WO2005063684A1 - テトラミン化合物および有機el素子 - Google Patents

テトラミン化合物および有機el素子 Download PDF

Info

Publication number
WO2005063684A1
WO2005063684A1 PCT/JP2004/019755 JP2004019755W WO2005063684A1 WO 2005063684 A1 WO2005063684 A1 WO 2005063684A1 JP 2004019755 W JP2004019755 W JP 2004019755W WO 2005063684 A1 WO2005063684 A1 WO 2005063684A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
aryl group
alkyl group
tertiary alkyl
transport layer
Prior art date
Application number
PCT/JP2004/019755
Other languages
English (en)
French (fr)
Inventor
Shigeru Kusano
Makoto Koike
Atsushi Takesue
Mitsutoshi Anzai
Original Assignee
Hodogaya Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co., Ltd. filed Critical Hodogaya Chemical Co., Ltd.
Priority to JP2005516726A priority Critical patent/JP4682042B2/ja
Priority to US10/584,140 priority patent/US7807274B2/en
Priority to EP04808105.3A priority patent/EP1698613B1/en
Priority to KR1020067012620A priority patent/KR101125386B1/ko
Publication of WO2005063684A1 publication Critical patent/WO2005063684A1/ja
Priority to US12/688,223 priority patent/US7902402B2/en
Priority to US12/688,253 priority patent/US7897816B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/55Diphenylamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention is a light emitting device having a hole transport layer, a light emitting layer, and an electron transport layer, and is widely used as various display devices, and has excellent luminance and stability at a low applied voltage. This is clearly related to organic EL devices.
  • organic EL devices are self-luminous devices, they can provide brighter and clearer displays than liquid crystal devices, and have useful characteristics such as a wide viewing angle and high-speed response. Has been studied by many researchers.
  • organic electroluminescent devices using organic materials were far from practical levels, but were developed by Eastman Kodak C.W.Tang et al. In 1987.
  • the characteristics have been drastically improved by a multilayer structure element in which various materials are assigned to each material. They stack a phosphor that has a stable structure and can transport electrons, and an organic substance that can transport holes, and injects both carriers into the phosphor to emit light. succeeded in.
  • the luminous efficiency of the organic electroluminescent device is improved, and a high luminance of 1 OOO cd Zm 2 or more can be obtained at a voltage of 10 V or less (for example, see Patent Documents 1 and 2). ). Since then, many researchers have studied to improve the characteristics. At present, high-luminance luminescence characteristics of 100 cd / m 2 or more have been obtained with short-time luminescence.
  • Patent Literature 1 Japanese Patent Publication No. 8-4 8 6 56
  • Patent Document 2 Patent No. 3194648
  • the general element configuration refers to that shown in FIG.
  • Non-Patent Document 1 M & B E, vo l.11, No.1 (20000)
  • the present inventors paid attention to the thermal stability of the hole transport material, and considered the glass transition point of a compound that is deeply involved in the thermal stability of the deposited film as an important item, and conducted a material study.
  • the glass transition point is the upper limit temperature at which a substance can exist in an amorphous state, and is an important physical property value that determines the stability of a deposited film. Theoretically, the higher the glass transition point, the higher the thermal stability of the device.
  • An object of the present invention is to provide an organic EL device having a hole transport layer having excellent light emission stability when driven at a high temperature.
  • Another object of the present invention is to provide an excellent compound as a material used for the hole transport layer.
  • the present invention relates to a tetramine compound represented by the following general formula (1).
  • R 1, R 2 and R 3 may be the same or different, and are a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or a tertiary alkyl group having 4 to 8 carbon atoms.
  • the present invention also relates to a material for an organic EL device represented by the following general formula (1).
  • R 1, R 2 and R 3 may be the same or different, and are a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or a tertiary alkyl group having up to 8 carbon atoms.
  • the present invention relates to an organic EL device containing a tetramine compound represented by the following general formula (1).
  • R 1, R 2 and R 3 may be the same or different, and are a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or a tertiary alkyl group having up to 8 carbon atoms.
  • the present invention comprises a step of performing a condensation reaction between a triphenyldiaminobiphenyl compound represented by the following general formula (A) and a dihalogen compound represented by the following general formula (B): This is a method for producing a tetramine compound represented by the general formula (1).
  • R 1, R 2 and R 3 may be the same or different, and may be a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or a group having 4 to 8 carbon atoms. Represents an aryl group substituted with a tertiary alkyl group.
  • X represents a halogen atom
  • n represents 3 or 4.
  • R 1, R 2 and R 3 may be the same or different, and are a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or a tertiary alkyl group having 4 to 8 carbon atoms.
  • a condensation reaction of a diamino compound represented by the following general formula (C) and a halogen compound represented by the following general formula (D) is performed, and after the condensation product is hydrolyzed,
  • a method for producing a tetramine compound represented by the following general formula (2) comprising conducting a condensation reaction with a halogen compound represented by the formula (E).
  • R 4 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, and n represents 3 or 4.
  • R 1 represents a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or an aryl group substituted with a tertiary alkyl group having 4 to 8 carbon atoms
  • R 5 represents X represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group
  • X represents a halogen atom.
  • R 2 represents a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or an aryl group substituted with a tertiary alkyl group having 4 to 8 carbon atoms
  • X represents a halogen atom
  • R 1 and R 2 may be the same or different, and are substituted by a hydrogen atom, a tertiary alkyl group having 4 to 8 carbon atoms, an unsubstituted aryl group or a tertiary alkyl group having 8 to 8 carbon atoms.
  • n represents 3 or 4.
  • the present invention as a result of using the above-described hole transport materials, they not only have excellent hole transport ability, but also form a good thin film and are thermally stable. However, the service life in a high-temperature environment was significantly improved as compared with the case where a conventional hole transport material was used. As a result, it was clarified that an organic EL device having excellent emission stability can be realized.
  • the present invention relates to an organic EL device using a tetramine compound linked by a plurality of phenyl groups as a material for a hole transport layer.
  • Light emission stability during high-temperature driving which was the biggest problem, can be significantly improved, and the range of use of organic EL devices can be significantly expanded. For example, it has become possible to develop applications in high-temperature environments such as indoor lighting, organic semiconductor lasers, and in-vehicle applications that require high durability.
  • FIG. 1 is a diagram showing a typical EL device configuration.
  • FIG. 2 is an IR chart of HTM-1.
  • FIG. 3 is an IR chart of HTM-2.
  • FIG. 4 is an IR chart of HTM-3.
  • FIG. 5 is an IR chart of HTM-4.
  • FIG. 6 is an IR chart of HTM-5.
  • FIG. 7 is an IR chart of HTM-6.
  • 1 is a glass substrate
  • 2 is a transparent anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is an electron transport layer and light emitting layer
  • 6 is a buffer layer
  • 7 is a cathode.
  • the hole transport material of the present invention is a novel compound, Is a condensation reaction between the corresponding triphenyldiaminobiphenyl compound and a dihalogen compound, or N— (4′—bihalyl bihalidyl) halide corresponding to the N, N′-diacyl form of the corresponding diamine compound.
  • the compound can be synthesized by hydrolyzing a product resulting from a condensation reaction with an N-acylaniline compound and then performing a condensation reaction with a corresponding aryl halide compound. These condensation reactions are production methods known as Ullmann reactions.
  • the glass transition point (T g) was determined by weighing 5 mg of the sample powder in an aluminum press cell and setting it to a SH I DSC device while flowing nitrogen gas at 15 OmL / min.
  • the glass transition point (T g) was determined from the endothermic change.
  • the decomposition point was determined by weighing 5 mg of the sample powder into a platinum cell, setting the nitrogen gas at 15 OmL / min in a TG-DTA device made by SH I, and increasing the temperature to 800 ° C at 10 ° C / min. The temperature at which the weight began to sharply decrease from the obtained chart was taken as the decomposition point.
  • a sample powder is packed into the tube bottom of a METTLER melting point measuring tube ME-18552 to a length of 1 Omm, and a METTLER melting point measuring device FP—
  • the temperature was raised at 1 ° C per minute, and the obtained value was used as the melting point.
  • the present inventors have synthesized materials by changing the substituents of the compound in various ways. As a result, the size of the melting point, decomposition point, and glass transition point varies depending on the substituent, and in the case of some substituents, a material having a high melting point, decomposition point, and glass transition point (T g) can be obtained. did it.
  • Tables 11 and 12 show specific examples of the compounds. Further, some typical synthetic examples are shown as examples, but the present invention is not limited to these compounds. Absent.
  • Table 11 The tetramine compound represented by the general formula (1) and linked by three or four phenyl groups has a high glass transition point (T g) and has an effect of improving the device life at high temperature driving. Gave. Furthermore, a further effective effect was confirmed for a material into which an unsubstituted aryl group was introduced.
  • the organic EL device structure of the present invention includes a structure in which an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially laminated on a substrate, or an anode, a hole transport layer, and an electron transport layer on a substrate.
  • an electrode composed of an ITO electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, a cathode buffer layer, and an aluminum electrode may be used.
  • the hole transporting material according to the present invention only one kind of the tetramine compound represented by the general formula (1) can be used, but two or more kinds thereof are formed into a film by co-evaporation or the like and mixed. Can be used. Further, the hole transporting material of the present invention is replaced with a conventional hole transporting material such as TPAC (1,1-bis [4-1 [N, N-di (p-tolyl) amino]] cyclohexane) and TPD ( It can be used by co-evaporation with N, N'-diphenyl (N, N'-di (m-tolyl) benzidine). In some cases, co-evaporation of two or more types makes it difficult to cause crystallization. Further, the hole transport layer of the present invention can also serve as a light emitting layer. Specifically, by combining a hole transporting material and an electron transporting material having a high hole blocking property, the hole transporting layer can be used as a light emitting layer.
  • TPAC 1,1-bis
  • the electron transport layer of the present invention can also serve as a light emitting layer.
  • various rare earth complexes, oxazole derivatives, polyparaphenylenevinylene, and the like can be used as the light emitting layer material in addition to the anoremyquinoline trimer.
  • a light-emitting material called a dopant such as quinatalidone, coumarin, or ruprene
  • a dopant such as quinatalidone, coumarin, or ruprene
  • Copper phthalocyanine is used as the hole injection layer.
  • Cathode buffer layer Is lithium fluoride.
  • reaction was carried out at 05 ° C for 10 hours.
  • the reaction product was extracted with toluene (200 ml), the insolubles were removed by filtration, and the filtrate was concentrated to dryness.
  • the reaction product was extracted with 10 Om1 of toluene, and the insolubles were removed by filtration. The filtrate was concentrated to obtain an oil. Dissolve the oil in 6 am 1 of isoamyl alcohol and add lm l of water,
  • N, N, N ' Triphene 4,4' —Diaminobifenole 8.80 g (0.021 monole), 4, 4 "—Jorde: —Tenolefenénole 5,000 g (0.01 Mol), anhydrous potassium carbonate 3.90 g (0.028 mol), copper powder 0.32 g (0.005 mol), sodium bisulfite 0.30 g (0.03 mol), n —10 ml of dodecane were mixed and reacted for 30 hours at 195-210 ° C. The reaction product was extracted with 45 Oml of toluene, the insolubles were removed by filtration, and the filtrate was concentrated.
  • the melting point was 1
  • the temperature was 64.8 ° C.
  • the product was identified by NMR, elemental, and IR analysis The elemental analysis values were as follows: Carbon: measured value 8.89 2%
  • the reaction product was extracted with 20 Om1 of toluene, the insolubles were removed by filtration, and the filtrate was concentrated to obtain a filament.
  • N- (4-biphenyl) 1 N, N '-diphen4,4'-diaminobiphenyl 2 1.08 g (0.022 monole), 4, 4 " -5.00 g (0.001 mol), anhydrous carbon dioxide 4.14 g (0.030 mol), copper powder 0.32 g (0.005 mol), n-dodecane 1 Om 1 was mixed and reacted for 30 hours at 195-210 ° C.
  • the reaction product was extracted with 400 ml of toluene, insolubles were removed by filtration, and the filtrate was concentrated.
  • the reaction was carried out at 0 to 212 ° C for 15 hours.
  • the reaction product was extracted with 20 mL of toluene, and the insolubles were removed by filtration.
  • the filtrate was concentrated to obtain an oil.
  • the oily substance was dissolved in isoamyl alcohol (80 ml), added with 5 ml of water and 5.00 g (0.075 mol) of 85% potassium hydroxide, and hydrolyzed at 130 ° C. did. After isoamyl alcohol was distilled off by steam distillation, the mixture was extracted with 25 Om1 of toluene, and the organic layer was washed with water, dried and concentrated.
  • the concentrate was purified by column chromatography (carrier: silica gel, eluent: toluene Zn-hexane 2 1/2) and N- (4-tert-butynolephenone) 1 N, N, -diphenone-4 18.8 g (yield 73.5%, HPLC purity 98.0%) of 4 'diaminobiphenyl was obtained.
  • the melting point was 125.6 to 126.6 ° C.
  • the crystals are purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane 2 1/2), and N, N, -bis [4- (4-tert-butyldipheninoleamino) biphenylinone 4,1-inole] —N'N'-dipheninole_4,4 "diamino-p-terphenyl 4.00 g (HP LC purity 99.9%, column purification yield 62.5%)
  • the melting point was 209.5 ° C.
  • the product was identified by NMR analysis, elemental analysis, and IR measurement Elemental analysis values were as follows: Carbon: measured value 8 8.
  • the reaction product was extracted with 45 Om1 of toluene, the insolubles were removed by filtration, and the filtrate was concentrated.
  • the temperature was 17.3 ° C.
  • the crude crystals were dissolved in isoamyl alcohol (8 Om 1), added with 5 ml of water and 5.00 g (0.075 mol) of 85% potassium hydroxide, and hydrolyzed at 130 ° C. After isoamyl alcohol was distilled off by steam distillation, extraction was performed with toluene 25 Om1, and the organic layer was washed with water, dried and concentrated.
  • each of the compounds synthesized in the above examples was actually evaluated as an EL device, and the light emitting characteristics, the stability of the light emitting characteristics, and the storage stability of the device were examined.
  • the EL element has a hole injection layer 3, a hole transporting layer 4, an electron transporting layer 5
  • the cathode buffer layer 6 and the cathode (aluminum electrode) 7 were deposited in this order.
  • the surface of the glass substrate on which the ITO electrode was formed was cleaned by UV & ozone treatment. This was set in a vapor deposition machine.
  • a hole injection material a hole transport material, an electron transportable luminescent material, a buffer layer, and a cathode, a purified copper phthalocyanine, a hole transport material of the present invention, and a purified aluminum quinoline 3 amount, respectively.
  • the body, lithium fluoride, and aluminum were set in a vapor deposition device. The deposition was monitored at a deposition rate of 2.00 A / sec by monitoring the film thickness using a quartz oscillator.
  • the light emission characteristics of the obtained device were defined as the light emission luminance when a current of 10 OmAZ cm 2 was applied.
  • the emission stability during high-temperature driving was compared using an element that was not subjected to a sealing treatment so that differences due to the film properties of the hole transport material could be directly compared.
  • an initial voltage at which the element exhibited an emission luminance of 1,000 cdZm 2 was continuously applied, and a decrease in the emission luminance and a change in the current value were measured.
  • UV & ozone ITO electrode washed by the treatment, copper phthalocyanine purified as a hole injection material, aluminum quinoline trimer purified as an electron transporting luminescent material, lithium fluoride as a buffer layer, and aluminum as a cathode It was set on the device.
  • the deposition was performed at a deposition rate of 2.OA / sec while monitoring the film thickness using a quartz oscillator.
  • the hole injecting layer was 25 nm, the hole transporting layer was 35 nm, the electron transporting / emitting layer was 50 nm, the buffer layer was 1 nm, and the cathode was deposited up to 150 nm at a deposition rate of 4.00 AZ sec. All of these depositions were performed continuously without breaking vacuum.
  • electrodes were taken out in dry nitrogen, affixed to a Peltier device, heated to 100 ° C, and evaluated at 100 ° C.
  • the voltage showing an initial luminance of 1 000 cd / m 2 was 6.0 V. This device has shown a maximum brightness 1 09 9 c dZm 2 in 1 1. 6 mA after stabilization.
  • After 46 2 cd / m 2, 8 hours after 5 hours after 32 1 cd / m 1 2 h decreased brightness to 2 14 c dZm 2.
  • the drive current after 12 hours was 2.2 mA. Comparative Example 1
  • An EL element was prepared under the same conditions as in Example 7 by using a compound represented by N'-bis (naphthalene-11-yl) -N, N'-diphenyl-rubenzidine (hereinafter referred to as "HI-NPD"). It was fabricated and its properties were examined in a similar manner. This device showed an initial luminance of 1000 cd / m 2 at 5.0 V. This element showed a maximum luminance 108 9 c dZm 2 at 10. 6 m A after stabilization.
  • HI-NPD N'-bis (naphthalene-11-yl) -N, N'-diphenyl-rubenzidine
  • This device has a light emission luminance of 426 cd "m 2 after 5 hours, 282 cd dZ m 2 after 8 hours, and 184 after 12 hours, although the driving voltage is lower than that of the device of Example 7. and c DZM 2, a larger reduction in luminance was observed.
  • drive current during 12 hours after was the 2. 8 m a, current efficiency than the device of example 7 was reduced.
  • An EL device using a melting point of 215.0 ° C and a Tg of 181.0 ° C) was fabricated as a hole transport material, and its characteristics were evaluated. Table 3 shows the results. The substitution positions of R1 and R2 in the tetralamine compounds HTM-1 to HTM-6 linked by a plurality of phenyl groups are all at the p-position. Table 3
  • the material of the present invention is suitable as a material for an organic EL device that requires light emission stability at the time of high temperature driving, which is the biggest problem of the conventional organic EL device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

テトラミン化合物および有機 E L素子 ぐ技術分野 >
本発明は、 正孔輸送層、 発光層及ぴ電子輸送層を有し、 各種の表示装置として 広範囲に利用される発光素子であって、 低い印加電圧で高輝度、 かつ安定性にも 優れた有機 E L素子に関するもので明ある。
<背景技術 >
有機 E L素子は自己発光性素子であるため、 液晶素子にく らべて明るく、 鮮明 な表示が可能であり、 さらに、 広視野角、 高速応答性といった有用な特徴を有し ているため、 古くから多くの研究者によって研究されてきた。
当初、 有機材料を用いた有機電界発光素子は、 実用的なレベルからは遠いもの であったが、 1 9 8 7年にイーストマン - コダック社の C . W. T a n gらによ つて開発された、 各種の役割を各材料に分担した積層構造素子によりその特性が 飛躍的に進歩した。 彼らは蒸着膜の構造が安定で電子を輸送することのできる蛍 光体と、 正孔を輸送することのできる有機物とを積層し、 両方のキヤリヤーを蛍 光体中に注入して発光させることに成功した。 これによつて有機電界発光素子の 発光効率が向上し、 1 0 V以下の電圧で 1 O O O c d Zm 2以上の高輝度が得ら れるようになった (例えば、 特許文献 1、 特許文献 2参照)。 その後多くの研究 者によってその特性向上のための研究が行なわれ、 現在では短時間の発光では 1 0 0 0 0 c d /m 2 以上のより高輝度な発光特性が得られている。
特許文献 1 : 公開平 8— 4 8 6 5 6号公報
特許文献 2 : 特許第 3 1 9 4 6 5 7号公報
現在では、 有機 E L素子は実用化され、 携帯電話、 カーオーディオ等のディス プレイとして利用されており、 さらに大型化や使用範囲の拡大が期待されている。 し力、し、 まだ、 解決を要する問題点は多く、 そのひとつとして挙げられるのが、 高温環境下で駆動した場合の耐熱性である。 現在、 正孔輸送材料として広く使用 されている α— N P Dでは、 耐熱性に問題があり、 使用時に熱を発する大型のデ イスプレイや高耐久性の要求される車载用途等の高温環境下での使用は不可能と されている (例えば、 非特許文献 1参照)。 このため、 現在の一般的な素子構成 において、 素子の熱安定性を決定付けるのは、 正孔輸送材料の熱安定性であると 言われている。 これは、 有機 E L素子に使用されている各層の材料に着目すると、 有機アミン系材料が主体である正孔輸送材料は、 熱安定性の点ではどうしても不 利なためである。 そのため、 正孔輸送材料の熱安定性を改善することが、 素子の 熱安定性の改善につながるものと考えられる。 ここでいう、 一般的な素子構成と は、 図 1に示すものを指す。
非特許文献 1 : M& B E、 v o l . 1 1、 N o . 1 ( 2 0 0 0 )
<発明の開示〉
本発明者らは、 正孔輸送材料の熱安定性について着目し、 蒸着膜の熱安定性に 深く関与している化合物のガラス転移点を重要な項目として捉え材料検討を行つ た。 ガラス転移点とは、 物質がアモルファス状態で存在可能な上限の温度であり、 蒸着膜の膜安定性を決める重要な物性値である。 理論的には、 ガラス転移点が高 いほど素子の熱安定性は高いといえる。 また、 分子構造の面からも着目し、 複数 のフエニル基でジアミン化合物を連結することにより、 分子構造に特長を与え、 アモルファス状態の安定性の改善を試みた。
本発明の目的は、 高温駆動時における発光安定性に優れた正孔輸送層を有する 有機 E L素子を提供することにある。
また、 この正孔輸送層に使用される材料として、 優れた化合物を提供すること にある。
このような正孔輸送材料の具備しなければならない条件としては、 (1 ) 優れ た正孔輸送能力を持つこと、 (2 ) 熱的に安定で、 アモルファス状態が安定であ ること、 (3 ) 薄膜を形成できること、 (4 ) 電気的、 化学的に安定であること、 ( 5 ) 蒸着時に分解しないこと、 を挙げることができる。 上記目的を達成するために、 本発明者らは E L素子を種々試作し、 新たに合成 した正孔輸送材料の評価を鋭意行なった結果、 本発明を完成するに至った。
すなわち本発明は、 下記一般式 (1 ) で表されるテトラミン化合物に関する。
Figure imgf000005_0001
式中、 R l、 R 2及び R 3は同一でも異なってもよく水素原子、 炭素数が 4〜8 の 3級アルキル基、 無置換のァリール基または炭素数が 4〜 8の 3級アルキル基 で置換されたァリ一ル基を表し、 11は 3または 4を表す。
また、 本究明は下記一般式 (1 ) で表される有機 E L素子用材料に関する。
Figure imgf000005_0002
式中、 R l、 R 2及び R 3は同一でも異なってもよく水素原子、 炭素数が 4〜8 の 3級アルキル基、 無置換のァリール基または炭素数が :〜 8の 3級アルキル基 で置換されたァリ一ル基を表し、 nは 3または 4を表す。 また、 本発明は下記一般式 (1 ) で表されるテトラミン化合物を含有する有機 E L素子に関する。
Figure imgf000006_0001
式中、 R l、 R 2及び R 3は同一でも異なってもよく水素原子、 炭素数が 4〜8 の 3級アルキル基、 無置換のァリール基または炭素数が :〜 8の 3級アルキル基 で置換されたァリール基を表し、 nは 3または 4を表す。
さらに本発明は、 下記一般式 (A) で表されるトリフエニルジアミノビフヱニ ル化合物と、 下記一般式 ( B ) で表されるジハ口ゲン化合物との縮合反応を行う 工程からなる、 下記一般式 (1 ) で表されるテトラミン化合物の製造方法である。
Figure imgf000006_0002
式中、 R l、 R 2及ぴ R 3は同一でも異なってもよく水素原子、 炭素数が 4〜8 の 3級アルキル基、 無置換のァリ一ル基または炭素数が 4〜 8の 3級アルキル基 で置換されたァリ一ル基を表す。
Figure imgf000007_0001
式中、 Xはハロゲン原子を表し、 nは 3または 4を表す。
Figure imgf000007_0002
式中、 R l、 R 2及び R 3は同一でも異なってもよく水素原子、 炭素数が 4〜8 の 3級アルキル基、 無置換のァリール基または炭素数が 4〜 8の 3級アルキル基 で置換されたァリ一ル基を表し、 nは 3または 4を表す。
本発明は別法として、 下記一般式 (C ) で表されるジァミノ化合物と下記一般 式 (D ) で表されるハロゲン化合物との縮合反応を行い、 縮合生成物を加水分解 後、 さらに下記一般式 (E ) で表されるハロゲン化合物との縮合反応を行うこと からなる、 下記一般式 (2 ) で表されるテトラミン化合物の製造方法も提供する。
Figure imgf000007_0003
式中、 R 4は置換もしくは無置換のアルキル基または置換もしくは無置換のァリ 一ル基を表し、 nは 3または 4を表す。
Figure imgf000008_0001
式中、 R 1は水素原子、 炭素数が 4〜 8の 3級アルキル基、 無置換のァリール基 または炭素数が 4〜 8の 3級アルキル基で置換されたァリール基を表し、 R 5は 置換もしくは無置換のアルキル基または置換もしくは無置換のァリール基を表し、 Xはハ口ゲン原子を表す。
Figure imgf000008_0002
式中、 R 2は水素原子、 炭素数が 4〜 8の 3級アルキル基、 無置換のァリール基 または炭素数が 4〜 8の 3級アルキル基で置換されたァリ一ル基を表し、 Xはハ ロゲン原子を表す。
Figure imgf000008_0003
式中、 R 1及び R 2は同一でも異なってもよく水素原子、 炭素数が 4〜 8の 3級 アルキル基、 無置換のァリール基または炭素数が :〜 8の 3級アルキル基で置換 されたァリール基を表し、 nは 3または 4を表す。
本発明は、 上記のような正孔輸送材料を使用した結果、 それらが優れた正孔輸 送能力を有しているばかりでなく、 良好な薄膜を形成し、 さらに熱的にも安定で あり、 従来の正孔輸送材料を使用した場合に比べ、 高温環境下での寿命が顕著に 向上した。 この結果、 優れた発光安定性を有する有機 E L素子が実現できること が明らかになった。
以上のように、 本発明は、 正孔輸送層の材料として、 複数のフエニル基で連結 したテトラミン化合物を用いた有機 E L素子であり、 本発明の材料を用いること により、 従来の有機 E L素子の最も大きな問題点であった高温駆動時における発 光安定性を格段に改良することができ、 有機 E L素子の使用範囲を格段に広げる ことができる。 例えば、 室内照明や有機半導体レーザー、 高耐久性の要求される 車載用途等の高温環境下での用途への展開も可能となつた。
<図面の簡単な説明 >
図 1は、 典型的 E L素子構成を示した図であり、
図 2は、 H T M— 1の I Rチャート図であり、
図 3は、 H T M— 2の I Rチャート図であり、
図 4は、 H T M— 3の I Rチャート図であり、
図 5は、 H TM— 4の I Rチャート図であり、
図 6は、 H T M— 5の I Rチャート図であり、
図 7は、 H T M— 6の I Rチャート図である。
なお、 図中の符号、 1はガラス基板、 2は透明陽極、 3は正孔注入層、 4は正 孔輸送層、 5は電子輸送層兼発光層、 6はバッファ一層、 7は陰極である。
<発明を実施するための最良の形態 >
本発明の正孔輸送材料であるテトラミン化合物は、 新規な化合物であり、 これ は、 相当するトリフエ二ルジァミノビフエニル化合物とジハロゲン化合物との縮 合反応、 または相当するジァミン化合物の N, N' —ジァシル体と相当する N— (4 ' —ハロゲン化ビフユ二リル) 一N—ァシルァニリン化合物との縮合反応に よる生成物を加水分解した後、 相当するハロゲン化ァリール化合物と縮合反応す ることにより合成することができる。 これら縮合反応はウルマン反応として知ら れる製造方法である。
これらの化合物の同定は、 NMR分析、 元素分析、 I R分析により行なった。 精製はカラムクロマトによる精製、 吸着材による吸着精製、 溶媒による再結晶や 晶析法により行い、 純度を 99. 8 %以上とした。 純度の確認は、 高速液体ク口 マトグラフィー、 T LCスキャナ一により行なった。 物性値として、 D SC測定 ( T g )、 TG-DT A測定 (分解点)、 融点測定を行った。 融点、 分解点は正孔 輸送層の熱安定性の指標となり、 ガラス転移点 (T g) はガラス状態の安定性の 指標となる。
ガラス転移点 (T g) は、 試料粉体 5m gをアルミプレスセルに秤量し、 窒素 ガスを 1 5 OmL/m i nで流しながら、 SH I製の D S C装置にセットし毎分
10 で 400 °Cまで昇温して試料を熔解した後、 毎分一 40 °Cで— 50 °Cまで 冷却し、 毎分 1 0°Cで 3 50°Cまで再昇温させた時の吸熱変化より、 ガラス転移 点 (T g) を求めた。 分解点は、 試料粉体 5mgを白金セルに秤量し、 窒素ガス を 1 5 OmL/m i nで流しながら、 SH I製の T G— D T A装置にセットし、 毎分 10°Cで 800°Cまで昇温し、 得られたチャートより急激な減量が始まる温 度を分解点とした。 融点は、 メ トラー製の融点測定管 ME— 1 855 2の管底に 試料粉体を 1 Ommの長さになるように詰めて、 メ トラー製の融点測定器 F P—
62を用い、 毎分 1°Cで昇温して、 得られた値を融点とした。
本発明者らは化合物の置換基を種々に変えて材料を合成した。 その結果、 融点、 分解点、 ガラス転移点の大きさが置換基により変化し、 いくつかの置換基の場合 には、 融点、 分解点、 ガラス転移点 (T g) が高い材料を得ることができた。 具 体的な化合物例を表 1一 1及び 1一 2に示す。 さらに、 実施例としていくつかの 代表的な合成実施例を示すが、 本発明は、 これらの化合物に限定されるものでは ない。 表 1一
Figure imgf000011_0001
Figure imgf000012_0001
一般式 (1 ) で表される、 3つあるいは 4つのフエニル基で連結したテトラミ ン化合物は、 高いガラス転移点 (T g ) を有し、 高温駆動時の素子寿命に良好な る改善効果を与えた。 さらに、 無置換のァリール基を導入した材料においては更 なる有効な効果を確認した。
本発明の有機 E L素子構造としては、 基板上に陽極、 正孔輸送層、 発光層、 電 子輸送層及び陰極を順次積層してなるもの、 あるいは基板上に陽極、 正孔輸送層、 電子輸送層及び陰極を順次積層してなり正孔輸送層および電子輸送層のいずれか 一方が発光機能を有する (発光層を兼ねる) ものが挙げられる。 また、 I T O電 極、 正孔注入層、 正孔輸送層、 発光層、 電子輸送層、 陰極バッファ一層、 アルミ ユウム電極からなるものが挙げられる。
また、 本発明による正孔輸送材料としては、 一般式 (1 ) で表されるテトラミ ン化合物の 1種のみを用いることもできるが、 2種類以上を共蒸着などで成膜し て混合状態で用いることができる。 さらに、 本発明の正孔輸送材料を従来の正孔 輸送材料である T P A C ( 1 , 1—ビス [ 4一 [N, N—ジ (p—トリル) アミ ノ] ] シクロへキサン) や T P D (N, N ' —ジフエ二ルー N , N ' —ジ (m— トリル) ベンジジン) との共蒸着によって使用することができる。 2種類以上を 共蒸着して用いることにより、 その結晶化を起こしにくくできる場合がある。 さ らに、 本発明の正孔輸送層は発光層を兼ねることができる。 具体的には、 正孔輸 送材料と正孔ブロッキング性の高い電子輸送材料とを組み合わせることにより、 正孔輸送層を発光層として用いることができる。
また、 本発明の電子輸送層は発光層を兼ねることができる。 本発明の電子輸送 層兼発光層としてはァノレミキノリン 3量体のほか、 発光層の材料として各種の希 土類錯体、 ォキサゾール誘導体、 ポリパラフエ二レンビニレンなどを用いること ができる。
また、 発光層にキナタリ ドン、 クマリン、 ルプレン等のドーパントと呼ばれて いる発光材を添加することにより、 さらに高性能の E L素子を作製することがで きる。
正孔注入層としては銅フタロシアニンが挙げられる。 陰極バッファ一層として はフッ化リチウムが挙げられる。
<実施例 >
以下、 実施例を参照して本発明をより詳細に説明するが、 本発明はこれらの実 施例に限定されるものではない。 ぐ正孔輸送材料の合成 >
実施例 1
(HTM- 1の合成)
ァセトァニリ ド 20. 3 g (0. 1 5モル) と 4 , 4, 一ジョードビフエニル
73. 1 g (0. 1 8モル)、 無水炭酸カリウム 22. 1 g (0. 1 6モル)、 銅 粉 2. 1 6 g (0. 034モル)、 n—ドデカン 3 5 m 1を混合し、 1 9 0〜2
0 5°Cで 1 0時間反応させた。 反応生成物をトルエン, 200m lで抽出し、 不溶 分を濾別除去後、 濾液を濃縮乾固した。 得られた固形物をカラムクロマトにより 精製 (担体:シリカゲル、 溶離液: トルエン/酢酸ェチル = 6Z1) して、 N_
(4 ' —ョードビフエ二リル) ァセトァユリ ド 40. 2 g (収率 64. 8 %) を 得た。 融点は 1 35. 0-1 36. 0 °Cであった。
N- (4, ーョードビフエユリノレ) ァセトァ -リ ド 1 3. 2 g (0. 032モ ル)、 N, N—ジフエュルァミン 6. 60 g (0. 03 9モル)、 無水炭酸力リウ ム 5. 5 3 g (0. 040モル) 及び銅粉 0. 45 g (0. 007モル)、 n - ドデカン 1 Om 1を混合し、 200〜2 1 2°Cで 1 5時間反応させた。 反応生成 物をトルエン 10 Om 1で抽出し、 不溶分を濾別除去後、 濾液を濃縮してオイル 状物を得た。 オイル状物をイソアミルアルコール 6 Om 1に溶解し、 水 lm l、
8 5 %水酸化カリウム 2. 64 g (0. 040モル) を加え、 1 30°Cで加水 分解した。 水蒸気蒸留でィソァミルアルコールを留去後、 トルエン 25 Om lで 抽出し、 水洗、 乾燥して濃縮した。 濃縮物はカラムクロマトにより精製 (担体: シリカゲル、 溶離液: トルエン /n—へキサン = 1/2) して、 N, N, N, 一
1、リフエ二ノレ一 4, 4 ' ージァミノビフエニル 1 0. 5 g (収率 72. 2 %) を 得た。 融点は 1 67. 5〜1 68. 5 °Cであった。
N, N, N' —トリフエ二ルー 4, 4 ' —ジアミノビフエ二ノレ 8. 80 g ( 0. 02 1モノレ)、 4, 4" —ジョードー: —テノレフエ二ノレ 5 · 00 g (0. 0 1モ ル)、 無水炭酸カリウム 3. 90 g (0. 0 28モル)、 銅粉 0. 32 g (0. 0 0 5モル)、 重亜硫酸ナトリウム 0. 30 g (0. 0 3モル)、 n—ドデカン 1 0 m lを混合し、 1 9 5〜2 10°Cで 30時間反応させた。 反応生成物をトルエン 45 Om lで抽出し、 不溶分を濾別除去後、 濾液を濃縮した。 濃縮液にメタノー ノレ 6 Om.lを加えて晶析し、 吸引ろ過を行い粗結晶を得た。 粗結晶をトルエン 5 Om 1で還流溶解後、 45 °Cまで放冷した。 酢酸ェチル 1 00m lを滴下し、 晶 析を行い、 結晶を得た。. N, N' —ビス (4—ジフエ二ルアミノ ビフエ二ルー 4, 一ィル) 一 N, N, ージフエ二ノレ一 4 , 4" ージァミノ一 p—テノレフエ二ノレ は、 得量 5. 73 g、 収率 53. 0%, HP LC純度 97. 7 ° /。であつた。 結晶 は、 カラムクロマトにより精製 (担体:シリカゲル、 溶離液: トルエン/ n—へ キサン = 1/1) して、 N, N, 一ビス (4—ジフエニルアミノビフエ二ルー 4, 一イスレ) -N, N' —ジフエ二ノレ _ 4, 4" ージアミノー p—テノレフエ二ノレ 4. 75 g (HP LC純度 100. 0 %、 カラム精製収率 84. 8%) を得た。 融点は、 1 64. 8°Cであった。 NMR分析、 元素分析、 I R分析により生成物 の同定を行なった。 元素分析値は以下の通りである。 炭素:測定値 8 8. 9 2%
(理論値 8 9. 1 1%)、 水素:測定値 5. 78% (理論値 5. 56%)、 窒素: 測定値 5. 0 7% (理論値 5. 3 3%)。 NMR分析の結果は以下の通りであつ た。 7. 6 29 p pm (4H) 7. 545— 7. 449 p pm (1 2 H), 7. 3 1 3 - 6. 987 p pm (42 H)。 実施例 2
(HTM- 2の合成)
N— (4, ーョードビフエ二リル) ァセトァニリ ド 1 6. 5 g (0. 040モ ル)、 N- (4ービフエ-リル) —ァニリン 1 1. 8 g (0. 048モル)、 無水 炭酸カリウム 8. 3 g (0. 0 60モル) 及ぴ銅粉 0. l g (0. 00 2モル)、 n—ドデカン 1 Om 1を混合し、 200〜21 2°Cで 1 5時間反応させた。 反応 生成物をトルエン 20 Om 1で抽出し、 不溶分を濾別除去後、 濾液を濃縮してォ ィル状物を得た。 オイル状物はイソアミルアルコール 6 Om 1に溶解し、 水 4m 1、 8 5 %水酸化カリウム 4. 00 g (0. 060モル) を加え、 1 30。Cで 加水分解した。 水蒸気蒸留でイソアミルアルコールを留去後、 トルエン 250m 1で抽出し、 水洗、 乾燥して濃縮した。 濃縮物はカラムクロマトにより精製 (担 体:シリカゲル、 溶離液: トルエン Zn—へキサン = 1/2) して、 N— (4一 ビフエ二リル) 一 N, N, ージフエ二ノレ一 4, 4, ージアミノビフエ二ノレ 1 5. 2 g (収率 77. 8%、 H P LC純度 9 7. 0 %) を得た。 融点は 1 26. 6~ 1 2 7. 4°Cであった。
N- (4—ビフエ二リル) 一 N, N' —ジフエ二ルー 4, 4 ' —ジアミノビ フエ二ノレ 1 1. 08 g (0. 0 22モノレ)、 4, 4" 一ジョード一; —テノレフエ -ル 5. 00 g ( 0. ◦ 1モル)、 無水炭酸力リウム 4. 14 g (0. 0 30モ ル)、 銅粉 0. 3 2 g (0. 00 5モル)、 n—ドデカン 1 Om 1を混合し、 1 9 5〜210°Cで 30時間反応させた。 反応生成物をトルエン 400m lで抽出し、 不溶分を濾別除去後、 濾液を濃縮した。 濃縮液にメタノール 6 Om 1を加えて晶 析し、 吸引ろ過を行い粗結晶を得た。 粗結晶をトルエン 5 Om 1で還流溶解後、 45 °Cまで放冷した。 酢酸ェチル 1 00m lを滴下し、 晶析を行い、 結晶を得た。 N, N, 一ビス [4一 (4—ビフエユリノレ一フエニルァミノ) ビフエニノレー 4, —ィノレ] 一 N, N' —ジフエ二ノレ一 4, 4" ージアミノー: —テノレフエ二ノレは、 得量 7. 9 1 §、 収率6 5. 7%、 HP LC純度96. 6%であった。
結晶は、 カラムクロマトにより精製 (担体:シリカゲル、 溶離液: トルエンノ n—へキサン = 1/1) して、 N, N' —ビス [4— (4ービフエ二リル一フエ ニルァミノ) ビフエ二ルー 4' 一ィル] 一 N, N, ージフエエルー 4, 4" —ジ アミノー p—テルフエ-ル 4. 30 g (HP LC純度 100. 0%、 カラム精製 収率 56. 3%) を得た。 融点は、 1 8 9. 3°Cであった。 NMR分析、 元素分 析、 I R測定により生成物の同定を行なった。 元素分析値は以下の通りである。 炭素:測定値 8 9. 9 8 % (理論値 8 9. 8 2 %)、 水素:測定値 5. 6 1 % (理論値 5. 5 3 %)、 窒素:測定値 4. 3 5 % (理論値 4. 6 6 %)。 NMR分 析の結果は以下の通りであった。 7. 6 3 7 p p m (4 H)N 7. 5 9 4— 7. 3 8 8 p p m ( 2 4 H)、 7. 3 2 8 - 7. 1 6 0 p p m ( 3 4 H)、 7. 0 7 3 一 7. 0 2 5 p p m (4 H)0 実施例 3
(HTM- 3の合成)
N— (4 ' ーョードビフエ二リル) ーァセ トァニリ ド 2 0. 7 0 g (0. 0 5 0モノレ)、 4— t e r t—プチノレジフエニノレアミン 1 3. 5 0 g (0. 0 6 0モ ル)、 無水炭酸カリウム 1 0. 4 0 g ( 0. 0 7 5モル) 及び銅粉 0. 2 0 g ( 0. 0 0 3モル)、 n―ドデカン 1 0 m 1を混合し、 2 0 0〜 2 1 2°Cで 1 5 時間反応させた。 反応生成物をトルエン 2 0 Om lで抽出し、 不溶分を濾別除去 後、 濾液を濃縮してオイル状物を得た。 オイル状物はイソアミルアルコール 8 0 m 1に溶解し、 水 5 m 1 、 8 5 %水酸化力リウム 5. 0 0 g ( 0. 0 7 5モル) を加え、 1 3 0°Cで加水分解した。 水蒸気蒸留でイソアミルアルコールを留去後、 トルエン 2 5 O m 1で抽出し、 有機層を水洗、 乾燥して濃縮した。 濃縮物はカラ ムクロマトにより精製 (担体:シリカゲル、 溶離液: トルエン Zn—へキサン二 1 / 2) して、 N- (4 - t e r t—ブチノレフエ二ノレ) 一 N, N, —ジフエ二ノレ — 4, 4 ' ージアミノ ビフエ-ル 1 8. 8 g (収率 7 3. 5 %、 H P L C純度 9 8. 0 %) を得た。 融点は 1 2 5. 6〜 1 2 6. 6 °Cであった。
N— (4一 t e r t _プチノレフエ二ノレ) 一 N, N' ージフエニノレー 4, 4 ' ージアミノビフエ二ノレ 1 1. 5 0 g ( 0. 0 2 2モノレ)、 4, 4" 一ジョードー 一テルフエニル 5. 0 0 g ( 0. 0 1モル)、 無水炭酸カ リ ウム 4. 1 4 g ( 0. 0 3 0モル)、 銅粉◦. 3 2 g (0. 0 0 5モル)、 n一ドデカン 1 0 m 1 を混合し、 1 9 5〜 2 1 0°Cで 3 0時間反応させた。 反応生成物をトルエン 4 0 Om lで抽出し、 不溶分を濾別除去後、 濾液を濃縮した。 濃縮後にメタノール 6 Om 1を加えて晶析し、 吸引ろ過を行い粗結晶を得た。 粗結晶をトルエン 5 O m 1で還流溶解後、 4 5 °Cまで放冷した。 酢酸ェチル 1 0 Om 1を滴下し、 晶析を 行い、 結晶を得た。 N, N' —ビス [4— (4 - t e r tーブチルジフエ-ルァ ミノ) ビフエニグレ一4' 一ィル] — N, N, 一ジフエニル一 4, 4" ージァミノ 一 p—テルフエニルは、 得量 6. 708、 収率57. 5%、 11? 〇純度95. 6 %であった。
結晶は、 カラムクロマトにより精製 (担体:シリカゲル、 溶離液: トルェン / n一へキサン二 1/2) して、 N, N, -ビス [4 - (4— t e r t—ブチルジ フエニノレアミノ) ビフエ二ノレ一 4, 一ィノレ] —N' N' —ジフエ二ノレ _4, 4" ージァミノ一 p—テルフエ-ル 4. 00 g (HP LC純度 9 9. 9%、 カラム精 製収率 62. 5%) を得た。 融点は、 20 9. 5°Cであった。 NMR分析、 元素 分析、 I R測定により生成物の同定を行なった。 元素分析値は以下の通りである。 炭素:測定値 8 8. 9 6 % (理論値 8 8. 7 7 %)、 水素:測定値 6. 6 5 % (理論値 6. 4 1%)、 窒素:測定値 4. 5 7% (理論値 4. 8 2%)。 NMR分 析の結果は以下の通りであった。 7. 6 29 p pm (4H), 7. 545 - 7. 425 p pm (1 2 H), 7. 28 3— 7. 03 3 p pm (40H)、 1. 3 1 7 ρ p m (1 8 H)。 実施例 4
(HTM- 4の合成)
N, N, N' —ト リ フエ二ノレ - 4 , 4, ージァミ ノビフエ二ノレ 8. 1 0 g (0. 0 1 9モノレ)、 4, 4',' 一ジョ一ド一: —クァテノレフエ二ノレ 4. 00 g (0. 008モル)、 無水炭酸カリウム 3. 90 g (0. 028モル)、 銅粉 0. 3 2 g ( 0. 005モル)、 重亜硫酸ナトリウム 0. 30 g (0. 03モル)、 n 一ドデカン 1 0 m 1を混合し、 1 9 5〜2 1 0°Cで 30時間反応させた。 反応 生成物をトルエン 45 Om 1で抽出し、 不溶分を濾別除去後、 濾液を濃縮した。 濃縮物にメタノール 6 Om 1を加えて晶析し、 吸引ろ過を行い粗結晶を得た。 粗 結晶をトルエン 5 Om 1で還流溶解後、 4 5 °Cまで放冷した。 酢酸ェチル 1 00 m lを滴下し、 晶析を行い、 結晶を得た。 N, N, 一ビス (4, 一ジフエニルァ ミノビフエ-ノレ一 4—ィノレ) 一 N, N, ージフエ二ルー 4, 4 " ' ージアミノー p—クァテルフエニルは、 得量 5. 0 8 、 収率5 6. 4%、 HP L C純度 9 7. 5%であった。
結晶は、 カラムクロマトにより精製 (担体:シリカゲル、 溶離液: トルエン Z n—へキサン = 2 3) して、 N, N' —ビス (4ージフエ二ノレアミノビフエ二 ルー 4, 一ィル) 一 N, N, 一ジフエ二ルー 4, 4," 一ジァミノ一 p—クァテ ルフヱニル 3. 2 8 g (HP LC純度 9 9. 8 %、 カラム精製収率 6 6. 0 %) を得た。 融点は、 1 7 3. 1°Cであった。 NMR分析、 元素分析、 I R測定によ り生成物の同定を行なった。 元素分析値は以下の通りである。 炭素:測定値 8 9. 2 3 % (理論値 8 9. 4 9%)、 水素:測定値 5. 7 0 % (理論値 5. 5 4 %)、 窒素:測定値 4. 7 6 % (理論値 4. 9 7%)。 NMR分析の結果は以下の 通りであった。 7. 7 1 9 - 7. 6 3 9 p pm (8 H), 7. 5 5 5— 7. 4 3 7 p pm (1 2H)、 7. 3 1 9— 6. 9 8 9 p pm (4 2 H)D 実施例 5
(HTM- 5の合成)
N— (4, 一ョードビフエ二リル) ーァセ トァニリ ド 2 0. 7 0 g (0. 0 5 0モル)、 N、 N—ビス (ビフエ二ノレ _ 4—ィノレ) ァミン 1 9. 9 5 g (0. 0 6 0モル)、 無水炭酸カリウム 1 0. 4 0 g (0. 0 7 5モル) 及び銅粉 0. 2 0 g (0. 0 0 3モル)、 n—ドデカン 1 Om 1を混合し、 2 0 0〜2 1 2°Cで 1 5時間反応させた。 反応生成物をトルエン 20 Om 1で抽出し、 不溶分を濾別 除去後、 濾液を濃縮して粗結晶を得た。 粗結晶をイソアミルアルコール 8 Om 1 に溶解し、 水 5m l、 8 5 %水酸化カリウム 5. 0 0 g (0. 0 7 5モル) を加 え、 1 3 0°Cで加水分解した。 水蒸気蒸留でイソアミルアルコールを留去後、 ト ルェン 2 5 Om 1で抽出し、 有機層を水洗、 乾燥して濃縮した。 濃縮物はカラム クロマトにより精製 (担体:シリカゲル、 溶離液: トルエン/ n—へキサン = 1 / 2) して、 N、 N—ビス (ビフエ二ルー 4—ィル) — N, 一フエ二ルー 4 , 4 ' —ジアミノビフエニル 2 4. 2 g (収率 6 9. 9 %、 HP L C純度 9 8. 0%) を得た。 融点は、 1 4 5. 8〜1 4 6. 0°Cであった。 N、 N—ビス (ビフエニノレー 4—ィノレ) 一 N, 一フエニノレー 4, 4 ' ージァ ミノビフエ二/レ 1 2. 6 8 g (0. 0 22モノレ)、 4, 4 " —ジョード _p—テ ルフエニル 5. 00 g (0. 0 1モル)、 無水炭酸カリ ウム 4. 14 g (0. 0 30モル)、 銅粉0. 3 2 g (0. 005モル)、 n—ドデカン 1 0m 1を混合し、 1 95〜2 1 0°Cで 30時間反応させた。 反応生成物をトルエン 800m lで抽 出し、 不溶分を濾別除去後、 濾液を濃縮した。 濃縮後にメタノール 10 Om 1を 加えて晶析し、 吸引ろ過を行い粗結晶を得た。 粗結晶をトルエン 30 Om 1で還 流溶解後、 45 °Cまで放冷した。 酢酸ェチル 300m lを滴下し、 晶析を行い、 結晶を得た。 N, N' —ビス [4一 {ビス (ビフエ二ルー 4一ィル) アミノ} ビ フエ二ノレ _ 4, —ィル]一 N , N' 一ジフエニノレー 4 , 4 " —ジアミノー ρ—テ ルフエニルは、 得量 9. 43 g、 収率 6 5. 9%、 HP LC純度 94. 7%であ つた。
結晶は、 カラムクロマトにより精製 (担体:シリカゲル、 溶離液: トルエン Z n—へキサン = 1/2) して、 N, N' —ビス [4— {ビス (ビフエ二ルー 4— ィル) ァミノ) ビフエニノレー 4 ' —ィノレ]一 N, N, —ジフエニノレー 4 , 4" - ジァミノー p—テルフエ-ル 5. 47 g (HP LC純度 1 00. 0%、 カラム精 製収率 6 1. 3%) を得た。 融点は、 204. 5°Cであった。 NMR分析、 元素 分析、 I R測定により生成物の同定を行なった。 元素分析値は以下の通りである。 炭素:測定値 9 0. 2 2% (理論値 9 0. 3 7 %)、 水素:測定値 5. 7 3 % (理論値 5. 50%)、 窒素:測定値 4. 0 5% (理論値 4. 1 3°/。)。 NMR分 析の結果は以下の通りであった。 7. 6 3 7— 7. 3 9 6 p pm (4 OH), 7. 336 - 7. 1 72 p pm (3 2 H), 7. 08 1— 7. 029 p p m ( 2 H)0 実施例 6
(HTM- 6の合成)
N— (4, ーョードビフエ二リル) 一ァセ トァニリ ド 20. 70 g (0. 05 0モル)、 N、 N—ビス (4一 t e r t—ブチルフエニル) ァミン 1 6. 88 g (0. 060モル)、 無水炭酸カリウム 10. 40 g (0. 075モル) 及び銅 粉 0. 2 0 g (0. 0 0 3モル)、 n—ドデカン 1 0 m 1を混合し、 2 0 0〜2 1 2°Cで 1 5時間反応させた。 反応生成物をトルエン 2 0 Om 1で抽出し、 不溶 分を濾別除去後、 濾液を濃縮してオイル状物を得た。 オイル状物はイソアミルァ ルコール 8 Om 1に溶解し、 水 5 m 1、 8 5 %水酸化カリウム 5. 0 0 g (0. 0 7 5モル) を加え、 1 3 0°Cで加水分解した。 水蒸気蒸留でイソアミルアルコ 一ルを留去後、 トルエン 2 5 Om 1で抽出し、 有機層を水洗、 乾燥して濃縮した。 濃縮物はカラムクロマトにより精製 (担体:シリカゲル、 溶離液: トルエン Zn 一へキサン = 1/2) して、 N、 N—ビス (4一 t e r t—プチノレフエ二ノレ) 一 N, 一フエ二ルー 4 , 4, ージァミノ ビフエニル 2 0. 2 1 g (収率 7 5. 5%、 H P L C純度 9 8. 0%) を得た。 融点は、 1 6 1. 1〜1 6 2. 0°Cで あった。
N、 N—ビス ( 4一 t e r t一プチノレフエ二ノレ) 一N ' —フエ -ノレー 4, 4, 一ジァミノビフエニル 1 1. 7 8 g (0. 0 2 2モル)、 4 , 4" 一ジョー ドー: —テルフエニル 5. 0 0 g (0. 0 1モル)、 無水炭酸カリ ウム 4. 1 4 g ( 0. 0 3 0モノレ)、 銅粉 0. 3 2 g (0. 0 0 5モル)、 n一ドデカン 1 0 m 1を混合し、 1 9 5〜2 1 0°Cで 3 0時間反応させた。 反応生成物をトルエン 4 00m lで抽出し、 不溶分を濾別除去後、 濾液を濃縮した。 濃縮後にメタノール 6 0m lを加えて晶析し、 吸引ろ過を行い粗結晶を得た。 粗結晶をトルエン 5 0 m 1で還流溶解後、 4 5 °Cまで放冷した。 酢酸ェチル 1 0 0m lを滴下し、 晶析 を行い、 結晶を得た。 N, N' —ビス [ {ビス (4— t e r t 一ブチルフエ二 ル) アミノ } ビフエ二ルー 4 ' 一ィル] _N, N' —ジフエニル一 4, 4" ージ アミノー p—テルフエニルは、 得量 8. 2 2 g、 収率 6 1. 1 %、 HP L C純度 94. 8%であった。
結晶は、 カラムクロマトにより精製 (担体: シリカゲル、 溶離液: トルェン Z n一へキサン = 1 / 2 ) して、 N, N, —ビス [ (ビス (4 - t e r t一ブチル フエ二/レ) アミノ } ビフエ-ノレ一 4 ' —ィノレ]一 N, N ' ージフエニノレー 4, 4" ージアミノー p—テルフエニル 4. 9 8 g (HP L C純度 1 0 0. 0%、 力 ラム精製収率 6 0. 6 %) を得た。 融点は、 2 1 5. 0°Cであった。 NMR分析、 元素分析、 I R測定により生成物の同定を行なった。 元素分析値は以下の通りで ある。 炭素:測定値 8 8. 5 6 % (理論値 8 8. 5 0%)、 水素:測定値 7. 1 8% (理論値 7. 1 1%)、 窒素:測定値 4. 3 1% (理論値 4. 3 9%)。 NM R分析の結果は以下の通りであった。 7. 6 2 3 p pm (4H)、 7. 5 38 - 7. 407 pm (1 2 H)、 7. 275 - 7. 03 5 p pm (3 8 H), 1. 3 1 3 p p m (36 H)。
次に、 合成実施例にて合成した各化合物についての物性値をまとめて表 2に示 した。 表 2
Figure imgf000022_0001
< E L素子の作製および特性評価 >
以下の実施例においては、 上記実施例で合成した各化合物について実際に E L 素子として評価し、 素子の発光特性、 発光特性の安定性、 保存安定性を検討した。 EL素子は、 図 1に示すように、 ガラス基板 1上に透明陽極 2として I T〇電極 をあらかじめ形成したものの上に、 正孔注入層 3、 正孔輸送層 4、 電子輸送層兼 発光層 5、 陰極バッファ一層 6、 陰極 (アルミニウム電極) 7の順に蒸着して作 製した。 I TO電極成膜済みのガラス基板を UV&オゾン処理にて表面を洗浄し た。 これを、 蒸着機内にセットした。 続いて、 正孔注入材、 正孔輸送材、 電子輸 送性発光材、 バッファ一層、 陰極、 として、 それぞれ、 精製した銅フタロシア二 ン、 本発明の正孔輸送材、 精製したアルミキノリン 3量体、 フッ化リチウム、 ァ ルミユウムを蒸着装置にセットした。 蒸着は、 水晶振動子によって膜厚をモニタ 一し、 蒸着速度 2. 00 A/ s e cで行つた。 正孔注入層 25 n m、 正孔輸送層
35 nm, 電子輸送性発光層 50 n m、 バッファ一層 l nm、 陰極は蒸着速度 4. 00 AZ s e cで 1 50 nmまで蒸着した。 これらの蒸着はいずれも真空を破ら ずに連続して行なった。 素子作製後、 直ちに乾燥窒素中で電極の取り出しを行な い、 引続き特性測定を行なった。
得られた素子の発光特性は 1 0 OmAZ cm2の電流を印加した場合の発光輝 度で定義した。 また高温駆動時における発光安定性は、 正孔輸送材の膜特性によ る差異が直接的に比較できるように、 封止処理を行なわない素子を用いて比較し た。 1 00°Cの高温環境下において、 素子が 1 000 c dZm2の発光輝度を示 した初期電圧を連続して印加して、 発光輝度の低下と電流値の変化を測定した。 実施例 7
正孔輸送材として HTM— 1 (R l、 R 2、 R 3=H、 n = 3、 融点 = 1 64. 8°C、 T g = 1 5 1. 0°C) を使用し、 UV&オゾン処理にて洗浄した I TO電 極、 正孔注入材として精製した銅フタロシアニン、 電子輸送性発光材として精製 したアルミキノリン 3量体、 バッファ一層としてフッ化リチウム、 陰極としてァ ルミ二ゥムを蒸着装置にセットした。 蒸着は、 水晶振動子によって膜厚をモニタ 一し、 蒸着速度 2. O OA/s e cで行った。 正孔注入層 25 nm、 正孔輸送層 3 5 nm、 電子輸送層兼発光層 50 n m、 バッファ一層 l nm、 陰極は蒸着速度 4. 00 AZ s e cで 1 50 nmまで蒸着した。 これらの蒸着はいずれも真空を 破らずに連続して行なった。 素子作製後、 直ちに乾燥窒素中で電極の取り出しを 行ない、 ペリチェ素子に貼り付けて 1 00°Cまで加温し、 100°Cを保ったまま 特性評価をおこなった。 初期輝度 1 000 c d/m 2を示した電圧は 6. 0 Vで あった。 この素子は安定化後に 1 1. 6 mAで最大輝度 1 09 9 c dZm2を示 した。 その後、 5時間後には 46 2 c d/m2, 8時間後には 32 1 c d/m 1 2時間後には 2 14 c dZm2へと輝度低下した。 1 2時間後における駆 動電流は 2. 2 m Aであった。 比較例 1
比較のために正孔輸送材として、 現在正孔輸送材料の主流となっている、 N、 N' 一ビス (ナフタレン一 1一ィル) 一 N、 N' —ジフエ二ルーベンジジン (以 下、 ひ一NPD) で表される化合物を使用して、 実施例 7と同じ条件で EL素子 を作製し、 同様の方法でその特性を調べた。 この素子は 5. 0Vで初期輝度 10 00 c d/m2を示した。 この素子は安定化後に 10. 6m Aで最大輝度 108 9 c dZm2を示した。 この素子は実施例 7の素子よりも駆動電圧が低いのにも かかわらず、 5時間後の発光輝度は 426 c d "m2、 8時間後は 282 c dZ m2、 1 2時間後は 1 84 c dZm2と、 より大きな輝度低下が認められた。 ま た 12時間後における駆動電流は 2. 8 m Aで、 実施例 7の素子よりも電流効率 が低下していた。
Figure imgf000024_0001
実施例 8
実施例 7と同様の方法でそれぞれ、 HTM—2 (R l=フエニル基、 R 2、 R 3 =H、 n = 3、 融点 = 189. 3°C、 T g = 1 54. 5°C)、 HTM— 3 (R 1 = t e r t一ブチル基、 R 2、 R 3=H、 n = 3、 融点 = 200. 5°C, T g = 1 58. 1 °C)、 HTM— 4 (R l、 R 2、 R 3 =H、 n = 4、 融点 = 1 73. 1°C、 T g = 1 56. 5°C)、 HTM- 5 (R l、 R 2=フエニル基、 R 3=H、 n = 3、 融点 = 204. 5。C、 T g = 1 73. 3。C)、 HTM— 6 (R 1、 R 2 = 4 - t e r t一プチノレフエ-ノレ基、 R 3 = H、 n = 3、 融点 = 21 5. 0°C、 T g = 181. 0°C) を正孔輸送材として使用した EL素子を作製し、 その特性 を評価した。 結果を表 3に示した。 なお、 上記複数のフエニル基で連結したテト ラミン化合物 HTM— 1〜HTM— 6の、 R 1及ぴ R 2の置換位置はすべて p— 位である。 表 3
Figure imgf000025_0001
実施例 9
また、 実施例 8にて作成した素子において 1 0 0 °C高温下に保存した場合の素 子概観の変化を観察した。 結果を表 4に示した。
a—N P Dが 2 4時間の保存で、 素子が白濁化するのに対し、 本発明において 合成した化合物は、 いずれも、 透明性を維持し、 高温環境下での優れたァモルフ ァス膜の安定性を示した。 表 4
Figure imgf000025_0002
X : 白濁有り 〇: 白濁無し 以上のことより、 本発明において合成した、 複数のフ ニル基で連結したテト ラミン化合物を正孔輸送材として作製した素子は、 熱安定性において優れている ことが分かる。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2003年 12月 26 日出願の日本特許出願 (特願 2003— 434432) に基 づくものであり、 その内容はここに参照として取り込まれる。 く産業上の利用可能性〉
従来の有機 E L素子の最も大きな問題点であった、 高温駆動時における発光安 定性が要求される有機 E L素子の材料として、 本発明の材料は好適である。

Claims

請 求 の 範 囲 下記一般式 (1) で表されるテトラミン化合物 :
Figure imgf000027_0001
式中、 R l、 R 2及び R 3は同一でも異なってもよく水素原子、 炭素数が 4〜8 の 3級アルキル基、 無置換のァリール基または炭素数が 4〜 8の 3級アルキル基 で置換されたァリ一ル基を表し、 nは 3または 4を表す。
2. 下記一般式 (1) で表される有機 E L素子用材料
Figure imgf000027_0002
式中、 R l、 R 2及ぴ R 3は同一でも異なってもよく水素原子、 炭素数が :〜 8 の 3級アルキル基、 無置換のァリール基または炭素数が 4〜 8の 3級アルキル基 で置換されたァリ一ル基を表し、 nは 3または 4を表す。
3 . 下記一般式 (1 ) で表されるテトラミン化合物を含有する有機 E L素 子
Figure imgf000028_0001
式中、 R l、 R 2及び R 3は同一でも異なってもよく水素原子、 炭素数が 4〜8 の 3級アルキル基、 無置換のァリール基または炭素数が 4〜8の 3級アルキル基 で置換されたァリ一ル基を表し、 nは 3または 4を表す。
4 . 基板上に陽極、 正孔輸送層、 発光層、 電子輸送層及び陰極を順次積層 してなる、 あるいは基板上に陽極、 正孔輸送層、 電子輸送層及び陰極を順次積層 してなり正孔輸送層および電子輸送層のいずれかが発光機能を有する請求項 3記 载の有機 E L素子。
5 . 前記正孔輸送層が、 一般式 (1 ) で表されるテトラミン化合物と少な くとも 1種の他の正孔輸送材料を含む請求項 4記載の有機 E L素子。
6 . 基板上に陽極、 正孔輸送層、 電子輸送層及び陰極を順次積層した構成 を有し、 前記電子輸送層が発光機能を有する請求項 4あるいは請求項 5に記載の 有機 E L素子。
7. 基板上に陽極、 正孔輸送層、 電子輸送層及び陰極を順次積層した構成 を有し、 前記正孔輸送層が発光機能を有する請求項 4あるいは請求項 5に記載の 有機 EL素子。
8. 下記一般式 (A) で表されるトリフエ-ルジアミノビフエニル化合物 と、 下記一般式 (B) で表されるジハ口ゲン化合物との縮合反応を行う工程から なる、 下記一般式 (1) で表されるテトラミン化合物の製造方法:
Figure imgf000029_0001
式中、 R l、 R 2及び R 3は同一でも異なってもよく水素原子、 炭素数が 4〜 8 の 3級アルキル基、 無置換のァリール基または炭素数が 4〜 8の 3級アルキル基 で置換されたァリール基を表し、 nは 3または 4を表す;
Figure imgf000029_0002
式中、 Xはハロゲン原子を表し、 nは 3または 4を表す;
Figure imgf000030_0001
式中、 R l、 R 2及ぴ R 3は同一でも異なってもよく水素原子、 炭素数が 4〜 8 の 3級アルキル基、 無置換のァリール基または炭素数が 4〜 8の 3級アルキル基 で置換されたァリ一ル基を表し、 nは 3または 4を表す。
9 . 下記一般式 (C ) で表されるジァミノ化合物と下記一般式 (D ) で表 されるハロゲン化合物との縮合反応を行い、 縮合生成物を加水分解後、 さらに下 記一般式 (E ) で表されるハロゲン化合物との縮合反応を行うことからなる、 下 記一般式 (2 ) で表されるテトラミン化合物の製造方法:
Figure imgf000030_0002
式中、 R 4は置換もしくは無置換のアルキル基または置換もしくは無置換のァリ 一ル基を表し、 nは 3または 4を表す;
Figure imgf000031_0001
式中、 R 1は水素原子、 炭素数が 4〜 8の 3級アルキル基、 無置換のァリール基 または炭素数が 4〜 8の 3級アルキル基で置換されたァリール基を表し、 R 5は 置換もしくは無置換のアルキル基または置換もしくは無置換のァリール基を表し、 Xはハロゲン原子を表す;
Figure imgf000031_0002
式中、 R 2は水素原子、 炭素数が 4〜 8の 3級アルキル基、 無置換のァリール基 または炭素数が 4〜 8の 3級アルキル基で置換されたァリ一ル基を表し、 Xはハ ロゲン原子を表す;
Figure imgf000031_0003
式中、 R 1及ぴ R 2は同一でも異なってもよく水素原子、 炭素数が 4〜 8の 3級 アルキル基、 無置換のァリール基または炭素数が 4〜 8の 3級アルキル基で置換 されたァリール基を表し、 nは 3または 4を表す。
PCT/JP2004/019755 2003-12-26 2004-12-24 テトラミン化合物および有機el素子 WO2005063684A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005516726A JP4682042B2 (ja) 2003-12-26 2004-12-24 テトラミン化合物および有機el素子
US10/584,140 US7807274B2 (en) 2003-12-26 2004-12-24 Tetramine compound and organic EL device
EP04808105.3A EP1698613B1 (en) 2003-12-26 2004-12-24 Tetramine compound and organic electroluminescence element
KR1020067012620A KR101125386B1 (ko) 2003-12-26 2004-12-24 테트라민 화합물 및 유기 el 소자
US12/688,223 US7902402B2 (en) 2003-12-26 2010-01-15 Tetramine compound and organic EL device
US12/688,253 US7897816B2 (en) 2003-12-26 2010-01-15 Tetramine compound and organic EL device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-434432 2003-12-26
JP2003434432 2003-12-26

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/584,140 A-371-Of-International US7807274B2 (en) 2003-12-26 2004-12-24 Tetramine compound and organic EL device
US12/688,253 Division US7897816B2 (en) 2003-12-26 2010-01-15 Tetramine compound and organic EL device
US12/688,223 Division US7902402B2 (en) 2003-12-26 2010-01-15 Tetramine compound and organic EL device

Publications (1)

Publication Number Publication Date
WO2005063684A1 true WO2005063684A1 (ja) 2005-07-14

Family

ID=34736557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019755 WO2005063684A1 (ja) 2003-12-26 2004-12-24 テトラミン化合物および有機el素子

Country Status (7)

Country Link
US (3) US7807274B2 (ja)
EP (1) EP1698613B1 (ja)
JP (5) JP4682042B2 (ja)
KR (1) KR101125386B1 (ja)
CN (1) CN100543007C (ja)
TW (1) TWI347311B (ja)
WO (1) WO2005063684A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339823A (ja) * 2004-05-24 2005-12-08 Sony Corp 表示素子
WO2006120859A1 (ja) * 2005-05-09 2006-11-16 Idemitsu Kosan Co., Ltd. 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液
JP2007045719A (ja) * 2005-08-08 2007-02-22 Canon Inc アリールアミン化合物
JP2007182432A (ja) * 2005-12-08 2007-07-19 Mitsubishi Chemicals Corp 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
JP4934026B2 (ja) * 2005-04-18 2012-05-16 出光興産株式会社 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
US8889268B2 (en) 2009-01-19 2014-11-18 Sony Corporation Organic electroluminescence element and display device using the same
WO2014204136A1 (en) * 2013-06-20 2014-12-24 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2016163276A1 (ja) * 2015-04-10 2016-10-13 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI347311B (en) * 2003-12-26 2011-08-21 Hodogaya Chemical Co Ltd Tetramine compound and organic el device
JPWO2005094133A1 (ja) 2004-03-25 2008-02-14 保土谷化学工業株式会社 アリールアミン化合物および有機エレクトロルミネッセンス素子
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650955A1 (en) 1993-11-01 1995-05-03 Hodogaya Chemical Co., Ltd. Amine compound and electro-luminescence device comprising same
JP2000247932A (ja) * 1999-03-01 2000-09-12 Minolta Co Ltd 新規アミノ化合物とその製造方法、および用途
JP2002167365A (ja) * 2000-11-30 2002-06-11 Hodogaya Chem Co Ltd ビスフェニルシクロヘキサン誘導体
JP2002179630A (ja) * 2000-09-28 2002-06-26 Hodogaya Chem Co Ltd ポリアミノフルオレン誘導体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194657B2 (ja) * 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JP3574860B2 (ja) * 1993-11-01 2004-10-06 保土谷化学工業株式会社 テトラフェニルベンジジン化合物
JP3828595B2 (ja) * 1994-02-08 2006-10-04 Tdk株式会社 有機el素子
JP3261930B2 (ja) * 1994-12-22 2002-03-04 東洋インキ製造株式会社 正孔輸送材料およびその用途
JPH08292586A (ja) * 1995-04-21 1996-11-05 Hodogaya Chem Co Ltd 電子写真用感光体
JP3654909B2 (ja) * 1996-12-28 2005-06-02 Tdk株式会社 有機el素子
JP4541511B2 (ja) * 2000-08-11 2010-09-08 保土谷化学工業株式会社 アリールアミン化合物
JP4477799B2 (ja) * 2001-09-03 2010-06-09 三井化学株式会社 アミン化合物および該化合物を有する有機電界発光素子
JP4487587B2 (ja) * 2003-05-27 2010-06-23 株式会社デンソー 有機el素子およびその製造方法
TWI347311B (en) * 2003-12-26 2011-08-21 Hodogaya Chemical Co Ltd Tetramine compound and organic el device
JP3880967B2 (ja) * 2004-01-29 2007-02-14 松下電器産業株式会社 電界発光素子用化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650955A1 (en) 1993-11-01 1995-05-03 Hodogaya Chemical Co., Ltd. Amine compound and electro-luminescence device comprising same
JP2000247932A (ja) * 1999-03-01 2000-09-12 Minolta Co Ltd 新規アミノ化合物とその製造方法、および用途
JP2002179630A (ja) * 2000-09-28 2002-06-26 Hodogaya Chem Co Ltd ポリアミノフルオレン誘導体
JP2002167365A (ja) * 2000-11-30 2002-06-11 Hodogaya Chem Co Ltd ビスフェニルシクロヘキサン誘導体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1698613A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339823A (ja) * 2004-05-24 2005-12-08 Sony Corp 表示素子
US7781073B2 (en) 2004-05-24 2010-08-24 Sony Corporation Organic electroluminescence element and display device constructed therefrom
JP4934026B2 (ja) * 2005-04-18 2012-05-16 出光興産株式会社 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006120859A1 (ja) * 2005-05-09 2006-11-16 Idemitsu Kosan Co., Ltd. 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液
JP2007045719A (ja) * 2005-08-08 2007-02-22 Canon Inc アリールアミン化合物
JP2007182432A (ja) * 2005-12-08 2007-07-19 Mitsubishi Chemicals Corp 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
US8889268B2 (en) 2009-01-19 2014-11-18 Sony Corporation Organic electroluminescence element and display device using the same
WO2014204136A1 (en) * 2013-06-20 2014-12-24 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2016163276A1 (ja) * 2015-04-10 2016-10-13 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JPWO2016163276A1 (ja) * 2015-04-10 2018-02-01 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
US7807274B2 (en) 2010-10-05
EP1698613B1 (en) 2013-05-01
CN100543007C (zh) 2009-09-23
KR101125386B1 (ko) 2012-03-27
JP2014169272A (ja) 2014-09-18
KR20060130078A (ko) 2006-12-18
US20100174115A1 (en) 2010-07-08
US7902402B2 (en) 2011-03-08
JP5823679B2 (ja) 2015-11-25
US20070149816A1 (en) 2007-06-28
EP1698613A4 (en) 2007-02-07
JP2011079833A (ja) 2011-04-21
JP2011088928A (ja) 2011-05-06
JP4682042B2 (ja) 2011-05-11
EP1698613A1 (en) 2006-09-06
JP2014166986A (ja) 2014-09-11
US7897816B2 (en) 2011-03-01
JPWO2005063684A1 (ja) 2007-07-19
TW200533633A (en) 2005-10-16
TWI347311B (en) 2011-08-21
CN1898191A (zh) 2007-01-17
US20100171080A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5823679B2 (ja) テトラミン化合物および有機el素子
JP3194657B2 (ja) 電界発光素子
WO2006121237A1 (en) Novel deuterated aryl amine compound, preparation method thereof, and organic light emitting diode using the same
EP1995235B1 (en) Novel 1,3,5-tris(diarylamino)benzenes and use thereof
JP4082297B2 (ja) 有機化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
JPH08100172A (ja) 電界発光素子
JP3529735B2 (ja) 電界発光素子
JPH07331238A (ja) 電界発光素子
CN108949152B (zh) 一种以咔唑联吖啶为给体的热活性延迟荧光有机化合物及其制备和应用
JP3892951B2 (ja) 電界発光デバイス
JPH10101625A (ja) 電界発光デバイス
JP5891055B2 (ja) アリールアミン化合物および有機エレクトロルミネッセンス素子
CN114315771A (zh) 一种含有双蒽结构的有机化合物及其应用
JP2008166538A (ja) 有機電界発光素子
JP3880967B2 (ja) 電界発光素子用化合物
JPH083122A (ja) ヘキサアミン化合物
KR20110051256A (ko) 신규한 1,3,5-트리스(디아릴아미노)벤젠류와 그 이용
KR100500058B1 (ko) 청색발광 재료 및 그 제조방법
JPH09249621A (ja) 1,3,5−トリス(4−ジ置換アミノフェニル)ベンゼン化合物
KR20040092317A (ko) 유기 전계 발광 재료용 신규 아민 화합물 및 그 제조방법
JP2001181240A (ja) ベンジジン化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039085.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067012620

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004808105

Country of ref document: EP

Ref document number: 2007149816

Country of ref document: US

Ref document number: 10584140

Country of ref document: US

Ref document number: 2005516726

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004808105

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067012620

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10584140

Country of ref document: US