WO2005066497A1 - Drehkolbenpumpe mit axial beweglichem flügel - Google Patents

Drehkolbenpumpe mit axial beweglichem flügel Download PDF

Info

Publication number
WO2005066497A1
WO2005066497A1 PCT/DE2004/002789 DE2004002789W WO2005066497A1 WO 2005066497 A1 WO2005066497 A1 WO 2005066497A1 DE 2004002789 W DE2004002789 W DE 2004002789W WO 2005066497 A1 WO2005066497 A1 WO 2005066497A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
rotor
drive shaft
wall
rear wall
Prior art date
Application number
PCT/DE2004/002789
Other languages
English (en)
French (fr)
Inventor
Manfred Sommer
Original Assignee
Manfred Sommer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200420000185 external-priority patent/DE202004000185U1/de
Priority claimed from DE200420000184 external-priority patent/DE202004000184U1/de
Priority claimed from DE200420000189 external-priority patent/DE202004000189U1/de
Priority claimed from DE200420000186 external-priority patent/DE202004000186U1/de
Priority claimed from DE200420000188 external-priority patent/DE202004000188U1/de
Priority claimed from DE200420000183 external-priority patent/DE202004000183U1/de
Application filed by Manfred Sommer filed Critical Manfred Sommer
Priority to DE112004002792T priority Critical patent/DE112004002792A5/de
Priority to EP04802974A priority patent/EP1714035A1/de
Publication of WO2005066497A1 publication Critical patent/WO2005066497A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/005Structure and composition of sealing elements such as sealing strips, sealing rings and the like; Coating of these elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0015Radial sealings for working fluid of resilient material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/003Sealings for working fluid between radially and axially moving parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0034Sealing arrangements in rotary-piston machines or pumps for other than the working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/356Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C2/3568Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member with axially movable vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/007Venting; Gas and vapour separation during pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0076Fixing rotors on shafts, e.g. by clamping together hub and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/70Disassembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/51Bearings for cantilever assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/802Liners

Definitions

  • the invention relates to a pump designed as a positive displacement pump or a rotary lobe pump.
  • the main areas of application for pumps of this type which are viscous and viscous are found in the chemical, pharmaceutical and food processing industries.
  • a pump of the type mentioned is known.
  • This pump has a rotor which is rotatably mounted on a drive shaft which can be connected to a motor drive.
  • the rotor has a radially projecting, wave-shaped rotating rotor collar.
  • the pump inlet and outlet are separate.
  • the inlet communicates with an intake space and the outlet with an outlet space.
  • These two pump rooms are connected to each other via a pump channel.
  • the sealing slide must therefore continuously bear tightly on both sides of the rotor collar during the rotary movement of the rotor. Adequate sealing must also be present between the rotor collar and the walls of the pump channel that delimit it in the axial direction if the pumping action and thus the efficiency of the pump are not to be impaired.
  • the drive shaft driving the rotor extends far into the pump chamber. Their bearing points are located on the one hand in the area of the rear housing wall and on the other outside the pump housing in a hollow cylindrical shaft carrier flanged to the rear wall of the pump housing. The rotor is thus seated on the collar end area of the drive shaft.
  • the manufacture of the housing parts consequently requires a very high level of machining effort.
  • This means that the weight of the housing can correspond to the weight of the material chips removed due to production.
  • the dimensioning of the pump housing is determined by the structural requirements, such as the material thicknesses that are required for threads and through holes, which are used, for example, for screwing the cover and rear wall together. For reasons of strength, these wall thicknesses, particularly as far as the jacket wall is concerned, are regularly oversized.
  • the invention has for its object to provide a pump to be operated of the type mentioned.
  • the pump according to the invention is characterized in that at least its rear wall, which for structural reasons is regularly very large, no longer comes into contact with the medium conveyed through the pump.
  • the rear wall is covered by a thin plate or a coating towards the interior of the housing.
  • the rear wall can thus consist of a raw material, such as, in particular, cast material. This brings considerable cost advantages for the manufacture of the pump according to the invention.
  • the casing wall of the housing which in the prior art is regularly connected in one piece to the rear wall, can advantageously also consist of a thin wall that takes into account the properties of the pumped medium.
  • This thin wall can be connected in one piece to the thin plate, which may be present on the inside of the rear wall.
  • Such a pot-like housing consisting of a thin wall can then tightly enclose the interior of the housing from the rear and from the jacket side.
  • An inexpensive material already mentioned above can then be used for the rear wall.
  • the regularly existing oversizing, in particular of the jacket wall then no longer needs to be carried out.
  • the cost advantage over the prior art is very considerable.
  • the pot-like housing can be manufactured, for example, as a deep-drawn part. In such a case, for better shaping of such a pump housing part, it makes sense to design the interior of the pump housing enclosed by the casing wall to widen conically towards the cover.
  • the rear wall of the pump housing can be releasably attached to a holding flange.
  • the drive shaft which is connected to the rotor in a rotationally fixed manner, then projects through this holding flange and the thin plate covering the inside of the rear wall and the rear wall.
  • Bearing points for the drive shaft can be formed in the holding flange or in the area of the rear wall and on the other hand in the interior of the pump housing.
  • a bearing point for the drive shaft can thus be present within the clearance area occupied by the rotor in the axial direction.
  • the drive shaft no longer projects freely into the pump chamber, but is supported in the radial direction within the clearance area occupied by the rotor in the axial direction or preferably in the clearance area occupied by the rotor collar in the axial direction.
  • the extremely large deflections that have to be considered constructively in the prior art at correspondingly high working pressures no longer occur.
  • the bearing point for the drive shaft located within the pump housing has the further advantage that the overall length of the pump is considerably shorter compared to the previously known pump; the externally flanged-on hollow cylindrical shaft support according to the prior art, on the end of which is further away from the pump housing, a bearing point for the drive shaft can now be dispensed with.
  • the drive shaft can be adequately supported in the area of the rear wall of the pump and within the clearance profile taken up by the rotor or its rotor collar in the axial direction.
  • the bearing point for the drive shaft inside the pump housing can be realized according to the exemplary embodiments also shown in the drawing by a hollow cylindrical shaft support which projects freely into the interior of the pump from the rear region.
  • the shaft support can be designed to be sufficiently rigid so that the unavoidable deflections at its collar end are of no importance for the practical operation of the pump.
  • Such a pump not only builds much shorter than the pump known above in the prior art, but can also be operated with comparatively higher working pressures.
  • the rotor collar must lie as close as possible to the fixed wall areas delimiting the pump channel in the axial direction in order to enable a correspondingly high efficiency of the pumps.
  • stators interchangeable wear parts
  • the rotor can encompass the drive shaft and also the shaft support at the end in the manner of an end cap. This then allows simple assembly and disassembly of the rotor, in that the rotor can be axially pushed onto the drive shaft in a rotationally fixed manner and can be held axially immovably on the drive shaft, for example by means of a retaining or locking nut.
  • the bearing point of the drive shaft can be formed on the inside of the shaft carrier.
  • An additional bearing point for the rotor can be formed on the opposite side of the shaft support, provided that the cap wall of the rotor is not sufficiently rigid that the rotationally fixed bearing point of the rotor on the drive shaft is sufficient.
  • the bearing for the drive shaft on the outside of the shaft carrier.
  • This bearing point can then be used simultaneously as a bearing point acting in the axial direction for the rotor or for its cap area.
  • the drive shaft attaches to the shaft carrier from the outside via the rotor.
  • the respective bearing point for the drive shaft and for the rotor which is provided in the collar end region of the shaft carrier, if the latter is provided in addition to the rotationally fixed bearing of the rotor, can be arranged in the same axial cross-sectional plane.
  • each bearing point can consist of several bearings lying side by side in the axial direction.
  • a second bearing point for the drive shaft can be present in the region of the rear wall of the pump adjacent to the motor drive. In the case of very light pump designs, this second bearing point could also be dispensed with and the drive shaft could only be mounted in the area of the motor drive.
  • a bearing chair can have a holding flange to which the pump housing can be screwed, for example, in the desired rotational position.
  • the drive shaft then penetrates this holding flange and ends in the pump housing.
  • the second bearing point for the drive shaft which is already available as an alternative, can then be provided in the holding flange.
  • this second bearing point could also be provided in the rear wall of the pump housing.
  • the shaft support projecting freely into the pump housing can be attached to the rear wall of the pump housing or also to the holding flange in a rigid manner.
  • the shaft carrier which in this case is not a part of the pump housing by weight, does not have to be taken into account by weight when the pump housing is removed from the holding flange.
  • the cover of the housing can have a circumferential, axial collar which bears tightly from the outside on the end region of the casing wall. This prevents the thin jacket wall from being deformed too easily by the pressures prevailing in the interior of the pump housing.
  • FIG. 1 is a vertical longitudinal section through a first embodiment of a pump according to the invention
  • Fig. 2 is a vertical longitudinal section through a second embodiment of a pump according to the invention.
  • the pump 10 shown in FIG. 1 is screwed to the rear flange 14 of its housing 12 by means of screws 16 on the holding flange 18 of a bearing block 20.
  • the housing 12 is essentially rotationally symmetrical about its axis 22 formed, with the circular rear wall 14 in plan, and a circular cylindrical jacket wall 24.
  • the rear wall 14 is lined on its inside with a thin plate 15. This thin plate 15 is connected to the jacket wall 24 in one piece. Instead of the thin plate 15, a coating can also be provided.
  • the left-hand end wall 26 of the casing wall 24 in FIG. 1 lies in an annular groove 25 of a cover 28 that closes the housing 12 in the axial direction.
  • the cover 28 is provided with a plurality of stud bolts distributed circumferentially around the cover 28, of which only two in FIG the same are shown with their stud screw axis 30, screwed into the rear wall 14.
  • the studs lead through the interior of the housing 12 and through the thin plate 15.
  • the ring nut 34 screwed on the outside is shown in FIG. 1.
  • an O-ring 36 is inserted in the annular groove 25 encircling the cover 28, which ensures the required tightness.
  • the cover 28 encompasses - in FIG. 1 - the left end region 23 of the jacket wall 24 with a collar 29 which extends axially in the direction of the rear wall 14 and is integrally formed thereon.
  • the inner wall of the jacket wall 24 can be slightly conical in the shape of a circular cylinder or for the purpose of easier shaping when producing the one-piece piece consisting of the thin plate 15 and the jacket wall 24.
  • the thread sections present at the two ends of the stud screw are smaller in diameter than the diameter of the stud screw shaft present in the interior of the housing 12, so that each stud screw which screws the cover 28 and the rear wall 14 together fix the cover 28 and the rear wall 14 in a mutual manner Keeps distance from each other.
  • the bearing chair 20 has a footplate 38, which is connected to it at right angles in the present example and with which the housing 12 and thus the pump 10 can be placed on a base 40.
  • This base 40 can also be a structural part which can be oriented as desired in space, because for example by means of a screw connection, of which two screw axes 42 are shown, the base plate 38 and thus the entire bearing bracket 20 can be releasably fixed to said base 40.
  • a hollow cylindrical shaft support 50 the cylinder axis of which coincides with the axis 22, protrudes through the rear wall 14 and the thin plate 15 into the interior of the housing 12.
  • the shaft support 50 is by means of an end flange 52 by means of a plurality of circumferentially distributed screws accessible from the outside 54 attached to the holding flange 18.
  • the shaft carrier 50 is constructed in terms of material and cross section so that its collar end region ending in the housing 12 has practically no deflection under load, at least one deflection which is negligible for the operation of the pump 10.
  • a drive shaft 60 projects centrally through the shaft support 50.
  • the right end of the drive shaft 60 in FIG. 1 can be connected in a rotationally fixed manner to the output shaft of a motor drive (not shown in the drawing) by means of a feather key 62, so that the drive shaft 60 in both directions of rotation is drivable.
  • a rotor 70 is fixed in a rotationally fixed manner to the collar end 64 of the drive shaft 60 which ends in the interior of the housing 12.
  • the rotor 70 is - based on FIG. 1 - pushed from the left onto the collar end 64 of the drive shaft 60 and held in its fixed, rotationally fixed position by means of a lock nut 66 screwed onto the end of the drive shaft 60.
  • the closure nut 66 lies sealed against the end wall 72 of the rotor 70 via an O-ring 68.
  • the rotor 70 has a rotor hub 74 which has a central recess pointing towards the rear wall 14, so that the rotor hub 74 in the form of a cap engages around the collar end region 76 of the drive shaft 60 from the outside at a distance.
  • the collar end region 76 is adjoined in the direction of the projecting end of the drive shaft 60 by the collar end 64 and by this the screw region for the locking nut 66.
  • a tapered roller bearing 80 or inclined roller bearing is formed in the collar end region 76 between the drive shaft 60 and the shaft carrier 50.
  • This tapered roller bearing 80 can absorb radial, in particular, also axial forces. Such forces acting on the rotor 70 can be transmitted or removed via its rotor hub 74 and via the drive shaft 60 to the shaft carrier 50 and ultimately to the bearing block 20.
  • the tapered roller bearing 80 thus forms one in the interior of the housing 12 existing bearing point for the drive shaft 60, since the tapered roller bearing 80 is practically fixed in position in the housing 12 due to its support on the shaft support 50. The drive shaft 60 is thus held supported in the area of the tapered roller bearing 80.
  • the tapered roller bearing 80 is held on the left in FIG. 1 by a shoulder widening 82 of the drive shaft 60 and on the opposite right side by an axially supported bearing inner ring 84 seated in a shaft groove. Radially on the outside, the tapered roller bearing 80 is held in a fixed position between a support ring 86 screwed onto the end of the shaft support 50 and a recess 88 formed in the shaft support 50.
  • a shaft sealing ring 90 is arranged on the outside of the support ring 86, which sealingly rests on the shoulder widening 82.
  • a radial needle bearing 92 is arranged between the shaft carrier 50 and the rotor hub 74.
  • the rotor hub 74 is also supported on the shaft carrier 50 via this needle bearing 92.
  • This bearing 92 is - with reference to FIG. 1 - sealed on its left side by a shaft sealing ring 94, which is present between the rotor hub 74 and the shaft carrier 50.
  • a radial seal bearing 100 is connected to the radial needle bearing 92.
  • This sealing ring receptacle 100 lies against the inside of the rotor hub 74 in a rotationally fixed manner.
  • the end face of the sealing ring receptacle 100 which has a rotationally symmetrical cross section, projects through the rear wall 14.
  • a sharp edge 104 facing away from the wall end area 102 ensures that the medium escaping from the shaft support 50 emerges from the area of the sealing ring receptacle 100.
  • This leakage medium enters into an intermediate space 106 formed between the rear wall 14 and the holding flange 18, from which it is in the holding flange 18 trained, not shown in the drawing openings can come out.
  • a shaft sealing ring HO is supported on a radially projecting shoulder 108 of the sealing ring receptacle 100 and rests sealingly on the outside of the shaft carrier 50. Together with the shaft sealing ring 94, it seals the radial needle bearing 92 on both sides in the axial direction.
  • a ball bearing 114 In the area of the holding flange 18 there is another bearing between the drive shaft 60 and the shaft carrier 50 in the form of a ball bearing 114.
  • This ball bearing 114 is sealed off from the outside of the holding flange 18 by means of a shaft sealing ring 116, which in turn is held by a screw ring 118 screwed onto the holding flange 18 from the outside.
  • the tapered roller bearings 80 and the radial needle bearing 92 are arranged in the same cross-sectional plane 112.
  • This cross-sectional plane 112 lies within the axial region of the rotor hub 74 and, moreover, also in the axial cross-sectional region of the rotor collar 120 integrally formed on the rotor hub 74.
  • This rotor collar 120 has a circumferential wave-like shape, as is described in detail in DE 34 18 708 A1 already mentioned above with respect to the prior art.
  • the pump channel 124 is framed by a stator 130, which is composed of two stator halves 132, 134.
  • the two stator halves 132, 134 are identical in cross-section and lie closely together via a common contact surface 136.
  • the two stator halves 132, 134 are kept pressed in between the cover 28 and the rear wall 14.
  • the stud screws already mentioned above, which hold the cover 28 at a fixed position on the rear wall 14, also pass through the stator 130 or through its two stator halves 132, 134, outside the pump channel 124.
  • the lid 28 has a central, annularly projecting lid area 138.
  • a rotationally symmetrical front sleeve 140 is partially seated in the inner vault formed thereby.
  • This front sleeve 140 is held screwed to the lid 28 or to its central lid area 138 via screws 142 accessible from the outside.
  • the front sleeve 14O surrounds the end of the rotor hub 74 at a distance and the locking nut 66 screwed onto the drive shaft 60.
  • its inner wall 144 is curved, without sharp edges, so that it can be cleaned easily.
  • the front sleeve 140 is sealed off from the cover 28 or the rotor hub 74 and the left stator half 132 by means of O-rings 146, 148 fitted all round in the front sleeve 140.
  • the top side of the front sleeve 140 forms the bottom of the intake space or the outlet space 150, via which the pump channel 124 is connected on the one hand to the inlet 152 and on the other hand to the outlet of the pumps 10.
  • the longitudinal axes 154 of the inlet 152 and the outlet are at right angles to one another in the present example.
  • a retaining ring 160 is positioned with its upper side in alignment with the upper side of the front sleeve 140 on the right side of the rotor hub 74 with reference to FIG. 1. With its upper side, this retaining ring 160, like the front sleeve 140, forms the bottom of the intake space or the outlet space 150.
  • the retaining ring 160 represents the sealing bottom area of the suction space or the outlet space 150 between the rotor hub 74 and the thin plate 15 of the housing 12.
  • Between the rotor hub 74 and the retaining ring 160 are two axially and radially offset with the rotor hub 74 rotating seal rings 164, 166 fitted.
  • Stationary sliding rings 165 and 167 respectively, press against these sliding rings 164, 166.
  • These latter slide rings 165, 167 are pressed against the slide ring 164 and 166 by spring rings 168 and 170, respectively, which are supported on the rear on radially projecting shoulders 172 and 174 of the retaining ring 160.
  • the retaining ring 160 is fastened to the rear wall 14 by means of screws 176 arranged around the circumference.
  • the slide rings 165, 167 can be made of any suitable material, such as, for example, in particular also of ceramic material.
  • the rotating seal rings 164, 166 can in particular consist of metallic material.
  • the seals formed from the two sliding rings 164, 165 and 166, 167 can both be arranged in the axial direction in any mutual orientation.
  • the suction space and the outlet space 150 are separated from one another in terms of pressure by a slide guide 162, which represents a sealed shut-off plate between these two spaces.
  • a sealing slide 182 bears back and forth in the axial direction.
  • the sealing slide 182 is arranged in the outlet space 150, so that due to the pressure prevailing there, which is greater than the pressure prevailing in the suction space, it bears tightly against the slide guide 162 during its back and forth movement.
  • In the sealing slide 182 there is a central opening 184 for the rotor collar 120 which is open at the bottom. During its rotating movement, the rotor collar 120 lies with its two collar walls on the side in the axial direction, of which one side wall 186 is visible in FIG. 1. This design principle is also described in detail in the aforementioned DE 34 18 708 AI.
  • the sealing slide 182 is held on its opposite side to the slide guide 162 by structural parts, not shown in the drawing, which are fixedly connected to the housing 12, so that the sealing slide 182, even when fallen compared to the illustration in FIG. 1, on the retaining flange 18 screwed rotary positions maintains its tight position on the slide guide 162 and does not fall away from the slide guide 162, for example in the circumferential direction.
  • the slide guide 162 can be fixed in position, for example, by one of the stud bolts shown with its axis 30 between the cover 28 and the thin plate 15.
  • a plurality of leak drains 190 protrude from the rear wall 14 into the intermediate space 106 distributed over the circumference. These hose- or tube-shaped leak drains 190 connect the individual bearing spaces to one another via longitudinal and transverse bores, not shown in the drawing, formed in the shaft carrier 50, so that they are to be used for lubricating these bearings.
  • the pump 10.2 shown in FIG. 2 is basically constructed like the pump 10 described above. Its rear wall 14.2 is also covered by a thin plate 15.2.
  • the plate 15.2 forms with the casing wall 24.2 a one-piece, pot-shaped housing part produced as a deep-drawn part. A coating could again be provided instead of the plate 15.2.
  • the tapered roller bearing 80 and the radial needle bearing 92 lie in the same axial cross-sectional plane 112, which lies within the clearance area occupied by the rotor 120 in the axial direction.
  • the cover 28.2 of the pump 10.2 is flat on the outside and its rear wall 14.2 is designed without the cross-sectional reinforcement present in the lower region of the rear wall 14.
  • the retaining ring 160.2 which corresponds to the retaining ring 160, has a slightly different cross-sectional shape than the retaining ring 160 due to the different spatial conditions to the pump 10. Its function is the same as that of the retaining ring 160; Via two slide rings 165.2, 167.2, which are pushed away in the axial direction by spring rings, it bears sealingly against sealing rings 164.2 and 166.2, which are molded in the rotor hub 74.2.
  • the tapered roller bearing 80 is supported on its radial inside instead of the bearing inner ring 84 present in the pump 10 by a screw ring 84.2.
  • the intermediate space 106 is connected to the individual bearings via the leak drains 190 and transverse and longitudinal bores 196, 198, so that bearings can be provided with oil lubrication on the one hand, and corresponding media in the intermediate space 106 from leaks and from there not through in the drawing shown openings in the holding flange 18 or 18.2 can flow out of the pump 10 or 10.2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Eine Pumpe (10) weist ein Pumpengehäuse (12) auf mit einem Deckel (28), einer Rückwand (14) und einer dazwischen angeordneten Mantelwand (24). Der Rotorkragen (120) ihres Rotors (70) begrenzt seitlich einen Pumpkanal (124) mit einem Einlass (152) und einem Auslass. Auf der Innenseite der Rückwand (14) ist eine dünne Platte (15, 15.2) oder eine Beschichtung so vorhanden, dass durch das Pumpengehäuse (12) hindurch gepumptes Medium zumindest mit der Rückwand (14) nicht in Beruhrung kommt. Die dünne Platte (15,15.2) oder die Beschichtung bestehen aus einem die Eigenschaften dieses Mediums berücksichtigenden Material. Die Ruckwand (14) besteht aus rohem Material, wie insbesondere aus Gussmaterial.

Description

DREHKOLBENPUMPE MIT AXIAL BEWEGLICHEM FLÜGEL
TECHNISCHES GEBIET
Die Erfindung betrifft eine als Verdrängerpumpe oder Drehkolbenpumpe konzipierte Pumpe. Hauptanwendungsgebiete solcher dick- und zähflüssige Produkte fördernder Pumpen finden sich in der chemischen, pharmazeutischen und in der Lebensmittel verarbeitenden Industrie.
STAND DER TECHNIK
Aus der DE 34 18 708 AI ist eine Pumpe der eingangs genannten Art bekannt. Diese Pumpe besitzt einen Rotor, der drehfest auf einer mit einem motorischen Antrieb verbindbaren Antriebswelle gelagert ist. Der Rotor besitzt einen radial wegstehenden, wellenförmig umlaufenden Rotorkragen. Der Einlass und der Auslass der Pumpe sind voneinander getrennt. Der Einlass kommuniziert mit einem Ansaugraum und der Auslass mit einem Auslassraum. Diese beiden Pumpenräume sind über einen Pumpkanal miteinander verbunden. Mittels eines in axialer Richtung verstellbaren, an dem Rotorkragen in axialer Richtung beidseitig dichtend anliegenden Dichtschiebers wird sichergestellt, dass das jeweils durch den Pumpkanal vom Einlass zum Auslass geförderte Medium nicht an dem Dichtschieber vorbei rückwärts wieder zum Einlass fließen kann. Der Dichtschieber muss daher während der rotativen Bewegung des Rotors kontinuierlich dicht beidseitig an dem Rotorkragen anliegen. Eine ausreichende Abdichtung muss auch zwischen dem Rotorkragen und den ihn in axialer Richtung begrenzenden Wänden des Pumpkanals vorhanden sein, soll die Förderwirkung und damit der Wirkungsgrad der Pumpe nicht beeinträchtigt werden. Die den Rotor antreibende Antriebswelle ragt bei dieser Pumpe weit in den Pumpenraum hinein. Ihre Lagerstellen befinden sich einmal im Bereich der rückwärtigen Gehäusewand und zum anderen außerhalb des Pumpengehäuses in einem an der Rückwand des Pumpengehäuses angeflanschten hohlzylindrischen Wellenträger. Der Rotor sitzt damit auf dem Kragendbereich der Antriebswelle. Aufgrund der unvermeidlichen Durchbiegungen des Kragendbereiches der Antriebswelle, die umso höher sind, je höher die Arbeitsdrücke sind, mit der die Pumpe betrieben wird, müssen entsprechend große Toleranzen zwischen den rotierenden Teilen, wie dem Rotorkragen, und den nicht rotierenden Teilen, wie den den Pumpkanal seitlich einrahmenden Kanalwänden, berücksichtigt werden, um einen unerwünscht hohen Verschleiß von aneinander reibenden Teilen zu vermeiden.
Der eingangs bereits erwähnte Einsatzbereich der Pumpe in hygienisch sensiblen Bereichen macht es erforderlich, dass die mit dem jeweilig geförderten Medium in Berührung kommenden Bauteile der Pumpe in hygienischer und pharmazeutischer Hinsicht unbedenklich sind. Die mit dem durch die Pumpe hindurch geförderten Medium in Berührung kommenden Material-oberflächen müssen also die Eigenschaften des jeweiligen Mediums berücksichtigen. Aus diesem Grund werden die Pumpen-bestandteile, die mit dem geförderten Medium in Berührung kommen, insbesondere der Deckel, die Gehäuserückwand und die Mantelwand des Pumpengehäuses nicht aus Gussteilen hergestellt. Die Gefahr, dass Lunker in den Gussteilen vorhanden sind, die Infektionsquellen darstellen können, ist zu groß. Bekanntermaßen verwendet man daher Walz- und Schmiedestähle in säurebeständiger Qualität. Die Herstellung der Gehäuseteile erfordert folglich einen sehr hohen Bearbeitungsaufwand. Dies führt dazu, dass das Gewicht des Gehäuses dem Gewicht der herstellungsbedingt abgetragenen Materialspäne entsprechen kann. Die Dimensionierung des Pumpengehäuses wird nämlich bestimmt von den konstruktiven Anfordernissen, wie beispielsweise durch die Materialstärken, die für Gewinde und Durchgangsbohrungen erforderlich werden, die beispielsweise zum gegenseitigen Verschrauben von Deckel und Rückwand dienen. Aus Festigkeitsgründen sind diese Wandstärken, insbesondere was die Mantelwand betrifft, regelmäßig überdimensioniert.
DARSTELLUNG DER ERFINDUNG
Ausgehend von diesem vorbekannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine zu betreibende Pumpe der eingangs genannten Art anzugeben.
Diese Erfindung ist durch die Merkmale des Hauptanspruchs gegeben. Sinnvolle Weiterbildungen der Erfindung sind Gegenstand von sich an den Hauptanspruch anschließenden weiteren Ansprüchen. Die erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass zumindest ihre Rückwand, die aus konstruktiven Gründen regelmäßig sehr stark dimensioniert ist, nicht mehr mit dem durch die Pumpe hindurch geförderten Medium in Berührung kommt. Die Rückwand wird nämlich durch eine dünne Platte oder eine Beschichtung zum Innenraum des Gehäuses hin abgedeckt. Die Rückwand kann dadurch aus einem rohen Material, wie insbesondere aus Gussmaterial bestehen. Dies bringt erhebliche Kostenvorteile für das Herstellen der erfindungsgemäßen Pumpe.
Auch die Mantelwand des Gehäuses, das im Stand der Technik regelmäßig mit der Rückwand einstückig verbunden ist, kann vorteilhafterweise aus einer die Eigenschaften des Fördermediums berücksichtigenden dünnen Wand bestehen. Dabei kann diese dünne Wand einteilig mit der dünnen Platte, die auf der Innenseite der Rückwand vorhanden sein kann, verbunden sein. Ein solches, aus einer dünnen Wandung bestehendes topfartiges Gehäuse kann dann von der Rückseite und von der Mantelseite her den Innenraum des Gehäuses dicht umschließen. Für die Rückwand kann dann ein vorstehend bereits erwähntes kostengünstiges Material verwendet werden. Die regelmäßig vorhandene Überdimensionierung insbesondere der Mantelwand braucht dann nicht mehr vorgenommen zu werden. Der Kostenvorteil gegenüber dem Stand der Technik ist ganz erheblich. Das topfartige Gehäuse kann beispielsweise als Tiefziehteil hergestellt werden. In einem solchen Fall bietet es sich zur besseren Ausformung eines solchen Pumpengehäuse-Teils an, den von der Mantelwand umschlossenen Innenraum des Pumpengehäuses zum Deckel hin sich konisch erweiternd auszubilden.
Die Rückwand des Pumpengehäuses kann an einem Halteflansch lösbar befestigt sein. Durch diesen Halteflansch und die Rückwand sowie die Rückwand innenseitig verkleidende dünne Platte hindurch ragt dann die mit dem Rotor drehfest verbundene Antriebswelle.
Lagerstellen für die Antriebswelle können im Halteflansch beziehungsweise im Bereich der Rückwand und andererseits im Innenraum des Pumpengehäuses ausgebildet sein.
So kann innerhalb des vom Rotor in axialer Richtung eingenommenen Lichtraumbereichs eine Lagerstelle für die Antriebswelle vorhanden sein. Die Antriebswelle kragt also nicht mehr frei in den Pumpenraum hinein, sondern ist innerhalb des vom Rotor in axialer Richtung eingenommenen Lichtraumbereichs oder aber vorzugsweise in dem vom Rotorkragen in axialer Richtung eingenommenen Lichtraumbereich, in radialer Richtung abgestützt gelagert.
Die extrem großen Durchbiegungen, die bei entsprechend hohen Arbeitsdrücken konstruktiv im Stand der Technik berücksichtigt werden müssen, treten nunmehr nicht mehr auf. Das bedeutet, dass die Lagerausbildungen der Antriebswelle und die Ausbildung der Antriebswelle selber nicht mehr so stark dimensioniert werden müssen, dass die Durchbiegungen in Kragendbereich der Antriebswelle entsprechend gering werden. Die innerhalb des Pumpengehäuses vorhandene Lagerstelle für die Antriebswelle hat den weiteren Vorteil, dass die Baulänge der Pumpe gegenüber der vorbekannten Pumpe wesentlich kürzer wird; auf den von außen angeflanschten hohlzylindrischen Wellenträger gemäß dem vorbekannten Stand der Technik, an dessen zum Pumpengehäuse entfernteren Ende eine weitere Lagerstelle für die Antriebswelle ausgebildet ist, kann nämlich nunmehr verzichtet werden. Die ausreichende Lagerung der Antriebswelle kann im Bereich der Rückwand der Pumpe und innerhalb des vom Rotor beziehungsweise seines Rotorkragens in axialer Richtung eingenommenen Lichtraumprofils vorgesehen werden.
Die innerhalb des Pumpengehäuses vorhandene Lagerstelle für die Antriebswelle kann nach den auch in der Zeichnung dargestellten Ausführungsbeispielen durch einen hohlzylindrischen Wellenträger verwirklicht werden, der vom rückwärtigen Bereich der Pumpe in ihren Innenraum frei auskragt. Der Wellenträger kann ausreichend biegesteif ausgebildet werden, so dass die unvermeidbaren Durchbiegungen an seinem Kragende eine für den praktischen Betrieb der Pumpe unwesentliche Bedeutung haben. Für den auf dem Kragendbereich des Wellenträgers drehfest angeordneten Rotor und dessen Rotorkragen kann daher konstruktiv von einem in axialer Richtung praktisch festen Lager ausgegangen werden. Eine solche Pumpe baut nicht nur wesentlich kürzer als die vorstehend im Stand der Technik bekannte Pumpe, sondern kann auch mit vergleichsweise höheren Arbeitsdrücken betrieben werden.
Wie schon erwähnt, muss der Rotorkragen möglichst dicht an den den Pumpkanal in axialer Richtung begrenzenden, feststehenden Wandbereichen anliegen, um einen entsprechend hohen Wirkungsgrad der Pumpen zu ermöglichen. Um nun einen Verschleiß der Gebäudewände und des Rotors durch gegenseitiges Aneinanderreiben zu verhindern, ist es bekannt, den Pumpkanal durch austauschbare Verschleißteile, sogenannte Statoren, auszukleiden. Vorhandene Durchbiegungen der Antriebswelle, wie sie im Stand der Technik vorhanden sind, machen es erforderlich, dass zwischen dem Rotor und dem Stator Toleranzen eingehalten werden, die so groß sein müssen, dass bei Höchstbelastung der Pumpe der Rotor den Stator nicht berührt. Im gewissen Maße hilft man sich dadurch, dass für den Stator Kunststoffmaterial verwendet wird, so dass bei seiner Berührung durch den aus Stahl hergestellten Rotor kein Materialabtrag von Stahl auf Stahl erfolgt. Diese Problematik ist umso größer, je größer die Durchbiegung der Antriebswelle ist. Bei diesen einzuhaltenden Toleranzen ist in diesem Zusammenhang auch noch zu berücksichtigen, dass die verschiedenen Kunststoffe sich unter Einwirkung von Wärme unterschiedlich stark ausdehnen. Nun erfolgt die Reinigung solcher Pumpen in aller Regel bei Temperaturen, die bei 100 Grad Celsius und darüber liegen, so dass entsprechende Ausdehnungstoleranzen der jeweiligen Kunststoffe bei der Konstruktion der Pumpe berücksichtigt werden müssen, damit gewährleistet bleibt, dass die Rotoren auch bei hoher Temperatur frei im Pumpenraum sich drehen können. Die in den einzuhaltenden Toleranzen liegende Problematik wird durch die vorhandenen Durchbiegungen der Antriebswelle und damit des auf ihr sitzenden Rotors ganz entscheidend mit beeinflusst; bei zu großen Toleranzen fällt der Wirkungsgrad der Pumpe steil ab.
Mit der erfindungsgemäßen Pumpe ist es daher nicht mehr nötig, zur Vermeidung der vorstehenden Problematik auf leistungsstärkere Pumpen zurückzugreifen; nicht mit voller Leistung betriebene leistungsstärkere Pumpen weisen entsprechend kleinere Durchbiegungen auf, so dass die Toleranzproblematik sich günstiger darstellt. Solche größeren Pumpen, die betriebstechnisch an sich nicht erforderlich wären, erhöhen die Betriebskosten einer solchen Pumpe.
Aufgrund der zusammen mit dem Wellenträger ein frei auskragendes Konstruktionsteil bildenden Antriebswelle kann der Rotor in Art einer Stirnkappe die Antriebswelle und dabei auch den Wellenträger stirnseitig umfassen. Dies erlaubt dann eine einfache Montage und Demontage des Rotors, indem der Rotor axial auf die Antriebswelle drehfest aufgeschoben und beispielsweise mittels einer Halteoder Verschlussmutter axial unverrückbar an der Antriebswelle gehalten werden kann. Die Lagerstelle der Antriebswelle kann auf der Innenseite des Wellenträgers ausgebildet sein. Auf der dazu gegenüberliegenden Außenseite des Wellenträgers kann eine zusätzliche Lagerstelle für den Rotor ausgebildet sein, sofern die Kappenwand des Rotors nicht so biegesteif ist, dass die drehfeste Lagerstelle des Rotors an der Antriebswelle ausreicht.
Nach einem in der Zeichnung dargestellten Ausführungsbeispiel ist es auch möglich, die Lagerstelle für die Antriebswelle auf der Außenseite des Wellenträgers anzuordnen. Diese Lagerstelle kann dann gleichzeitig als in axialer Richtung wirkende Lagerstelle für den Rotor beziehungsweise für dessen Kappenbereich benutzt werden. In diesem Fall hängt sich die Antriebswelle über den Rotor von außen an dem Wellenträger an.
Die im Kragendbereich des Wellenträgers vorhandene jeweilige Lagerstelle für die Antriebswelle und für den Rotor, sofern letztere zusätzlich zu der drehfesten Lagerung des Rotors vorgesehen wird, können in derselben axialen Querschnittsebene angeordnet werden.
Um möglichst schlanke Lager auszubilden, kann jede Lagerstelle aus mehreren, in axialer Richtung nebeneinanderliegenden Lagern bestehen.
Neben dieser vorstehend beschriebenen, innerhalb des Pumpengehäuses vorhandenen ersten Lagerstelle kann eine zweite Lagerstelle für die Antriebswelle im Bereich der dem motorischen Antrieb benachbarten Rückwand der Pumpe vorhanden sein. Bei sehr leichten Pumpenkonstruktionen könnte auf diese zweite Lagerstelle auch verzichtet werden und die Antriebswelle erst im Bereich des motorischen Antriebes gelagert werden.
Es hat sich als vorteilhaft herausgestellt, das Pumpengehäuse an einem Lagerstuhl so zu befestigen, dass das Pumpengehäuse in verschiedenen Drehstellungen an demselben befestigt werden kann. Auf diese Weise können der Einlass und der Auslass den entsprechenden örtlichen Gegebenheiten auch bei einer kreiszylindrischen Außenkontur des Pumpengehäuses optimal räumlich angepasst werden. Ein solcher Lagerstuhl kann einen Halteflansch besitzen, an dem das Pumpengehäuse beispielsweise in der jeweils gewünschter Drehstellung angeschraubt werden kann. Die Antriebswelle durchdringt dann diesen Halteflansch und endet in dem Pumpengehäuse. Die vorstehend bereits erwähnte, hilfweise vorhandene zweite Lagerstelle für die Antriebswelle kann dann im Halteflansch vorgesehen werden.
Alternativ dazu könnte diese zweite Lagerstelle auch in der Rückwand des Pumpengehäuses vorgesehen werden.
Der in das Pumpengehäuse frei hineinkragende Wellenträger kann an der Rückwand des Pumpengehäuses oder auch an dem Halteflansch biegesteif befestigt werden. Der Wellenträger, der in diesem Falle nicht gewichtsmäßiger Bestandteil des Pumpengehäuses ist, muss beim Abnehmen des Pumpengehäuses vom Halteflansch nicht gewichtsmäßig berücksichtigt werden.
Der Deckel des Gehäuses kann einen umlaufenden, axialen Kragen aufweisen, der von außen an dem Endbereich der Mantelwand dicht anliegt. Dadurch wird verhindert, dass sich die dünne Mantelwand durch die im Innenraum des Pumpengehäuses herrschenden Drücke allzu leicht verformt.
Weitere Vorteile und Merkmale der Erfindung sind den in den Ansprüchen ferner angegebenen Merkmalen sowie den nachstehenden Ausführungsbeispielen zu entnehmen.
KURZE BESCHREIBUNG DER ZEICHNUNG
Die Erfindung wird im Folgenden anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen:
Fig. 1 einen Vertikal-Längsschnitt durch eine erste Ausfü rungsform einer erfindungsgemäßen Pumpe,
Fig. 2 einen Vertikal-Längsschnitt durch eine zweite Ausführungsform einer erfindungsgemäßen Pumpe.
WEGE ZUM AUSFÜHREN DER ERFINDUNG
Die in Fig. 1 dargestellte Pumpe 10 ist mit der Rückwand 14 ihres Gehäuses 12 mittels Schrauben 16 an dem Halteflansch 18 eines Lagerstuhls 20 angeschraubt. Das Gehäuse 12 ist um seine Achse 22 im wesentlichen rotationssymmetrisch ausgebildet, mit der im Grundriss kreisförmigen Rückwand 14, und einer kreiszylindrischen Mantelwand 24. Die Rückwand 14 ist auf ihrer Innenseite mit einer dünnen Platte 15 verkleidet. Diese dünne Platte 15 ist mit der Mantel wand 24 einteilig verbunden. Statt der dünnen Platte 15 kann auch eine Beschichtung vorgesehen sein.
Die in Fig. 1 linke Stirnwand 26 der Mantelwand 24 liegt in einer Ringnut 25 eines das Gehäuse 12 in axialer Richtung verschließenden Deckels 28. Der Deckel 28 ist über mehrere, umfangsmäßig am Deckel 28 verteilt angeordnete Stiftschrauben, von denen in Fig. 1 lediglich zwei derselben mit ihrer Stiftschrauben- Achse 30 dargestellt sind, in der Rückwand 14 festgeschraubt. Die Stiftschrauben führen durch den Innenraum des Gehäuses 12 und durch die dünne Platte 15 hindurch. Von den Stiftschrauben ist in Fig. 1 die außenseitig aufgeschraubte Ringmutter 34 dargestellt. Zwischen der Stirnseite 26 der Mantelwand 24 und dem Deckel 28 ist in der in dem Deckel 28 umlaufenden Ringnut 25 ein O-Ring 36 eingelegt, der für die erforderliche Dichtheit sorgt. Der Deckel 28 umgreift von außen den - in Fig. 1 - linken Endbereich 23 der Mantelwand 24 mit einem sich in Richtung zur Rückwand 14 hin axial erstreckenden, einstückig an ihm angeformten Kragen 29.
Die Innenwandung der Mantelwand 24 kann kreiszylindrisch oder zwecks leichteren Ausformens beim Herstellen des aus der dünnen Platte 15 und der Mantelwand 24 bestehenden einteiligen Stückes leicht konisch ausgebildet sein.
Die an den beiden Enden der Stiftschraube vorhandenen Gewindeabschnitte sind im Durchmesser kleiner als der Durchmesser des im Innenraum des Gehäuses 12 vorhandenen Stiftschrauben-Schaftes, so dass jede den Deckel 28 und die Rückwand 14 miteinander verschraubende Stiftschraube den Deckel 28 und die Rückwand 14 im gegenseitigen festgelegten Abstand aneinander hält.
Der Lagerstuhl 20 besitzt eine im vorliegenden Beispielsfalle rechtwinklig mit ihm verbundene Fußplatte 38, mit der das Gehäuse 12 und damit die Pumpe 10 auf einem Untergrund 40 aufgestellt werden kann. Dieser Untergrund 40 kann auch ein Konstruktionsteil sein, das beliebig im Raum ausgerichtet sein kann, denn beispielsweise mittels einer Verschraubung, von der zwei Verschraubungsachsen 42 dargestellt sind, kann die Fußplatte 38 und damit der gesamte Lagerstuhl 20 an besagtem Untergrund 40 lösbar fest werden. Ein hohlzylindrischer Wellenträger 50, dessen Zylinderachse mit der Achse 22 zusammenfällt, ragt durch die Rückwand 14 und die dünne Platte 15 hindurch in den Innenraum des Gehäuses 12. Der Wellenträger 50 ist mittels eines endseitigen Flansches 52 mittels mehrerer, von außen zugänglicher, umfangsmäßig verteilter Schrauben 54 an dem Halteflansch 18 befestigt. Der Wellenträger 50 ist materialmäßig und querschnittsmäßig so ausgebildet, dass sein im Gehäuse 12 endender Kragendbereich unter Belastung praktisch keine, zumindest eine für den Betrieb der Pumpe 10 vernachlässigbare Durchbiegung aufweist.
Zentral durch den Wellenträger 50 hindurch ragt eine Antriebswelle 60. Das - in Fig. 1 - rechte Ende der Antriebswelle 60 ist mittels einer Passfeder 62 drehfest an der in der Zeichnung nicht dargestellten Abtriebswelle eines motorischen Antriebes anschließbar, so dass die Antriebswelle 60 in beiden Rotationsrichtungen antreibbar ist.
An dem im Innenraum des Gehäuses 12 endenden Kragende 64 der Antriebswelle 60 ist ein Rotor 70 drehfest befestigt. Der Rotor 70 ist - bezogen auf die Fig. 1 - von links auf das Kragende 64 der Antriebswelle 60 aufgeschoben und mittels einer endseitig auf der Antriebswelle 60 aufgeschraubten Verschlussmutter 66 in seiner aufgesteckten, drehfesten Position lagefixiert gehalten. Die Verschlussnαutter 66 liegt über einem O-Ring 68 abgedichtet an der Stirnwand 72 des Rotors 70 an.
Der Rotor 70 besitzt eine Rotornabe 74, die eine zentrale, zur Rückwand 14 hin zeigende Ausnehmung aufweist, so dass die Rotornabe 74 in Form einer Kappe den Kragendbereich 76 der Antriebswelle 60 von außen mit Abstand umgreift. An den Kragendbereich 76 schließt sich in Richtung des auskragenden Endes der Antriebswelle 60 das Kragende 64 und daran der Schraubbereich für die Verschlussmutter 66 an.
Im Kragendbereich 76 ist ein Kegelrollenlager 80 beziehungsweise Schrägrollenlager zwischen der Antriebswelle 60 und dem Wellenträger 50 ausgebildet. Dieses Kegelrollenlager 80 kann insbesondere radiale, darüber hinaus auch axiale Kräfte aufnehmen. Derartige auf den Rotor 70 einwirkende Kräfte können über dessen Rotornabe 74 und über die Antriebswelle 60 auf den Wellenträger 50 und letztendlich auf den Lagerstuhl 20 übertragen beziehungsweise abgetragen werden. Das Kegelrollenlager 80 bildet damit eine im Innenraum des Gehäuses 12 vorhandene Lagerstelle für die Antriebswelle 60, da das Kegelrollenlager 80 durch seine Abstützung am Wellenträger 50 lagemäßig in dem Gehäuse 12 praktisch fest angeordnet ist. Die Antriebswelle 60 wird damit im Bereich des Kegelrollenlagers 80 abgestützt gehalten.
Das Kegelrollenlager 80 ist auf der - in Fig. 1 - linken Seite durch eine Schulterverbreiterung 82 der Antriebswelle 60 und auf der dazu entgegengesetzten, rechten Seite durch einen in einer Wellennut einsitzenden, axial abgestützten Lagerinnenring 84 gehalten. Radial außenseitig wird das Kegelrollenlager 8O zwischen einem endseitig auf den Wellenträger 50 aufgeschraubten Abstützring 86 und einem in den Wellenträger 50 eingeformten Rücksprung 88 lagefixiert gehalten.
Zum Zwecke der Abdichtung ist außenseitig des Abstützringes 86 ein Wellendichtring 90, der an der Schulterverbreiterung 82 dichtend anliegt, angeordnet.
Auf der zum Kegelrollenlager 80 gegenüberliegenden Außenseite des Wellenträgers 50 ist ein Radial-Nadellager 92 zwischen dem Wellenträger 50 und der Rotornabe 74 angeordnet. Die Rotornabe 74 stützt sich auch über dieses Nadellager 92 auf dem Wellenträger 50 ab. Dieses Lager 92 wird - bezogen auf die Fig. 1 - auf seiner linken Seite durch einen Wellendichtring 94, der zwischen der Rotornabe 74 und dem Wellenträger 50 vorhanden ist, abgedichtet. Auf seiner dazu entgegenliegenden - bezogen auf die Fig. 1 - rechten Seite schließt sich an das Radial-Nadellager 92 eine Dichtringaufnahme 100 an.
Diese Dichtringaufnahme 100 liegt rotationsfest an der Innenseite der Rotornabe 74 an. Die einen rotationssymmetrischen Querschnitt aufweisende Dichtringaufnahme 100 ragt mit ihrem Wandendbereich 102 durch die Rückwand 14 hindurch.
Eine scharfe, von dem Wandendbereich 102 abweisende Kante 104 sorgt im Falle einer Leckage dafür, dass das dabei austretende Medium von dem Wellenträger 50 weggerichtet aus dem Bereich der Dichtringaufnahme 100 austritt. Dieses Leckage- Medium tritt in einen zwischen der Rückwand 14 und dem Halteflansch 18 ausgebildeten Zwischenraum 106 ein, von dem es über in dem Halteflansch 18 ausgebildete, in der Zeichnung nicht dargestellte Öffnungen nach außen treten kann.
An einer radial einspringenden Schulter 108 der Dichtringaufnahme 100 stützt sich ein Wellendichtring HO ab, der abdichtend an der Außenseite des Wellenträgers 50 anliegt. Zusammen mit dem Wellendichtring 94 dichtet er das Radial-Nadellager 92 in axialer Richtung beidseitig ab.
Im Bereich des Halteflansches 18 ist ein weiteres Lager zwischen der Antriebswelle 60 und dem Wellenträger 50 in Form eines Kugellagers 114 vorhanden. Dieses Kugellager 114 ist zur Außenseite des Halteflansches 18 hin über einen Wellendichtring 116 abgedichtet, der seinerseits über einen von außen her auf den Halteflansch 18 aufgeschraubten Schraubring 118 gehalten ist.
Bei der in Fig. 1 dargestellten Konfiguration sind die Kegelrollenlager 80 und das Radial-Nadellager 92 in derselben Querschnittsebene 112 angeordnet.
Diese Querschnittsebene 112 liegt innerhalb des axialen Bereichs der Rotornabe 74 und darüber hinaus auch in dem axialen Querschnittsbereich des an der Rotornabe 74 einstückig angeformten Rotorkragens 120.
Dieser Rotorkragen 120 besitzt eine umlaufende wellenförmige Gestalt, so wie dies in der vorstehend zum Stand der Technik bereits erwähnten DE 34 18 708 AI ausführlich beschrieben ist.
Im unteren Bereich des Gehäuses 12 ist ein Pumpkanal 124 vorhanden, innerhalb dessen sich der Rotorkragen 120 in axialer Richtung bei einer Rotation der Antriebswelle 60 hin und her bewegt. Der Pumpkanal 124 wird durch einen Stator 130 eingerahmt gebildet, der aus zwei Statorhälften 132, 134 zusammengesetzt ist. Die beiden Statorhälften 132, 134 sind im vorliegenden Beispielsfall im Querschnitt identisch ausgebildet und liegen über eine gemeinsame Kontaktfläche 136 dicht aneinander. Die beiden Statorhälften 132, 134 werden zwischen dem Deckel 28 und der Rückwand 14 eingepresst gehalten. Die vorstehend bereits erwähnten Stiftschrauben, die den Deckel 28 an der Rückwand 14 auf Abstand lagefixiert halten, gehen auch durch den Stator 130 beziehungsweise durch dessen beide Statorhälften 132, 134, außerhalb des Pumpkanals 124, hindurch. Der Deckel 28 besitzt einen zentralen, kreisringförmig nach außen vorspringenden Deckelbereich 138. In der dadurch ausgeformten inneren Einwölbung sitzt teilweise eine rotationssymmetrische Frontbüchse 140. Diese Frontbüchse 140 ist über von außen zugängliche Schrauben 142 an dem Deckel 28 beziehungsweise an dessen zentralen Deckelbereich 138 angeschraubt gehalten. Die Frontbüchse 14O umhüllt mit Abstand das stirnseitige Ende der Rotornabe 74 und die auf der Antriebswelle 60 aufgeschraubte Verschlussmutter 66. Ihre Innenwandung 144 ist im vorliegenden Falle gewölbt, ohne scharfe Kanten, ausgebildet, um sie leicht reinigen zu können. Über umlaufend in der Frontbüchse 140 eingepasste O-Ringe 146, 148 ist die Frontbüchse 140 gegenüber dem Deckel 28 beziehungsweise der Rotornabe 74 und der linken Statorhälfte 132 abgedichtet.
Die - bezogen auf die Fig. 1 - Oberseite der Frontbüchse 140 bildet den Boden des Ansaugraumes beziehungsweise des Auslassraumes 150, über die der Pumpkanal 124 einerseits mit dem Einlass 152 und andererseits mit dem Auslass der Pumpen 10 jeweils verbunden ist. Die Längsachsen 154 des Einlasses 152 und des Auslasses stehen im vorliegenden Beispielsfall rechtwinklig aufeinander.
Fluchtend zur Oberseite der Frontbüchse 140 ist auf der - bezogen auf Fig. 1 - rechten Seite der Rotornabe 74 ein Haltering 160 mit seiner Oberseite positioniert. Dieser Haltering 160 bildet mit seiner Oberseite ebenso wie die Frontbüchse 140 den Boden des Ansaugraumes beziehungsweise des Auslassraumes 150.
Der Haltering 160 stellt den dichtenden Bodenbereich des Ansaugraumes beziehungsweise des Auslassraumes 150 zwischen der Rotornabe 74 und der dünnen Platte 15 des Gehäuses 12 dar. Zwischen der Rotornabe 74 und dem Haltering 160 sind im vorliegenden Beispielsfall zwei axial und radial gegenseitig versetzte, mit der Rotornabe 74 mitrotierende Gleitringe 164, 166 eingepasst. Gegen diese Gleitringe 164, 166 liegen stationäre Gleitringe 165 beziehungsweise 167 drückend an. Diese letzteren Gleitringe 165, 167 werden durch Federringe 168 beziehungsweise 170, die sich rückseitig an radial einspringenden Schultern 172 beziehungsweise 174 des Halteringes 160 abstützen, gegen den Gleitring 164 beziehungsweise 166 gedrückt.
Der Haltering 160 ist über umfänglich verteilt angeordnete Schrauben 176 an der Rückwand 14 befestigt. Die Gleitringe 165, 167 können aus jedem geeigneten Material, wie beispielsweise insbesondere auch aus Keramikmaterial bestehen. Die mitrotierenden Gleitringe 164, 166 können insbesondere aus metallischem Material bestehen.
Die aus den beiden Gleitringen 164, 165 beziehungsweise 166, 167 gebildeten Abdichtungen können beide in axialer Richtung in beliebiger gegenseitiger Ausrichtung angeordnet sein.
Der Ansaugraum und der Auslassraum 150 sind durch eine Schieberführung 162, die eine dichte Absperrplatte zwischen diesen beiden Räumen darstellt, voneinander druckmäßig getrennt. An der Schiebeführung 162 liegt ein Dichtschieber 182 in axialer Richtimg hin und her bewegbar an. Der Dichtschieber 182 ist in dem Auslassraum 150 angeordnet, so dass er durch den dort herrschenden Druck, der größer ist als der im Ansaugraum herrschende Druck, dicht an der Schieberführung 162 bei seiner Hin- und Herbewegung anliegt. In dem Dichtschieber 182 ist ein nach unten offener, zentraler Durchbruch 184 für den Rotorkragen 120 vorhanden. Der Rotorkragen 120 liegt bei seiner rotierenden Bewegung mit seinen beiden in axialer Richtung seitlichen Kragenwänden, von denen in Fig. 1 seine eine Seitenwand 186 sichtbar ist, dichtend an. Dieses Konstruktionsprinzip ist ebenfalls in der bereits vorstehend erwähnten DE 34 18 708 AI ausführlich beschrieben.
Der Dichtschieber 182 wird auf seiner zur Schieberführung 162 entgegengesetzten Seite durch in der Zeichnung nicht dargestellte Konstruktionsteile, die mit dem Gehäuse 12 fest verbunden sind, gehalten, so dass der Dichtschieber 182 auch bei gegenüber der Darstellung in Fig. 1 gestürzten, anderen, am Halteflansch 18 angeschraubten Drehstellungen seine dichte Lage an der Schieberführung 162 beibehält und nicht von der Schieberführung 162 beispielsweise in Umfangsrichtung wegfällt. Die Schieberführung 162 kann beispielsweise durch eine der mit ihrer Achse 30 dargestellten Stiftschrauben lagemäßig zwischen dem Deckel 28 und der dünnen Platte 15 fixiert werden.
Aus der Rückwand 14 ragen in den Zwischenraum 106 umfangsmäßig verteilt mehrere Leckabläufe 190 hinein. Diese schlauch- beziehungsweise röhrchen- förmigen Leckabläufe 190 verbinden über in der Zeichnung nicht dargestellte, in dem Wellenträger 50 ausgebildete Längs- und Querbohrungen die einzelnen Lagerräume miteinander, so dass sie zur Schmierung dieser Lager zu verwenden sind. Die in Fig. 2 dargestellte Pumpe 10.2 ist prinzipiell wie die vorstehend beschriebene Pumpe 10 aufgebaut. Auch ihre Rückwand 14.2 ist durch eine dünne Platte 15.2 abgedeckt. Die Platte 15.2 bildet mit der Mantelwand 24.2 ein einteiliges, als Tiefziehteil hergestelltes topfartiges Gehäuseteil. Statt der Platte 15.2 könnte wiederum eine Beschichtung vorgesehen werden.
Das Kegelrollenlager 80 und das Radial-Nadellager 92 liegen in derselben axialen Querschnittsebene 112, die innerhalb des von dem Rotor kragen 120 in axialer Richtung eingenommenen Lichtraumbereiches liegt. Das im Bereich des Halteflansches 18.2 vorhandene weitere Lager, das im vorliegenden Beispielsfall ebenfalls ein als Kugellager 114 ausgebildetes Hilfslager für die Antriebswelle 60.2 darstellt, ist statt des Schraubringes 118 der Pumpe 10 nunmehr ein die Wellendichtung 116 axial haltender Haltering 118.2 vorhanden, der mittels Schrauben 117 an dem Wellenträger 50.2 festgeschraubt gehalten wird.
Als weitere Unterschiede zur Pumpe 10 sind bei der Pumpe 10.2 ihr Deckel 28.2 außenseitig ebenflächig und ihre Rückwand 14.2 ohne die bei der Rückwand 14 im unteren Bereich vorhandene Querschnittsverstärkung ausgebildet.
Der Haltering 160.2, der dem Haltering 160 entspricht, besitzt aufgrund der zur Pumpe 10 anderen räumlichen Gegebenheiten eine etwas andere Querschnittsform als der Haltering 160. Seine Funktion ist wie beim Haltering 160 vorhanden; über zwei an ihm über Federringe in axialer Richtung wegdrückend gehaltene Gleitringe 165.2, 167.2 liegt er dichtend an in der Rotornabe 74.2 eingeformt gehaltenen Dichtringen 164.2 beziehungsweise 166.2 an.
Das Kegelrollenlager 80 wird an seiner radialen Innenseite statt des in der Pumpe 10 vorhandenen Lagerinnenringes 84 durch einen Schraubring 84.2 abgestützt gehalten.
Der Zwischenraum 106 ist über die Leckabläufe 190 und Quer- und Längsbohrungen 196, 198 mit den einzelnen Lagern verbunden, so dass einerseits Lager mit Ölschmierung versehen werden können, andererseits bei Leckagen entsprechende Medien in den Zwischenraum 106 und von dort aus durch in der Zeichnung nicht dargestellte, in dem Halteflansch 18 beziehungsweise 18.2 vorhandene Öffnungen aus der Pumpe 10 beziehungsweise 10.2 herausfließen können.

Claims

Ansprüche
01. Pumpe (10, 10.2) - mit einem einen Deckel (28, 28.2), eine Rückwand (14, 14.2) und eine dazwischen angeordnete Mantelwand (24) aufweisenden Pumpengehäuse (12), - mit einem Rotor (70), der drehfest auf einer mit einem motorischen Antrieb verbindbaren Antriebswelle (60, 60.2) vorhanden ist und der einen radial wegstehenden, wellenförmig umlaufenden Rotorkragen (120) besitzt, - mit den Rotorkragen in axialer Richtung beidseitig begrenzenden, einen Pumpkanal (124) zwischen sich freilassenden Begrenzungsflächen, - mit einem Einlass (152) und einem Auslass für den Pumpkanal (124), - mit einem in axialer Richtung verstellbaren, an dem Rotorkragen (120) in axialer Richtung beidseitig dichtend anliegenden und den Pumpkanal (124) zwischen dem Einlass (152) und dem Auslass unterteilenden Dichtschieber (182), - dadurch gekennzeichnet, dass - eine dünne Platte (15, 15.2) oder eine Beschichtung zumindest auf der Innenseite der Rückwand (14, 14.2) so vorhanden ist, dass durch das Pumpengehäuse (12) hindurch gepumptes Medium zumindest mit der Rückwand (14, 14.2) nicht in Berührung kommt, - diese dünne Platte (15, 15.2) oder diese Beschichtung aus einem die Eigenschaften dieses Mediums berücksichtigenden Material besteht, - die Rückwand (14, 14.2) aus rohem Material, wie insbesondere aus Gussmaterial besteht.
02. Pumpe nach Anspruch 1, - dadurch gekennzeichnet, dass - die Mantelwand (24, 24.2) aus einer die Eigenschaften des Fördermediums berücksichtigenden dünnen Wand besteht.
03. Pumpe nach Anspruch 2, - dadurch gekennzeichnet, dass - die Mantelwand (24, 24.2) einteilig mit der dünnen Platte (15, 15.2) verbunden ist.
04. Pumpe nach Anspruch 3, - dadurch gekennzeichnet, dass - der von der Mantelwand (24, 24.2) umschlossene Innenraum des Pumpengehäuses (12) sich zum Deckel (28, 28.2) hin konisch erweitert.
05. Pumpe nach einem der vorstehenden Ansprüche, - dadurch gekennzeichnet, dass - die Rückwand (14, 14.2) an einem Halteflansch (18, 18.2) lösbar befestigt ist.
06. Pumpe nach Anspruch 5, - dadurch gekennzeichnet, dass - die Antriebswelle (60, 60.2) den Halteflansch (18, 18.2) durchdringt und in dem Pumpengehäuse (12) endet.
07. Pumpe nach Anspruch 6, - dadurch gekennzeichnet, dass - eine Lagerstelle für die Antriebswelle (60, 60.2) im Halteflansch (18, 18.2) vorhanden ist.
08. Pumpe nach einem der Ansprüche 5 bis 7, - dadurch gekennzeichnet, dass - das Pumpengehäuse (12) in verschiedenen Rotationsstellungen an dem Halteflansch (18, 18.2) befestigbar, wie insbesondere festschraubbar ist.
09. Pumpe nach einem der vorstehenden Ansprüche, - dadurch gekennzeichnet, dass - aus Richtung der dem motorischen Antrieb benachbarten Außenwand der Pumpe ein hülsenförmiger, die Antriebswelle (60, 60.2) in sich tragender Wellenträger (50, 50.2) vorhanden ist, - im Kragendbereich (76) des Wellenträgers diese erste Lagerstelle für die Antriebswelle vorhanden ist, - der die Antriebswelle (60, 60.2) für den Rotor (70) in sich tragende und in das Pumpengehäuse (12) hineinragende Wellenträger (50, 50.2) an dem Halteflansch (18, 18.2) des Lagerstuhls (20) befestigbar ist.
10. Pumpe nach einem der vorstehenden Ansprüche, - dadurch gekennzeichnet, dass - der Deckel (28, 28.2) einen umlaufenden, axialen Kragen (29) aufweist, - dieser Kragen (29) von außen an einem Endbereich der Mantelwand (24, 24.2) dicht anliegt.
PCT/DE2004/002789 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel WO2005066497A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112004002792T DE112004002792A5 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem Flügel
EP04802974A EP1714035A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
DE202004000185.3 2004-01-09
DE200420000185 DE202004000185U1 (de) 2004-01-09 2004-01-09 Pumpe
DE202004000186.1 2004-01-09
DE200420000184 DE202004000184U1 (de) 2004-01-09 2004-01-09 Pumpe
DE202004000188.8 2004-01-09
DE200420000189 DE202004000189U1 (de) 2004-01-09 2004-01-09 Dichtungsflächen zwischen einem wellenförmigen Rotorkragen und den Laibungswänden eines Schlitzes in einem verstellbaren Schieber einer Pumpe sowie Vorrichtung zum Herstellen dieser Dichtungsflächen
DE200420000186 DE202004000186U1 (de) 2004-01-09 2004-01-09 Pumpe
DE202004000184.5 2004-01-09
DE200420000188 DE202004000188U1 (de) 2004-01-09 2004-01-09 Pumpe
DE202004000183.7 2004-01-09
DE202004000189.6 2004-01-09
DE200420000183 DE202004000183U1 (de) 2004-01-09 2004-01-09 Pumpe

Publications (1)

Publication Number Publication Date
WO2005066497A1 true WO2005066497A1 (de) 2005-07-21

Family

ID=34753997

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/DE2004/002788 WO2005066496A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel
PCT/DE2004/002790 WO2005066498A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel
PCT/DE2004/002791 WO2005066499A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel
PCT/DE2004/002789 WO2005066497A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel
PCT/DE2004/002793 WO2005066501A1 (de) 2004-01-09 2004-12-21 Dichtungsflächen zwischen einem wellenförmigen rotorkragen und einem verstellbaren schieber einer pumpe
PCT/DE2004/002792 WO2005066500A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/DE2004/002788 WO2005066496A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel
PCT/DE2004/002790 WO2005066498A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel
PCT/DE2004/002791 WO2005066499A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/DE2004/002793 WO2005066501A1 (de) 2004-01-09 2004-12-21 Dichtungsflächen zwischen einem wellenförmigen rotorkragen und einem verstellbaren schieber einer pumpe
PCT/DE2004/002792 WO2005066500A1 (de) 2004-01-09 2004-12-21 Drehkolbenpumpe mit axial beweglichem flügel

Country Status (4)

Country Link
US (1) US7614863B2 (de)
EP (5) EP1714036B1 (de)
DE (6) DE112004002794A5 (de)
WO (6) WO2005066496A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128848A1 (en) * 2008-11-21 2010-05-27 General Electric Company X-ray tube having liquid lubricated bearings and liquid cooled target
AU2010360601B2 (en) * 2010-09-15 2015-01-22 Watson-Marlow Gmbh Rotary displacement pump for pumping solids emulsions, especially liquid explosives
DE102015116770A1 (de) 2015-10-02 2017-04-06 Watson-Marlow Gmbh Pumpe und Sperrvorrichtung
DE102015116768A1 (de) * 2015-10-02 2017-04-20 Watson-Marlow Gmbh Pumpe
DE102015116769A1 (de) * 2015-10-02 2017-04-06 Watson-Marlow Gmbh Pumpe und Sperrelement
DE202017006441U1 (de) 2017-12-02 2018-01-15 Gottfried Kowalik Rotierende Verdrängerpumpe zum Fördern von fließfähigen Stoffen und Laufrad für eine solche Verdrängerpumpe
US20220145880A1 (en) * 2020-11-11 2022-05-12 Server Products, Inc. Flexible impeller pump for flowable food product
BE1028910B1 (nl) * 2020-12-16 2022-07-19 Univ Brussel Vrije Element voor het samenpersen of expanderen van een gas en werkwijze voor het regelen van dergelijk element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396667A (en) * 1965-10-29 1968-08-13 Eisenwerke Kaiserslautern G M Rotary pumps for viscous fluids
US4465445A (en) * 1980-12-06 1984-08-14 Ursula Sommer geb. Heyd Rotary pivoted vane pump
DE3418708A1 (de) * 1983-05-21 1984-11-22 Sine Pumps N.V., Curacao, Niederländische Antillen Pumpe
DE4012789A1 (de) * 1990-04-21 1991-10-24 Maso Dickstoffpumpen Entwicklu Umlaufpumpe

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE56694C (de) * C. FlLTZ, J. FlLTZ und G. FlLTZ in Paris, Rue Lacourbe 43 Kraftmaschine mit schraubenförmigem Kolben
US783865A (en) * 1903-11-11 1905-02-28 Alois Huela Rotary motor.
US1654883A (en) * 1926-01-11 1928-01-03 Joseph F Jaworowski Rotary pump
FR639381A (fr) * 1927-01-15 1928-06-20 Pompe rotative volumétrique
US2583704A (en) * 1945-08-28 1952-01-29 Nicholls Kenneth Howard Rotary pump and motor differential hydraulic transmission
GB807734A (en) * 1956-05-31 1959-01-21 Wm R Whittaker Co Ltd Improvements in or relating to rotary device for use as a pump or fluid motor
US3074350A (en) * 1959-01-06 1963-01-22 R C Ray Portable pump with interchangeable drive unit
US3156158A (en) * 1959-08-20 1964-11-10 James B Pamplin Rotary fluid displacement apparatus
US3133506A (en) * 1961-08-15 1964-05-19 Luciani Louis Gear pump having internal bearings and seals
US3464362A (en) * 1967-08-14 1969-09-02 Milburn M Ross Rotary power means
US3994638A (en) * 1974-08-29 1976-11-30 Frick Company Oscillating rotary compressor
US4093408A (en) * 1976-12-03 1978-06-06 Yoshichika Yamaguchi Positive cam type compressor
DK160720C (da) * 1979-10-30 1991-09-16 Sulzer Constr Mecan Roterende hydraulisk maskine
JPS5759091A (en) * 1980-09-26 1982-04-09 Okimoto Tamada Screw pump
DE3474051D1 (en) * 1983-05-21 1988-10-20 Sine Pumps Rotary fluid pump
DE9209117U1 (de) * 1992-07-09 1992-08-27 PKL Verpackungssysteme GmbH, 5271 Linnich Pumpe
JPH07174082A (ja) * 1993-12-20 1995-07-11 Sanden Corp スクロール型流体機械
US5678986A (en) * 1994-10-27 1997-10-21 Sanden Corporation Fluid displacement apparatus with lubricating mechanism
DE19522560A1 (de) 1995-06-21 1997-01-02 Sihi Ind Consult Gmbh Vakuumpumpe mit einem Paar innerhalb eines axial durchströmten Schöpfraums umlaufender Verdrängerrotoren
US5980225A (en) * 1996-07-05 1999-11-09 Sundstrand Fluid Handling Corporation Rotary pump having a drive shaft releasably connected to the rotor
JP2001295774A (ja) * 2000-04-12 2001-10-26 Masayasu Kamegawa 多段式波状翼形ポンプ
JP2005509800A (ja) * 2001-11-20 2005-04-14 エルジー エレクトロニクス インコーポレイティド Z−プレートを備えた圧縮機
BR0206956A (pt) * 2001-12-03 2004-03-09 Lg Electronics Inc Estrutura de peça de descarga para compressor
KR100455191B1 (ko) * 2002-04-16 2004-11-06 엘지전자 주식회사 압축기의 베인 구조
KR100875749B1 (ko) * 2002-07-02 2008-12-24 엘지전자 주식회사 밀폐형 압축기
EP1633982A1 (de) * 2003-06-13 2006-03-15 Kyung-Yul Hyun Fluidpumpe und motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396667A (en) * 1965-10-29 1968-08-13 Eisenwerke Kaiserslautern G M Rotary pumps for viscous fluids
US4465445A (en) * 1980-12-06 1984-08-14 Ursula Sommer geb. Heyd Rotary pivoted vane pump
DE3418708A1 (de) * 1983-05-21 1984-11-22 Sine Pumps N.V., Curacao, Niederländische Antillen Pumpe
DE4012789A1 (de) * 1990-04-21 1991-10-24 Maso Dickstoffpumpen Entwicklu Umlaufpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASO PROCESS-PUMPEN; SUNDYNE CORPORATION: "MANUAL - TECHNICAL DOCUMENTATION MASO-SINE-PUMP MR 160", ANNOUNCEMENT SUNDYNE, January 2003 (2003-01-01), pages COMPLETE11, XP001219572 *

Also Published As

Publication number Publication date
WO2005066499A1 (de) 2005-07-21
EP1714036A1 (de) 2006-10-25
DE112004002789A5 (de) 2007-05-24
EP1714036B1 (de) 2012-03-28
DE112004002788A5 (de) 2007-05-24
EP1714038A1 (de) 2006-10-25
WO2005066501A1 (de) 2005-07-21
DE112004002792A5 (de) 2007-05-24
DE112004002794A5 (de) 2007-05-24
WO2005066498A1 (de) 2005-07-21
WO2005066496A1 (de) 2005-07-21
EP1721078A1 (de) 2006-11-15
WO2005066500A1 (de) 2005-07-21
US20070148027A1 (en) 2007-06-28
EP1714037A1 (de) 2006-10-25
DE112004002793A5 (de) 2007-05-24
US7614863B2 (en) 2009-11-10
DE112004002786A5 (de) 2007-05-24
EP1714035A1 (de) 2006-10-25

Similar Documents

Publication Publication Date Title
EP1019637B1 (de) Radialer schwenkmotor
EP2483562A2 (de) Axiale abdichtung für eine innenzahnradpumpe
DE102006055161A1 (de) Lagerschale für eine hydrostatische Maschine und hydrostatische Maschine mit dieser Lagerschale
DE60027233T2 (de) Einrichtung zum Bremsen eines Rotors gegenüber einem Stator
EP0713973B1 (de) Schmiermittelpumpe
WO2005066497A1 (de) Drehkolbenpumpe mit axial beweglichem flügel
DE102012206699B4 (de) Zahnradmaschine mit wannenartiger Vertiefung an der Außenoberfläche des Gehäuses
EP3532729B2 (de) Horizontal geteilte schraubenspindelpumpe
DE1528968B1 (de) Zahnradpumpe
DE102009019418B4 (de) Umlaufverdrängerpumpe mit verbesserter Lagerschmierung
DE202004000184U1 (de) Pumpe
DE102022205040A1 (de) Antrieb für eine Tür oder ein Fenster
DE202018102291U1 (de) Dichtungseinheit
DE102022202520A1 (de) Gesonderte Vorkompressionsbaugruppe zur Verwendung mit einer Kolbenmaschine
DE102012208323A1 (de) Hydrotransformator
EP2655802B1 (de) Zahnradmaschine mit kleinem durchmesser-längenverhältnis
DE202004000183U1 (de) Pumpe
DE9209641U1 (de) Wälzkolbenpumpe
DE102016215211A1 (de) Radialkolbenmaschine mit Lamellenbremse
DE4012789A1 (de) Umlaufpumpe
DE202004000185U1 (de) Pumpe
WO2008125106A1 (de) Gerotormotor
EP2207958A2 (de) Radialkolbenpumpe mit einem prismatischem grundkörper für ein kraftstoffeinspritzsystem
EP3171028B1 (de) Mehrstufige kreiselpumpe mit einem axialschub-ausgleichskolben, dessen druck- und saugseiten von einer gleitringdichtung getrennt sind
DE102021115440A1 (de) Rotationspumpe mit einer Axialschubbegrenzungseinrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004802974

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1120040027926

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004802974

Country of ref document: EP

REF Corresponds to

Ref document number: 112004002792

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P