KR100500058B1 - 청색발광 재료 및 그 제조방법 - Google Patents

청색발광 재료 및 그 제조방법 Download PDF

Info

Publication number
KR100500058B1
KR100500058B1 KR10-2003-0030014A KR20030030014A KR100500058B1 KR 100500058 B1 KR100500058 B1 KR 100500058B1 KR 20030030014 A KR20030030014 A KR 20030030014A KR 100500058 B1 KR100500058 B1 KR 100500058B1
Authority
KR
South Korea
Prior art keywords
group
formula
light emitting
tetrakis
benzene
Prior art date
Application number
KR10-2003-0030014A
Other languages
English (en)
Other versions
KR20040097666A (ko
Inventor
백용구
박종억
정수영
박혜진
정관용
김헌곤
김진영
Original Assignee
주식회사 이엘엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엘엠 filed Critical 주식회사 이엘엠
Priority to KR10-2003-0030014A priority Critical patent/KR100500058B1/ko
Publication of KR20040097666A publication Critical patent/KR20040097666A/ko
Application granted granted Critical
Publication of KR100500058B1 publication Critical patent/KR100500058B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/791Starburst compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 유기 전계 발광 소자의 구성 재료로서 사용되는 경우 높은 유리전이온도를 갖기 때문에 우수한 내열성을 나타내고 색순도가 우수하여 청색 발광 재료로 유용한 하기 화학식 1로 표시되는 청색발광 재료 및 그 제조방법을 제공한다.
<화학식 1>
(상기 화학식 1에서, R은 2,2-디아릴비닐기, 2-아릴비닐기 또는 9-플루오렌일메틸렌일기를 나타낸다.)

Description

청색발광 재료 및 그 제조방법{Blue electroluminescence materials and manufacturing method thereof}
본 발명은 하기 화학식 1의 청색발광 재료 및 그 제조방법에 관한 것으로서, 보다 상세하게는 전압을 인가하는 경우 색순도면에서 우수한 효과를 나타내는 청색 발광을 하여 유기 전계 발광 소자의 구성 재료로서 유용한 하기 화학식 1의 청색발광 재료 및 그 제조방법에 관한 것이다.
(상기 화학식 1에서, R은 2,2-디아릴비닐기, 2-아릴비닐기 또는 9-플루오렌일메틸렌일기를 나타낸다.)
종래에는 EP 1063869 A1호 (Idemitsu Kosan Company Limited), 대한민국 공개특허공보 특2000-0048006호(Eastman Kodak Company, USA), 그리고 일본국 특허 특개평8-333569호에 개시되어 있는 화학식 2의 DPVBi, 화학식 3의 DPVDPAN 과 같은 아릴에틸렌 유도체들이 청색발광 재료로 널리 사용되었다.
상기 화학식 2의 DPVBi는 유리전이온도가 100℃ 이하로 낮아 열적 안정성에 문제가 있었기 때문에 이를 개선하기 위하여 상기 DPVBi의 비페닐 안쪽에 안트라센을 도입함으로서 유리전이온도를 105℃로 높여 열적 안정성을 강화시킨 화합물이 화학식 3의 DPVDPAN 이다.
그러나 열적안정성이 강화된 화학식 3의 DPVDPAN의 경우 색순도를 나타내는 색좌표(x, y)가 상기 화학식 2의 DPVBi의 것과 유사한 (0.166, 0.176)을 나타내었는데, 색좌표의 y값이 작을수록 순청색에 가까우므로 상기 DPVDPAN의 y값 0.176 은 청색 발광 재료로 사용하기에는 불충분한 값이었다.
그리고, 풀칼라 유기 전계 발광 디스플레이를 상용화하기 위해서는 순청색을 갖는 발광 재료가 요구되었기 때문에 색좌표의 y값이 0.10 에 근접하는 발광 재료의 필요성이 대두되었다.
본 발명은 종래의 상기와 같은 문제점들을 해결하고자 본 발명가들이 예의 연구를 거듭하여 얻은 결과로서, 색순도가 뛰어나 별도의 도판트(dopant) 사용 없이도 색순도의 y좌표 값이 0.10 수준이어서 우수한 청색 발광 재료로 사용할 수 있는 청색발광 재료 및 그 제조방법을 제공하는 것을 목적으로 한다.
본 발명은 청색 발광 재료로 유용한 상기 화학식 1로 표시되는 청색발광 재료에 관한 것으로서, 상기 화학식 1의 R의 아릴기는 페닐기(C6H5-), 나프틸기(C10 H7-), 안트라센일기(C14H9-) 또는 파이렌일기(C16H9-)이다.
본 발명자들은 하기 화학식 5의 1,2,4,5-테트라키스(4-포르밀페닐)벤젠을 용매와 염기의 존재하에 하기 화학식 4의 포스포네이트 화합물과 반응시키는 1단계의 커플링 반응으로 본 발명의 청색발광 재료들을 제조하였다.
(상기 화학식 4에서, R1은 디아릴메틸기, 아릴메틸기 또는 9-플루오레닐기를 나타낸다.)
상기 화학식 4의 R1의 아릴기는 페닐기(C6H5-), 나프틸기(C10H 7-), 안트라센일기(C14H9-) 또는 파이렌일기(C16H9-)이다.
본원발명에서 출발물질로 사용되는 상기 화학식 5의 1,2,4,5-테트라키스(4-포르밀페닐)벤젠[이하, TtFPB로 약칭함.]은 하기의 반응식 1에 나타낸 바와 같이 테트라브로모벤젠과 4-포르밀페닐보론산의 결합반응을 통하여 합성하였으나 이에 한정되는 것은 아니다.
하기의 반응식 2 내지 4는 본 발명의 실시예들을 나타낸 것으로서 상기 화학식 5의 TtFPB를 화학식 6, 화학식 7, 그리고 화학식 8로 표시되는 다양한 포스포네이트 화합물과 결합 반응시켜 화학식 9, 화학식 10 그리고 화학식 11의 화합물들을 합성하였다.
상기의 반응식 2∼4에 있어서, 화학식 6의 디에틸 디페닐메틸포스포네이트를 사용하는 경우의 생성물은 화학식 9의 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠이고, 화학식 7의 디에틸 9-플루오렌일포스포네이트에 대응하는 생성물은 화학식 10의 1,2,4,5-테트라키스[4-(9-플루오렌일메틸렌일)페닐]벤젠이며, 그리고 화학식 8의 디에틸 1-나프틸메틸포스포네이트에 대응하는 생성물은 화학식 11의 1,2,4,5-테트라키스[4-(2-(1-나프틸)비닐)페닐]벤젠이다.
상기 화학식 1의 청색발광 재료를 제조하기 위하여 사용되는 시약들의 사용량에 있어서, 상기 화학식 4의 포스포네이트 화합물의 경우 출발물질로 사용되는 화학식 5의 TtFPB와 결합가능한 반응 위치가 네 군데이기 때문에 TtFPB 1당량에 대하여 4당량 내지 6당량을 사용하여야 하며, 염기는 포스포네이트 화합물의 프로톤(proton)을 떼어내기 위해, 포스포네이트 화합물 1당량에 대하여 1당량 내지 1.5당량을 사용하여야 한다. 그리고 반응에 사용되는 용매는 반응물의 용해도에 따라 약간의 차이는 있지만 TtFPB의 사용 질량에 대하여 5 내지 30배의 부피를 사용하여야 한다.
본 발명에 있어서 반응에 사용되는 용매는 특별히 한정되는 것은 아니며, 반응물들을 잘 용해시킬 수 있는 용매들이면 사용 가능하기 때문에 테트라히드로푸란(tetrahydrofuran), N,N-디메틸포름아미드, 디메틸술폭시드 등으로부터 선택되는 용매를 사용할 수 있으며, 염기는 소디움 t-부톡시드, 포타슘 t-부톡시드 등의 금속 알콕시드류, 소디움 히드리드 (sodium hydride), 리튬 히드리드, 포타슘 히드리드 등의 금속 히드리드류 등으로부터 선택되는 것이면 어느 것을 사용하여도 좋다.
상기와 같이 합성된 본 발명의 청색발광 재료들은 고순도를 요구하는 유기 전계 발광 소자의 특성상 재결정과 승화법을 이용하여 정제를 실시하였다.
이러한 정제과정을 거친 화학식 9의 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠은 유리전이온도가 132.1℃이므로, 화학식 2의 DPVBi 보다 열적 안정성이 향상된 것으로 보고된 화학식 3의 DPVDPAN의 유리전이온도가 105℃인 것과 비교하면 상기 화학식 9의 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠이 유리전이온도가 약 30℃ 정도 더 높아 소자 적용시 열적 안정성이 상대적으로 우수한 것으로 나타났다.
또한, 화학식 9의 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠은 소자 적용시 색좌표(x, y)가 (0.1573, 0.1004)으로 나타나 화학식 3의 DPVDPAN에 비하여 색순도가 월등히 뛰어나다는 것을 알 수 있다.
이하, 본 발명을 실시예와 비교예를 참조하여 더욱 상세히 설명한다.
본 발명은 하기의 실시예와 비교예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명을 예시하기 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
< 실시예 >
실시예 1
1,2,4,5-테트라키스(4-포르밀페닐)벤젠의 제조
1) 1L의 3구 둥근 바닥 플라스크에 1,2,4,5-테트라브로모벤젠 (10.0g, 25.4 mmol)을 톨루엔(400 ml)과 에탄올 (160 ml)의 혼합 용액에 현탁시켰다.
2) 상기 현탁액에 4-포르밀페닐보론산 (20.3g, 0.135 mol), 테트라부틸암모늄 브로마이드 (0.820g, 2.54 mmol)을 투입 후 탄산칼륨 (56.2g, 0.407 mol)을 증류수(240 ml)에 완전히 녹인 수용액을 투입하였다.
3) 상기 현탁액에 테트라키스(트리페닐포스핀)팔라디움(0) (4.70g, 4.07 mmol)을 투입 후 빛을 차단시킨 상태에서 반응액을 24시간 동안 환류시켰다. 생성된 고체를 여과하고 물과 메탄올로 세척하였다.
4) 얻어진 고체 화합물을 진공 건조하여 1,2,4,5-테트라키스(4-포르밀페닐)벤젠 12.5g(99.2%)을 얻었다.
1H NMR (CDCl3): δ= 10.0 (s, 4H), 7.81 and 7.40 (AB, J = 8.20, 16H), 7.61 (s, 2H)
실시예 2
1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠의 제조
1) 디에틸 디페닐메틸포스포네이트 (4.43g, 14.6 mmol)를 DMF(30 ml)에 가하여 녹이고 소디움 히드리드 (0.390g, 16.3 mmol)를 가한 다음, 40℃에서 1시간동안 교반시키고 실온으로 냉각시켰다.
2) 상기 반응 혼합액에 1,2,4,5-테트라키스(4-포르밀페닐)벤젠 (1.50g, 3.03 mmol)을 가하고 40℃로 가열하였다. 동일 온도에서 3시간 동안 교반 후 실온으로 냉각시켰다.
3) 메탄올(300 ml)이 들어있는 비이커를 준비한 후 메탄올을 세게 교반시키면서 반응 혼합액을 메탄올에 부은 다음 실온에서 30분간 교반시킨 후 여과하였다.
4) 얻어진 고체 화합물을 증류수, 메탄올, 그리고 아세톤의 순으로 세척한 후 진공 건조시켜 고체 생성물 3.06g (92.2 %)을 얻었다.
5) 상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 9의 구조식을 갖는 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 7.38 (s, 2H), 7.30-7.35 (m, 16H), 7.30-7.31 (m, 16H), 7.18-7.20 (m, 8H), 6.95 (s, 4H), 6.90 (dd, J = 17.8, 8.4Hz, 16H)
MALDI-TOF Mass(C86H62) : 1095.8878 (계산값 : 1095.4852)
EA (C86H62) : C 93.91% H 5.66% (C 94.30% H 5.70%)
PL (Excitation : 313 nm) : 447 nm
Tg (DSC에 의한 측정) : 132.1oC
실시예 3
1,2,4,5-테트라키스[4-((9-플루오렌일)메틸렌일)페닐]벤젠의 제조
상기 실시예 2에 있어서, 디에틸 디페닐메틸포스포네이트 대신에 디에틸 9-플루오렌일포스포네이트를 사용한 것 이외에는 동일한 방법으로 실험을 실시하여 고체 생성물 1.87g (85.0 %)을 얻었다.
상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 10의 구조식을 갖는 1,2,4,5-테트라키스[4-((9-플루오렌일)메틸렌일)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 7.84 (s, 2H), 7.64-7.74 (m, 16H), 7.61 and 7.48(AB, J = 8.0Hz, 16H), 7.35-7.42 (m, 16H), 7.01-7.05 (m, 4H)
MALDI-TOF Mass(C86H54) : 1087.6142 (계산값 : 1087.4226)
EA (C86H54) : C 94.34%; H 5.04% (C 94.99% H 5.01%)
실시예 4
1,2,4,5-테트라키스[4-(2-(1-나프틸)비닐)페닐]벤젠의 제조
상기 실시예 2에 있어서, 디에틸 디페닐메틸 포스포네이트 대신에 디에틸 1-나프틸메틸 포스포네이트를 사용한 것 이외에는 동일한 방법으로 실험을 실시하여 고체 생성물 1.90g (95.0 %)을 얻었다.
상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 11의 구조식을 갖는 1,2,4,5-테트라키스[4-(2-(1-나프틸)비닐)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 8.24 (d, J = 8.0Hz, 4H), 7.93 and 7.18 (AB, J = 16.0Hz, 8H), 7.88(d, J = 8.4Hz, 4H), 7.81 (d, J = 8.6Hz, 4H), 7.77 (d, J = 7.1Hz, 4H), 7.67(s, 2H), 7.58(d, J = 8.2Hz, 8H), 7.49-7.56 (m, 12H), 7.38(d, J = 8.1Hz, 8H)
MALDI-TOF Mass(C78H54) : 991.8250 (계산값 : 991.4226)
EA (C78H54) : C 94.3%; H 5.51% (C 94.5% H 5.49%)
PL (Excitation : 350 nm) : 421 nm
실시예 5
1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠의 제조
상기 실시예 2에 있어서, 용매로 사용한 N,N-디메틸포름아미드 대신에 테트라히드로푸란을 사용한 것 이외는 동일한 방법으로 실험을 실시하여 고체 생성물 2.49g (75.0 %)을 얻었다.
상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 9의 구조식을 갖는 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 7.38 (s, 2H), 7.30-7.35 (m, 16H), 7.30-7.31 (m, 16H), 7.18-7.20 (m, 8H), 6.95 (s, 4H), 6.90 (dd, J = 17.8, 8.4Hz, 16H)
실시예 6
1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠의 제조
상기 실시예 2에 있어서, 용매로 사용한 N,N-디메틸포름아미드 대신에 디메틸술폭시드를 사용한 것 이외는 동일한 방법으로 실험을 실시하여 고체 생성물 2.52g (75.9 %)을 얻었다.
상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 9의 구조식을 갖는 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 7.38 (s, 2H), 7.30-7.35 (m, 16H), 7.30-7.31 (m, 16H), 7.18-7.20 (m, 8H), 6.95 (s, 4H), 6.90 (dd, J = 17.8, 8.4Hz, 16H)
실시예 7
1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠의 제조
상기 실시예 2에 있어서, 염기로 사용한 소디움 히드리드 대신에 포타슘 t-부톡시드를 사용한 것 이외는 동일한 방법으로 실험을 실시하여 고체 생성물 2.34g (70.5 %)을 얻었다.
상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 9의 구조식을 갖는 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 7.38 (s, 2H), 7.30-7.35 (m, 16H), 7.30-7.31 (m, 16H), 7.18-7.20 (m, 8H), 6.95 (s, 4H), 6.90 (dd, J = 17.8, 8.4Hz, 16H)
실시예 8
1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠의 제조
상기 실시예 2에 있어서, 염기로 사용한 소디움 히드리드 대신에 리튬 히드리드를 사용한 것 이외는 동일한 방법으로 실험을 실시하여 고체 생성물 2.72g (81.9 %)을 얻었다.
상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 9의 구조식을 갖는 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 7.38 (s, 2H), 7.30-7.35 (m, 16H), 7.30-7.31 (m, 16H), 7.18-7.20 (m, 8H), 6.95 (s, 4H), 6.90 (dd, J = 17.8, 8.4Hz, 16H)
실시예 9
1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠의 제조
상기 실시예 2에 있어서, 염기로 사용한 소디움 히드리드 대신에 포타슘 히드리드를 사용한 것 이외는 동일한 방법으로 실험을 실시하여 고체 생성물 2.82g (84.9 %)을 얻었다.
상기 고체 생성물은 여러 가지 시험을 거쳐 다음과 같은 특성과 화학식 9의 구조식을 갖는 1,2,4,5-테트라키스[4-(2,2-디페닐비닐)페닐]벤젠으로 확인되었다.
1H NMR (CDCl3): δ= 7.38 (s, 2H), 7.30-7.35 (m, 16H), 7.30-7.31 (m, 16H), 7.18-7.20 (m, 8H), 6.95 (s, 4H), 6.90 (dd, J = 17.8, 8.4Hz, 16H)
시험예 1
1) 25mm ×75mm ×1.1mm 크기의 유리 기판 상에 막 두께가 750 A 인 ITO의 투명성 양극을 형성시켰다. 상기 유리 기판을 진공 증착장치 (신한광진공 제작)에 넣어 약 10-7torr로 감압하였다. 이어서 IDE 406을 정공 주입층으로 증착시키고, 이어서 α-NPD를 정공 수송층으로 증착시켰다. 청색발광재료로 본 발명의 화학식 9의 화합물을 사용하였으며, 전자 수송층으로 Alq3를 사용하였다. 최종적으로 리튬플루오라이드와 알루미늄을 증착시킴으로써 음극을 형성시켜 유기 전계 발광 소자를 제조하였다.
2) 본 발명의 화학식 9의 화합물 대신에 DPVDPAN을 청색발광재료로 사용한 것 이외에는 상기 방법과 동일하게 유기 전계 발광 소자를 제조하였다.
3) 수득된 각각의 유기 전계 발광 소자에 0 ~ 12V의 전압을 인가하여 인가된 전압이 6V 일 때의 전류밀도, 색좌표, EL 피크, 그리고 Vb의 값을 측정하여 아래의 표 1에 나타내었다.
구동전압 (V) 전류밀도(mA/mm2) 색좌표 EL 피크(nm) Vb
x y
실시예 9의 화합물 6 0.06 0.1573 0.1004 449 12.0
DPVDPAN 6 0.06 0.1660 0.1760 457 11.0
* Vb : 연소전압 (burn out voltage)
상기 시험 결과, 표 1에 나타낸 바와 같이, 본 발명의 청색발광 재료를 이용한 유기 전계 발광 소자가 종래의 DPVDPAN을 이용한 유기 전계 발광 소자보다 색좌표면에서 더 우수한 것으로 나타났다.
본 발명의 청색발광 재료는 색순도가 뛰어나 별도의 도판트(dopant) 사용 없이도 색순도의 y좌표 값이 0.10 수준이어서 청색 발광 재료로서 유용할 뿐 만 아니라, 종래의 DPVBi와 DPVDPAN에 비하여 유리전이온도가 높아 소자 적용시 열적 안정성이 뛰어나고, 우수한 색순도를 나타낸다.
따라서 본 발명의 청색발광 재료는 순청색이 요구되는 풀칼라 유기 전계 발광 디스플레이의 상용화에 크게 기여할 수 있으며, 본 발명의 청색발광 재료를 이용하여 제작된 디스플레이는 휴대전화, PDP, TV 등에 다양한 용도로 사용될 수 있다.

Claims (6)

  1. 하기 화학식 1로 표시되는 청색발광 재료.
    <화학식 1>
    (상기 식에서, R은 2,2-디아릴비닐기, 2-아릴비닐기 또는 9-플루오렌일메틸렌일기를 나타낸다.)
  2. 제1항에 있어서, 상기 화학식 1의 R의 아릴기가 페닐기(C6H5-), 나프틸기(C10H7-), 안트라센일기(C14H9-), 파이렌일기(C16 H9-)로 구성되는 군으로부터 선택되는 1종인, 청색발광 재료.
  3. 하기 화학식 5의 1,2,4,5-테트라키스(4-포르밀페닐)벤젠을 용매와 염기의 존재하에 하기 화학식 4의 포스포네이트 화합물과 반응시키는 1단계의 커플링 반응으로 구성되는, 상기 화학식 1로 표시되는 청색발광 재료의 제조방법.
    <화학식 4>
    (상기 식에서, R1은 디아릴메틸기, 아릴메틸기 또는 9-플루오레닐기를 나타낸다.)
    <화학식 5>
  4. 제3항에 있어서, 상기 화학식 4의 R1의 아릴기가 페닐기(C6H5-), 나프틸기(C10H7-), 안트라센일기(C14H9-), 파이렌일기(C16 H9-)로 구성되는 군으로부터 선택되는 1종인 것을 특징으로 하는, 제조방법.
  5. 제3항 또는 제4항에 있어서, 상기 1,2,4,5-테트라키스(4-포르밀페닐)벤젠 1당량에 대하여 상기 화학식 4의 포스포네이트 화합물을 4당량 내지 6당량 사용하는 것을 특징으로 하는, 제조방법.
  6. 제3항에 있어서, 상기 염기가 소디움 히드리드, 리튬 히드리드, 포타슘 히드리드, 소디움 t-부톡시드, 포타슘 t-부톡시드로 구성되는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 제조방법.
KR10-2003-0030014A 2003-05-12 2003-05-12 청색발광 재료 및 그 제조방법 KR100500058B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0030014A KR100500058B1 (ko) 2003-05-12 2003-05-12 청색발광 재료 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0030014A KR100500058B1 (ko) 2003-05-12 2003-05-12 청색발광 재료 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20040097666A KR20040097666A (ko) 2004-11-18
KR100500058B1 true KR100500058B1 (ko) 2005-07-12

Family

ID=37375805

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0030014A KR100500058B1 (ko) 2003-05-12 2003-05-12 청색발광 재료 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR100500058B1 (ko)

Also Published As

Publication number Publication date
KR20040097666A (ko) 2004-11-18

Similar Documents

Publication Publication Date Title
JP5823679B2 (ja) テトラミン化合物および有機el素子
KR101011857B1 (ko) 벤조플루오란센 유도체 및 이를 이용한 유기 발광 소자
JP4231491B2 (ja) 有機電界発光素子
JPH10509996A (ja) ヘテロスピロ化合物およびそれらのエレクトロルミネセンス物質としての使用
JP5745397B2 (ja) 非対称アントラセン誘導体の製造方法及びこれを用いた有機電界発光素子
KR20120006549A (ko) 아릴아민 화합물 및 유기 전계 발광 소자
EP1993154B1 (en) Electron transporting materials and organic light-emitting devices therewith
JP3762398B2 (ja) イプチセン誘導体を使用する有機発光デバイス
KR20210118818A (ko) 디아릴아민 치환된 스피로비플루오렌계 화합물 및 이의 oled 소자에서의 응용
WO2007105783A1 (ja) 新規な1,3,5-トリス(ジアリールアミノ)ベンゼン類とその利用
WO2002020694A1 (en) Low molecular chromophore compounds and electroluminescence display device comprising the same
JP4258583B2 (ja) 電界発光素子
US6821651B2 (en) Red fluorescent material and organic electroluminescent device containing same
JP2011504536A (ja) 高効率の芳香族電界発光化合物およびこれを使用している電界発光素子
KR100500058B1 (ko) 청색발광 재료 및 그 제조방법
KR100516138B1 (ko) 청색발광 재료 및 그 제조방법
JP5891055B2 (ja) アリールアミン化合物および有機エレクトロルミネッセンス素子
JP4491264B2 (ja) アリールアミン化合物
KR20040105959A (ko) 유기 전계 발광 소자
CN113666929B (zh) 一种含有咔唑芴类螺环化合物及有机电致发光器件
KR100835986B1 (ko) 고효율의 방향족 발광 화합물 및 이를 채용하고 있는발광소자
KR100560776B1 (ko) 정공 수송용 화합물 및 이를 이용한 유기 전계 발광 소자
KR100679949B1 (ko) 유기 발광 재료
KR20080003304A (ko) 고효율의 방향족 발광 화합물 및 이를 채용하고 있는발광소자
KR100681473B1 (ko) 헥사벤조코로넨계 유기전기발광물질

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140625

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 12

R401 Registration of restoration