WO2005068577A1 - 制振材料および制振金属板 - Google Patents

制振材料および制振金属板 Download PDF

Info

Publication number
WO2005068577A1
WO2005068577A1 PCT/JP2005/000603 JP2005000603W WO2005068577A1 WO 2005068577 A1 WO2005068577 A1 WO 2005068577A1 JP 2005000603 W JP2005000603 W JP 2005000603W WO 2005068577 A1 WO2005068577 A1 WO 2005068577A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
sea
island
damping material
vibration damping
Prior art date
Application number
PCT/JP2005/000603
Other languages
English (en)
French (fr)
Inventor
Akio Sugimoto
Hironobu Nakanishi
Shigetoshi Araki
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US10/581,443 priority Critical patent/US20070078227A1/en
Priority to EP05703840A priority patent/EP1707608A4/en
Publication of WO2005068577A1 publication Critical patent/WO2005068577A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/142Variation across the area of the layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains

Definitions

  • the present invention belongs to a technical field related to a vibration damping material and a vibration damping metal plate.
  • Structural materials typified by steel plates, aluminum plates, and industrial plastics have a high elastic modulus and are widely used to secure rigidity and strength required for structures.
  • such materials have low vibration damping performance, especially in structures where quietness is required, such as automobiles, railway bodies and residential rooftops, because of the lack of vibration damping performance of the structural material itself.
  • measures to impart vibration damping performance have been taken, such as attaching a vibration damping material to the surface of the structure.
  • the first is that a damping material is stuck on the surface of a structural material, and a plate made of the same material as the structural material or a plate having rigidity near the damping material is laminated thereon.
  • a constrained type because elongation deformation is restrained by a plate provided on it and shear deformation is easily caused.
  • a plate provided on the damping material is called a restraint plate.
  • the second method is to attach a damping material having an elastic coefficient as close as possible to the structural material to the surface of the structural material, and to restrict the elongation and deformation of the damping material compared to the first type. Because it does not, it is called unconstrained.
  • the first type of the restraint type vibration damping material includes a product in which a vibration damping material is sandwiched between two elastic plates such as a steel plate, an aluminum plate, glass, and a hard resin.
  • a vibration damping material is sandwiched between two elastic plates such as a steel plate, an aluminum plate, glass, and a hard resin.
  • the steel sheet is made of steel or aluminum, it can be used as a structure by press-forming as it is because plastic casting is possible.
  • the sandwich of the damping material between two steel sheets is widely recognized as a damping steel sheet.
  • the vibration damping performance which is the original purpose, must be increased as much as possible. It is known that the damping effect of a damping material is maximized at its glass transition temperature, and the glass transition temperature of the damping material is adjusted to the operating temperature in accordance with the environment temperature. It is important to adjust to
  • the elastic modulus of the elastic plate was set to the structure of the elastic plate adhesive-elastic plate as the constrained type and the shear modulus was adjusted when aluminum was used as the elastic plate. It was compared with the range (7X10 4 ⁇ (, ⁇ ) ⁇ 7X10 6 Pa, power, 0.5 tanS ⁇ 3.0).
  • Hard dangling agent modified silicone 55% + calcium carbonate 40%
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a vibration damping material and a vibration damping metal plate having excellent vibration damping performance.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, completed the present invention. According to the present invention, the above object can be achieved.
  • the present invention completed in this way and achieving the above object relates to a damping material and a damping metal plate, and the damping material according to claim 117 of the claims (A damping material according to the seventeenth invention), a damping metal plate according to claim 8 (a damping metal plate according to the eighth invention), which has the following configuration.
  • the vibration damping material according to claim 1 is a vibration damping material containing at least one kind of polymer material, wherein the polymer material has a sea-island structure, and forms a sea portion of the sea-island structure. Compared to the loss factor tan ⁇ of the polymer material to be formed.
  • the loss factor tan ⁇ of the molecular material is large and the elasticity of the polymer material constituting the sea part is large.
  • the vibration damping material is characterized in that the ratio of the elastic modulus of the polymer material constituting the island portion to the modulus is 0.1-2 [first invention].
  • the vibration damping material according to claim 2 is the vibration damping material according to claim 1, wherein bubbles are present in the polymer material forming the sea part [second invention].
  • the vibration-damping material according to claim 3 is characterized in that the polymer material constituting the island portion has a shear elastic modulus ⁇ force X 10 5 —4 X 10 9 Pa. With vibration damping material
  • damping material according to claim 5 wherein the shear modulus ⁇ force X 10 6 of the polymeric material constituting the sea portion - more of claims 1 one 4 which is a 2 chi 10 9 Pa Crab described
  • the vibration damping material according to claim 6 is the vibration damping material according to any one of claims 115, wherein the polymer material contained is two or more types [sixth invention].
  • the vibration-damping metal plate according to claim 8 is a vibration-damping metal plate having a vibration-damping structure in which the vibration-damping material according to any one of claims 117 to 17 is attached to a metal plate [ invention ⁇ .
  • the vibration damping material according to the present invention has excellent vibration damping performance, and according to this, the vibration damping property of a structural material or the like can be improved.
  • the vibration damping metal plate according to the present invention has excellent vibration damping properties.
  • Vibration-damping material (sea-like resin with loss coefficient tan ⁇ : 0.1 and island-like resin in volume content of 50
  • the vertical axis is the tan ⁇ of the island-shaped resin, and the curve in the figure is the loss coefficient t of the damping material.
  • the vertical axis is the tan ⁇ of the island-shaped resin, and the curve in the figure is the loss coefficient t of the damping material.
  • Vibration damping material (sea-based resin with a loss factor tan ⁇ of 0.5 and island-shaped resin in volume content of 30
  • the horizontal axis is the rigidity ratio / ⁇
  • the vertical axis is the tan ⁇ of the island-shaped resin.
  • the curve in the figure shows the contour of the loss coefficient tan ⁇ of the damping material.
  • the inventors of the present invention do not provide adhesive strength to a vibration damping resin having high vibration damping performance, but use a low vibration damping adhesive having high adhesive strength to provide a high vibration damping performance.
  • a new idea is to form a sea-island structure in which the vibration damping material floats in an island shape, thereby ensuring both adhesive strength and improved vibration damping performance.
  • the island-like resin constituting the island portion with respect to the elastic modulus of the sea-like resin (the polymer material constituting the sea portion). If the ratio of the elastic moduli of the polymer material (the elastic modulus is equal to the ratio of the shear modulus and the ratio of the rigid modulus) is 0.1-2.0, the blend type The loss factor tan ⁇ of the damping material is
  • the elastic modulus ratio be 0.1-0.6, and more preferably 0.1-0.4. In this case, a higher level loss coefficient tan S That we can secure.
  • the sea-island structure refers to a state in which two or more types of polymer materials that are incompatible with each other are mixed, and when one polymer is compared with the sea, the other polymer is phase-separated in an island shape.
  • the copolymers obtained by adding a curing agent or copolymerizing the polymer to be mixed called a compatibilizer
  • the sea-island structure can be fixed by methods such as the addition of iron.
  • the sea-island structure in the present invention means that in a multi-component polymer material made of an incompatible polymer, a continuous phase (sea portion: matrix phase) in which one component force is also present in the other component.
  • the sea part in the present invention refers to a phase of the sea-island structure that has a higher area ratio to the entire cross section when observed by a scanning or transmission electron microscope (SEM, TEM) or the like.
  • the term “island” means a dispersed phase having a low area ratio when observed as described above.
  • the average dispersed particle diameter is several / zm to several hundred / zm.
  • a block copolymer or a da- raft copolymer obtained by copolymerizing two or more types of monomers may be used alone in an island portion having a size of the order of Angstrom (for example, about several tens of amperes). Is known to form, in particular, microphase separation. In this case, only one type of polymer material is used. In the present invention, the term “sea-island structure” including microphase separation is used.
  • the shear elastic modulus of the blend-based vibration damping material be adjusted to set the viscoelastic property in the above-described appropriate range, but also the islands are formed by the bubbles. It was also found that the shear strain energy of the state-of-the-art resin (island-like damping material) increased, and the loss factor tan ⁇ (damping performance) of the blend-based damping material increased.
  • the vibration damping material of the present invention includes, in addition to the polymer material, constituent components used in ordinary polymer compositions, such as various fillers and pigments, as long as the effects of the present invention are not impaired. , A coupling agent, a leveling agent, a viscosity modifier and the like.
  • the present invention has been completed based on such knowledge and the like, and has a vibration-damping material having the above-described configuration and a metal plate to which the vibration-damping material is adhered.
  • the vibration damping material according to the present invention completed in this way is a vibration damping material containing at least one kind of polymer material, wherein the polymer material has a sea-island structure, Compared to the loss factor tan ⁇ of the polymer material constituting the sea part of the sea-island structure,
  • the loss factor tan ⁇ of the polymer material forming the island portion is large and the sea portion is formed.
  • a vibration-damping material wherein the ratio of the elastic modulus of the polymer material forming the island portion to the elastic modulus of the polymer material is 0.1 to 1 [first invention].
  • the vibration damping performance is excellent. That is, while having a sea-island structure, the loss coefficient tan ⁇ of the polymer material forming the island portion of the sea-island structure is larger than the loss coefficient tan ⁇ of the polymer material forming the sea portion of the sea-island structure, and Since the ratio of the elastic modulus of the polymer material constituting the island portion to the elastic modulus of the polymer material constituting the sea portion is 0.1-2, the loss coefficient tan ⁇ of the damping material can be significantly improved. , So it has excellent vibration suppression performance
  • the vibration damping material according to the present invention has excellent vibration damping performance, and according to this, the vibration damping property of the structural material can be improved.
  • the loss coefficient tan ⁇ of the vibration damping material is used.
  • the bubbles when bubbles exist in the polymer material constituting the sea part, as can be understood from the above findings, the bubbles reduce the shear modulus of the vibration damping material. It is not only possible to adjust the viscoelastic properties to the appropriate range described above, but also to increase the shear strain energy of the polymer material constituting the island by this bubble, and to reduce the loss coefficient tan ⁇ of the damping material. It is possible to further improve the vibration control performance.
  • the air bubbles are not limited to those already existing at the time when the material constituting the sea part and the material constituting the island part are mixed to produce the damping material, and are generated after the damping material is produced. Also (or generated) bubbles may be used. In other words, the existence time of the bubble is not limited, and it is sufficient that the bubble exists at the time of producing the vibration damping material or thereafter.
  • the vibration damping performance can be improved and a higher level of vibration damping performance can be obtained [third invention].
  • the loss coefficient tan ⁇ of the polymer material forming the island portion is 0.1 to 10.
  • the loss factor tan ⁇ of the layered damping material can be improved, and a higher level
  • the shear modulus of the polymer material constituting the sea part is ⁇ force X 10 6 — 2 X 10 9 Pa
  • the vibration-damping metal plate according to the present invention is a vibration-damping metal plate having a vibration-damping structure in which any of the vibration-damping materials according to the seventeenth invention is adhered to the metal plate. You.
  • This damping metal plate has excellent damping properties, and according to this, the damping properties of structural materials and the like can be improved. [Eighth invention].
  • the metal plate constituting the vibration-damping metal plate is not particularly limited as long as it is generally used as a structural material, and specifically, for example, an aluminum alloy, a steel plate, a titanium plate, and the like. And so on.
  • the loss coefficient tan ⁇ is one of indexes indicating the magnitude of the vibration damping performance of a material, and is the tangent of the phase difference ⁇ between the stress F acting on the material and the strain D. (tan).
  • tan ⁇ is a loss coefficient of the damping material having the sea-island structure
  • tan ⁇ is the damping material
  • I is the loss factor of the island portion of the damping material.
  • the shear modulus of elasticity can be measured, for example, by the following measurement method.
  • a strip-shaped sample was prepared from the target damping material (polymer material constituting the sea part, polymer material constituting the island part, blend-based vibration damping material), and a U-shaped jig was formed.
  • the sample and the flat jig sample are placed on top of each other in this order, and the U-shaped jig and the sample, and the sample and the flat jig are closely attached and fixed.
  • one of the two jigs is fixed, and the other is vibrated so as to generate shear deformation in the sample, and the time waveform of the stress F and the displacement D and the phase difference ⁇ at that time are measured.
  • the dynamic complex shear modulus can be determined from the following equation.
  • the dynamic complex shear modulus can be obtained from
  • tan ⁇ (also expressed as 7?) Is obtained from the above dynamic complex shear modulus.
  • Example 1 Examples of the present invention and comparative examples will be described below. It should be noted that the present invention is not limited to this embodiment, but can be implemented with appropriate modifications within a range that can conform to the gist of the present invention. include.
  • Example 1 Example 1
  • j is the imaginary unit
  • FIG. 1 shows an example of a result of calculating the loss coefficient tan ⁇ .
  • the vertical axis is the loss factor (tan ⁇ ) of the island-shaped resin (the polymer material constituting the island portion of the sea-island structure), and the horizontal axis is the sea-shaped resin.
  • the ratio of the shear modulus I of the island-shaped resin to ⁇ (shown as rigidity in the figure) is I I (same as the elastic modulus ratio and the rigidity ratio).
  • the curve in the figure is the contour line of the loss coefficient tan ⁇ of the damping material.
  • the number given indicates the value of the loss coefficient tan ⁇ of the damping material. For example, 0.5 and
  • Fig. 1 shows the results when seawater resin having a loss coefficient tan ⁇ of 0.1 was mixed with island-shaped resin at a volume content of 50%.
  • Fig. 2 shows the results when seawater resin with a loss factor tan ⁇ of 0.1 was mixed with island-shaped resin at a volume content of 30%.
  • the volume content of these island-shaped resins The ratio is the ratio (percentage) of the volume occupied by the island-shaped resin to the total volume occupied by the damping material having a sea-island structure.
  • volume content ratio in a broad sense, including its ratio to the total volume, will be used.
  • the loss factor tan ⁇ of the damping material is 0.5 or more for the sea-like resin.
  • the rigidity ratio / IX of the island-shaped resin is in the range of 0.1 to 2.0.
  • the rigidity ratio / ⁇ is in the range of 0.1-0.4.
  • the loss coefficient tan ⁇ of the damping material is 0.5 or more for the sea-like resin.
  • the rigidity ratio / IX of the island-shaped resin is in the range of 0.1-0.6.
  • the loss coefficient of the damping material when the rigidity ratio Z of the island-shaped resin to the sea-shaped resin is 0.1-2.0.
  • a blend-based vibration damping material having a sea-island structure formed by the same method as in Example 1 was manufactured, and similar measurements and investigations were performed. However, for some of them, bubbles were generated in the sea-like resin.
  • FIG. 3-4 An example of the result is shown in Fig. 3-4.
  • the ordinate and abscissa indicate the same as in the case of FIG.
  • the line in the figure is the contour line of the loss coefficient ta ⁇ ⁇ of the damping material, as in the case of FIG. Figure 3 shows that seawater resin with a loss factor tan ⁇ of 0.5
  • the loss factor tan ⁇ of the island-shaped resin is up to 5.5.
  • the coefficient tan ⁇ can be increased to 1.0.
  • the bubbles as described above are obtained by mixing gas-like particles inside the sea-like resin with the sea-like resin before mixing the sea-like resin with the island-like resin. It may be produced by mixing a fat and island-shaped resin to produce a damping material.
  • a foaming agent which is vaporized by heating to form air bubbles is previously mixed with the sea-like resin, and a damping material is manufactured. Then, the damping material is used as a damping structure. Before heating, for example, after attaching the damping material to the metal plate and before using it as a product, or before applying the damping material to the metal plate and forming it before using it as a product, It may be a method of generating bubbles.
  • the elastic coefficient of the sea-like resin can be set to be high, and it is generated around the bubbles inside the sea-like resin at the time of molding. As a result, it is possible to prevent the stress concentration from occurring, so that the adhesive strength can be increased. Then, before the product is used as a product, it is heated to generate bubbles, whereby the elastic coefficient of the vibration damping material can be set in the above-mentioned appropriate range and the loss coefficient tan ⁇ can be further improved. That is, as a product
  • the selection range of the polymer material used for the seawater resin can be expanded, and further, the adhesive strength can be improved.
  • the vibration damping material according to the present invention is excellent in vibration damping performance, and according to this, the vibration damping performance of the structural material can be improved, so that the noise due to the insufficient vibration damping performance of the structural material can be reduced. Therefore, it can be suitably used as a structural material for which it is desired to impart vibration damping performance.

Abstract

 制振性能に優れた制振材料および制振金属板を提供する。  (1) 少なくとも1種類の高分子材料を含有する制振材料であって、前記高分子材料が海島構造を有し、前記海島構造の海部を構成する高分子材料の損失係数tanδMに比べて前記海島構造の島部を構成する高分子材料の損失係数tanδIが大きく、かつ、前記海部を構成する高分子材料の弾性率に対する前記島部を構成する高分子材料の弾性率の比が0.1~2であることを特徴とする制振材料、(2)前記制振材料において海部を構成する高分子材料中に気泡が存在するもの、(3)前記制振材料において島部を構成する高分子材料のせん断弾性係数μIが5×105~4×109Paであるもの、(4)前記制振材料において島部を構成する高分子材料の損失係数tanδIが0.1~10であるもの、(5)前記制振材料が金属板に貼り付けられた制振構造を備える制振金属板等。

Description

明 細 書
制振材料および制振金属板
技術分野
[0001] 本発明は、制振材料および制振金属板に関する技術分野に属するものである。
背景技術
[0002] 鋼板やアルミ板あるいは工業プラスチックに代表される構造材料は、高い弾性係数 を有しており、構造物に必要な剛性、強度を確保するために広く用いられている。反 面、このような材料は、振動減衰性能が低ぐ特に自動車、鉄道の車体や住宅の屋 根など、静粛性を要求される構造では、構造材料そのものの振動減衰性能不足が原 因となる騒音を防止するために、制振材料を構造体表面に貼るなど、振動減衰性能 の付与対策が行われて 、る。
[0003] このような対策が行われた制振構造には、大別して 2つのタイプがある。
[0004] 1つ目は、構造材料の表面に制振材を貼り、その上に構造材料と同じ材料の板もし くはこれに近 、剛性を有する板を積層したものであり、制振材料がその上に設けられ た板で伸び変形が拘束され、せん断変形しやすくなることから、拘束型と呼ばれてい る。制振材料の上に設ける板のことを、拘束板という。
[0005] 2つ目は、構造材料の表面に構造材料に出来るだけ近い弾性係数をもつ制振材 料を貼るもので、 1つ目のタイプと比較して、制振材料の伸び変形を拘束しないことか ら、非拘束型と呼ばれている。
[0006] なお、 1つ目の拘束型制振材のタイプには、 2枚の鋼板、アルミ板、ガラス、硬質榭 脂などの弾性板の間に制振材をサンドイッチした製品があり、特に弾性板が鋼板や アルミ板などの場合には、塑性カ卩ェが可能なことから、そのままプレス成形して構造 体として使用することもできる。 2枚の鋼板で制振材をサンドイッチしたものは、制振 鋼板として広く認知されて 、る。
[0007] 構造材料の表面に制振材料を貼り付けるためには、制振材料そのものに十分な接 着力を備えさせるか、制振材料の表面に別途接着材を塗るなどの方法が採用されて いる。特に、制振鋼板などに代表されるように、金属などの弾性板の表面にあらかじ め制振材料を接着した材料をプレス成形して使用したい場合には、接着材または制 振材料と弾性板との界面剥離強度、接着材そのものの強度、制振材料そのものの強 度を高めておく必要がある。
[0008] また、当然ながら本来の目的である制振性能については、これを出来るだけ大きく させておく必要があることはいうまでもない。制振材料の持つ制振作用は、そのガラス 転移点温度において最大となることが知られており、使用する環境の温度に応じて、 制振材料のガラス転移温度をその使用環境温度になるように調整しておくことが重要 である。
[0009] 接着強度が確保された市販接着剤〔下記(1)一 (7)〕につ ヽて、そのせん断弾性係 数 と損失係数 tan δ (= / H )を、周波数 10Hz— ΙΟΚΗζ、温度 20— 80°C
1 2 1
の範囲で調べ、この結果〔下記(1)一(7)〕に基づき、例えば拘束型として弾性板 接 着剤—弾性板の構造とし、弾性板としてアルミを使用した場合のせん断弾性係数適 正範囲(7X104≤ ( 、 μ )≤7X106Pa、力、つ、 0.5≤tanS≤3.0)と it較した。
1 2
この結果、ほとんどの接着材が充分な性能を備えて 、な 、ことがわ力つた。
[0010] (1)主剤:エポキシ、硬化剤:ポリアミド
A type μ =4 X 108— 2 X 109Pa tan δ =0.04—0.4
B type μ = 1 X 108— 8 X 108Pa tan δ =0.1— 0.8
(2)主剤:エポキシ、硬化剤:変性シリコーン
μ =2X107— 3X108Pa tan δ =0. 1—0.3
(3)主剤:エポキシ 48% +炭酸カルシウム 45%、
硬ィ匕剤:変性シリコーン 55% +炭酸カルシウム 40%
μ =1X107— 2X108Pa tan δ =0. 1—0.3
(4)主剤及び硬化剤:変性アタリレート
μ =1Χ108— 8X108Pa tan δ =0.1—0.3
(5)ポリウレタン 1液性
A type μ = 1 X 106— 1 X 10?Pa tan δ =0.3—0.6
B type μ =9 X 105— 1 X 10?Pa tan δ =0.3—0.5
(6)ポリオレフイン系 μ = 1 X 107— 2 X 108Pa tan δ =0. 3—0. 5
(7)クロロプレンゴム系
μ = 5 Χ 105— l X 106Pa tan δ =0. 1—0. 2
[0011] また、これまでは、使用する高分子材料の弾性率や、これと混合する別の高分子材 料の弾性率にっ 、て具体的な数値の記載がなく、どのような材料をどのような比率で 混ぜ合わせれば、効果的に制振特性を向上できるのか、また、混合された材料の弾 性係数が拘束型に適した数値になって 、るかどうかを示す設計指針など、具体的な 榭脂の選定方法は何ら開示されておらず、不明のままであった。
発明の開示
[0012] 本発明はこのような事情に着目してなされたものであって、その目的は、制振性能 に優れた制振材料および制振金属板を提供しょうとするものである。
[0013] 本発明者らは、上記目的を達成するため、鋭意研究を行なった結果、本発明を完 成するに至った。本発明によれば上記目的を達成することができる。
[0014] このようにして完成され上記目的を達成することができた本発明は、制振材料およ び制振金属板に係わり、特許請求の範囲の請求項 1一 7記載の制振材料 (第 1一 7 発明に係る制振材料)、請求項 8記載の制振金属板 (第 8発明に係る制振金属板)で あり、それは次のような構成としたものである。
[0015] すなわち、請求項 1記載の制振材料は、少なくとも 1種類の高分子材料を含有する 制振材料であって、前記高分子材料が海島構造を有し、前記海島構造の海部を構 成する高分子材料の損失係数 tan δ に比べて前記海島構造の島部を構成する高
Μ
分子材料の損失係数 tan δが大きぐかつ、前記海部を構成する高分子材料の弾
I
性率に対する前記島部を構成する高分子材料の弾性率の比が 0. 1— 2であることを 特徴とする制振材料である〔第 1発明〕。
[0016] 請求項 2記載の制振材料は、前記海部を構成する高分子材料中に気泡が存在す ることを特徴とする請求項 1記載の制振材料である〔第 2発明〕。
[0017] 請求項 3記載の制振材料は、前記島部を構成する高分子材料のせん断弾性係数 μ力 X 105— 4 X 109Paであることを特徴とする請求項 1又は 2記載の制振材料で
I
ある〔第 3発明〕。 [0018] 請求項 4記載の制振材料は、前記島部を構成する高分子材料の損失係数 tan δ
I
が 0. 1— 10であることを特徴とする請求項 1一 3のいずれかに記載の制振材料であ る〔第 4発明〕。
[0019] 請求項 5記載の制振材料は、前記海部を構成する高分子材料のせん断弾性係数 μ 力 X 106— 2 Χ 109Paであることを特徴とする請求項 1一 4のいずれかに記載の
M
制振材料である〔第 5発明〕。
[0020] 請求項 6記載の制振材料は、前記含有される高分子材料が 2種類以上である請求 項 1一 5のいずれかに記載の制振材料である〔第 6発明〕。
[0021] 請求項 7記載の制振材料は、前記含有される高分子材料が 1種類であって、この高 分子材料がグラフト共重合体又はブロック共重合体である請求項 1一 5のいずれかに 記載の制振材料である〔第 7発明〕。
[0022] 請求項 8記載の制振金属板は、請求項 1一 7のいずれかに記載の制振材料が金属 板に貼り付けられた制振構造を備える制振金属板である〔第 8発明〕。
[0023] 本発明に係る制振材料は制振性能に優れており、これによれば構造材等の制振性 を向上することができるようになる。本発明に係る制振金属板は制振性に優れており
、これによれば構造材等の制振性を向上することができるようになる。
図面の簡単な説明
[0024] [図 1]制振材料 (損失係数 tan δ : 0. 1の海状榭脂に島状榭脂を体積含有率で 50
Μ
%混合したもの)の損失係数 tan δ の測定結果を示す図であって、横軸は剛性率
ALL
比 Z 、縦軸は島状榭脂の tan δであり、図中の曲線は制振材料の損失係数 t
I M I
an δ の等高線を示すものである。
ALL
[図 2]制振材料 (損失係数 tan δ 力 SO. 1の海状榭脂に島状榭脂を体積含有率で 30
M
%混合したもの)の損失係数 tan δ の測定結果を示す図であって、横軸は剛性率
ALL
比 Z 、縦軸は島状榭脂の tan δであり、図中の曲線は制振材料の損失係数 t
I M I
an δ ALLの等高線を示すものである。
[図 3]制振材料 (損失係数 tan δ 力 SO. 5の海状榭脂に島状榭脂を体積含有率で 30
M
%混合したもの)の損失係数 tan δ ALLの測定結果を示す図であって、横軸は剛性率 比 Z 、縦軸は島状榭脂の tan δであり、図中の曲線は制振材料の損失係数 t an δ の等高線を示すものである。
ALL
[図 4]制振材料 (損失係数 tan δ が 0. 5の海状榭脂に島状榭脂を体積含有率で 30
Μ
%混合し、さらに海状榭脂に気泡を 30%生成させたもの)の損失係数 tan δ の測
ALL
定結果を示す図であって、横軸は剛性率比 / μ 、縦軸は島状榭脂の tan δで
I Μ I
あり、図中の曲線は制振材料の損失係数 tan δ の等高線を示すものである。
ALL
発明を実施するための最良の形態
[0025] 本発明者らは、振動減衰性能の高い制振榭脂に接着強度を付与するのではなぐ 接着強度が確保された制振性の低 ヽ接着材に、振動減衰性能の高 ヽ制振材料を混 合し、接着材を海にたとえると、制振材料が島状に浮かんだ海島構造を形成させるこ とにより、接着強度の確保と制振性能の向上を両立させるという新たな考えに基づき 、種々の検討を鋭意行った。
[0026] この結果、このような海島構造を有するブレンド系制振材料にぉ 、て海状榭脂 (海 部を構成する高分子材料)の弾性率に対する島状榭脂(島部を構成する高分子材 料)の弾性率の弾性率の比(なお、弾性率の比はせん断弾性係数の比及び剛性率 の比に等し 、)が 0. 1-2. 0であれば、ブレンド系制振材料の損失係数 tan δ を
ALL
著しく向上できることを見いだした。更に、前記弾性率比が 0. 1-0. 6であることが望 ましぐ更には 0. 1-0. 4であることが望ましぐこの場合には更に高水準の損失係 数 tan S を確保できることを見いだした。
ALL
[0027] なお、前記弾性率比 (せん断弾性係数比、剛性率比)は、縦弾性係数の比と等しく 、例えば弾性率比 = 1の場合、縦弾性係数比 = 1である。
[0028] ここで、前記海島構造とは、互いに非相溶な 2種類以上の高分子材料を混合し、一 方の高分子を海に例えると他方の高分子が島状に相分離した状態で存在する構造 を意味する。例えば、水と油を混ぜて撹拌すると、水中に油粒子が浮かんだ海島構 造となる力 水の粘性が低いので、水中に浮かんだ油粒子は合体を繰り返し、やがて 水と油の 2層に分離してしまう。しかし、粘性が大きい高分子同士は、島状高分子同 士がすぐに合体しな ヽので、硬化剤添加や混合する高分子を共重合して得られる共 重合体 (コンパティピライザと呼ぶ)の添加などの方法により、海島構造を固定するこ とがでさる。 [0029] すなわち、本発明における海島構造とは、非相溶な高分子からなる多成分系高分 子材料において、一方の成分力もなる連続相 (海部:マトリクス相)中に、他の一方の 成分が孤立した粒子状 (島部:分散相)になって分散した 2相構造を 、う。
[0030] なお、本発明における海部とは、前記海島構造を構成する相のうち、走査型または 透過型電子顕微鏡 (SEM、 TEM)等で観察したときに、その断面全体に対する面積 比率が高い方の相力もなる連続相を意味し、島部とは、前記観察したときに面積比 率が低 ヽ成分力 なる分散相を意味する。
[0031] 前記海島構造における、平均分散粒子径としては、数/ z m—数百/ z mである。
[0032] また、 2種類以上の単量体を共重合させて得られるブロック共重合体あるいはダラ フト共重合体は、単独でオングストロームオーダ (例えば数 10 A程度)の大きさを持 つ島部分を形成することが知られており、特に、ミクロ相分離と呼ばれている。この場 合、高分子材料としては 1種類の場合である。本発明では、ミクロ相分離も含めて海 島構造と呼ぶことにする。
[0033] 更に、気泡を海状榭脂に分散させることにより、ブレンド系制振材料のせん断弾性 係数 を調節して前述の粘弾性特性の適正範囲に設定することができるだけでなく 、気泡により島状榭脂(島状制振材料)のせん断ひずみエネルギが増大して、プレン ド系制振材料の損失係数 tan δ (制振性能)が増大することも見 ヽだした。
ALL
[0034] なお、本発明における制振材料には、高分子材料の他、本発明の効果を損なわな い範囲で、通常の高分子組成物に用いられる構成成分、例えば、各種フィラー、顔 料、カップリング剤、レべリング剤及び粘度調整剤等をて適宜含有してもよい。
[0035] このような知見等に基づいて本発明は完成されたものであり、前述のような構成の 制振材料、及び、制振材料が貼りつけられた金属板としている。
[0036] 即ち、このようにして完成された本発明に係る制振材料は、少なくとも 1種類の高分 子材料を含有する制振材料であって、前記高分子材料が海島構造を有し、前記海 島構造の海部を構成する高分子材料の損失係数 tan δ に比べて前記海島構造の
Μ
島部を構成する高分子材料の損失係数 tan δが大きぐかつ、前記海部を構成する
I
高分子材料の弾性率に対する前記島部を構成する高分子材料の弾性率の比が 0. 1一 2であることを特徴とする制振材料である〔第 1発明〕。 [0037] この制振材料は、前記知見からわ力るように、損失係数 tan δ を著しく向上でき、
ALL
このため制振性能に優れている。即ち、海島構造を有すると共に、該海島構造の海 部を構成する高分子材料の損失係数 tan δ に比べて該海島構造の島部を構成す る高分子材料の損失係数 tan δが大きぐかつ、前記海部を構成する高分子材料の 弾性率に対する前記島部を構成する高分子材料の弾性率の比が 0. 1— 2であること により、制振材料の損失係数 tan δ を著しく向上でき、このため制振性能に優れて
ALL
いる。
[0038] 従って、本発明に係る制振材料は制振性能に優れており、これによれば構造材の 制振性を向上することができるようになる。
[0039] なお、前記の海部を構成する高分子材料の弾性率に対する島部を構成する高分 子材料の弾性率の比が 0— 0. 1未満の場合、制振材料の損失係数 tan δ の向上
ALL
(増大)の程度が小さぐ制振性能の向上効果が不充分であり、一方、この弾性率の 比が 2を超える場合、制振材料の損失係数 tan δ 向上の程度が小さぐ制振性能
ALL
の向上効果が不充分である。
[0040] 本発明に係る制振材料にお!ヽて、海部を構成する高分子材料中に気泡が存在す る場合、前記知見からわかるように、この気泡により制振材料のせん断弾性係数 を調節して前述の粘弾性特性の適正範囲に設定することができるだけでなぐこの気 泡により島部を構成する高分子材料のせん断ひずみエネルギを増大させて、制振材 料の損失係数 tan δ を更に向上することができ、このため、より制振性能を向上す
ALL
ることができる〔第 2発明〕。なお、上記気泡は、海部を構成する材料と島部を構成す る材料を混合して制振材料を作った時点で既に存在するものに限定されず、制振材 料を作った後に生成させた (あるいは生成した)気泡でもよい。つまり、上記気泡の存 在の時期は限定されず、制振材料の製作時点もしくはそれ以降に気泡が存在すれ ばよい。
[0041] 本発明に係る制振材料にぉ ヽて、島部を構成する高分子材料のせん断弾性係数 μ力 X 105— 4 X 109Paである場合、より確実に制振材料の損失係数 tan δ を
I ALL
向上することができ、より高水準の制振性能を有することができる〔第 3発明〕。
[0042] 前記島部を構成する高分子材料の損失係数 tan δが 0. 1— 10である場合、より一 層制振材料の損失係数 tan δ を向上することができ、より高水準の制振性能を有
ALL
することができる〔第 4発明〕。
[0043] 前記海部を構成する高分子材料のせん断弾性係数 μ 力 X 106— 2 X 109Paで
M
ある場合には、より高水準の接着強度を確保することができる〔第 5発明〕。
[0044] 本発明に係る制振金属板は、上記第 1一 7発明に係る制振材料の ヽずれかが金属 板に貼り付けられた制振構造である制振金属板であることとして 、る。この制振金属 板は制振性に優れており、これによれば構造材等の制振性を向上することができる。 〔第 8発明〕。
[0045] なお、前記制振金属板を構成する金属板としては、一般的に構造材として用いられ るものであれば特に限定されず、具体的には、例えばアルミ合金、鋼板、チタン板な どが挙げられる。
[0046] なお、本発明における、損失係数 tan δとは、材料の振動減衰性能の大きさを表わ す指標の一つであり、材料に作用する応力 Fとひずみ Dの位相差 δの正接 (tan)で 定義される。あるいは、応力 F及びひずみ Dを複素表示することにより得られる複素 弾性係数 の実部
C Rに対する虚部 の
I 比 I/ )としても
R 定義することができる
[0047] ここで、 tan δ は海島構造を有する制振材料の損失係数、 tan δ は前記制振材
ALL M
料の海部分の損失係数、 tan d
Iは前記制振材料の島部分の損失係数である。
[0048] また、せん断弾性係数は、例えば次のような測定方法で測定することができる。
[0049] 対象となる制振材料 (海部を構成する高分子材料単体、島部を構成する高分子材 料単体、ブレンド系制振材料)で短冊状サンプルを作成し、コの字型の冶具の内側 に、サンプル、平板型冶具サンプルの順番で重ねて配置し、コの字型冶具とサンプ ル、サンプルと平板型冶具との間を密着させ固定する。
[0050] 次に、両冶具のどちらか一方を固定し、他方をサンプルにせん断変形が生じるよう に振動させ、その時の、応力 Fと変位 Dの時間波形とその位相差 δを計測することで 、動的複素せん断弾性係数 を以下の式より求めることができる。
C
[0051] すなわち、
μ μ ( 1 +jtan 0 ) (式中、ここで μ = (2*T/L*W) *A/B-cos δであり、 Τは短冊状サンプルの厚み、 L は短冊状サンプルの長さ及び Wは短冊状サンプルの幅を示し、 Αは応力 Fの振幅、 Bは歪み Dの振幅、 jは虚数単位を示す)
により動的複素せん断弾性係数 を求めることができる。
C
[0052] さらに、 tan δ ( 7?とも表記される)は、上記動的複素せん断弾性係数 から求める
C
ことができ、動的複素せん断弾性係数 の実部; ζ に対する虚部 の比、 tan δ =
C R I
μ / μ として求められる。
I R
[0053] 本発明の実施例および比較例について、以下に説明する。なお、本発明はこの実 施例に限定されるものではなぐ本発明の趣旨に適合し得る範囲で適当に変更をカロ えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 実施例 1
[0054] 様々の接着強度の高!、榭脂と損失係数の大きな榭脂のせん断弾性係数と損失係 数〔複素せん断弾性係数; z = /z (Ι +jtan S )と表わす〕を調査し、これら榭脂を混
C
ぜ合わせて海島構造を形成したブレンド系制振材料を製作し、これらの制振材料の 複素せん断弾性係数 = μ (1 +jtan S )を求めた。ここで、 jは虚数単位
CALL ALL ALL
である。
[0055] この中、損失係数 tan δ を求めた結果の一例を図 1
ALL 一 2に示す。縦軸は島状榭 脂 (海島構造の島部を構成する高分子材料)の損失係数 (tan δ )、横軸は海状榭脂
I
(海島構造の海部を構成する高分子材料)のせん断弾性係数 IX
Μ (図では剛性率と 記載)に対する島状榭脂のせん断弾性係数 Iの比 I Ζ Μ(弾性率比及び剛性率 比と同じ)である。図中の曲線は、制振材料の損失係数 tan δ の等高線であり、同
ALL
一線上にお!、ては制振材料の損失係数 tan δ の値が等 、。この各等高線に付
ALL
した数字は、制振材料の損失係数 tan δ の値を示すものである。例えば、 0. 5と
ALL
V、う数字を付した等高線は、この線上にぉ 、ては制振材料の損失係数 tan δ 力 SO
ALL
. 5であることを示している(以下、同様)。
[0056] 図 1は、損失係数 tan δが 0. 1の海状榭脂に島状榭脂を体積含有率で 50%混合 した場合の結果である。図 2は、損失係数 tan δが 0. 1の海状榭脂に島状榭脂を体 積含有率で 30%混合した場合の結果である。なお、これらの島状榭脂の体積含有 率は、海島構造を有する制振材料の占める全体積に対する島状榭脂の占める体積 の割合 (百分率)である。ここで、 2種類以上の高分子 (高分子鎖)から構成されるプロ ック共重合体では、 Aオーダの島状ドメインを有するミクロ相分離が生じることが知ら れており、島状ドメインの全体積に占める割合も含めて広義の体積含有率と呼ぶこと とする。
[0057] 図 1から、制振材料の損失係数 tan δ が 0. 5以上となるのは、海状榭脂に対す
ALL
る島状榭脂の剛性率比 / IX が 0. 1-2. 0の範囲であることがわかる。更に、制
I M
振材料の損失係数 tan δ が 1. 0以上となるのは、海状榭脂に対する島状榭脂の
ALL
剛性率比 / μ が 0. 1-0. 4の範囲であることがわかる。
I Μ
[0058] 図 2から、制振材料の損失係数 tan δ が 0. 5以上となるのは、海状榭脂に対す
ALL
る島状榭脂の剛性率比 / IX が 0. 1-0. 6の範囲であることがわかる。
I M
[0059] 上記調査の結果 (図 1一 2の結果を含む)から、海状榭脂に対する島状榭脂の剛性 率比 Z が 0. 1-2. 0の場合、制振材料の損失係数
I M tan δ を著しく向上でき
ALL
、更に、この剛性率比が 0. 1-0. 6であれば、より確実に制振材料の損失係数 tan δ を向上できることが確認された。更には、この剛性率比が 0. 1-0. 4であれば、
ALL
より確実に制振材料の損失係数 tan δ を向上できることも確認された。
ALL
実施例 2
[0060] 実施例 1の場合と同様の方法により海島構造を形成したブレンド系制振材料を製 作し、同様の測定および調査を行った。ただし、一部のものについては、海状榭脂に 気泡を生成させた。
[0061] この結果の一例を図 3— 4に示す。縦軸、横軸は前記図 1一 2の場合と同様のもの を示すものである。図中の線は、前記図 1一 2の場合と同様、制振材料の損失係数 ta η δ の等高線である。図 3は、損失係数 tan δ が 0. 5の海状榭脂に島状榭脂を
ALL M
体積含有率で 30%混合した場合の結果である。図 4は、損失係数 tan δ が 0. 5の
Μ
海状榭脂に島状榭脂を体積含有率で 30%混合し、更に前記海状榭脂に気泡を体 積含有率で 30%生成させた場合の結果である。
[0062] 図 3— 4からわ力るように、図 3の場合には、島状榭脂の損失係数 tan δを 5. 5まで
I
増加させても、制振材料の損失係数 tan δ を 1. 0まで増大させることはできないが
ALL 、図 4の場合には、海状榭脂に気泡を 30%生成することにより、島状榭脂の損失係 数 tan Sが 3. 5程度の島状榭脂を体積含有率で 30%混合すれば制振材料の損失
I
係数 tan δ を 1. 0まで増大させることができる。
ALL
[0063] 上記のような気泡は、海状榭脂と島状榭脂を混合する前に、気体を内部に含む力 プセル状の粒子を海状榭脂に混合しておき、この海状榭脂と島状榭脂を混合して制 振材料を製作することにより、生成するものでもよい。
[0064] また、加熱することにより気化して気泡を形成する発泡剤を、海状榭脂に予め混合 させておき、制振材料を製作した後、この制振材料を制振構造として使用する前に、 例えば制振材料を金属板に貼り付けた後で製品として使用する前、または、制振材 料を金属板に貼り付けて、成形加工した後で製品として使用する前に、加熱して気 泡を生成させる方法によるものでもよ 、。
[0065] 前記方法によれば、加熱前の気泡が形成されて!、な 、状態で、海状榭脂の弾性係 数を高く設定でき、成形加工時に海状榭脂内部の気泡周辺に発生する応力集中も 防止できるので、結果的に接着強度を高めることができる。そして、製品として使用す る前に加熱して気泡を生成させ、これにより制振材料の弾性係数を前述の適正範囲 に設定できると共に損失係数 tan δ を更に向上させることができる。即ち、製品とし
ALL
ての使用前においては成形加工性および接着強度に優れ、製品として使用時にお いては制振性能に優れたものとすることができるという利点がある。
[0066] このように、海状榭脂中に気泡を形成させることにより、海状榭脂に用いる高分子材 料の選択範囲を広げることができ、更に、接着強度の向上も図ることができる。
産業上の利用可能性
[0067] 本発明に係る制振材料は制振性能に優れており、これによれば構造材の制振性を 向上することができるので、構造材料の振動減衰性能不足に起因する騒音の低減等 のために振動減衰性能の付与が要望される構造材料に好適に用いることができる。

Claims

請求の範囲
[1] 少なくとも 1種類の高分子材料を含有する制振材料であって、
前記高分子材料が海島構造を有し、
前記海島構造の海部を構成する高分子材料の損失係数 tan δ に比べて前記海島
Μ
構造の島部を構成する高分子材料の損失係数 tan δが大きぐかつ、前記海部を構
I
成する高分子材料の弾性率に対する前記島部を構成する高分子材料の弾性率の 比が 0. 1— 2であることを特徴とする制振材料。
[2] 前記海部を構成する高分子材料中に気泡が存在することを特徴とする請求項 1記 載の制振材料。
[3] 前記島部を構成する高分子材料のせん断弾性係数 X
I力 105— 4 X 109Paであ ることを特徴とする請求項 1または 2記載の制振材料。
[4] 前記島部を構成する高分子材料の損失係数 tan δが 0. 1— 10であることを特徴と
I
する請求項 1一 3のいずれかに記載の制振材料。
[5] 前記海部を構成する高分子材料のせん断弾性係数 μ 力 X 106— 2 X 109Paで
M
あることを特徴とする請求項 1一 4のいずれかに記載の制振材料。
[6] 前記含有される高分子材料が 2種類以上である請求項 1一 5のいずれかに記載の 制振材料。
[7] 前記含有される高分子材料が 1種類であって、この高分子材料がグラフト共重合体 又はブロック共重合体である請求項 1一 5のいずれかに記載の制振材料。
[8] 請求項 1一 7のいずれかに記載の制振材料が金属板に貼り付けられた制振構造を 備える制振金属板。
PCT/JP2005/000603 2004-01-20 2005-01-19 制振材料および制振金属板 WO2005068577A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/581,443 US20070078227A1 (en) 2004-01-20 2005-01-19 Damping material and damping metal sheet
EP05703840A EP1707608A4 (en) 2004-01-20 2005-01-19 DAMPER AND STEAMING SHEET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004012330 2004-01-20
JP2004-012330 2004-01-20

Publications (1)

Publication Number Publication Date
WO2005068577A1 true WO2005068577A1 (ja) 2005-07-28

Family

ID=34792371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000603 WO2005068577A1 (ja) 2004-01-20 2005-01-19 制振材料および制振金属板

Country Status (5)

Country Link
US (1) US20070078227A1 (ja)
EP (1) EP1707608A4 (ja)
KR (1) KR100834593B1 (ja)
CN (1) CN1910251A (ja)
WO (1) WO2005068577A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004988B1 (fr) * 2013-04-26 2015-04-03 Arkema France Structure multicouche comportant une couche de materiau supramoleculaire et son procede de fabrication
US20160347035A1 (en) * 2014-02-20 2016-12-01 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439360A (ja) * 1990-06-05 1992-02-10 Kawasaki Steel Corp 複合型制振金属板用芯材樹脂、複合型制振金属板および複合型制振金属板の製造方法
JP2000169614A (ja) * 1998-12-08 2000-06-20 Tokai Rubber Ind Ltd 高減衰発泡材料組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613502B2 (ja) * 1991-05-31 1997-05-28 東洋紡績株式会社 制振材料用粘弾性樹脂組成物
JPH0544776A (ja) * 1991-07-25 1993-02-23 Meiji Rubber & Chem Co Ltd 防振ゴム用組成物
JP2001516371A (ja) * 1996-09-04 2001-09-25 ザ ダウ ケミカル カンパニー 床、壁または天井のカバリング
JP3693499B2 (ja) * 1998-06-05 2005-09-07 東海ゴム工業株式会社 防振ゴム組成物の製造方法、防振ゴム組成物及び防振ゴム部材
JP3702417B2 (ja) * 2000-12-05 2005-10-05 独立行政法人科学技術振興機構 選択的相溶性を利用した新規な制振材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439360A (ja) * 1990-06-05 1992-02-10 Kawasaki Steel Corp 複合型制振金属板用芯材樹脂、複合型制振金属板および複合型制振金属板の製造方法
JP2000169614A (ja) * 1998-12-08 2000-06-20 Tokai Rubber Ind Ltd 高減衰発泡材料組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1707608A4 *

Also Published As

Publication number Publication date
EP1707608A4 (en) 2008-12-03
EP1707608A1 (en) 2006-10-04
CN1910251A (zh) 2007-02-07
KR20070029653A (ko) 2007-03-14
KR100834593B1 (ko) 2008-06-02
US20070078227A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP6480937B2 (ja) とりわけ穴の持続的な封止のためのダイカット
Liu et al. Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy
CN105189677B (zh) 丙烯酸泡沫粘结带及适用其的平板显示器
WO2012026415A1 (ja) 軋み音を低減した熱可塑性樹脂組成物製接触用部品
WO1999014272A1 (fr) Films acryliques et stratifies acryliques
WO2011048900A1 (ja) 制振シート、振動部材の制振方法および使用方法
Koshy Mechanical properties
MXPA01008228A (es) Hojas de capas multiples reforzadas con vidrio a partir de materiales de polimero de olefina.
Qin et al. Vibration damping properties of gradient polyurethane/vinyl ester resin interpenetrating polymer network
EP3569406B1 (de) Stanzling insbesondere zum dauerhaften verschliessen von löchern
WO2018109547A1 (ja) 接着性樹脂組成物、フッ素系樹脂接着用フィルム、積層体、及び積層体の製造方法
WO2005068577A1 (ja) 制振材料および制振金属板
JP2011162592A (ja) 軋み音を低減した自動車内装部品
JP4915718B2 (ja) 制振材料およびその製法
WO2022124336A1 (ja) 接着剤、異種材料接着用接着剤、接着シート、および異種材料接着用接着シート
JP2007217665A (ja) プリプレグおよび炭素繊維強化複合材料
WO1997042265A1 (fr) Composition de caoutchouc pour corps stratifie anti-vibrations
JP2019130707A (ja) 制振材
JP4928096B2 (ja) 制振材
EP4074791A1 (en) Surface treatment composition for vibration damping steel sheet and vibration damping steel sheet
JP3274249B2 (ja) 鋼板制振補強シート
JP2005232446A (ja) 制振材料および制振金属板
CN112534018B (zh) 粘合剂组合物
WO2013129626A1 (ja) 制振シート、振動部材の制振方法および使用方法
CN112469798B (zh) 粘合剂组合物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005703840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007078227

Country of ref document: US

Ref document number: 10581443

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067014451

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580002862.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005703840

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067014451

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10581443

Country of ref document: US