うに形成されている。この構成を採用することによって、発振光の光量損失を小さくす ることができ、レーザ光の利用効率を向上させることができる。
[0096] 第 2の光集積ユニットおよび第 2の光ピックアップ装置においては、 2つのレーザ光 を 1つの受光部 4cで受光している。光源 la, lbから発振されるレーザ光は波長がそ れぞれ異なるため、同一の発振光分割手段を通った場合には、回折角度が 2つのレ 一ザ光で異なる。このため、受光部に落斜するレーザ光の位置が大きく異なってしま い、 1つの受光部で 2つのレーザ光を受光することが困難になる。しかし、図 5に示す 第 2の光集積ユニットおよび第 2の光ピックアップ装置のように、それぞれのレーザ光 に対してそれぞれの回折格子 8b, 8cを形成することによって、発振光分割手段にお いて、複数のレーザ光の回折角度を容易にほぼ同じにすることができる。このため、 複数のレーザ光を 1つの受光部で容易に受光することができる。すなわち、複数のレ 一ザ光を用いる場合においても、受光部 4cに落斜する複数のレーザ光の位置を容 易に個別に制御することができる。
[0097] 上記以外の作用および効果については、実施の形態 1における光集積ユニットお よび光ピックアップ装置と同様であるのでここでは説明を繰り返さない。
[0098] (実施の形態 3)
図 6から図 10を参照して、本発明に基づく実施の形態 3における光集積ユニットお よび光ピックアップ装置について説明する。本実施の形態においては、実施の形態 1 および実施の形態 2において説明を行なった光集積ユニットおよび光ピックアップ装 置について、具体的な機器の形態について説明を行なう。
[0099] 図 6は、本実施の形態における第 1の光集積ユニットおよび第 1の光ピックアップ装 置の概略断面図である。第 1の光集積ユニットおよび第 1の光ピックアップ装置は、実 施の形態 1における第 3の光集積ユニットおよび第 3の光ピックアップ装置(図 3参照) を固定用部材に取り付けたものである。
[0100] 第 1の光集積ユニット 42においては、発光部 1、受光部 4c、偏光ホログラム素子 12 および無偏光性ホログラム素子 13がホルダ 9を用いて一体化されている。ホルダ 9の 内部の下方には、発光部 1および受光部 4cを固定するための基台 39が形成されて いる。発光部 1は、光源 la, lbを含み、基台 39の上面に固定されている。また、受光 部 4cについても基台 39の上面に固定されている。ホルダ 9の内部において、基台 39 の上方は空洞になっている。
[0101] ホルダ 9の上面には、基板 25および基板 24が接着固定されている。基板 25および 基板 24は、積層するように配置されている。ホルダ 9の上面は、平面状に形成され、 板状の基板 25の主表面がホルダ 9の上面に接着固定されている。基板 25の上面に は、無偏光性ホログラム素子 13が形成されている。基板 24の上面には、偏光ホログ ラム素子 12が形成されている。
[0102] 基板 24および基板 25は、偏光ホログラム素子 12の主表面および無偏光性ホログ ラム素子 13の主表面が、発光部 1から発振されるそれぞれのレーザ光の光軸に対し てほぼ垂直になるように配置されている。波長板 5は、基板 24から離間して配置され ている。
[0103] 光ピックアップ装置 43においては、対物レンズ 6が波長板 5から離間して配置され ている。対物レンズ 6は、発光部 1から発振されるそれぞれのレーザ光の光軸上に配 置され、図示しない固定手段によって固定されている。
[0104] 上記のように、第 1の光集積ユニットおよび第 1の光ピックアップ装置においては、 発光部 1、受光部 4c、第 1のホログラム素子としての偏光ホログラム素子 12および第 2のホログラム素子としての無偏光性ホログラム素子 13がー体ィ匕されている。その他 の構成については、実施の形態 1における第 3の光集積ユニットおよび第 3の光ピッ クアップ装置と同様である。
[0105] 図 7に、本実施の形態における第 2の光集積ユニットおよび第 2の光ピックアップ装 置の概略断面図を示す。第 2の光集積ユニットおよび第 2の光ピックアップ装置にお いて、ホルダ 9を備え、発光部 1および受光部 4cがホルダ 9の内部に固定され、ホル ダ 9の上面に、基板 25および基板 24が固定されていることは、本実施の形態におけ る第 1の光集積ユニットおよび第 1の光ピックアップ装置と同様である。
[0106] 第 2の光集積ユニットおよび第 2の光ピックアップ装置においては、位相差板として の波長板 5が、基板 24の上面に接着固定されている。波長板 5は、主表面が基板 24 の主表面と対向するように貼り合わされて固定されている。このように、第 2の光集積 ユニットおよび第 2の光ピックアップ装置においては、発光部 1、受光部 4c、偏光ホロ グラム素子 12、無偏光性ホログラム素子 13および位相差板としての波長板 5がー体 化されている。その他の構成については、本実施の形態における第 1の光集積ュ- ットおよび光ピックアップ装置と同様である。
[0107] 図 8に、本実施の形態における第 3の光集積ユニットおよび第 3の光ピックアップ装 置の概略断面図を示す。第 3の光集積ユニットおよび第 3の光ピックアップ装置は、 2 つのレーザ光を 1つの受光部で受光するように形成されて 、ることを除 、て、実施の 形態 2における第 1の光集積ユニットおよび第 1の光ピックアップ装置(図 4参照)を固 定用部材に取り付けたものと同じである。
[0108] 発光部 1および受光部 4cは、ホルダ 9の内部に形成された基台 39に固定されてい る。第 3の光集積ユニットおよび第 3の光ピックアップ装置においては、発振光分割手 段として、回折格子 8aを備える。回折格子 8aは基板 28の上面に形成されている。基 板 28はホルダ 9の上面に固定され、基板 28の上面には無偏光性ホログラム素子 15 が形成された基板 27が固定されている。基板 27の上面には、偏光ホログラム素子 1 4が形成された基板 26が固定されている。基板 28、基板 27、および基板 26は、ホル ダ 9の上面に、積層するように接着固定されている。
[0109] 波長板 5は、基板 26から離れて配置されて 、る。偏光ホログラム素子 14、無偏光性 ホログラム素子 15および回折格子 8aは、それぞれの主表面が発光部 1から発振され るレーザ光の光軸に対してほぼ垂直になるように配置されて 、る。
[0110] このように、第 3の光集積ユニットおよび第 3の光ピックアップ装置においては、発光 部 1、受光部 4c、偏光ホログラム素子 14、無偏光性ホログラム素子 15および回折格 子 8aが一体化されている。
[0111] 受光部 4cは、偏光ホログラム素子 14からの回折光および無偏光性ホログラム素子 15からの回折光の両方の光を受光するように形成されている。また、偏光ホログラム 素子 14および無偏光性ホログラム素子 15は、受光部 4cに対して、一次回折光が到 達するように形成されて 、る。その他の構成にっ 、ては実施の形態 2における第 1の 光集積ユニットおよび第 1の光ピックアップ装置と同様である。
[0112] 図 9に、本実施の形態における第 4の光集積ユニットおよび第 4の光ピックアップ装 置の概略断面図を示す。第 4の光集積ユニットおよび第 4の光ピックアップ装置にお いて、ホルダ 9を備え、発光部 1および受光部 4cがホルダ 9の内部に固定されている ことは、本実施の形態における第 3の光集積ユニットおよび第 3の光ピックアップ装置 と同様である。
[0113] 第 4の光集積ユニットおよび第 4の光ピックアップ装置においては、波長板 5が、基 板 26の上面に接着固定されている。すなわち、波長板 5、基板 26、基板 27、および 基板 28が積層するようにホルダ 9の上面に接着固定されている。このように、第 4の光 集積ユニットおよび第 4の光ピックアップ装置においては、発光部 1、受光部 4c、偏光 ホログラム素子 14、無偏光性ホログラム素子 15、波長板 5および回折格子 8aがー体 的に形成されている。その他の構成については、本実施の形態における第 3の光集 積ユニットおよび第 3の光ピックアップ装置と同様である。
[0114] 図 10に、本実施の形態における第 5の光集積ユニットおよび第 5の光ピックアップ 装置の概略断面図を示す。第 5の光集積ユニットおよび第 5の光ピックアップ装置に おいては、第 4の光集積ユニットおよび第 4の光ピックアップ装置の構成において、発 光部 21が他の部分力 分離可能なように一体的に形成されている。
[0115] 第 5の光集積ユニット 44は、ホルダ 10およびホルダ 11を備える。ホルダ 11は、内部 が空洞になるように箱型に形成されている。ホルダ 10の上面には、受光部 4cが固定 されている。ホルダ 11は、ホルダ 10の上面に配置されている。受光部 4cは、ホルダ 1 1の内部に配置されている。発光部 21は、ホルダ 10のほぼ中央部に固定されている 。発光部 21は、単独でパッケージングされており、内部に光源 la, lbを含む。発光 部 21は、ホルダ 10から取外し可能に形成されている。ホルダ 11の上面には、基板 2 8、基板 27、基板 26および波長板 5が積層するように接着固定されている。
[0116] 第 5の光ピックアップ装置 45は、第 5の光集積ユニット 44と対物レンズ 6とを備える。 その他の構成については、本実施の形態における第 4の光集積ユニットおよび第 4の 光ピックアップ装置と同様である。
[0117] 本実施の形態における光集積ユニットおよび光ピックアップ装置において、上記以 外の構成については、実施の形態 1または実施の形態 2における光集積ユニットおよ び光ピックアップ装置と同様であるので、ここでは説明を繰り返さな 、。
[0118] 本実施の形態における光集積ユニットは、複数の部品がモジュールィ匕され、光集 積ユニットの製造において、複数の部品同士の位置調整を行なうことができる。
[0119] 図 6に示す本実施の形態における第 1の光集積ユニットおよび第 1の光ピックアップ 装置においては、発光部 1、受光部 4c、偏光ホログラム素子 12、および無偏光性ホ ログラム素子 13がー体ィ匕されている。すなわち、これらの複数の部品がモジュールィ匕 されている。
[0120] 図 6に示す光集積ユニットにおけるモジュール内での位置調整としては、初めにホ ルダ 9の内部において、光源 la, lbの位置決めを行なって、光源 la, lbを接着固定 する。また、ホルダ 9の内部に受光部 4cの位置決めを行なって、受光部 4cを接着固 定する。次に、発光部 1から発振されるレーザ光の光軸に合わせて無偏光性ホロダラ ム素子 13が形成された基板 25の位置を調整後、ホルダ 9に基板 25を接着固定する 。この後に、偏光ホログラム素子 12が形成された基板 24の位置の調整を行なって、 基板 24を基板 25の上面に接着固定する。
[0121] 発光部 1、受光部 4c、偏光ホログラム素子 12、および無偏光性ホログラム素子 13 がー体ィ匕されることによって、一体ィ匕されたモジュールごとに、発光部 1、受光部 4c、 偏光ホログラム素子 12および無偏光性ホログラム素子 13の位置の調整を行なうこと ができ、光集積ユニット 42を光ピックアップ装置 43に搭載する際には、光集積ュ-ッ トに含まれる上記の部品同士の位置調整が不要になる。
[0122] 図 7に示す本実施の形態における第 2の光集積ユニットおよび第 2の光ピックアップ 装置においては、発光部 1、受光部 4c、偏光ホログラム素子 12、無偏光性ホログラム 素子 13および波長板 5がー体ィ匕されている。
[0123] 第 2の光集積ユニットにおいては、ホルダ 9の内部に発光部 1および受光部 4cを接 着固定した後に、基板 25および基板 24をホルダ 9の上面に積層するように接着固定 する。この後に、基板 24の上面に、波長板 5を積層するように接着固定する。このよう に、第 2の光集積ユニットにおいても、予め、一体ィ匕されたモジュールにおける各部 品の位置調整を行なうことができ、光集積ユニットを光ピックアップ装置に搭載する際 、モジュール内の各部品の位置調整が不要になる。
[0124] さらに、第 2の光集積ユニットにおいては、波長板 5が、基板 24の上面に接着固定 されているため、波長板 5と発光部 1との距離が近くなる。このため、発光部 1から発 振されたレーザ光が波長板 5を透過する際の面積力 S小さくなつて、波長板 5の製作誤 差などに起因する透過波面の収差を小さくできる。このため、光ディスク 7に照射する レーザ光を収差の小さい良好なものにすることができる。
[0125] 図 8に示す第 3の光集積ユニットおよび第 3の光ピックアップ装置においては、発光 部 1、受光部 4c、偏光ホログラム素子 14、無偏光性ホログラム素子 15および回折格 子 8aが一体化されている。
[0126] 第 3の光集積ユニットにおいては、ホルダ 9の内部において、発光部 1および受光 部 4cの位置決めを行なって、発光部 1および受光部 4cをホルダ 9に接着固定する。 一方で、回折格子 8aが形成された基板 28と無偏光性ホログラム素子 15が形成され た基板 27とを接着固定しておいて一体ィ匕しておく。この部材を、ホルダ 9の上面に位 置調整を行ないながら接着固定する。この後に、基板 27の上面に偏光ホログラム素 子 14が形成された基板 26の位置調整を行ないながら基板 26を接着固定する。この ように、第 3の光集積ユニットにおいても、予め、偏光ホログラム素子 14、無偏光性ホ ログラム素子 15および回折格子 8aなどの位置調整を行なうことができ、光集積ュ-ッ トを光ピックアップ装置に搭載する際の位置調整が不要になる。
[0127] 第 3の光集積ユニットにおいては、無偏光性ホログラム素子 15と回折格子 8aとが、 互いに異なる基板に形成されている力 特に、分離して形成されている必要はなぐ たとえば、基板 27の主表面のうち、無偏光性ホログラム素子 15が形成されている側と 反対側の主表面に、予め回折格子 8aが形成されて 、てもよ 、。
[0128] 図 9に示す第 4の光集積ユニットおよび第 4の光ピックアップ装置においては、発光 部 1、受光部 4c、偏光ホログラム素子 14、無偏光性ホログラム素子 15および回折格 子 8aに加え、波長板 5がー体ィ匕されている。第 4の光集積ユニットにおいては、発光 部 1および受光部 4cを配置したホルダ 9の上面に、基板 26, 27, 28を積層するよう に固定したのちに、波長板 5を接着固定する。
[0129] 第 4の光集積ユニットにおいても、上記の部品を一体ィ匕してモジュールィ匕することが でき、光集積ユニットを光ピックアップ装置に搭載する際の位置調整が不要になる。 また、本実施の形態における第 2の光集積ユニットと同様に、波長板 5を発光部 1の 近くに配置することができるため、波長板 5の精度などに起因する透明波面の収差を 小さくすることができる。その他の作用および効果については、第 3の光集積ユニット と同様である。
[0130] 図 10に示す第 5の光集積ユニットおよび第 5の光ピックアップ装置においては、発 光部 21が他の部品から分離可能なように一体的に形成されている。
[0131] 第 5の光集積ユニットにおいては、初めにホルダ 10に発光部 21と受光部 4cとを位 置調整を行ないながら接着固定する。次に、ホルダ 11を介して、回折格子 8a、無偏 光性ホログラム素子 15、偏光ホログラム素子 14、および波長板 5の位置調整を行い ながら、基板 26— 28と波長板 5とを積層するようにホルダ 11の上面に接着固定する
[0132] 発光部 21が他の部分力も分離可能なように一体的に形成されていることによって、 発光部 21のみを容易に異なるものに替えることができる。発光部 21の筐体は、各製 造メーカにおいて共通の形状および共通の大きさを有するものが多いため、光集積 ユニットの製造において、適宜、発光部 21を異なる製造メーカのものに変更すること ができる。すなわち、製造における自由度を大きくすることができる。また、発光部 21 が故障したときの取り換えが容易になる。
[0133] 上記以外の作用および効果については、実施の形態 1および実施の形態 2と同様 であるので、ここでは説明を繰り返さない。
[0134] 本実施の形態においては、実施の形態 1および実施の形態 2における光集積ュ- ットのモジュールィ匕を行なった例として、受光部が 1つのものを取り挙げて説明を行な つたが、特にこの形態に限られず、受光部が複数形成されていてもよい。
[0135] 上記の全ての実施の形態において、偏光ホログラム素子および無偏光性ホロダラ ム素子などのレーザ光を回折させるホログラムについては、複数の領域で異なる格子 を有するように分割されて ヽても構わな 、。
[0136] なお、今回開示した上記実施の形態はすべての点で例示であって制限的なもので はない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求 の範囲と均等の意味および範囲内でのすべての変更を含むものである。
産業上の利用可能性
[0137] 本発明は、光ディスクなどの情報記録媒体に光学的に情報を記録または再生する 光集積ユニットおよび光ピックアップ装置に適用されうる。

Claims

請求の範囲
[1] 波長の異なる複数のレーザ光を発振するための発光部(1, 21)と、
位相差板 (5)と、
前記複数のレーザ光のうち第 1のレーザ光を回折させるための第 1のホログラム素 子(2, 12, 14, 16)と、
前記複数のレーザ光のうち第 2のレーザ光を回折させるための第 2のホログラム素 子(3, 13, 15, 17)とを備え、
前記位相差板(5)は、前記第 1のレーザ光に対して λ Ζ4板として作用して、前記 第 2のレーザ光に対して λ板または λ Ζ2板として作用するように形成された、光集 積ユニット。
[2] 前記発光部(1, 21)は、前記第 2のレーザ光の波長より前記第 1のレーザ光の波長 が長くなるように形成され、
前記第 1のホログラム素子(2, 12, 14, 16)は、偏光特性を有し、
前記第 2のホログラム素子(3, 13, 15, 17)は、偏光状態に依存しないように形成 された、請求項 1に記載の光集積ユニット。
[3] 前記発光部(1, 21)は、前記第 2のレーザ光の波長より前記第 1のレーザ光の波長 が長くなるように形成され、
前記第 1のホログラム素子(2, 12, 14, 16)は、偏光特性を有し、
前記第 2のホログラム素子(3, 13, 15, 17)は、前記第 1のレーザ光を回折せずに 前記第 2のレーザ光を回折するように形成された、請求項 1に記載の光集積ユニット
[4] 前記発光部(1, 21)からの発振光を、少なくとも 3つに分割するための発振光分割 手段(8a, 8b, 8c)を備える、請求項 1に記載の光集積ユニット。
[5] 前記発振光分割手段 (8b, 8c)は、前記第 1のレーザ光を分割するための第 1の発 振光回折格子 (8b)と、
前記第 2のレーザ光を分割するための第 2の発振光回折格子 (8c)と
を含む、請求項 4に記載の光集積ユニット。
[6] 前記発振光分割手段 (8a, 8b, 8c)は、前記第 1のレーザ光および前記第 2のレー ザ光を分割するように形成された回折格子を含む、請求項 4に記載の光集積ユニット 前記複数のレーザ光を受光するための一の受光部 (4a, 4b, 4c)を備え、 前記第 1のレーザ光および前記第 2のレーザ光を、前記一の受光部 (4a, 4b, 4c) で受光するように形成された、請求項 1に記載の光集積ユニット。
前記複数のレーザ光を受光するための受光部 (4a, 4b, 4c)を備え、
前記発光部(1, 21)、前記受光部 (4a, 4b, 4c)、前記第 1のホログラム素子(2, 1
2, 14, 16)および前記第 2のホログラム素子(3, 13, 15, 17)が一体化されている、 請求項 1に記載の光集積ユニット。
前記複数のレーザ光を受光するための受光部 (4a, 4b, 4c)を備え、
前記発光部(1, 21)、前記受光部 (4a, 4b, 4c)、前記第 1のホログラム素子(2, 1
2, 14, 16)、前記第 2のホログラム素子(3, 13, 15, 17)、および前記位相差板(5) が一体化されて 、る、請求項 1に記載の光集積ユニット。
前記発光部(1, 21)力 の発振光を、少なくとも 3つに分割するための発振光分割 手段(8a, 8b, 8c)と、
前記複数のレーザ光を受光するための受光部 (4a, 4b, 4c)と
を備え、
前記発光部(1, 21)、前記受光部 (4a, 4b, 4c)、前記第 1のホログラム素子(2, 1 2, 14, 16)、前記第 2のホログラム素子(3, 13, 15, 17)、および前記発振光分割 手段(8a, 8b, 8c)がー体ィ匕されている、請求項 1に記載の光集積ユニット。
前記発光部(1, 21)力 の発振光を、少なくとも 3つに分割するための発振光分割 手段(8a, 8b, 8c)と、
前記複数のレーザ光を受光するための受光部 (4a, 4b, 4c)と
を備え、
前記発光部(1, 21)、前記受光部 (4a, 4b, 4c)、前記第 1のホログラム素子(2, 1 2, 14, 16)、前記第 2のホログラム素子(3, 13, 15, 17)、前記位相差板(5)、およ び前記発振光分割手段(8a, 8b, 8c)が一体化されている、請求項 1に記載の光集 積ユニット。 [12] 前記発光部(1, 21)は、他の部分力も分離可能なように一体的に形成されている、 請求項 1に記載の光集積ユニット。
[13] 請求項 1に記載の光集積ユニットと、
発振されるレーザ光を光ディスク(7)の情報面で集光させるための対物レンズ (6)と を備える、光ピックアップ装置。
[14] 前記発光部(1, 21)からの発振光を、少なくとも 3つに分割するための発振光分割 手段(8a, 8b, 8c)と、
前記複数のレーザ光を受光するための受光部 (4a, 4b, 4c)と
を備え、
前記発光部(1, 21)は、前記第 2のレーザ光の波長より前記第 1のレーザ光の波長 が長くなるように形成され、
前記第 1のホログラム素子(2, 12, 14, 16)は、偏光特性を有し、
前記第 2のホログラム素子(3, 13, 15, 17)は、偏光状態に依存しないように形成 され、
前記発光部(1, 21)、前記受光部 (4a, 4b, 4c)、前記第 1のホログラム素子(2, 1 2, 14, 16)、前記第 2のホログラム素子(3, 13, 15, 17)、前記位相差板(5)および 前記発振光分割手段(8a, 8b, 8c)が一体化されている、請求項 13に記載の光ピッ クアップ装置。
PCT/JP2005/000182 2004-01-16 2005-01-11 ホログラム素子を備える光集積ユニットおよび光ピックアップ装置 WO2005069287A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/586,021 US20080018969A1 (en) 2004-01-16 2005-01-11 Optical Integrated Unit Including Hologram Element and Optical Pickup Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004009227A JP2005203041A (ja) 2004-01-16 2004-01-16 光集積ユニットおよび光ピックアップ装置
JP2004-009227 2004-01-16

Publications (1)

Publication Number Publication Date
WO2005069287A1 true WO2005069287A1 (ja) 2005-07-28

Family

ID=34792265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000182 WO2005069287A1 (ja) 2004-01-16 2005-01-11 ホログラム素子を備える光集積ユニットおよび光ピックアップ装置

Country Status (4)

Country Link
US (1) US20080018969A1 (ja)
JP (1) JP2005203041A (ja)
CN (1) CN1910669A (ja)
WO (1) WO2005069287A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058389A1 (en) 2005-11-21 2007-05-24 Ricoh Company, Ltd. Light source unit, optical detector unit, optical pickup device, and optical disk device
JP4925256B2 (ja) * 2006-01-20 2012-04-25 株式会社リコー 光源ユニット、光検出ユニット、光ピックアップ装置及び光ディスク装置
JP4683553B2 (ja) * 2005-11-21 2011-05-18 株式会社リコー 光源ユニット、光検出ユニット、光ピックアップ装置及び光ディスク装置
JP2008004172A (ja) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JP4732289B2 (ja) * 2006-09-21 2011-07-27 シャープ株式会社 光ピックアップ装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855363A (ja) * 1994-08-12 1996-02-27 Matsushita Electric Ind Co Ltd 光ヘッド
JP2000076689A (ja) * 1998-08-31 2000-03-14 Sharp Corp 光ピックアップ装置
JP2000123403A (ja) * 1998-10-19 2000-04-28 Victor Co Of Japan Ltd 光ピックアップ及び光デバイス
JP2001155375A (ja) * 1999-11-30 2001-06-08 Asahi Glass Co Ltd 光ヘッド装置
JP2001283456A (ja) * 2000-03-30 2001-10-12 Alps Electric Co Ltd 発光部材の取り付け構造
JP2001344800A (ja) * 2000-05-30 2001-12-14 Asahi Glass Co Ltd 光ヘッド装置
JP2003109243A (ja) * 2001-09-28 2003-04-11 Ricoh Co Ltd 光ピックアップ装置および光ディスクドライブ装置
JP2003317300A (ja) * 2002-04-23 2003-11-07 Ricoh Co Ltd 光ピックアップ装置及び光ディスク装置
JP2003338078A (ja) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd 光記録媒体及び記録方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822771B2 (en) * 2001-09-28 2004-11-23 Ricoh Company, Ltd. Optical pickup unit and optical disk drive for accurate and stable information recording and reproduction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855363A (ja) * 1994-08-12 1996-02-27 Matsushita Electric Ind Co Ltd 光ヘッド
JP2000076689A (ja) * 1998-08-31 2000-03-14 Sharp Corp 光ピックアップ装置
JP2000123403A (ja) * 1998-10-19 2000-04-28 Victor Co Of Japan Ltd 光ピックアップ及び光デバイス
JP2001155375A (ja) * 1999-11-30 2001-06-08 Asahi Glass Co Ltd 光ヘッド装置
JP2001283456A (ja) * 2000-03-30 2001-10-12 Alps Electric Co Ltd 発光部材の取り付け構造
JP2001344800A (ja) * 2000-05-30 2001-12-14 Asahi Glass Co Ltd 光ヘッド装置
JP2003109243A (ja) * 2001-09-28 2003-04-11 Ricoh Co Ltd 光ピックアップ装置および光ディスクドライブ装置
JP2003317300A (ja) * 2002-04-23 2003-11-07 Ricoh Co Ltd 光ピックアップ装置及び光ディスク装置
JP2003338078A (ja) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd 光記録媒体及び記録方法

Also Published As

Publication number Publication date
JP2005203041A (ja) 2005-07-28
US20080018969A1 (en) 2008-01-24
CN1910669A (zh) 2007-02-07

Similar Documents

Publication Publication Date Title
JP3662519B2 (ja) 光ピックアップ
JP4841401B2 (ja) 光ピックアップ装置
JPH10319318A (ja) 光ピックアップ装置
JP3459777B2 (ja) 光ピックアップ装置
JP2004227746A (ja) 光ピックアップ装置および半導体レーザ装置
WO2005069287A1 (ja) ホログラム素子を備える光集積ユニットおよび光ピックアップ装置
JP4833797B2 (ja) 光ピックアップおよび光情報処理装置
JP2004103225A (ja) 2波長光源モジュールを採用した光ピックアップ
JP2001216677A (ja) 光ピックアップおよびそれを用いた情報再生装置または情報記録再生装置
JP4296662B2 (ja) 光ヘッド装置
US7911922B2 (en) Optical-integrated unit and optical pickup device used for reading and/or writing information from/onto an optical record medium
KR100915490B1 (ko) 광 픽업 장치, 광 디스크 장치 및 레이저 출력기
JP3668096B2 (ja) 光ピックアップ装置
JP2001028145A (ja) 光学ヘッド装置及びディスク録再装置
KR100464419B1 (ko) 기록/재생용 호환형 광픽업
JP3389416B2 (ja) 光ピックアップ装置
JP2002237085A (ja) 光ピックアップおよびそれを用いた光学的情報再生装置または記録装置
KR100575633B1 (ko) 이종 광디스크 겸용 광픽업 조정방법과 그에 적합한광픽업 장치
JP2004103145A (ja) 光ピックアップ及び光情報記録再生装置
WO2011021474A1 (ja) 光ピックアップ装置
WO2011058917A1 (ja) 光ピックアップ装置
KR20070121502A (ko) 광픽업장치
JP2005310298A (ja) 光ピックアップおよび光情報処理装置
WO2011033891A1 (ja) 光ピックアップ装置
JP2011198421A (ja) 光ピックアップ、および光情報処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580002524.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10586021

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10586021

Country of ref document: US