WO2005056605A1 - 3量体以上の受容体を認識する改変抗体 - Google Patents

3量体以上の受容体を認識する改変抗体 Download PDF

Info

Publication number
WO2005056605A1
WO2005056605A1 PCT/JP2004/018507 JP2004018507W WO2005056605A1 WO 2005056605 A1 WO2005056605 A1 WO 2005056605A1 JP 2004018507 W JP2004018507 W JP 2004018507W WO 2005056605 A1 WO2005056605 A1 WO 2005056605A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
trail
receptor
linker
seq
Prior art date
Application number
PCT/JP2004/018507
Other languages
English (en)
French (fr)
Inventor
Koichiro Ono
Masayuki Tsuchiya
Tetsuro Orita
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to US10/582,654 priority Critical patent/US20080206229A1/en
Priority to JP2005516203A priority patent/JPWO2005056605A1/ja
Priority to EP04820317A priority patent/EP1710255A4/en
Publication of WO2005056605A1 publication Critical patent/WO2005056605A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates to an antibody against tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor.
  • TRAIL tumor necrosis factor-related apoptosis-inducing ligand
  • TNF tumor necrosis factor
  • TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
  • Receptors for which TRAIL exhibits affinity include TRAIL-Rl (also called DR4; see Non-Patent Document 2), TRAIL-R2 (DR5, TRICK2 or killer; see Non-Patent Documents 3-5), TRAIL-R3 (TRID, DcRl or LIT; Non-Patent Documents 3, 4, and 6) and TRAIL-R4 (TRUNDD or DcR2; see Non-Patent Documents 6 and 7) and the soluble receptor osteoprotegerin (OPG; Non-Patent Document 8).
  • TRAIL-R1 and TRAIL-R2 are known to have a cytoplasmic death domain (DD).
  • DD is a region involved in apoptosis signal transmission.
  • the binding of a certain TRAIL to TRAIL-R1 and TRAIL-R2 induces the trimerization of TRAIL-R1 and TRAIL-R2, and the FADD / MORT-DD is added to the trimerized TRAIL-R1 and TRAIL-R2 DD.
  • 1 binds and functions as an adapter molecule that induces caspase 8.
  • a proteolytic cascade containing another caspase is initiated, and finally leads to cell death by apoptosis (see Non-Patent Document 9).
  • TRAIL-R4 is a so-called decoy that has an extracellular domain but no domain involved in intracellular signal transduction, and does not transmit apoptotic signals. Unlike TRAIL-R1 and TRAIL-R2, which are expressed in tumor cells, TRAIL-R3 and
  • TRAIL-R4 is expressed in principle in normal tissues and in tumor cells Being! /, Na! /, (See Non-Patent Documents 3-5).
  • Monoclonal antibodies against the TRAIL receptor are also known.
  • Griffith et al. Reported on anti-TRAIL-R1 and TRAIL-R2 antibodies that induce apoptosis in TRAIL-sensitive tumor cells and anti-TRAIL-R2 antibodies that inhibit TRAIL-induced apoptosis! (See Non-Patent Document 10).
  • Chuntharaopai et al. Reported and reported an anti-TRAIL-R1 mouse monoclonal antibody (mAb) that induces apoptosis of tumor cells without any other exogenous linker (see Non-Patent Document 11).
  • Antibodies against TRAIL-R1 have been confirmed to have therapeutic effects on human breast cancer, colorectal cancer, uterine cancer, etc.
  • Non-Patent Document 12 Clinical development of anti-TRAIL-R2 antibody for advanced tumors is also underway.
  • Patent Document 1 WO 97/01633
  • Non-Patent Document 1 Wiley et al., Immunology, 1995, Vol. 3, p. 673-82
  • Non-Patent Document 2 Pan et al., Science, 1997, Vol.276, p.111-3
  • Non-Patent Document 3 Pan et al., Science, 1997, Vol.277, p.815-8
  • Non-Patent Document 4 Sheridan et al., Science, 1997, Vol.277, p.818-21
  • Non-Patent Document 5 Walczak et al., EMBO J., 1997, Vol. 16, p. 5386-97.
  • Non-Patent Document 6 Degl Esposti et al., J. Exp. Med., 1997, Vol. 186, p. 1165-70
  • Non-Patent Document 7 Marsters et al., Curr. Biol., 1997, Vol. 7 , p.1003-6
  • Non-Patent Document 8 Emery et al., J. Biol. Chem., 1998, Vol. 273, p. 14363-7
  • Non-Patent Document 9 Boder et al., Nat.Cell. Biol., 2000, Vol. 2 , p.241-3
  • Non-Patent Document 10 Griffith et al., J. Immunol., 1999, Vol.162, p.2597-605
  • Non-Patent Document 11 Chuntharaopai et al., J. Immunol., 2001, Vol.166, p.4891 -8
  • Non-patent Document 12 Buchsbaum et al., Clin.Cancer Res., 2003, Vol. 9, p. 3731-41.
  • An object of the present invention is to provide an anti-TRAIL receptor antibody exhibiting stronger agonist activity. Furthermore, the present invention is not limited to anti-TRAIL receptor antibodies, but forms trimers or more. It is an object of the present invention to provide an antibody exhibiting an agonistic activity against a receptor that exhibits the same.
  • a triabody having a trivalent antigen-binding site by linking a heavy chain variable region (VH) and a light chain variable region (VL) of a single-chain Fv (scFv)
  • VH heavy chain variable region
  • VL light chain variable region
  • scFv single-chain Fv
  • TNF receptor family such as TNF receptor and Fas receptor, which also function in trimer or more and induce cell death. It is suggested that it may act as a signal and signal cell death.
  • FIG. 1 shows the results of evaluating the cytotoxic activity of Diabody.
  • mock was measured by introducing the empty vector PCXND3 into COS-7
  • mock + M2 was measured by adding M2 antibody to mock
  • KMTR1 db was measured by adding Diabody
  • KMTR1 db + M2 indicates the result of adding the M2 antibody to KMTR1 db, respectively.
  • FIG. 2 shows the results of evaluating the cytotoxic activity of Triabody and Whole IgG.
  • ScFvH5L was measured on cells to which Diabody was added
  • scFvH2L, SCFVH1L, and scFvHOL were obtained by adding Triabodies with linker lengths of 2 mer, 1 mer and 0 mer between VH-VL, respectively
  • Whole IgG shows the results obtained by adding Whole IgG.
  • FIG. 3 is a view showing the results of comparing the cytotoxic activities of Triabody and Tandem Diabody.
  • scFvH2L, SCFVH1L, and scFvHO have a linker length between VH-VL of 2 mer, 1 mer, and 0 mer, respectively, and add 7-mer Triabody, and the results obtained by adding Tandem Diabody and Tandem Diabody are shown. Show.
  • FIG. 4 is a diagram schematically showing a step of preparing a base sequence encoding the entire Diabody.
  • FIG. 5 is a continuation of FIG. 4.
  • TRAIL receptor It is not limited to an antibody against the TRAIL receptor, but includes antibodies against all trimeric or higher receptors.
  • the present invention provides an antibody that recognizes a TNF-related apoptosis-inducing ligand receptor (TRAIL receptor).
  • the antibody that recognizes the TRAIL receptor of the present invention is preferably one that can induce cell death (such as apoptosis) in cells expressing the TRAIL receptor.
  • TRAIL receptors antibodies that recognize TRAIL-R1 or TRAIL-R2, which are known to be specifically expressed in tumor cells, are preferred among the antibodies of the present invention. Those that induce apoptosis in tumor cells in which any of the body is expressed are preferred.
  • Cells in which the antibody of the present invention induces apoptosis are preferably tumor cells.
  • the tumor cells are not particularly limited and include, for example, colon cancer, lung cancer, breast cancer, melanoma, colorectal cancer, brain tumor, renal cell cancer, bladder cancer, leukemia, lymphoma, T-cell lymphoma, and multiple myeloma , Spleen cancer, gastric cancer, cervical cancer, endometrial cancer, ovarian cancer, esophageal cancer, liver cancer, head and neck squamous cell carcinoma, skin cancer, urinary tract cancer, prostate cancer, choriocarcinoma, pharyngeal cancer, laryngeal cancer, today Meningioma, Male embryo, Endometrial hyperplasia, Endometriosis, Embryomas, Fibrosarcoma, Posi-sarcoma, Hemangiomas, Cavernous hemangiomas, Hemangioblastomas, Retinoblastomas, Astrocytomas, Nerves Fibroma, oligodendroma, medulloblast
  • the “TRAIL receptor” is a receptor to which a TNF-related apoptosis-inducing ligand (TRAIL) binds, and may be any receptor as long as TRAIL binds.
  • TRAIL TNF-related apoptosis-inducing ligand
  • five types of receptors to which TRAIL binds are known: TRAIL-1 receptor, TRAIL-2 receptor, TRAIL-3 receptor, TRAIL-4 receptor and osteoprotegerin (OPG).
  • the antibody of the present invention may recognize any TRAIL receptor, but is preferably an antibody that recognizes the TRAIL-1 receptor or the TRAIL-2 receptor.
  • the sequence of each TRAIL receptor is known, and for example, a sequence registered in GenBank can be referred to.
  • the anti-TRAIL receptor of the present invention preferably recognizes a polypeptide having the amino acid sequence of the human TRAIL receptor registered under the following GenBank Accession number: TRAIL-1 receptor (NP_003835), TRAIL -2 receptor (NP_003833), TRAIL-3 receptor (NP-003832), and TRAIL-4 receptor (NP-003831).
  • antibody is used in the broadest sense, and as long as it exhibits a desired biological activity, a monoclonal antibody, polyclonal antibody, antibody variant (chimeric antibody, humanized antibody, minibodies (antibody) Fragments), multispecific antibodies, etc.).
  • Preferred antibodies are low molecular weight antibodies such as monoclonal antibodies, chimeric antibodies, humanized antibodies, and antibody fragments.
  • Monoclonal and polyclonal antibodies that recognize the TRAIL receptor of the present invention can be prepared by a known method using a natural TRAIL receptor as an antigen. Alternatively, it can be prepared using an antigenic polypeptide that has been genetically engineered based on the above-mentioned known TRAIL receptor sequence. Monoclonal antibodies are substantially homogeneous populations of antibodies that act specifically on a single antigenic determinant (epitope) on an antigen. From this point of view, they are preferred over polyclonal antibodies containing multiple types of antibodies showing specificity for different epitopes. The term "monoclonal antibody” refers to an antibody that only exhibits the properties of a substantially homogeneous population of antibodies and is It does not limit the manufacturing method, etc.
  • a monoclonal antibody can be obtained, for example, by the following method.
  • a TRAIL receptor protein or its antigenic peptide to be used as a sensitizing antigen for obtaining an antibody is obtained.
  • a polynucleotide of a gene sequence encoding a TRAIL receptor is inserted into a known expression vector, and a suitable host cell is transformed with the expression vector.
  • the target TRAIL receptor protein therein is purified by a known method.
  • an antibody is produced by a known method using this purified TRAIL receptor protein or a partial peptide of the TRAIL receptor as a sensitizing antigen.
  • the partial peptide can be obtained by chemical synthesis from the amino acid sequence of the TRAIL receptor.
  • cells or viruses that express the TRAIL receptor on the cell surface can be used as the sensitizing antigen.
  • the epitope on the TRAIL receptor molecule recognized by the anti-TRAIL receptor antibody of the present invention is not limited to a specific one, and may be any epitope on the TRAIL receptor molecule. Therefore, any fragment can be used as a sensitizing antigen for preparing the anti-TRAIL receptor antibody of the present invention, as long as it is a fragment containing epitope present on the TRAIL receptor molecule.
  • the antigen for producing the antibody of the present invention may be a complete antigen having immunogenicity or an incomplete antigen (including hapten) having no immunogenicity.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion.
  • rodent animals for example, mice, rats, wild, muster, or egrets, monkeys and the like are used.
  • Immunization of an animal with a sensitizing antigen is performed according to a known method.
  • a common method includes injecting a sensitizing antigen intraperitoneally or subcutaneously into a mammal. Specifically, after sensitizing antigen is diluted and suspended in an appropriate amount such as PBS (Phosphate-Buffered Saline) or physiological saline, an appropriate amount of a normal adjuvant, for example, Freund's complete adjuvant is mixed and emulsified, if desired, and then emulsified. Administer to mammals several times every 21 days.
  • a suitable carrier can be used during immunization of the sensitizing antigen.
  • immunized cells are collected from the mammal and subjected to cell fusion.
  • preferred U cells include, in particular, spleen cells.
  • mammalian myeloma cells are usually used as parent cells that fuse with immune cells.
  • Various myeloma cell lines are known, for example, P3 (P3x63Ag8.653) (J. Immnol. (1979) 123: 1548-50), P3x63Ag8U.l (Curr.Topics Microbiol. Immunol.
  • Cell fusion between the above-mentioned immune cells and myeloma cells is basically performed.
  • the method can be carried out according to a known method, for example, the method of Kohler and Milstein, Methods Enzymol. (1981) 73: 3-46.
  • cell fusion is performed in a normal nutrient culture solution in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) and the like are used, and if necessary, an auxiliary agent such as dimethyl sulfoxide can be added to enhance the fusion efficiency.
  • PEG polyethylene glycol
  • HVJ Sendai virus
  • an auxiliary agent such as dimethyl sulfoxide can be added to enhance the fusion efficiency.
  • the ratio of immune cells to myeloma cells used can be set arbitrarily. For example, it is preferable that the number of immune cells be 110 to 10 times that of myeloma cells.
  • Examples of the culture medium used for cell fusion include RPMI1640 culture medium suitable for myeloma cell line growth, MEM culture medium, and the like.In addition, culture medium commonly used for this type of cell culture can be used as appropriate. . Furthermore, a serum replacement solution such as fetal calf serum (FCS) may be added to the culture solution.
  • FCS fetal calf serum
  • Immune cells are mixed well with a given amount of myeloma cells in a culture solution, and a PEG solution (for example, having an average molecular weight of about 1000-6000) pre-warmed to about 37 ° C is usually prepared at 30-60% (w / v). Cell fusion is carried out by adding and mixing at a concentration to form a target fused cell (hybridoma).
  • the formed hybridomas can be selected by culturing them in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Cultivation in the above HAT medium is sufficient for the cells other than the target hybridoma (non-fused cells) to die. (Usually a few days and a few weeks). Then, by carrying out the usual limiting dilution method, screening of an antibody-producing hybridoma and single-cloning are carried out.
  • a normal selective culture solution for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Cultivation in the above HAT medium is sufficient for the cells other than the target hybridoma (non-fused cells) to die. (Usually a few days and a few weeks).
  • hybridoma instead of obtaining a hybridoma by immunizing a non-human animal with an antigen as described above, human lymphocytes are sensitized to TRAIL receptor in vitro, and the sensitized lymphocytes are permanently divided from humans.
  • a hybridoma producing a desired human antibody having a binding activity to a TRAIL receptor can also be obtained by fusing with a myeloma cell having an ability (see Japanese Patent Publication No. 1-59878).
  • a transgenic animal having the entire repertoire of human antibody genes is administered a TRAIL receptor as an antigen to obtain anti-TRAIL receptor antibody-producing cells, immortalized them, and a human antibody against the TRAIL receptor is obtained.
  • the produced hybridoma may be obtained (see International Patent Application Publication Nos. WO 94/25585, WO 93/12227, WO 92/03918, and WO 94/02602).
  • the hybridoma that produces the monoclonal antibody thus produced can be subcultured in a normal culture solution, and can be stored for a long time in liquid nitrogen. .
  • the hybridoma can be obtained by a conventional method in which the hybridoma is cultured, and a monoclonal antibody is obtained as a culture supernatant.
  • a method in which a hybridoma is administered to a mammal compatible with the hybridoma and proliferated, and a monoclonal antibody is obtained from ascites of the animal can be employed.
  • the former method is suitable for obtaining high-purity antibodies, and the latter method is suitable for mass production of antibodies.
  • the antibody of the present invention can also be produced as a recombinant antibody by a gene recombination technique in which the antibody gene is hybridoma-cloned, the vector prepared by incorporating the antibody gene into an appropriate vector is introduced into a host.
  • a gene recombination technique in which the antibody gene is hybridoma-cloned
  • the vector prepared by incorporating the antibody gene into an appropriate vector is introduced into a host.
  • mRNA encoding the variable (V) region of an anti-TRAIL receptor antibody is isolated from a hybridoma producing an anti-TRAIL receptor antibody.
  • the mRNA can be isolated by a known method, for example, guanidine ultracentrifugation (Chirgwin et al., Biochemistry (1979) 18: 5294-9), total RNA is prepared by the AGPC method (Chomczynski et al, Anal. Biochem. (1987) 162: 156-9), etc., and the target mRNA is purified using the mRNA Purification Kit (Pharmacia). Can be prepared. Alternatively, only the mRNA can be directly prepared by using the QuickPrep mRNA Purification Kit (Pharmacia).
  • cDNA of the antibody V region is synthesized from the obtained mRNA using reverse transcriptase.
  • cDNA can be synthesized using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (manufactured by Seikagaku Corporation) or the like.
  • the cDNA was synthesized and amplified using the 5'-Ampli FINDER RACE Kit (manufactured by Clontech), and 5'-13 ⁇ 45 method using PCR 1 "01 ⁇ 1 & et al., Proc. Natl. Acad. USA (1988) 85: 8998-9002; Belyavsky et al., Nucleic Acids Res. (1989) 17: 2919-32), etc.
  • the target DNA is obtained from the obtained PCR product.
  • the fragment is purified, a recombinant vector is prepared by ligating the fragment to the vector DNA, the recombinant vector is introduced into a host such as Escherichia coli, and a colony of the transformed cells is selected. If necessary, the nucleotide sequence of the target DNA is confirmed by a known method, for example, the dideoxynucleotide chain termination method, and the like.
  • the DNA encoding the V region of the antibody to be encoded is the DNA encoding the desired antibody constant region (C region).
  • the expression vector contains an expression control region, for example, an enhancer and a promoter, and the antibody DNA is incorporated into the expression vector so that the antibody of the present invention is expressed by controlling the region.
  • host cells are transformed with this expression vector to express the antibody.
  • Expression of the antibody gene may be performed by separately transforming the DNA encoding the antibody heavy chain (H chain) or the light chain (L chain) into an expression vector and co-transforming the host cell, or by transforming the H chain.
  • the host cell may be transformed with a single expression vector into which DNA encoding the L chain is integrated (see WO 94/11523).
  • the antibodies of the present invention also include antibodies that are functionally equivalent to the antibodies of the present invention and have high homology to the amino acid sequence of the antibodies.
  • High homology usually means at least 50% or more identity, preferably 75% or more identity, more preferably 85% or more identity, and more preferably 95% or more identity at the amino acid level. Refers to gender.
  • Polypeptide To determine the homology, an algorithm described in the literature (Wilbur and Lipman, Proc. Natl. Acad. Sci. USA (1983) 80: 726-30) can be used.
  • Such an antibody functionally equivalent to the antibody of the present invention and having high homology was obtained by, for example, using a probe or primer prepared based on the sequence information of the DNA encoding the antibody of the present invention. It can be obtained by hybridization or gene amplification.
  • the target sample for hybridization or gene amplification includes a cDNA library constructed from cells expected to express such an antibody.
  • “functionally equivalent” means that the target antibody has the same biological or biochemical activity as the antibody of the present invention.
  • Biological and biochemical activities of antibodies include, for example, binding activity and agonist activity. That is, by measuring the TRAIL receptor binding activity of the antibody or the TRAIL receptor-mediated apoptosis-inducing activity, whether or not the antibody is functionally equivalent to the antibody of the present invention can be examined.
  • the activity of the antibody to induce apoptosis via the receptor is not limited to this, and can be measured, for example, according to the method described in “4. Evaluation of cytotoxic activity” in Examples.
  • the antibodies of the present invention include those obtained by modifying the amino acid sequence of the antibody obtained as described above by amino acid substitution, deletion, caroylation and Z or insertion, or chimerization or humanization. It is. Amino acid substitutions, deletions, additions and / or insertions, and amino acid sequence modifications such as humanization and chimerization can be performed by methods known to those skilled in the art. Similarly, the variable region and constant region of the antibody used when producing the antibody of the present invention as a recombinant antibody may also have amino acids by substitution, deletion, addition and Z or insertion of amino acids, or by chimerization or humanization. The sequence may be modified.
  • the antibody that recognizes the TRAIL receptor of the present invention is not limited by the origin and shape of any antibody as long as it has the ability to bind to the TRAIL receptor. Preferably, it specifically binds to More preferably,
  • Antibodies of the present invention include mouse antibodies, human antibodies, rat antibodies, egret antibodies, goat antibodies, camel antibodies, etc. Antibodies derived from various animals may be used. Furthermore, for example, chimeric antibodies, especially modified antibodies in which amino acid sequences are substituted, such as humanized antibodies, may be used. In addition, any antibody such as a modified antibody, an antibody fragment, or a low molecular weight antibody to which various molecules are bound may be used.
  • a “chimeric antibody” is an antibody produced by combining sequences from different animals.
  • an antibody that has variable (V) regions of the heavy and light chains of a mouse antibody and constant (C) regions of the heavy and light chains of a human antibody can be exemplified.
  • the production of chimeric antibodies is known.For example, a DNA encoding an antibody V region is ligated to a DNA encoding a human antibody C region, and this is inserted into an expression vector, introduced into a host, and produced.
  • Antibody can be obtained
  • humanized antibody refers to a complementarity determining region (CDR) of a non-human mammal-derived antibody such as a mouse antibody, also called a reshaped human antibody. It is a grafted antibody CDR. Methods for identifying CDRs are known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National
  • the CDR of a mouse antibody is determined by a known method, and a DNA encoding an antibody in which the CDR is linked to a framework region (FR) of a human antibody is obtained. It can be produced by a system using an expression vector.
  • Such DNA can be synthesized by a PCR method using as primers several oligonucleotides prepared so as to have overlapping portions in the terminal regions of both CDR and FR (W098 / 13388). See the method described in the gazette).
  • the FRs of the human antibody linked via the CDR are selected such that the CDR forms a good antigen-binding site.
  • the amino acids of FR in the variable region of the antibody may be modified so that the CDRs of the reshaped human antibody form an appropriate antigen-binding site (Sato et al,
  • Amino acid residues in FR that can be modified include those that directly and non-covalently bind to antigen (Amit et al., Science (1986) 233: 747-53) and those that affect or act on the CDR structure (Chothia et al., J. Mol. Biol. (1987) 196: 901-17) and And a portion related to the VH-VL interaction (EP239400 patent publication).
  • the C region of these antibodies is preferably derived from a human antibody.
  • C ⁇ 1, C ⁇ 2, C ⁇ 3, and C ⁇ 4 can be used for the H chain, and C ⁇ and C ⁇ can be used for the L chain.
  • the C region of the human antibody may be modified as necessary.
  • the chimeric antibody of the present invention preferably comprises a variable region of an antibody derived from a mammal other than human and a constant region derived from a human antibody.
  • the humanized antibody of the present invention also preferably has the CDRs of a non-human mammal-derived antibody and the FR and C regions derived from a human antibody.
  • the variable region will be described collectively in (3) -3.
  • the constant region derived from a human antibody has a unique amino acid sequence for each isotype such as IgG (IgGl, IgG2, IgG3, IgG4), IgM, IgA, IgD, and IgE.
  • the constant region used in the humanized antibody of the present invention may be a constant region of an antibody belonging to any isotype.
  • the force at which the constant region of the human HgG is used is not limited thereto.
  • the FR derived from a human antibody used for the humanized antibody of the present invention is not particularly limited, and may be an antibody belonging to any isotype.
  • variable regions and constant regions of the chimeric antibody and humanized antibody of the present invention may be modified by deletion, substitution, insertion and / or addition, etc., as long as they show the binding specificity of the original antibody.
  • Chimeric antibodies and humanized antibodies that utilize human-derived sequences are considered to be useful when administered to humans for therapeutic purposes, etc. because of their reduced antigenicity in the human body.
  • the antibody of the present invention is a low molecular weight antibody.
  • the low-molecular-weight antibody is particularly preferable as the antibody of the present invention because it can be produced at low cost using Escherichia coli, plant cells, and the like, in terms of its pharmacokinetic properties.
  • Antibody fragments are a type of low molecular weight antibody.
  • the minibodies also include antibodies having an antibody fragment as a part of its structure.
  • the structure and production method of the low molecular weight antibody of the present invention are not particularly limited as long as it has an antigen-binding ability.
  • the minibodies of the present invention have higher activity than full-length antibodies.
  • the “antibody fragment” is not particularly limited as long as it is a part of a whole antibody (for example, whole IgG). And preferably a heavy chain variable region (VH) or a light chain variable region (VL). Examples of preferable antibody fragments include Fab, F (ab '), Fab', and Fv.
  • Antibodies include Fab, F (ab '), Fab', and Fv.
  • VH or VL in the body fragment may be modified by substitution, deletion, addition and Z or insertion. Furthermore, VH and VL may be partially deleted as long as the antigen-binding ability is maintained.
  • Fv is the minimum antibody fragment that contains a complete antigen recognition site and a binding site.
  • Fv is a dimer in which one VH and one VL are tightly bound by a non-covalent bond (VH-VL dimer).
  • the three complementarity determining regions (CDRs) of each variable region interact to form an antigen-binding site on the surface of the VH-VL dimer. Six CDRs confer antigen-binding sites on the antibody.
  • variable region of the antibody fragment may be chimerized or humanized.
  • minibodies include both VH and VL.
  • minibodies include antibody fragments such as Fab, Fab ', F (ab') 2 and Fv, and scFv (single chain Fv) (Huston et al. Natl. Acad. Sci. USA (1988) 85: 5879-83; Plickthun "The Pharmacology of Monoclonal Antibodies” Vol. 113, eds. Resenburg and Moore, Springer Verlag, New York, pp. 269-315, (1994) )), Diabody (Holliger et al, Proc. Natl. Acad. Sci. USA (1993) 90: 6444-8;
  • Antibody fragments can be obtained by treating an antibody with an enzyme, for example, a protease such as papain or pepsin (Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229: 81). It can also be produced by genetic recombination based on the amino acid sequence of the antibody fragment.
  • an enzyme for example, a protease such as papain or pepsin (Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229: 81). It can also be produced by genetic recombination based on the amino acid sequence of the antibody fragment.
  • a low molecular weight antibody having a structure in which an antibody fragment is modified can be constructed using an antibody fragment obtained by enzymatic treatment or gene recombination.
  • a gene encoding the entire low molecular weight antibody can be constructed, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co et al., J. Immunol. (1994) 152: 2968-76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652- 63; Rousseaux et al, Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).
  • scFv which is an example of a low-molecular-weight antibody having a structure in which an antibody fragment is modified, is a single-chain polypeptide in which two variable regions are linked via a linker or the like as necessary.
  • the two variable regions included in the scFv may be two VHs or two VLs, usually one VH and one VL.
  • scFv polypeptides contain a linker between the VH and VL domains, thereby forming the VH and VL pairing moiety required for antigen binding.
  • the linker connecting VH and VL is generally a peptide linker having a length of 10 amino acids or more.
  • the scFv linker in the present invention is not limited to such peptide linkers as long as the scFv formation is not hindered.
  • Diabody An antibody in which two molecules of scFv form a dimer by non-covalent bond is called Diabody.
  • Diabody contains two scFv molecules, it contains four variable regions, and as a result, has two antigen-binding sites. Unlike the case of scFv, which does not form a dimer.In the case of the purpose of forming a diabody, usually, a linker connecting between VH and VL in each scFv molecule is around 5 amino acids when a peptide linker is used. Shall be However, the scFv linker that forms the Diabody in the present invention is not limited to such a peptide linker as long as it does not prevent the expression of scFv and does not prevent the formation of Diabody. Yes.
  • “Sc (Fv) 2” is an antibody in which two scFvs and the like are linked to each other with a linker or the like to form a single-chain polypeptide, and includes four variable regions (Hudson et al, J. Immunol. Methods (1999) 231: 177-89) o sc (Fv) 2 shows a particularly high agonistic activity as compared to full-length antibodies or other minibodies. Usually, they are constructed so as to form two VH-VL pairs in the same molecule and two antigen binding sites. sc (Fv) 2 can be produced, for example, by linking scFv with a linker. sc (Fv) 2 usually has the following structure.
  • any linker may be used as the linker.
  • a peptide linker a synthetic compound linker (see Protein Engineering (1996) 9 (3): 299-305) and the like are preferable, but a peptide linker is preferably used.
  • the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose.
  • the linker used for the low molecular weight antibody of the present invention will be described in detail in (3) -2-3 below.
  • the variable region is not particularly limited, as long as it has two VHs and two VLs.
  • variable regions (a) and (c) are VH
  • variable regions (b) and (d) are VL
  • variable regions (a) and (d) are VL
  • variable regions (a) and (d) are short
  • linker (B) is long enough so that (c) and (c) each pair to form two antigen-binding sites on the same peptide chain.
  • One preferable embodiment of the antibody of the present invention is an antibody having three or more antigen-binding sites.
  • the upper limit of the number of binding sites is not particularly limited, but is usually 30 or less (10 or less, 5 or less).
  • Preferred antibodies in the present invention are those containing three or four antigen-binding sites.
  • One antigen-binding site is usually composed of a pair of one heavy-chain variable region (VH) and one light-chain variable region (VL). Therefore, an antibody containing three antigen-binding sites usually contains three VHs and three VLs, and an antibody containing four antigen-binding sites contains four VHs and four VLs.
  • the antibody of the present invention including three antigen-binding sites is not particularly limited by its shape, and may be any antibody as long as it includes three antigen-binding sites.
  • the antibody having four antigen-binding sites of the present invention is not particularly limited by its shape or the like, and may be any antibody as long as the antibody has four antigen-binding sites.
  • a preferred example is a dimer of two sc (Fv) 2 (Tandem Diabody) (Cancer Research (2000) 60: 4336-41).
  • the scFv When forming a trimer of scFv, the scFv may be formed as a trimer by non-covalent bond or a trimer by covalent bond. Alternatively, a trimer may be formed by mixing both non-covalent bonds and covalent bonds in one molecule.
  • the two variable regions may be linked via a linker or the like, or the two variable regions may be linked directly without a linker.
  • Any linker can be used.
  • the ability to use a peptide linker or a synthetic compound linker is preferable.
  • a peptide linker is preferably used.
  • the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose. However, it is known that it is possible to form a triabody by reducing the length of the peptide linker to 112 amino acids (Journal of Immunological Methods (1999) 231: 177-89).
  • the peptide linker between the variable regions is preferably 0 to 2 amino acids, particularly preferably 0 or 1 amino acid.
  • a peptide linker of 0 amino acids indicates that the peptide linker is not via the peptide linker, and thus indicates that the two variable regions are directly linked.
  • the triabody of the present invention When the triabody of the present invention is prepared, three scFvs may be combined with a linker or the like to form a single-chain polypeptide. In this case, six variable regions will be included in the single-chain polypeptide. In this case, it is preferable that the peptide linker between scFvs is a sufficiently long peptide linker.
  • the purified polypeptide is separated by gel filtration chromatography, etc., and the peak of the purified polypeptide is detected at the position of the molecular weight corresponding to the trimer. Can be determined by In the present invention, examples of the carrier used for gel filtration chromatography include Superdex 200 and Superose 6.
  • an antibody having three antigen-binding sites include, for example, three variable regions. And dimers of single-chain polypeptides.
  • one single-chain polypeptide usually contains two heavy-chain variable regions (VH) and one light-chain variable region (VL), and the other single-chain polypeptide has two VLs. And one VH.
  • one single-chain polypeptide may include three heavy chain variable regions (VH), and the other single-chain polypeptide may include three light chain variable regions.
  • Sc (Fv) 2 is an antibody in which two scFvs and the like are linked to each other with a linker or the like to form a single-chain polypeptide, and includes four variable regions. Accordingly, Tandem Diabody, a dimer of sc (Fv) 2, contains eight variable regions. Sc (Fv) 2 that constitutes Tandem Diabody usually has the following structure.
  • Tandem Diabody consists of (1) two sc (Fv) 2 containing two VH and two VL, (2) sc (Fv) 2 with four VH, and sc with four VL.
  • the Tandem Diabody of the present invention includes all those Tandem Diabodies.
  • Any linker may be used as a linker connecting the variable regions.
  • a peptide linker, a synthetic compound linker, etc. may be used.
  • a peptide linker is used.
  • the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose.
  • linker (1) and linker (3) are short peptide linkers, for example, 0-10 amino acids, preferably 2-8 amino acids, and more preferably. Is a linker of 4-6 amino acids (for example, 5 amino acids).
  • linker (2) is preferably a long peptide linker, for example, 10-30 amino acids, preferably 12-20 amino acids, More preferably, it is 14-16 amino acids (for example, 15 amino acids).
  • two sc (Fv) 2s may be combined with a linker or the like to form a single-chain Tandem Diabody.
  • the single-chain polypeptide contains eight variable regions.
  • the antibody produced as described above is a tandem diabody or not can be determined by separating purified polypeptide by gel filtration chromatography or the like, and then purifying the purified polypeptide at the position of the molecular weight corresponding to the dimer. It can be determined by detecting the peptide peak.
  • Superdex 200, Superose 6, or the like can be mentioned as a carrier used for gel filtration chromatography.
  • antibodies containing four antigen-binding sites include, for example, scFv tetramers and the like. All of these antibodies include the antigen-binding site of the present invention in the four antibodies.
  • the preferred examples of the antibody of the present invention have been described with respect to the case where the number of antigen-binding sites is four or four, but an antibody having five or more antigen-binding sites is prepared using the same principle. It is also possible.
  • any linker may be used as the linker for the low molecular weight antibody.
  • any peptide linker which can be introduced by genetic engineering, or a synthetic compound linker (for example, Protein Engineering (1996) 9 (3): 299-305).
  • the length of the peptide linker that can be used in the present invention is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose.
  • the peptide linker for scFV there are used 11 to 100 amino acids, preferably 5 to 30 amino acids, particularly preferably 12 to 18 amino acids (for example, 15 amino acids).
  • Examples of the amino acid sequence constituting the peptide linker of the present invention include the following sequences:
  • Synthetic chemical compound linkers that can be used in the antibody of the present invention include cross-linking agents generally used for cross-linking peptides, for example, N-hydroxysuccinimide (NHS) disk simidinylsulfonate.
  • cross-linking agents generally used for cross-linking peptides, for example, N-hydroxysuccinimide (NHS) disk simidinylsulfonate.
  • DSS bis (sulfosuccinimidyl) suberate (BS 3 ), dithiopis (succinimidyl propionate) (DSP), dithiopis (sulfosuccinimidyl propionate) ( DTSSP), ethylene glycol bis (succinimidyl succinate) (EGS), ethylene glycol bis (sulfosuccinimidyl succinate) (sulfo EGS), disuccinimidyl tartrate (DST), disulfosuccinimid Jil tartrate (sulfo DST), bis [2- (succinimidoxycarboxy-loxy) ethyl] sulfone (BSOCOES), bis [2- (sulfosuccinimidoxy) Carbo-Roxy) ethyl] sulfone (sulfo
  • variable regions When four antibody variable regions are bound by a linker, usually, the same force as the three linkers may be used, or different linkers may be used. Further, in some cases, the variable regions may be connected to each other without using a linker.
  • variable region of the anti-TRAIL receptor antibody that can be used for preparing the chimeric antibody, humanized antibody and low molecular weight antibody of the present invention can be obtained by a method known to those skilled in the art.
  • the variable region of an already known antibody for example, the antibody described in WO02 / 94880
  • an antibody can be prepared by a method known to those skilled in the art using the TRAIL receptor or a fragment thereof as an immunogen, and the variable region thereof can be used. It is also possible to decode the sequence of a variable region of a known antibody or an antibody obtained by a known method, and use the variable region prepared by genetic engineering techniques.
  • the origin of the variable region and the CDR in the variable region is not particularly limited, and may be derived from any animal. For example, a sequence of a mouse antibody, a rat antibody, a rabbit antibody, a camel antibody and the like can be used.
  • amino acids of the variable region may be modified.
  • Amino acid modifications include amino acid substitutions, deletions, additions, and Z or insertions, and these amino acid modification operations can be performed by methods known to those skilled in the art. Specifically, site-directed mutagenesis (Hashimoto-Gotoh et al, Gene (1995) 152: 271-5; Zoller and Smith, Methods Enzymol. (1983) 100: 468-500; Kramer et al., Nucleic Acids Res. (1984) 12: 9441-56; Kramer and Fritz, Methods Enzymol. (1987) 154: 350-67; Kunkel, Proc. Natl. Acad. Sci. USA (1985) 82: 488-92; Kunkel, Methods such as Methods Enzymol. (1988) 85: 2763-6) can be used.
  • amino acids When mutating an amino acid residue in an antibody, it is desirable to mutate the amino acid residue to another amino acid having the same property as the side chain of the original amino acid residue.
  • classifying amino acids based on the properties of the amino acid side chains hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), and hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), an amino acid having an aliphatic side chain (G, A ⁇ V, L, I, P), an amino acid having a hydroxyl-containing side chain (S, ⁇ , ⁇ ), amino acids with side chains containing sulfur atoms (C, M), amino acids with side chains containing carboxylic acids and amides (D, N, E, Q), amino acids with side chains containing bases (R, K , ⁇ ), and amino acids having an aromatic-containing side chain (H, F, Y, W) (all brackets indicate one letter of amino acids).
  • the present inventors have generally found that there is a difference between the antibody activity before and after antibody modification. That is, an antibody that does not have an agonistic activity before the modification may exhibit the agonistic activity due to the modification such as reduction in molecular weight.
  • a modified antibody exhibiting agonist activity was prepared using the variable region of an antibody that originally did not have agonist activity but binds to the TRAIL receptor. You can.
  • a low molecular weight antibody having any one of the following amino acid sequences can be mentioned.
  • the antibody described in (3) is preferably an antibody having an amino acid sequence described in SEQ ID NO: 2, 4, or 6 (each of ScFvH2L, ScFvHIL, and ScFvHOL), or a multimer thereof. More preferably, it is a trimeric antibody (Triabody) having the amino acid sequence of SEQ ID NO: 2, 4, or 6.
  • the antibody described in (4) is preferably an antibody having the amino acid sequence described in SEQ ID NO: 8 (an antibody encoded by PCXND3 / KMTR1 Tandab) or a multimer thereof, and more preferably described in SEQ ID NO: 8.
  • the nucleotide sequence encoding ScFvH2L is represented by SEQ ID NO: 1
  • the nucleotide sequence encoding ScFvHIL is represented by SEQ ID NO: 3
  • the nucleotide sequence encoding ScFvHOL is a dimer (Tandem Diabody) of an antibody having the amino acid sequence of ScFvHOL.
  • the base sequence encoding PCXND3 / KMTR1 Tandab is shown in SEQ ID NO: 7.
  • the present invention also includes antibodies functionally equivalent to the antibodies having the above sequences.
  • Such antibodies include, for example, mutants of these antibodies.
  • amino acids in the variable region for example, FR portion
  • Amino acid modification includes amino acid substitution, deletion, addition and Z or insertion, and these amino acid modification operations can be performed by methods known to those skilled in the art. Specifically, site-directed mutagenesis (Hashimoto-Gotoh et al, Gene (1995) 152: 271-5; Zoller and Smith, Methods Enzymol. (1983) 100: 468-500; Kramer et al., Nucleic Acids Res. (1984) 12:
  • amino acids having properties equivalent to those of the side chain of the original amino acid residue For example, classifying amino acids based on the properties of amino acid side chains: hydrophobic amino acids (A, I, L, M, F, P, W, Y, V) and hydrophilic amino acids (R, D, N, C, E) , Q, G, H, K, S, T), an amino acid having an aliphatic side chain (G, A, V, L, I, P), an amino acid having a hydroxyl-containing side chain (S, T, ⁇ ), Amino acids with side chains containing sulfur atoms (C, M), amino acids with side chains containing carboxylic acids and amides (D, N, E, Q), amino acids with side chains containing bases (R, K, ⁇ ), aromatic It can be classified into amino acids having a group-containing side chain (H, F, Y, W).
  • hydrophobic amino acids A, I, L, M, F, P, W, Y, V
  • hydrophilic amino acids R,
  • a polypeptide having an amino acid sequence modified by deletion, addition, and / or substitution by another amino acid in the amino acid sequence of a certain polypeptide It is already known that the active activity is maintained (Mark et al., Proc. Natl. Acad. Sci. USA (1984) 81: 5662-6; Zoller and Smith, Nucleic Acids Res. (1982) 10 : 6487-500; Wang et al "Science (1984) 224: 1431-3; Dalbadie-McFarland et al., Proc. Natl. Acad. Sci. USA (1982) 79: 6409-13).
  • Antibodies in which a plurality of amino acid residues are added to the amino acid sequence of the antibodies of the present invention include fusion proteins in which these antibodies are fused with other polypeptides.
  • the method for preparing a fusion protein is as follows: DNA encoding the antibody of the present invention and DNA encoding another peptide or protein are ligated so that their frames match, introduced into an expression vector, and expressed in a host. A method known to those skilled in the art can be used.
  • peptides or proteins to be fused with the antibody of the present invention include, for example, FLAG (Hopp et al, Bio / Technology (1988) 6: 1204-10), and six His (histidine) residues. 6XHis, 10XHis, influenza agglutinin (HA), human c-myc fragment, VSV-GP fragment, pl8HIV fragment, T7-tag, HSV-tag, E-tag, SV40T antigen fragment, Known peptides such as lck tag, a-tubulin fragment, B-tag, and protein C fragment can be used.
  • FLAG Hopp et al, Bio / Technology (1988) 6: 1204-10
  • 6XHis 6XHis, 10XHis, influenza agglutinin (HA), human c-myc fragment, VSV-GP fragment, pl8HIV fragment, T7-tag, HSV-tag, E-tag, SV40T antigen fragment
  • Known peptides such as lck
  • proteins to be fused with the antibody of the present invention include, for example, GST (daltathione-S-transferase), HA (influenza agglutinin), immunoglobulin constant region, ⁇ -galatatosidase, ⁇ ( Maltose binding protein).
  • a fusion protein can be prepared by fusing a commercially available DNA encoding the peptide or protein with a DNA encoding the antibody of the present invention, and expressing the fusion DNA prepared thereby. Since Triabodies and Tandem Diabodies having each of the above sequences have a Flag tag added thereto, they can be fused with other peptides or proteins except for the Flag tag portion.
  • the TRAIL receptor functions as a trimer in vivo.
  • a triabody having a trivalent antigen binding site and a linker of sc (Fv) 2, and a linker of sc (Fv) 2 are formed by using a 2, 1 or Omer linker between VH and VL of the single-chain Fv (scFv).
  • scFv single-chain Fv
  • TNF and Fas receptors which also function as trimers and induce cell death
  • TNF receptor family it was thought to act as a small molecule antibody agonist having three or more antigen binding sites such as Triabody and Tandem Diabody, and to transmit cell death signals more efficiently.
  • the present invention provides an antibody that includes three or more antigen-binding sites and induces apoptosis in cells.
  • the antibody is preferably a low molecular weight antibody that contains three or more antigen binding sites and induces apoptosis in cells.
  • an antibody having three antigen binding sites such as Triabody, is preferred.
  • an antibody having four antigen-binding sites such as Tandem Diabody.
  • Cells in which the antibody of the present invention induces apoptosis are preferably tumor cells.
  • the tumor cells are not particularly limited, and include, for example, colorectal cancer, lung cancer, breast cancer, melanoma, colorectal cancer, brain tumor, renal cell cancer, bladder cancer, leukemia, lymphoma, T-cell lymphoma, multiple myeloma, spleen cancer, Stomach cancer, cervical cancer, endometrial cancer, ovarian cancer, esophageal cancer, liver cancer, head and neck squamous cell carcinoma, skin cancer, urinary tract cancer, prostate cancer, choriocarcinoma, pharyngeal cancer, laryngeal cancer, capsuloma, Male germinoma, endometrial hyperplasia, endometriosis, germinoma, fibrosarcoma, positiosarcoma, hemangiomas, marine cavernomas, hemangioblastoma,
  • a polynucleotide encoding the antibody of the above 1. and 2.
  • the polynucleotide of the present invention is not particularly limited as long as it encodes the antibody of the present invention, and is a polymer having bases or base pairs, such as a plurality of deoxyribonucleic acids (DNA) or ribonucleic acids (RNA). It may contain a non-natural base.
  • the polynucleotide of the present invention can be used when expressing antibodies by genetic engineering techniques. Further, it can be used as a probe when screening an antibody having a function equivalent to the antibody of the present invention. That is, a polynucleic acid encoding the antibody of the present invention. Using leotide or a part thereof as a probe, it hybridizes with the polynucleotide under stringent conditions by a technique such as hybridization and gene amplification technique (e.g., PCR), and binds to the antibody of the present invention. DNA encoding an antibody having equivalent activity can be obtained. Such DNA is also included in the polynucleotide of the present invention.
  • a technique such as hybridization and gene amplification technique (e.g., PCR)
  • Hybridization technology (Sambrook et al., Molecular Cloning 2nd ed. (1989) 9.47-9.58, Cold Spring Harbor Lab. Press) is a well-known technology to those skilled in the art.
  • Hybridization conditions include, for example, low stringency. Under low stringent conditions, washing after hybridization may be performed, for example, at 42 ° C, 0.1 X SSC, 0.1% SDS, preferably at 50 ° C, 0.1 X SSC, 0.1%. Higher stringency conditions are more preferable conditions for the hybridization, such as 65 ° C., 5 ⁇ SSC, and 0.1% SDS.
  • An antibody functionally equivalent to the antibody of the present invention which is encoded by the DNA obtained by the hybridization technique or the gene amplification technique, usually has a higher amino acid sequence than the antibody of the present invention. , Have homology.
  • the present invention further provides a vector comprising the polynucleotide of the above 3.
  • the vector of the present invention is not particularly limited as long as it incorporates the polynucleotide of the present invention.
  • Escherichia coli when Escherichia coli is used as a host, the vector is amplified in Escherichia coli (for example, JM109, DH5a, HB101, XLlBlue) or the like in large amounts, and the “ori” to be amplified in Escherichia coli is prepared.
  • it may have a gene that allows selection in transformed E.
  • coli eg, a drug resistance gene that allows discrimination with any drug (ampicillin, tetracycline, kanamycin, chloramuecole, etc.)
  • examples of such vectors include the M13 vector 1.
  • pGEM-T, pDIRECT, pT7 and the like can be mentioned.
  • an expression vector is particularly useful.
  • a promoter capable of efficiently expressing the antibody in addition to the above-mentioned configuration enabling the amplification of the vector.
  • the host is Escherichia coli such as JM109, DH5a, HB101, and XL1-Blue
  • the lacZ promoter Ward et al, Nature (1989) 341: 544-6; FASEB J. (1992) 6: 2422- 7
  • the araB promoter Better et al., Science (1988) 240: 1041-3
  • Such vectors include pGEX-5X-1 (manufactured by Pharmacia), “QIAexpress system” (manufactured by Qiagen), pEGFP, or pET (in this case, the host is BL21 expressing T7 RNA polymerase). Is preferred).
  • the vector contains a signal sequence for polypeptide secretion!
  • a signal sequence for protein secretion a pelB signal sequence (Lei et al., J. Bacteriol. (1987) 169: 4379) may be used in the case of production by E. coli periplasm.
  • the introduction of the vector into the host cell can be performed using, for example, the Shii-Dani calcium method or the electroporation method.
  • the vectors of the present invention include mammalian-derived expression vectors (pcDNA3 (Invitrogen), pEGF-BOS (Nucleic Acids. Res. (1990) 18 (17): 5322), pEF, pCDM8, etc.), insects Expression vectors derived from cells (“Bac-to-BAC baculovairus expression system” (GIBCO BRL), pBacPAK8, etc.), plant-derived expression vectors ( ⁇ 1, pMH2, etc.), and animal virus-derived expression vectors (pHSV, pMV, pAdexLcw, etc.), retrovirus-derived expression vectors (pZIPneo, etc.), yeast-derived expression vectors ("Pichia Expression KitJ (manufactured by Invitrogen), pNVll, SP-Q01, etc.), and Bacillus subtilis-derived expression vectors (pPL608, pKTH50) can also be used.
  • mammalian-derived expression vectors pcDNA3
  • SV40 promoter Mulligan et al, Nature (1979) 277: 108
  • MMLVLTR promoter EF1 ⁇ promoter
  • CMV promoter CMV promoter
  • it is more preferable to have a gene for example, a drug resistance gene that can be determined by a drug (neomycin, G418, etc.) for determining whether or not the cell has been transformed with the vector.
  • a gene for example, a drug resistance gene that can be determined by a drug (neomycin, G418, etc.)
  • pOPRSV pOP13.
  • the CHO cell lacking a nucleic acid synthesis pathway is supplemented with the defect.
  • the vector can be amplified by introducing a vector (such as pCHOI) having a dihydrofolate reductase (DHFR) gene and incubating in the presence of methotrexate (MTX), which inhibits DHFR competitively.
  • a vector such as pCHOI
  • DHFR dihydrofolate reductase
  • MTX methotrexate
  • COS cells having a gene expressing the SV40 T antigen on the chromosome are transformed with a vector having a replication origin of SV40 (such as pcD).
  • the expression vector is used as a selectable marker for aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, Escherichia coli xanthinguanine phosphoribosyltransferase (Ecogpt) gene, and dihydrofolate reduction for amplification of gene copy number in the host cell system.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • dihydrofolate reduction for amplification of gene copy number in the host cell system.
  • a host cell carrying the polynucleotide of the above item 3 or the vector of the above item 4.
  • the host cell is not particularly limited, and examples thereof include Escherichia coli and various animal cells.
  • the host cell can be used, for example, as a production system for producing and expressing the antibody of the present invention.
  • Production systems for polypeptide production include in vitro and in vivo production systems. In vitro production systems include production systems that use eukaryotic cells and production systems that use prokaryotic cells.
  • Eukaryotic cells that can be used as host cells include, for example, animal cells, plant cells, and fungal cells. Vesicles. Animal cells include mammalian cells, for example, amphibian cells such as CH0 (J. Exp. Med. (1995) 108: 945), COS-3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, etc. Examples include Megafrog oocytes (Valle et al., Nature (1981) 291: 338-340), and insect cells such as S19, S121, and Tn5. For expression of the antibody of the present invention, CHO-DG44, CHO-DX11B, COS7 cells, and BHK cells are preferably used.
  • CHO cells are particularly preferred for large-scale expression in animal cells.
  • the vector can be introduced into a host cell by, for example, a calcium phosphate method, a DEAE dextran method, a method using cationic ribosome DOTAP (manufactured by Boehringer Mannheim), an electoral poration method, a Lipofexion method, or the like. .
  • strigomyces Aspertiana tabacum, cells derived from Nicotiana tabacum (Nicotiana tabacum) are known as a protein production system, and the antibody of the present invention can be produced by a method of callus culture of these cells.
  • fungal cells include yeasts, for example, Saccharomyces (Saccharomyces) stable fermented spores, Saccharomyces cerevisiae, Saccharomyces pombe, and filamentous fungi, such as Aspergillus cells.
  • yeasts for example, Saccharomyces (Saccharomyces) stable fermented spores, Saccharomyces cerevisiae, Saccharomyces pombe, and filamentous fungi, such as Aspergillus cells.
  • Protein expression systems using Aspergillus niger Asspergillus niger, etc.
  • prokaryotic cells When prokaryotic cells are used, there is a production system using bacterial cells.
  • bacterial cells a production system using Bacillus subtilis in addition to the above-mentioned Escherichia coli (E. coli) is known and can be used for the production of the antibodies of the present invention.
  • the host cell transformed with an expression vector containing the polynucleotide encoding the antibody of the present invention is cultured, and the polynucleotide is expressed.
  • the culturing can be performed according to a known method. For example, when an animal cell is used as a host, for example, DMEM, MEM, RPMI1640, or IMDM can be used as a culture solution. At this time, the cells may be cultured using serum replacement fluid such as FBS or fetal calf serum (FCS) or serum-free culture.
  • the pH during the culturing is preferably about 6-8. Culture is usually performed at about 30-40 ° C for about 15-200 hours, and the medium is replaced, aerated, and agitated as necessary.
  • a system for producing a polypeptide in vivo includes, for example, production using an animal. And production systems using plants and plants. A polynucleotide of interest is introduced into these animals or plants, and the polypeptide is produced in the body of the animals or plants and collected.
  • the “host” in the present invention includes these animals and plants.
  • mammals When using animals, there are production systems using mammals and insects. As mammals, goats, pigs, sheep, mice, mice, etc. can be used (Vicki Glaser,
  • a polynucleotide encoding the antibody of the present invention is prepared as a fusion gene with a gene encoding a polypeptide uniquely produced in milk, such as goat j8 casein.
  • the polynucleotide fragment containing the fusion gene is injected into a goat embryo, and the embryo is transplanted into a female goat.
  • the desired antibody can be obtained from the milk produced by the transgenic goat born from the goat that has received the embryo or its offspring.
  • Hormones may be appropriately administered to transgenic goats to increase the amount of milk containing antibodies produced by the transgenic goats (Ebert et al., Bio / Technology (1994) 12: 699-702). .
  • silkworms As an insect that produces the antibody of the present invention, for example, silkworms can be used.
  • the target antibody can be obtained from the body fluid of the silkworm by infecting the silkworm with baculovirus into which the polynucleotide encoding the antibody of interest has been inserted (Susumu et al "Nature (1985) 315 : 592-4).
  • the antibody thus obtained can be isolated from the inside or outside of a host cell (such as a medium or milk) and purified as a substantially pure and homogeneous antibody.
  • Antibody separation and purification can be performed by using the separation and purification methods used in normal polypeptide purification. However, it is not limited. For example, chromatography columns, filters, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc.
  • the antibodies can be separated and purified in combination.
  • chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, and the like (Strategies for Protein Purification and
  • chromatographys can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC.
  • liquid phase chromatography such as HPLC and FPLC.
  • Columns used for affinity chromatography include protein A columns and protein G columns.
  • columns using Protein A include Hyper D, POROS, Sepharose F.F. (Pharmacia) and the like.
  • the protein can be arbitrarily modified or partially removed by reacting an appropriate protein modifying enzyme before or after purification of the antibody.
  • an appropriate protein modifying enzyme for example, trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, dalcosidase and the like are used.
  • the antibodies disclosed in the present invention (for example, low molecular weight antibodies and antibodies having three or more antigen binding sites) recognize not only the TRAIL receptor but also other three It may be a body or larger receptor. Therefore, the present invention includes not only anti-TRAIL receptor antibodies but also antibodies against other trimeric or higher receptors.
  • the other trimeric or higher receptor is not particularly limited, and may be any receptor, for example, TNF Family receptor.
  • TNF Family receptors include p55-R, CD120a, TNF—R—I p55, TNF—R, TNFR1, TNFAR, TNF—R55, p55TNFR, TNFR60, CD120b, p75, TNF—R, TNF—R— ⁇ , TNFR80, TNFR2.TNF-R75, TNFBR, p75TNFR, TNFRSF3, TNFR2-RP, CD18, TNFR-RP, TNFCR, TNF— R— —, ⁇ 40, ACT35, TXGPlL, p50, Bp50, CD40.FAS, CD95, APO— 1, APTl, DcR3, M68, TR6, HGNC: 15888, NHL, DKFZP434C013, KIAA1088, bK3184A7.3, C20orf41, Tp55, S
  • the present invention includes an antibody against a trimeric or higher receptor such as a TNF Family receptor.
  • Antibodies to trimeric or higher receptors other than the TRAIL receptor can be used as low molecular weight antibodies or antibodies having three or more antigen binding sites (eg, Triabody and Tandem Diabody). It is preferable that
  • These receptors are not particularly limited as long as they are at least trimers, and examples thereof include tetramers, pentamers, hexamers, and heptamers. And particularly preferably a trimer.
  • the present invention provides a pharmaceutical composition comprising the antibody described in 1 or 2 above.
  • the antibody is an antibody that induces apoptosis in cells (for example, when it is an anti-TRAIL receptor antibody)
  • a pharmaceutical composition containing the antibody is particularly useful as an anticancer agent.
  • the TNF Family receptor is involved in inflammatory diseases (TNFR) such as Crohn's disease and Behcet's disease, and autoimmune diseases such as rheumatoid arthritis (TNFR) and systemic lupus erythematosus (BAFFR).
  • TNFR inflammatory diseases
  • BAFFR systemic lupus erythematosus
  • the antibody is an anti-TNF family receptor antibody
  • a pharmaceutical composition containing the antibody is useful for treatment and prevention of inflammatory diseases and autoimmune diseases. It is.
  • the antibody of the present invention when used in a pharmaceutical composition, it can be formulated by a method known to those skilled in the art.
  • sterile with water or other pharmaceutically acceptable liquids It can be used parenterally in the form of injectable solutions or suspensions.
  • pharmacologically acceptable carriers or vehicles specifically, sterile water or physiological saline, vegetable oils, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents, excipients, vehicles, preservatives It is possible to formulate the compound by combining it with an appropriate agent, binder and the like in a unit dose form required for generally accepted pharmaceutical practice. The amount of the active ingredient in these preparations is set so that an appropriate dose in the specified range can be obtained.
  • a sterile composition for injection can be formulated using a vehicle such as distilled water for injection, according to a normal formulation practice.
  • Aqueous solutions for injection include, for example, saline, isotonic solutions containing glucose and other adjuvants (eg, D-sorbitol, D-mannose, D-mantol, sodium chloride).
  • Appropriate solubilizing agents for example, alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, polyethylene glycol), and nonionic surfactants (eg, Polysorbate 80 (TM), HCO-50) may be used in combination.
  • the oily liquid includes sesame oil and soybean oil, and benzyl benzoate and Z or benzyl alcohol may be used in combination as a solubilizing agent.
  • a buffer eg, phosphate buffer and sodium acetate buffer
  • a soothing agent eg, proforce hydrochloride
  • a stabilizer eg, benzyl alcohol and phenol
  • the pharmaceutical composition of the present invention is preferably administered by parenteral administration.
  • the composition can be an injection, nasal, pulmonary, or transdermal composition.
  • it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose of the antibody or the pharmaceutical composition containing the polynucleotide encoding the antibody can be set, for example, in the range of 0.1 mg / kg to 100 mg / kg body weight at a time. Or, for example, the strength can be as low as 0.001-100 mg per patient.
  • the present invention is not necessarily limited to these values.
  • the dosage and method of administration vary depending on the patient's weight, age, symptoms, etc., and those skilled in the art will consider appropriate The dosage and method of administration can be set.
  • the antibody of the present invention can be formulated in combination with other pharmaceutical ingredients.
  • a plurality of antibodies against TRAIL receptor can be combined into a pharmaceutical composition.
  • an anti-TRAIL-R2 antibody whose antitumor activity is amplified by a combination of chemotherapy and Z or radiation therapy, is known! / (Buchsbaum et al, Clin. Cancer Res. (2003) 9: 3731-41), treatment with a pharmaceutical composition comprising the antibody of the present invention may also be performed in combination with chemotherapy and radiation therapy.
  • Pharmaceutical ingredients used in chemotherapy include, for example, doxorubicin hydrochloride preparations, paclitaxel and the like.
  • Pharmaceutical components used in combination with the antibody of the present invention can be combined into a single pharmaceutical product as long as the activities of the antibody and the pharmaceutical component are not inhibited and the components are administered by the same administration route. It is.
  • the present invention relates to a method for inducing cell death of a cell by using the antibody of the present invention. Specifically, the present invention relates to a method for inducing cell death in a cell by bringing the antibody of the present invention into contact with the cell.
  • a KMTR1 antibody whose variable region sequence was determined based on the nucleotide sequence described in Patent (WO 02/094880 A1) was produced.
  • WO 02/094880 A1 a sequence from the 81st adenine (A) to the 497th adenine (A) in WO 02/094880 A1 was used as the heavy chain variable region. This includes the heavy chain signal sequence.
  • the sequence from guanine (G) at position 123 to adenine (A) at position 443 in WO 02/094880 A1 was adopted. This is the mature sequence without the signal sequence.
  • the gene fragment encoding the antibody fragment was designed as follows. Expression vector
  • VL light chain variable region
  • Asp-Tyr-Lys-Asp-Asp-Asp-Asp-LysZ SEQ ID NO: 12 Is attached.
  • the nucleotide sequence encoding Flag is 5′-GAC TAC AAG GAT GAC GAC GAT AAG -3 ′ (SEQ ID NO: 11).
  • the stop codon is ligated twice, and a Notl recognition sequence is added at the end.
  • the nucleotide sequence encoding the designed Diabody is shown in SEQ ID NO: 13.
  • DNA was designed. These are the sense and antisense sequences, ranging in length from 79 to 103 bases. It also contains sequences that are complementary to each other that are necessary for ligation by assembly. FIGS. 4 and 5 schematically show this process.
  • the base sequences of the synthetic oligo DNAs are shown in SEQ ID NOs: 14 to 25. These SEQ ID numbers correspond to the names of the oligo DNAs used in the following reactions, as follows:
  • the first stage assembly performed the reaction in the following six tubes:
  • Tube A synthetic DNA S1 and AS1,
  • Tube B Synthetic DNA S2 and AS2,
  • Tube C Synthetic DNA S3 and AS3,
  • Tube D Synthetic DNA S4 and AS4,
  • Tube E synthetic DNA S5 and AS5, and
  • Tube F synthetic DNA S6 and AS6.
  • Tube 1 reaction products of tubes A and B,
  • Tube 2 reaction products of tubes B and C,
  • Tube 3 Reaction products of tubes D and E, and
  • Tube 4 Reaction products of tubes E and F.
  • Tube 1 + 2 Reaction products of tubes 1 and 2
  • Tube 3 + 4 Reaction products of tubes 3 and 4. Mix 20 L of each reaction product in each tube, denature in a thermal cycler at 94 ° C for 1 minute, and then perform 5 cycles of 94 ° C, 30 seconds; 72 ° C, 30 seconds went.
  • the first tube contains 1 ⁇ L of the reaction product of tube 1 + 2, 40 pmol of each of the external primers KMTRl HI (SEQ ID NO: 26) and KMTRl H2 (SEQ ID NO: 27), dATP, dGTP, dNTP mix, IX TaKaRa pyrobset TM DNA Polymerase buffer containing 250 ⁇ each of dTTP and dCTP, and 2.5 units of TaKaRa pyrobset TM DNA
  • tube L Includes 50 ⁇ L reaction solution containing Polymerase.
  • tube L 1 ⁇ L of the reaction product of tube 3 + 4, 40 pmol of each of the external primers KMTRl L1 (SEQ ID NO: 28) and KMTRl L2 (SEQ ID NO: 29), dATP, Includes dNTP mix, IX TaKaRa pyrobset TM DNA Polymerase buffer containing 250 ⁇ each of dGTP, dTTP, and dCTP, and 50 ⁇ L of reaction solution containing 2.5 units of TaKaRa pyrobset TM DNA Polymerase.
  • the tubes H and L were subjected to denaturation at 94 ° C for 1 minute in a thermal cycler, 30 cycles of 94 ° C, 30 seconds; 72 ° C, 30 seconds were performed.
  • tube K-2 40 ⁇ mol of the external primers KMTRl HI (SEQ ID NO: 26) and KMTRl L2 (SEQ ID NO: 29), dATP, dGTP, dTTP, were added to 1 ⁇ L of the reaction product obtained in tube K.
  • a 50 L reaction solution containing a DNA Polymerase buffer and 5 units of TaKaRa pyrobset DNA Polymerase was prepared. This was transformed in a thermal cycler at 94 ° C for 1 minute, and then 30 cycles of 94 ° C, 30 seconds; 72 ° C, 60 seconds were performed. The reaction products were separated by 1.2% agarose gel electrophoresis, and the desired 800 bp fragment was cut from the gel. And purified using the QIAquick Gel Extraction Kit (QIAGEN). Next, the fragment was digested with restriction enzymes EcoRI and Notl, and then purified using QIAquick Nucleotide Removal Kit (QIAGEN). Expression vector obtained by pre-cleaving the fragment thus obtained with restriction enzymes EcoRI and Notl
  • the diabody expression vector pCXND3 / KMTRl # 33 was hybridized to the vector so as to sandwich the region containing the linker portion (Gly-Gly-Gly-Gly-SerZ SEQ ID NO: 10) and amplified using these primers.
  • Primers ScFv-2S (SEQ ID NO: 30) and ScFv-2A (SEQ ID NO: 31) were designed such that the linker in the fragment was a 2-mer of Gly-Gly.
  • PCR was performed using pCXND3 / KMTRl # 33 as type III, a combination of KMTR1HI (SEQ ID NO: 26) and ScFv-2A, and a combination of ScFv-2S and KMTR1 L2 (SEQ ID NO: 29)
  • the resulting two fragments are designed to have an overlap of 18 bases so that they can be assembled by complementarity with each other.
  • tube 2-1 50 pmol of each primer KMTR1 HI and ScFv2A was added to the next reaction solution (hereinafter referred to as 1-2., 1-3-2. And 1-4-2. DNTP mix, lX TaKaRa pyrobset TM DNA Polymerase buffer containing 100 ng of pCXND3 / KMTRl # 33, dATP, dGTP, dTTP, dCTP each as 250 ⁇ ⁇ , and 5 units of TaKaRa pyrobset TM Reaction solution in a final volume of 50 ⁇ L containing DNA Polymerase.
  • tube 2-2 50 pmol of each primer ScFv2S and KMTR1 L2 were added to the PCR reaction solution to prepare a total volume of 50 L. PCR was performed on the reaction solution in tube 2-2 in the same manner as in tube 2-1 to purify a fragment of the target size of 400 bp.
  • the DNA fragments obtained from tubes 2-1 and 2-2 were added to the following reaction solution (referred to as assembly solution in the following 1-2.) In 1 ⁇ L portions: dATP, dGTP, dTTP DNTP mix containing 250 ⁇ l each of dCTP, lX TaKaRa pyrobset TM DNA Polymerase buffer, and a final volume of 50 ⁇ L containing 5 units of TaKaRa pyrobset TM DNA Polymerase.
  • the tube 2 containing this solution was denatured in a thermal cycler at 94 ° C for 1 minute, and assembled by performing 5 cycles of 94 ° C, 30 seconds; 72 ° C, 60 seconds.
  • reaction solution add 0.5 ⁇ L of each 100 ⁇ L of KMTR1 HI and KMTR1 L2, and 94. After denaturation with C for 1 minute, amplification was performed by 30 cycles consisting of 94 ° C, 60 seconds; 72 ° C, 60 seconds.
  • the reaction products were separated by 1.2% agarose gel electrophoresis, the desired 800 bp fragment was excised from the gel, and purified using QIAquick Gel Extraction Kit (QIAGEN). The purified fragment was digested with restriction enzymes EcoRI and Notl, inserted into an expression vector PCXND3 that had been cleaved with restriction enzymes EcoRI and Notl, and the nucleotide sequence of the fragment was determined.
  • a plasmid having the desired sequence was named pCXND3 / KMTR1ScFv2.
  • Primers ScFv-lS (SEQ ID NO: 32) and ScFv-lA (SEQ ID NO: 33) were combined with the linker portion (Gly-Gly-Gly-Gly-Gly-SerZ SEQ ID NO: 10) of Diabody expression vector pCXND3 / KMTRl # 33.
  • the primers were designed to hybridize so as to sandwich the containing region and to have a partial linker strength SGly of the fragment amplified using these primers.
  • pCXND3 / KMTRl # 33 as type III, PCR was performed using KMTR1 HI (SEQ ID NO: 26) and ScFv-lA, and ScFv-lS and KMTR1 L2 (SEQ ID NO: 29). Fragments obtained by going
  • the primers were designed to have an 18 base overlap that would allow for assembly by different complementations.
  • tube 1-1 50 pmol of each primer KMTRl HI and ScFvlA was added to the PCR reaction solution, and denatured at 94 ° C for 1 minute in a thermal cycler. Seconds: 30 cycles of 60 seconds at 72 ° C were performed. The reaction products were separated by 1.2% agarose gel electrophoresis, the desired 400 bp fragment was excised from the gel, and purified using the QIAquick Gel Extraction Kit (QIAGEN).
  • tube 1-2 50 pmol of each primer ScFvlS and KMTRl L2 were added to the PCR reaction solution to prepare a total volume of 50 L. Similarly to tube 1-1, PCR was performed on tube 1-2, and a fragment of the target size of 400 bp was purified.
  • the amplified DNA fragments obtained from the respective reaction products in tube 1-1 and tube 1-2 were assembled and amplified as follows:
  • the DNA fragment obtained from tube 1-1 and tube 1-2 was 1 ⁇ m.
  • Each L was added to the assembling solution.
  • Tube 1 containing this mixed reaction solution was subjected to denaturation at 94 ° C for 1 minute in a thermal cycler, and then assembled by performing 5 cycles of 94 ° C, 30 seconds; 72 ° C, 60 seconds. .
  • To this tube add 0.5 ⁇ l each of 100 ⁇ M MOKMTR1 HI and KMTRl L2, perform denaturation at 94 ° C for 1 minute, followed by a cycle consisting of 94 ° C for 60 seconds; 72 ° C for 60 seconds.
  • reaction products were separated by 1.2% agarose gel electrophoresis, the desired 800 bp fragment was excised from the gel, and purified using the QIAquick Gel Extraction Kit (QIAGEN).
  • the purified fragment was digested with the restriction enzymes EcoRI and Notl, inserted into the expression vector PCXND3 that had been cleaved with the restriction enzymes EcoRI and Notl, and the nucleotide sequence of the fragment was determined.
  • the plasmid having the desired sequence was named pCXND3 / KMTR1ScFvl.
  • Primers ScFv-0S (SEQ ID NO: 34) and ScFv-0A (SEQ ID NO: 35) were combined with the linker portion (Gly-Gly-Gly-Gly-Gly-SerZ SEQ ID NO: 10) of Diabody expression vector pCXND3 / KMTRl # 33.
  • the primers were designed so as to hybridize so as to sandwich the containing region, and that the fragments amplified using these primers did not contain a linker.
  • KMTRl HI SEQ ID NO: 26
  • reaction products were separated by 1.2% agarose gel electrophoresis, the desired 400 bp fragment was excised from the gel, and QlAquick Gel Extraction was performed.
  • tube 0-2 50 pmol of each primer ScFvOS and KMTR1 L2 were added to the PCR reaction solution to prepare a total volume of 50 L. Similarly to tube 0-1, PCR was performed on tube 0-2 to purify a fragment of the target size of 400 bp.
  • the DNA fragments obtained from 0-1 and the tube 0-2 were added in 1 ⁇ L portions. After denaturing the mixed reaction solution at 94 ° C for 1 minute in a thermal cycler, assembly was performed by 5 cycles of 94 ° C, 30 seconds; 72 ° C, 60 seconds. To this, add 0.5 ⁇ L of 100 M KMTRl HI and KMTRl L2, denature at 94 ° C for 1 minute, and then perform 30 cycles of 94 ° C, 60 seconds; 72 ° C, 60 seconds power! Amplification was performed. The reaction products were separated by 1.2% agarose gel electrophoresis, the desired 800 bp fragment was excised from the gel, and purified using the QlAquick Gel Extraction Kit (QIAGEN).
  • the purified fragment was digested with restriction enzymes EcoRI and Notl, inserted into an expression vector pCXND3 previously cleaved with restriction enzymes EcoRI and Notl, and the nucleotide sequence of the fragment was determined.
  • the plasmid having the desired sequence was named pCXND3 / KMTR1ScFvO.
  • sc (Fv) 2 was designed in which three linkers between the variable regions of sc (Fv) 2 were composed of 5mer, 12mer and 5mer in this order.
  • the 12-mer linker sequence the SL sequence described in the above report (Arg-Ala-Asp-Ala-Ala-Ala-Ala-Gly-Gly-Pro-Gly-SerZ SEQ ID NO: 36 ) And Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 10) was used as a 5-mer linker.
  • the amino acid sequence encoded by the constructed vector is (VH signal sequence)-(VH)-(5 mer linker)-(VL)-(12 mer linker)-(VH)-(5 mer linker) Car)-(VL)-(Flag tag)-(stop codon).
  • DNA fragment encoding sc (Fv) 2 was obtained by PCR using the Diabody expression vector pCXND3 / KMTRl # 33 prepared in 1-1. As type III. By PCR, DNA fragment fragment 1 encoding (VH signal sequence)-(VH)-(5mer linker)-(VL)-(part of 12mer linker) and (12mer linker A DNA fragment fragment 2 encoding part)-(VH)-(5 mer linker)-(VL)-(Flag tag)-(stop codon) was obtained. A DNA fragment encoding sc (Fv) 2 was constructed by linking these two fragments using the Smal restriction enzyme recognition sequence present in the 12-mer linker.
  • Primer KMTRltanA (SEQ ID NO: 37) is a Diabody expression vector
  • the primer KMTRltanS contains a sequence encoding the 12-mer linker sequence including the Smal recognition sequence, followed by a sense sequence consisting of a sequence hybridizing to the VL end of the Diabody expression vector pCXND3 / KMTRl # 33. Have. Fragments 1 and 2 were amplified using these primers.
  • the plasmid having the desired sequence was named pBS / KMTRltanFrl.
  • the VH fragment is inserted under the control of the human EF1 ⁇ promoter. It expresses the W chain IgG H chain to which the human ⁇ chain constant region has been added.
  • the expression vector HEF-PMlk-g ⁇ is obtained by inserting a fragment consisting of a signal sequence and VL to control Whole IgG in which a human L chain constant region has been added to the VL fragment under the control of the human EF1 ⁇ promoter. Express light chain. Whole IgG can be expressed by co-introducing these H and L chain expression vectors into animal cells such as COS-7.
  • the H chain expression vector can be constructed as follows. Diabody expression vector In pCXND3 / KMTRl # 33, a signal sequence and a sequence encoding VH are inserted as a continuous DNA. Therefore, in order to recombine this signal sequence and the VH-encoding DNA into the expression vector HEF-PMh-gyl1, first use pCXND3 / KMTRl # 33 as a type III, and use a PCR method with appropriate primers. It is necessary to amplify the part of the sequence to be performed. Next, the amplified sequence is treated with a restriction enzyme or the like as necessary, and then inserted into an appropriately treated expression vector HEF-PMh-gyl !.
  • an L chain expression vector can be performed as follows. Diabody expression vector pCXND3 / KMTRl # 33 contains VL but does not contain its signal sequence. Therefore, a sense primer that can add a nucleotide sequence corresponding to the KMTR1 antibody L chain signal sequence described in the patent (WO 02/094880 A1) to VL is designed and synthesized, and an appropriate antisense primer is synthesized. VL having a signal sequence can be amplified by performing PCR in combination with pCXND3 / KMTRl # 33 as type III. An L chain expression vector can be constructed by treating the thus amplified fragment with a restriction enzyme, if necessary, and inserting it into an appropriately treated expression vector HEF-PMlk-g ⁇ .
  • the sense primer KMTRVHsp (SEQ ID NO: 39) was designed to hybridize to the amino terminal in the coding sequence of pCXND3 / KMTRl # 33.
  • KMTRVHsp has a Hindm restriction enzyme recognition sequence added for cloning.
  • KMTRVHap (SEQ ID NO: 40) was designed to hybridize to the carboxy terminus of the coding sequence of pCXND3 / KMTRl # 33 and have a splice donor sequence immediately after the carboxy terminus.
  • KMTRVHap has a BamHI restriction enzyme recognition sequence added for clawing.
  • the sense primer KMTRVLsp (SEQ ID NO: 41) contains a sequence encoding the signal sequence of KMTR1 VL described in the patent (WO 02/094880), and has a Kozak consensus sequence CCACC and a BamHI restriction enzyme recognition sequence upstream thereof. It was designed as follows.
  • KMTRVLsp was designed to hybridize to the amino terminal of VL in the coding sequence of pCXND3 / KMTRl # 33. Furthermore, a Hindm restriction enzyme recognition sequence has been added for clawing.
  • the antisense primer KMTRVLap (SEQ ID NO: 42) is a primer for pCXND3 / KMTRl # 33. It was designed to hybridize to the carboxy terminus of VL in the nucleotide sequence and to have a splice donor sequence immediately after the carboxy terminus.
  • KMTRVLap has a BamHI restriction enzyme recognition sequence added for clawing!
  • Tube VH contains 50 pmol of each primer KMTRVHsp and KMTRVHap
  • Tube VL contains 50 pmol of each primer KMTRVLsp and KMTRVLap.
  • Each 10 / zg of each expression vector constructed in 1. was introduced into COS-7 cells by an electoral port method using a Gene Pulser apparatus. That is, each DNA (10 g) was added to a 0.8 mL aliquot of 1 ⁇ 10 7 cells suspended in PBS, and pulsed at a dose of 1500 V and 25 ⁇ F. After a recovery period of 10 minutes at room temperature, the cells subjected to electoral poration were seeded in 30 mL of DMEM medium (GIBCO BRL) containing 10% fetal calf serum (GIBCO BRL). After culturing this overnight at 37 ° C and 5% CO, remove the medium and then add PBS.
  • DMEM medium containing 10% fetal calf serum
  • the cells were washed four times with, and added with 15 mL of CHO-S-SFMII medium (GIBCO BRL). This was incubated for 72 hours at 37 ° C and 5% CO, and the supernatant from which cell debris was removed by centrifugation was further treated with a 0.45 m filter, and the resultant was used as a culture supernatant for measurement of cytotoxicity.
  • CHO-S-SFMII medium GEBCO BRL
  • the concentrations of Diabody, Triabody and Tandem Diabody in the culture supernatant expressed in 2. were measured using a biosensor BIAcore2000 (BIACORE) using surface plasmon resonance. Flag tags were added to these antibodies. Therefore, analysis was performed using anti-Flag antibody M2 (Sigma). More specifically, the antibody was immobilized on a sensor chip CM5 (BIACORE) by an amine coupling method, and the surface plasmon resonance signal was measured by analyzing the culture supernatant using the sensor chip.
  • the concentration of IgG in the culture supernatant expressed in step 2 was measured by ELISA.
  • a substrate solution (Sigmal04, p-ditrophenyl phosphate, Sigma) was added, and the absorbance at 405 nm was measured using MICROPLATE READER Model 3550 (Bio-Rad). Human IgGl ⁇ (The Binding Site) was used as a standard for concentration measurement.
  • Diabody, Triabody and Tandem Diabody in the culture supernatant expressed in 2. was evaluated by cytotoxic activity. Specifically, colorectal cancer cell line COLO 205 (ATCC CCL-222), in which TRAIL receptor expression was actually observed, was Each culture supernatant was seeded on a plate (FALCON) at 7.5 ⁇ 10 4 cells / well, and each culture supernatant serially diluted with CHO-S-SFMII (GIBCO BRL) was added to each well. As needed, anti-Flag antibody M2 (Sigma) was added as a crosslinker at a concentration of 10 g / mL.
  • TRAIL natural ligand Apo2L recombinant (Sigma) diluted with CHO-S-SFMII was used as a positive control for cytotoxic activity evaluation.
  • the microplate thus prepared is cultured overnight at 37 ° C and 5% CO.
  • FIG. 1 shows the results of evaluating the cytotoxic activity of Diabody.
  • FIG. 2 shows the results of evaluation of the cytotoxic activity of Triabody and Whole IgG.
  • a low molecular weight antibody By reducing the molecular weight of an antibody, it is possible to have a higher specific activity and a shorter blood half-life. Therefore, the administration of low-molecular-weight antibodies makes it easier to adjust the effective blood concentration, which is advantageous for clinical applications compared to full-length antibodies such as IgG. Therefore, it is expected that a low molecular weight antibody can be an anticancer agent having properties superior to those of a conventional antibody.
  • its expression system is not limited even when it is expressed as a recombinant protein. For example, it can be produced by various expression systems such as mammalian cell lines, yeast, insect cells, Escherichia coli and the like.
  • a polyvalent, particularly a low-molecular-weight antibody having a trivalent or higher antigen-binding site can be used as an agonist antibody against a receptor that forms a trimer such as a TRAIL receptor and performs signal transmission. It was shown to be effective.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 全長IgG抗体と比べ、単独の分子としてより高い細胞障害活性を示すTRAIL受容体に対するTandem DiabodyおよびTriabodyが得られた。細胞死誘導シグナルの伝達にあたって、細胞膜表面上での受容体分子の重合を必要とするTRAIL受容体等の受容体を介して細胞のアポトーシスを誘起することを目的とする場合に、その重合を助けるような抗体が有用であることが本発明により示された。

Description

明 細 書
3量体以上の受容体を認識する改変抗体
技術分野
[0001] 本発明は、腫瘍壊死因子関連アポトーシス誘導リガンド (TRAIL)受容体に対する抗 体に関する。
背景技術
[0002] 腫瘍壊死因子 (TNF)のような或る種のサイト力インは、アポトーシスを促進させること が知られて 、る。腫瘍壊死因子関連アポトーシス誘導リガンド (TRAIL)は TNFファミリ 一の一員であり、癌化細胞系には死をもたらす力 ヒトの多くの正常組織には毒性を 持たないように見える(特許文献 1および非特許文献 1参照)。現在、 TRAILは 5種類 の受容体に対して親和性を有することが知られて 、る。 TRAILが親和性を示す受容 体は、 TRAIL- Rl (DR4とも呼ばれる;非特許文献 2参照)、 TRAIL- R2 (DR5、 TRICK2 または killer;非特許文献 3— 5参照)、 TRAIL-R3 (TRID、 DcRlまたは LIT;非特許文献 3、 4、 6参照)及び TRAIL- R4 (TRUNDDまたは DcR2;非特許文献 6および 7参照)の 4 つの膜結合受容体、並びに可溶性受容体ォステオプロテゲリン (OPG;非特許文献 8 参照)の 5つである。
[0003] このうち、 TRAIL- R1及び TRAIL- R2は、細胞質デスドメイン (death domain(DD》を有 することが知られている。 DDは、アポトーシスシグナルの伝達に関与する領域である 。リガンドである TRAILの TRAIL- R1及び TRAIL- R2への結合により、 TRAIL- R1及び TRAIL- R2の 3量体化が誘導され、 3量体化した TRAIL- R1及び TRAIL- R2の DDに FADD/MORT-1が結合し、カスパーゼ 8を誘引するアダプター分子として機能する。 その結果、さらに他のカスパーゼを含む蛋白質分解カスケードが開始され、最終的 にはアポトーシスによる細胞死に到る(非特許文献 9参照)。 TRAIL-R3及び
TRAIL-R4は細胞外領域を持つものの、細胞内のシグナル伝達に関与する領域を持 たないいわゆるデコイ (decoy)であり、アポトーシスシグナルの伝達は行わない。腫瘍 細胞で発現されて 、る TRAIL- R1及び TRAIL- R2とは異なり、 TRAIL- R3及び
TRAIL-R4は、原則的に、通常の組織において発現され、腫瘍細胞においては発現 されて!/、な!/、 (非特許文献 3— 5参照)。
[0004] TRAIL受容体に対するモノクローナル抗体も公知である。 Griffithらは、 TRAIL感受 性腫瘍細胞にぉ 、てアポトーシスを誘導する抗 TRAIL-R1及び TRAIL-R2抗体、並 びに TRAILによるアポトーシスを阻害する抗 TRAIL- R2抗体につ!、て報告してレ、る ( 非特許文献 10参照)。 Chuntharaopaiらは、他の外来リンカ一なしで腫瘍細胞のアポ トーシスを誘導する抗 TRAIL-R1マウスモノクローナル抗体 (mAb)を報告してレヽる(非 特許文献 11参照)。 TRAIL-R1に対する抗体は、動物モデルを用いてヒトの乳癌、大 腸癌、子宮癌等への治療効果が確認されており、抗癌剤としての開発が進められて いる。一方、 TRAIL-R2に対するモノクローナル抗体としては、 TRA-8が抗腫瘍活性 を示すことが報告されている(非特許文献 12参照)。抗 TRAIL-R2抗体についても進 行性腫瘍を対象とした臨床開発が進められている。
[0005] 特許文献 1 :国際公開第 97/01633号
非特許文献 1 : Wileyら著、 Immunology, 1995年、 Vol.3, p.673- 82
非特許文献 2 : Panら著、 Science, 1997年、 Vol.276, p.111-3
非特許文献 3 : Panら著、 Science、 1997年、 Vol.277, p.815-8
非特許文献 4: Sheridanら著、 Science、 1997年、 Vol.277, p.818- 21
非特許文献 5 :Walczakら著、 EMBO J.、 1997年、 Vol.16, p.5386- 97
非特許文献 6 : Degl卜 Espostiら著、 J. Exp. Med., 1997年、 Vol.186, p.1165—70 非特許文献 7 :Marstersら著、 Curr. Biol.、 1997年、 Vol.7, p.1003-6
非特許文献 8 : Emeryら著、 J. Biol. Chem.、 1998年、 Vol.273, p.14363-7 非特許文献 9 : Boderら著、 Nat. Cell. Biol.、 2000年、 Vol.2, p.241-3
非特許文献 10 : Griffithら著、 J.Immunol.、 1999年、 Vol.162、 p.2597-605 非特許文献 11 : Chuntharaopaiら著、 J.Immunol.、 2001年、 Vol.166, p.4891-8 非特許文献 12 : Buchsbaumら著、 Clin. Cancer Res., 2003年、 Vol.9, p.3731-41 発明の開示
発明が解決しょうとする課題
[0006] 本発明は、より強いァゴニスト活性を示す抗 TRAIL受容体抗体を提供することを目 的とする。さらに、本発明は、抗 TRAIL受容体抗体に限定されず、 3量体以上を形成 する受容体に対してァゴ-スト活性を示す抗体を提供することを目的とする。
課題を解決するための手段
[0007] 出願人は、 IgGを低分子化抗体に変換すると、変換された低分子化抗体が元の IgG よりも強いァゴニスト活性を示すことを見出した。該知見に基づき、抗 TRAIL受容体抗 体についても、ァゴ-スト活性を上昇させることを目標に、低分子化抗体の作成を試 みた。 TRAIL受容体は 3量体として機能することが知られている。そこで、一本鎖 Fv(scFv)の重鎖可変領域 (VH)及び軽鎖可変領域 (VL)間を、 2、 1または Omerのリンカ 一とすることにより 3価の抗原結合部位を持つ Triabody、並びに、 sc(Fv)2のリンカ一長 を 5- 12- 5merにすることで、 4価の抗原結合部位を形成する Tandem Diabodyを作製し 、その活性を調べた。その結果、これらの低分子化抗体は、受容体を発現している腫 瘍細胞に対して単独で顕著な細胞傷害活性を示した。 Triabodyや Tandem Diabody が細胞膜表面上の TRAIL受容体の重合を促進することにより、 TRAIL受容体の 3量 体を介したアポトーシスシグナルの伝達が促進されたものと考えられる。この結果から 、同様に 3量体以上で機能し、細胞死を誘導する TNF受容体、 Fas受容体などの TNF 受容体ファミリーに対しても、 Triabodyや Tandem Diabodyなどの低分子化抗体力 ァ ゴニスト的に働き、細胞死のシグナルを伝える可能性が示唆される。
[0008] そこで、本発明はより具体的には、
〔1〕 TNF関連アポトーシス誘導リガンド受容体 (TRAIL受容体)を認識する抗体、 〔2〕 低分子化抗体である〔1〕に記載の抗体、
〔3〕 抗原結合部位を 3つ以上含むことを特徴とする〔1〕及び〔2〕に記載の抗体、 〔4〕 抗原結合部位が 3つである〔3〕に記載の抗体、
〔5〕 3つの scFvが 3量体を形成して 、ることを特徴とする〔4〕に記載の抗体、
〔6〕 scFv中の 2つの可変領域が 0— 2アミノ酸のリンカ一で結合されている〔5〕に記 載の抗体、
〔7〕 リンカ一が 0アミノ酸である〔6〕に記載の抗体、
〔8〕 リンカ一が 1アミノ酸である〔6〕に記載の抗体、
〔9〕 抗原結合部位力 つである〔3〕に記載の抗体、
〔10〕 4つの可変領域を含むポリペプチドが 2量体を形成している〔9〕に記載の抗体 〔11〕 TRAIL受容体力TRAIL-R1又は TRAIL- R2である〔1〕一〔10〕のいずれかに記 載の抗体、
〔12〕 細胞にアポトーシスを誘起することを特徴とする〔1〕一〔11〕のいずれかに記 載の抗体、
〔13〕 細胞が腫瘍細胞である〔 12〕に記載の抗体、
〔14〕 配列番号: 2に記載のアミノ酸配列を有する抗体、
[15] 配列番号: 4に記載のアミノ酸配列を有する抗体、
〔16〕 配列番号: 6に記載のアミノ酸配列を有する抗体、
〔 17] 配列番号: 8に記載のアミノ酸配列を有する抗体、
〔18〕 抗原結合部位を 3つ以上含み、細胞にアポトーシスを誘起する抗体、
〔19〕 抗原結合部位が 3つである〔18〕に記載の抗体、
〔20〕 抗原結合部位力 つである〔18〕に記載の抗体、
〔21〕 細胞が腫瘍細胞である〔18〕一〔20〕のいずれかに記載の抗体、
[22] 〔1〕一〔21〕のいずれかに記載の抗体をコードするポリヌクレオチド、
〔23〕 〔22〕に記載のポリヌクレオチドとストリンジェントな条件下でハイブリダィズし、 かつ〔1〕一〔21〕のいずれかに記載の抗体と同等の活性を有する抗体をコードするポ リヌクレ才チド、
〔24〕 [22]または〔23〕に記載のポリヌクレオチドを含むベクター、
〔25〕 [22]または〔23〕に記載のポリヌクレオチドまたは〔24〕に記載のベクターを保 持する宿主細胞、
〔26〕 〔1〕一〔21〕のいずれかに記載の抗体を含有する、医薬組成物、に関する。 図面の簡単な説明
[図 l]Diabodyの細胞傷害活性評価の結果を示す図である。図中、 mockは空ベクター PCXND3を COS-7に導入して測定された結果、 mock+M2は mockに M2抗体を添カロし た結果、 KMTR1 dbは Diabodyを添カ卩した結果、そして KMTR1 db+M2は KMTR1 dbに M2抗体を添加した結果をそれぞれ示す。
[図 2]Triabodyおよび Whole IgGの細胞傷害活性評価の結果を示す図である。図中、 ScFvH5Lは Diabodyを添カ卩した細胞について測定された結果、 scFvH2L、 SCFVH1L、 および scFvHOLはそれぞれ VH- VL間のリンカ一長が 2 mer、 1 mer及び 0 merの Triabodyを添カ卩した結果、そして、 Whole IgGは Whole IgGを添カ卩した結果をそれぞ れ示す。
[図 3]Triabodyと Tandem Diabodyの細胞傷害活性の比較を行った結果を示す図であ る。図中、 scFvH2L、 SCFVH1L、および scFvHOはそれぞれ VH- VL間のリンカ一長が 2 mer、 1 mer及び 0 merの Triabodyを添カ卩し 7こ結果、そして Tandem Diabodyiま Tandem Diabodyを添加した結果を示す。
[図 4]Diabody全長をコードする塩基配列の作成工程を模式的に表した図である。
[図 5]図 4の続きの図である。
発明を実施するための最良の形態
以下、 TRAIL受容体を例示して本発明の抗体を説明するが、本発明の抗体は、
TRAIL受容体に対する抗体に限定されず、全ての 3量体以上を形成する受容体に対 する抗体を含む。
1. TRAIL 容体杭体
本発明により TNF関連アポトーシス誘導リガンド受容体 (TRAIL受容体)を認識する 抗体が提供される。本発明の TRAIL受容体を認識する抗体は、好ましくは、 TRAIL受 容体を発現する細胞に細胞死 (アポトーシス等)を誘起し得るものである。 TRAIL受容 体のうち、腫瘍細胞にぉ ヽて発現されて ヽることが知られて ヽる TRAIL- R1または TRAIL-R2を認識する抗体は、本発明の抗体として好ましぐ中でも、これらの受容体 の!ヽずれかが発現されて!ヽる腫瘍細胞にアポトーシスを誘起するものが好ま ヽ。本 発明の抗体がアポトーシスを誘起する細胞は、好ましくは腫瘍細胞である。ここで、腫 瘍細胞は特に限定されず、例えば、大腸癌、肺癌、乳癌、黒色腫、結腸直腸癌、脳 腫瘍、腎細胞癌、膀胱癌、白血病、リンパ腫、 T細胞リンパ腫、多発性骨髄腫、脾臓 癌、胃癌、子宮頸癌、子宮内膜癌、卵巣癌、食道癌、肝臓癌、頭頸部扁平上皮癌、 皮膚癌、尿路癌、前立腺癌、絨毛癌、咽頭癌、喉頭癌、きょう膜腫、男性胚腫、子宮 内膜過形成、子宮内膜症、胚芽腫、線維肉腫、力ポジ肉腫、血管腫、海面状血管腫 、血管芽腫、網膜芽腫、星状細胞腫、神経線維腫、稀突起謬腫、髄芽腫、神経芽腫 、神経謬腫、横紋筋肉腫、謬芽腫、骨原性肉腫、平滑筋肉腫、甲状肉腫、ウィルムス 腫瘍等の細胞を挙げることができる。
[0011] (l)TRAIL受容体
本発明にお 、て、「TRAIL受容体」とは、 TNF関連アポトーシス誘導リガンド (TRAIL )が結合する受容体であり、 TRAILが結合する限りいかなる受容体であってもよい。 TRAILが結合する受容体としては、現在のところ、 TRAIL-1受容体、 TRAIL-2受容体 、 TRAIL-3受容体、 TRAIL-4受容体及びォステオプロテゲリン (OPG)の 5種類が知ら れている。本発明の抗体はいかなる TRAIL受容体を認識してもよいが、好ましくは TRAIL-1受容体又は TRAIL-2受容体を認識する抗体である。それぞれの TRAIL受 容体の配列は公知であり、例えば、 GenBankに登録されている配列を参照することが できる。本発明の抗 TRAIL受容体は、好ましくは、以下の GenBank Accession番号で 登録されているヒト TRAIL受容体のアミノ酸配列を有するポリペプチドを認識するもの である: TRAIL-1受容体(NP_003835)、 TRAIL-2受容体(NP_003833)、 TRAIL-3受容 体(NP— 003832)、 TRAIL- 4受容体(NP— 003831)。
[0012] (2)抗体
本発明において、「抗体」という用語は最も広い意味で使用され、所望の生物学的 活性を示す限り、モノクローナル抗体、ポリクローナル抗体、抗体変異体 (キメラ抗体 、ヒト化抗体、低分子化抗体 (抗体断片も含む)、多特異性抗体等)が含まれる。好ま しい抗体は、モノクローナル抗体、キメラ抗体、ヒト化抗体、並びに、及び抗体断片等 の低分子化抗体である。
[0013] 本発明の TRAIL受容体を認識するモノクローナル及びポリクローナル抗体は、天然 TRAIL受容体を抗原として用いて、公知の方法により作製することができる。または、 上記公知の TRAIL受容体配列に基づ ヽて遺伝子工学的に作製された抗原性ポリべ プチドを用いて作製することも可能である。モノクローナル抗体は、実質的に均質な 抗体の集団であり、抗原上の単一の抗原決定基 (ェピトープ)に対して特異的に作用 するものである。その観点から、異なるェピトープに特異性を示す複数種の抗体を含 むポリクローナル抗体よりも好まし 、ものである。「モノクローナル抗体」と 、う用語は、 或る抗体が実質的に均一な抗体の集団の一員としての特性を示すのみで、その製 造方法等を限定するものではな 、。
[0014] モノクローナル抗体は例えば次の方法により得ることができる。まず、抗体取得の感 作抗原として使用する TRAIL受容体タンパク質またはその抗原性ペプチドを得る。例 えば、 TRAIL受容体をコードする遺伝子配列のポリヌクレオチドを公知の発現べクタ 一中に挿入し、該発現べクタ一により適当な宿主細胞を形質転換した後、その宿主 細胞中または培養上清中の目的 TRAIL受容体タンパク質を公知の方法で精製する 。次に、この精製 TRAIL受容体タンパク質、または、該 TRAIL受容体の部分ペプチド を感作抗原として使用し、公知の手法により抗体を製造する。この際、部分ペプチド は TRAIL受容体のアミノ酸配列より化学合成により得ることも可能である。さらに、 TRAIL受容体を細胞表面上に発現する細胞やウィルスを感作抗原として用いることも 可能である。本発明の抗 TRAIL受容体抗体の認識する TRAIL受容体分子上のェピト ープは特定のものに限定されず、 TRAIL受容体分子上に存在するェピトープであれ ばよい。従って、本発明の抗 TRAIL受容体抗体を作製するための感作抗原は、 TRAIL受容体分子上に存在するェピトープを含む断片ならば、如何なる断片も用い ることが可能である。本発明の抗体を産生させるための抗原は、免疫原性を有する完 全抗原でも、有さな 、不完全抗原 (ハプテンを含む)であってもよ 、。
[0015] 感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融 合に使用する親細胞との適合性を考慮して選択するのが好ましい。一般的には、げ つ歯類の動物、例えば、マウス、ラット、ノ、ムスター、またはゥサギ、サル等が使用され る。
[0016] 感作抗原による動物の免疫は、公知の方法にしたがって行われる。例えば、一般 的方法として、感作抗原を哺乳動物の腹腔内または皮下に注射することが挙げられ る。具体的には、感作抗原を PBS (Phosphate-Buffered Saline)や生理食塩水等の適 当量に希釈、懸濁したものに所望により通常のアジュバント、例えばフロイント完全ァ ジュバントを適量混合、乳化した後、哺乳動物に 4一 21日毎に数回投与する。また、 感作抗原免疫時に適当な担体を使用することもできる。このように哺乳動物を免疫し 、血清中に所望の抗体レベルが上昇しているのを確認した後に、該哺乳動物から免 疫細胞を採取し、細胞融合に付す。 [0017] ここで、好ま U、免疫細胞としては、特に脾細胞が挙げられる。一方、免疫細胞と融 合する親細胞としては、通常、哺乳動物のミエローマ細胞が用いられる。種々のミエ ローマ細胞株が公知であり、例えば、 P3 (P3x63Ag8.653) (J. Immnol. (1979) 123: 1548-50)、 P3x63Ag8U.l (Curr. Topics Microbiol. Immunol. (1978) 81: 1-7)、 NS-1 (Kohler and Milstein, Eur. J. Immunol. (1976) 6: 511- 9)、 MPC- 11 (Margulies et al" Cell (1976) 8: 405- 15)、 SP2/0 (Shulman et al" Nature (1978) 276: 269-70)、 FO (deSt. Groth et al., J. Immunol. Methods (1980) 35: 1—21)、 SI 94 (Trowbridge, J. Exp. Med. (1978) 148: 313- 23)、 R210 (Galfre et al" Nature (1979) 277: 131— 3)等が 好適に使用される。前記免疫細胞とミエローマ細胞との細胞融合は、基本的には公 知の方法、例えば、ケーラーとミルスティンらの方法(Kohler and Milstein, Methods Enzymol. (1981) 73: 3-46)等に準じて行うことができる。
[0018] より具体的には、例えば、細胞融合は細胞融合促進剤の存在下、通常の栄養培養 液中で実施される。融合促進剤としては、例えばポリエチレングリコール (PEG)、セン ダイウィルス (HVJ)等が使用され、更に所望により融合効率を高めるためにジメチル スルホキシド等の補助剤を添加使用することもできる。免疫細胞とミエローマ細胞との 使用割合は任意に設定することができる。例えば、ミエローマ細胞に対して免疫細胞 を 1一 10倍とするのが好ましい。細胞融合に用いる培養液としては、ミエローマ細胞株 の増殖に好適な RPMI1640培養液、 MEM培養液等が例示される力 その他、この種 の細胞培養に通常用いられる培養液を適宜使用することができる。さらに、牛胎児血 清 (FCS)等の血清補液を培養液に加えてもよ!ヽ。免疫細胞を所定量のミエローマ細 胞と培養液中でよく混合し、予め 37°C程度に加温した PEG溶液 (例えば平均分子量 1000-6000程度)を通常 30-60% (w/v)の濃度で添加し、混合することによって細胞 融合を行 、、目的とする融合細胞 (ハイプリドーマ)を形成させる。続、て、適当な培 養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイプリドーマ の生育に好ましくない細胞融合剤等を除去する。形成されたハイブリドーマは、通常 の選択培養液、例えば HAT培養液 (ヒポキサンチン、アミノプテリンおよびチミジンを 含む培養液)で培養することにより選択することができる。上記 HAT培養液での培養 は、目的とするハイプリドーマ以外の細胞 (非融合細胞)が死滅するのに十分な時間 (通常、数日一数週間)継続する。ついで、通常の限界希釈法を実施することにより、 目的とする抗体を産生するノ、イブリドーマのスクリーニングおよび単一クローユングを 行う。
[0019] また、上述のようにヒト以外の動物に抗原を免疫してハイプリドーマを得る代わりに、 ヒトリンパ球を in vitroで TRAIL受容体に感作し、感作リンパ球をヒト由来の永久分裂 能を有するミエローマ細胞と融合させ、 TRAIL受容体への結合活性を有する所望の ヒト抗体を産生するハイプリドーマを得ることもできる(特公平 1-59878号公報参照)。 さらに、ヒト抗体遺伝子の全てのレパートリーを有するトランスジエニック動物に抗原と なる TRAIL受容体を投与して抗 TRAIL受容体抗体産生細胞を取得し、これを不死化 させ、 TRAIL受容体に対するヒト抗体を産生するハイプリドーマを取得してもよ 、(国 際特許出願公開番号 WO 94/25585号公報、 WO 93/12227号公報、 WO92/03918 号公報、 WO 94/02602号公報参照)。
[0020] このようにして作製されるモノクローナル抗体を産生するノ、イブリドーマは、通常の 培養液中で継代培養することが可能であり、また、液体窒素中で長期保存することが 可能である。
ノ、イブリドーマ力もモノクローナル抗体を取得するには、当該ハイプリドーマを通常 の方法にしたカ^、培養し、その培養上清としてモノクローナル抗体を得る方法がある 。または、ハイプリドーマをこれと適合性がある哺乳動物に投与して増殖させ、動物の 腹水よりモノクローナル抗体を得る方法なども採用することができる。前者の方法は、 高純度の抗体を得るのに適しており、後者の方法は、抗体の大量生産に適している
[0021] 抗体遺伝子をハイプリドーマ力 クローユングし、適当なベクターに組み込み作製さ れたベクターを宿主に導入する遺伝子組換え技術により、本発明の抗体を組換え型 の抗体として作製することも可能である(例えば、 Vandamme et al., Eur. J. Biochem. ( 1990) 192: 767- 75参照)。
具体的には、まず最初に、抗 TRAIL受容体抗体を産生するハイプリドーマから、抗 TRAIL受容体抗体の可変(V)領域をコードする mRNAを単離する。 mRNAの単離は、 公知の方法、例えば、グァ-ジン超遠心法(Chirgwin et al., Biochemistry (1979) 18: 5294-9)、 AGPC法(Chomczynski et al, Anal. Biochem. (1987) 162: 156- 9)等により 全 RNAを調製した後、 mRNA Purification Kit (Pharmacia製)等を使用して目的の mRNAを調製することができる。また、 QuickPrep mRNA Purification Kit (Pharmacia製 )を用いることにより mRNAのみを直接調製することもできる。次に、得られた mRNAか ら逆転写酵素を用いて抗体 V領域の cDNAを合成する。 cDNAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社製)等を用い て行うことができる。また、 cDNAの合成および増幅は、 5'-Ampli FINDER RACE Kit ( Clontech製)を用い、 PCRを利用した 5'-1¾\じ5法 1"01^1& et al., Proc. Natl. Acad. Sci. USA (1988) 85: 8998—9002; Belyavsky et al., Nucleic Acids Res. (1989) 17: 2919-32)等により行うことができる。続いて、得られた PCR産物から目的とする DNA断 片を精製し、ベクター DNAに連結することにより組換えベクターを作製し、該組換え ベクターを大腸菌等の宿主に導入し、形質転換された細胞のコロニーを選択する。 得られた細胞を培養することにより所望の組換え抗体を製造する。必要に応じ、目的 とする DNAの塩基配列を公知の方法、例えば、ジデォキシヌクレオチドチェインターミ ネーシヨン法等により確認する。続いて、得られた目的とする抗体の V領域をコードす る DNAを所望の抗体定常領域 (C領域)をコードする DNAを含有する発現ベクターへ 組み込む。発現ベクターは、発現制御領域、例えば、ェンハンサー及びプロモータ 一を含み、該領域の制御により本発明の抗体が発現されるように抗体 DNAを発現べ クタ一に組み込む。次に、この発現ベクターにより、宿主細胞を形質転換し、抗体を 発現させる。
[0022] 抗体遺伝子の発現は、抗体重鎖 (H鎖)または軽鎖 (L鎖)をコードする DNAを別々 に発現ベクターに組み込んで宿主細胞を同時形質転換させてもよいし、あるいは H 鎖および L鎖をコードする DNAが組み込まれた単一の発現ベクターで宿主細胞を形 質転換してもよい (WO 94/11523号公報参照)。
[0023] 本発明の抗体には、本発明の抗体と機能的に同等であり、かつ該抗体のアミノ酸 配列と高い相同性を有する抗体も含まれる。高い相同性とは、アミノ酸レベルにおい て、通常、少なくとも 50%以上の同一性、好ましくは 75%以上の同一性、さらに好まし くは 85%以上の同一性、さらに好ましくは 95%以上の同一性を指す。ポリペプチドの 相同性を決定するには、文献(Wilbur and Lipman, Proc. Natl. Acad. Sci. USA (1983) 80: 726-30)に記載のアルゴリズムを用いることができる。このような本発明の 抗体と機能的に同等であり、かつ高い相同性を有する抗体は、例えば、本発明の抗 体をコードする DNAの配列情報に基づいて作製されたプローブまたはプライマーを 用いたノヽイブリダィゼーシヨンまたは遺伝子増幅等により得ることができる。ハイブリダ ィゼーシヨンまたは遺伝子増幅を行う対象試料としては、そのような抗体を発現して ヽ ることが予想される細胞より構築された cDNAライブラリーが挙げられる。
[0024] 本明細書中、「機能的に同等」とは、対象となる抗体が本発明の抗体と同様の生物 学的または生化学的活性を有することを意味する。抗体の生物学的及び生化学的 活性としては、例えば、結合活性、ァゴ-スト活性を挙げることができる。即ち、抗体 の TRAIL受容体結合活性、または TRAIL受容体を介したアポトーシス誘導活性を測 定することにより、本発明の抗体と機能的に同等であるかどうかを調べることができる 。抗体の受容体を介したアポトーシス誘導活性は、これに限定されるわけではないが 、例えば、実施例の「4.細胞障害活性の評価」に記載の方法に従って測定することが できる。
[0025] (3)抗体の改変
本発明の抗体には、上述のようにして得られた抗体をアミノ酸の置換、欠失、付カロ 及び Z若しくは挿入、またはキメラ化やヒト化等により、そのアミノ酸配列が改変され たものが含まれる。アミノ酸の置換、欠失、付加及び/又は挿入、並びにヒト化、キメ ラ化などのアミノ酸配列の改変は、当業者に公知の方法により行うことが可能である。 同様に、本発明の抗体を組換え抗体として作製する際に利用する抗体の可変領域 及び定常領域も、アミノ酸の置換、欠失、付加及び Z若しくは挿入、またはキメラィ匕 やヒト化等によりそのアミノ酸配列を改変してもよい。
[0026] 以上のように、本発明の TRAIL受容体を認識する抗体は、 TRAIL受容体への結合 能を有していればいかなる抗体でもよぐ由来や形状などにより限定されないが、 TRAIL受容体に特異的に結合するものであることが好ましい。さらに好ましくは、
TRAIL受容体を介してアポトーシスを誘導するァゴニスト抗体である。本発明の抗体 はマウス抗体、ヒト抗体、ラット抗体、ゥサギ抗体、ャギ抗体、ラクダ抗体など、どのよう な動物由来の抗体でもよい。さらに、例えば、キメラ抗体、中でもヒト化抗体などのアミ ノ酸配列を置換した改変抗体でもよい。又、各種分子を結合させた抗体修飾物、抗 体断片、低分子化抗体などいかなる抗体でもよい。
[0027] (3)-1.キメラ抗体及びヒト化抗体
「キメラ抗体」とは、異なる動物由来の配列を組合わせて作製される抗体である。例 えば、マウス抗体の重鎖、軽鎖の可変 (V)領域とヒト抗体の重鎖、軽鎖の定常 (C)領 域力 なる抗体を例示することができる。キメラ抗体の作製は公知であり、例えば、抗 体 V領域をコードする DNAをヒト抗体 C領域をコードする DNAと連結し、これを発現べ クタ一に組み込んで宿主に導入し産生させることによりキメラ抗体を得ることができる
[0028] 「ヒト化抗体」とは、再構成 (reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由 来の抗体、例えばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体の CDRへ移植したものである。 CDRを同定するための方法は公知 で (Kabat et al., sequence of Proteins of Immunological Interest (1987), National
Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。また、 その一般的な遺伝子組換え手法も公知である(欧州特許出願公開番号 EP 125023 号公報、 WO 96/02576号公報参照)。そこで公知の方法により、例えば、マウス抗体 の CDRを決定し、該 CDRとヒト抗体のフレームワーク領域(framework region ; FR)とが 連結された抗体をコードする DNAを得、ヒト化抗体を通常の発現ベクターを用いた系 により産生することができる。このような DNAは、 CDR及び FR両方の末端領域にォー バーラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマーと して用いて PCR法により合成することができる (W098/13388号公報に記載の方法を 参照)。 CDRを介して連結されるヒト抗体の FRは、 CDRが良好な抗原結合部位を形成 するように選択される。必要に応じ、再構成ヒト抗体の CDRが適切な抗原結合部位を 形成するように、抗体の可変領域における FRのアミノ酸を改変してもよい(Sato et al,
Cancer Res. (1993) 53: 851-6)。改変できる FR中のアミノ酸残基には、抗原に直接、 非共有結合により結合する部分 (Amit et al., Science (1986) 233: 747- 53)、 CDR構 造に影響または作用する部分(Chothia et al., J. Mol. Biol. (1987) 196: 901-17)及 び VH-VL相互作用に関連する部分 (EP239400号特許公報)が含まれる。
[0029] 本発明の抗体がキメラ抗体またはヒト化抗体である場合には、これらの抗体の C領 域は,好ましくはヒト抗体由来のものが使用される。例えば H鎖では、 C γ 1、 C γ 2、 C γ 3、 C γ 4を、 L鎖では C κ、 C λを使用することができる。また、抗体またはその産生 の安定性を改善するために、ヒト抗体 C領域を必要に応じ修飾してもよい。本発明の キメラ抗体は、好ましくはヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来の 定常領域とからなる。一方、本発明のヒト化抗体は、好ましくはヒト以外の哺乳動物由 来抗体の CDRと、ヒト抗体由来の FRおよび C領域と力もなる。可変領域については、 (3)-3.においてまとめて説明する。ヒト抗体由来の定常領域は、 IgG (IgGl、 IgG2、 IgG3、 IgG4)、 IgM、 IgA、 IgD及び IgE等のアイソタイプごとに固有のアミノ酸配列を有 する。本発明のヒト化抗体に用いられる定常領域は、どのアイソタイプに属する抗体 の定常領域であってもよい。好ましくは、ヒ HgGの定常領域が用いられる力 これに 限定されるものではない。また、本発明のヒト化抗体に利用されるヒト抗体由来の FRも 特に限定されず、どのアイソタイプに属する抗体のものであってもよい。
本発明のキメラ抗体及びヒト化抗体の可変領域及び定常領域は、元の抗体の結合 特異性を示す限り、欠失、置換、挿入及び/または付加等により改変されていてもよ い。
ヒト由来の配列を利用したキメラ抗体及びヒト化抗体は、ヒト体内における抗原性が 低下しているため、治療目的などでヒトに投与する場合に有用と考えられる。
[0030] (3)-2.低分子化抗体
本発明の抗体の好まし 、態様の一つとして、低分子化抗体を挙げることができる。 低分子化抗体は、体内動態の性質の面力 も、大腸菌、植物細胞等を用いて低コス トで製造できる点からも特に本発明の抗体として好ましいものである。
[0031] 抗体断片は低分子化抗体の一種である。また、低分子化抗体は、抗体断片をその 構造の一部とする抗体も含む。本発明の低分子化抗体は、抗原への結合能を有して いれば特にその構造、製造法等は限定されない。本発明における低分子化抗体は、 全長抗体と比較して、高い活性を有する。本明細書において、「抗体断片」とは、全 長抗体 (whole antibody,例えば whole IgG等)の一部分であれば特に限定されないが 、重鎖可変領域 (VH)又は軽鎖可変領域 (VL)を含んでいることが好ましい。好ましい 抗体断片の例としては、例えば、 Fab, F(ab')、 Fab'、 Fvなどを挙げることができる。抗
2
体断片中の、 VHまたは VLのアミノ酸配列は、置換、欠失、付加及び Z又は挿入によ り改変されていてもよい。さらに抗原への結合能を保持する限り、 VH及び VLの一部 を欠損させてもよい。例えば、前述の抗体断片のうち「Fv」は、完全な抗原認識部位と 結合部位を含む最小の抗体断片である。「Fv」は、 1つの VHおよび 1つの VLが非共 有結合により強く結合したダイマー (VH-VLダイマー)である。各可変領域の 3つの相 補鎖決定領域(complementarity determining region ; CDR)が相互作用し、 VH- VLダ イマ一の表面に抗原結合部位を形成する。 6つの CDRが抗体に抗原結合部位を付 与している。し力しながら、 1つの可変領域 (または、抗原に特異的な 3つの CDRのみ を含む Fvの半分)であっても、全結合部位よりも親和性は低いが、抗原を認識し、結 合する能力を有する。従って、このような Fvより小さい分子も本発明における抗体断 片に含まれる。又、抗体断片の可変領域はキメラ化ゃヒト化されていてもよい。
[0032] 低分子化抗体は、 VHと VLの両方を含んで 、ることが好ま 、。低分子化抗体の例 としては、 Fab、 Fab'、 F(ab')2及び Fv等の抗体断片、並びに、抗体断片を利用して作 製され得る scFv (シングルチェイン Fv) (Huston et al., Proc. Natl. Acad. Sci. USA (1988) 85: 5879-83; Plickthun「The Pharmacology of Monoclonal Antibodies] Vol.113, Resenburg及び Moore編, Springer Verlag, New York, pp.269— 315, (1994) )、 Diabody (Holliger et al, Proc. Natl. Acad. Sci. USA (1993) 90: 6444—8;
EP404097号; W093/11161号; Johnson et al., Method in Enzymology (1991) 203: 88-98; Holliger et al., Protein Engineering (1996) 9: 299—305; Perisic et al., Structure (1994) 2: 1217—26; John et al., Protein Engineering (1999) 12(7):
597-604; Atwell et al., Mol.Immunol. (1996) 33: 1301—12)、 sc(Fv)2 (Hudson et al、 J Immunol. Methods (1999) 231: 177-89)、 Triabody (Journal of Immunological Methods (1999) 231: 177- 89)、及び Tandem Diabody (Cancer Research (2000) 60: 4336-41)等を挙げることができる。
[0033] 抗体断片は、抗体を酵素、例えばパパイン、ペプシン等のプロテアーゼにより処理 して得ることができる(Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229: 81参照)。また、該抗体断片のアミノ酸 配列を元に、遺伝子組換えにより製造することもできる。
[0034] 抗体断片を改変した構造を有する低分子化抗体は、酵素処理若しくは遺伝子組換 えにより得られた抗体断片を利用して構築することができる。又は、低分子化抗体全 体をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞 で発現させることもできる(例えば、 Co et al., J. Immunol. (1994) 152: 2968-76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652-63; Rousseaux et al, Methods Enzymol. (1986) 121: 663—9; Bird and Walker, Trends Biotechnol. (1991) 9: 132- 7参照)。
[0035] 抗体断片を改変した構造を有する低分子化抗体の 1例である scFvは、 2つの可変領 域を、必要に応じリンカ一等を介して、結合させた一本鎖ポリペプチドである。 scFvに 含まれる 2つの可変領域は、通常、 1つの VHと 1つの VLである力 2つの VH又は 2つ の VLであってもよい。一般に scFvポリペプチドは、 VH及び VLドメインの間にリンカ一 を含み、それにより抗原結合のために必要な VH及び VLの対部分が形成される。通 常、同じ分子内で VH及び VLの間で対部分を形成させるために、一般に、 VH及び VLを連結するリンカ一を 10アミノ酸以上の長さのペプチドリンカ一とする。しかしなが ら、本発明における scFvのリンカ一は、 scFvの形成を妨げない限り、このようなぺプチ ドリンカ一に限定されるものではない。 scFvの総説として、 Pluckthun『The
Pharmacology of Monoclonal Antibody JVol.113(Rosenburg and Moore ecu, Springer Verlag, NY, pp.269- 315 (1994》を参照することができる。
[0036] 2分子の scFvが非共有結合によりダイマーを形成する抗体を Diabodyと呼ぶ。
Diabodyは、 2分子の scFvを含むことから、 4つの可変領域を含み、その結果、 2つの 抗原結合部位を持つこととなる。ダイマーを形成させな ヽ scFvの場合と異なり、 Diabodyの形成を目的とする場合、通常、各 scFv分子内の VH及び VL間を結ぶリンカ 一は、ペプチドリンカ一とする場合には、 5アミノ酸前後のものとする。しかしながら、 本発明における Diabodyを形成する scFvのリンカ一は、 scFvの発現を妨げず、 Diabodyの形成を妨げない限り、このようなペプチドリンカ一に限定されるものではな い。
[0037] 「sc(Fv)2」は 2つの scFv等をリンカ一などで結合させて一本鎖ポリペプチドとした抗 体であり、 4つの可変領域を含む(Hudson et al, J. Immunol. Methods (1999) 231: 177-89) o sc(Fv)2は、全長抗体や他の低分子化抗体と比較して、特に高いァゴ-スト 活性を示す。通常、同一分子内で 2つの VH-VL対を形成するように構築し、 2つの抗 原結合部位を形成するように構築する。 sc(Fv)2は、例えば、 scFvをリンカ一で結ぶこ とによって作製できる。 sc(Fv)2は通常、以下の構造を持つ。
[可変領域 (a)]-リンカ一 (A)- [可変領域 (b)]-リンカ一 (B)- [可変領域 (c)]-リンカ一 (C)-[ 可変領域 (d)]
[0038] リンカ一としてどのようなリンカ一を用いてもよい。例えば、ペプチドリンカ一、合成化 合物リンカ一 (Protein Engineering (1996) 9(3): 299- 305参照)等が挙げられるが、好ま しくはペプチドリンカ一を用いる。ペプチドリンカ一の長さは特に限定されず、目的に 応じて当業者が適宜選択することが可能である。本発明の低分子化抗体に使用され るリンカ一については、下記 (3)-2-3.において詳述する。また、可変領域も特に限定 されず、 2つの VHと 2つの VLを有していればよい。特に好ましい例として、可変領域 (a)及び可変領域 (c)を VH、可変領域 (b)及び可変領域 (d)を VLとし、可変領域 (a)及び (d)、そして可変領域 (b)及び (c)が各々対形成して 2つの抗原結合部位を同一べプチ ド鎖上で形成するよう、リンカ一 (A)及び (C)は短ぐそしてリンカ一 (B)は十分に長い 構成とする。
[0039] 本発明の抗体の好ましい態様の一つとして、抗原結合部位を 3つ以上含む抗体を 挙げることができる。結合部位の数の上限は特に限定されないが、通常、 30以内(10 以内、 5以内など)である。本発明において好ましい抗体は、抗原結合部位を 3つ又 は 4つ含む抗体である。 1つの抗原結合部位は、通常、 1つの重鎖可変領域 (VH)と 1 つの軽鎖可変領域 (VL)の対で構成される。従って、通常、抗原結合部位を 3つ含む 抗体には、 3つの VHと 3つの VLが含まれ、抗原結合部位を 4つ含む抗体には、 4つの VHと 4つの VLが含まれる。
[0040] 本発明の抗原結合部位を 3つ含む抗体は、特にその形状により限定されず、抗原 結合部位を 3つ含む限りいかなる抗体であってもよい。好ましい例として、 scFvの 3量 体 (triabody)を挙げることができる。一方、本発明の抗原結合部位を 4つ含む抗体も 、特にその形状などにより限定されず、抗体が抗原結合部位を 4つ含む限りいかなる 抗体であってもよい。好ましい例として、 2つの sc(Fv)2の 2量体(Tandem Diabody) ( Cancer Research (2000) 60: 4336- 41)を挙げることができる。
[0041] (3)- 2-1. Triabody
scFvの 3量体 (triabody)を形成する場合、 scFv同士を非共有結合により 3量体として 形成しても、共有結合により 3量体として形成してもよい。又、非共有結合と共有結合 の両方を 1つの分子中で混在させる形で 3量体を形成して 、てもよ 、。
[0042] 2つの可変領域の結合は間にリンカ一などを介してもよいし、リンカ一を介さずに直 接 2つの可変領域を結合させてもよい。リンカ一はどのようなリンカ一を用いてもよぐ 例えば、ペプチドリンカ一や合成化合物リンカ一を用いることができる力 好ましくは ペプチドリンカ一が用いられる。ペプチドリンカ一の長さは特に限定されず、 目的に 応じて当業者が適宜選択することができる。しかしながら、ペプチドリンカ一の長さを 0 一 2アミノ酸にすることにより triabodyを形成することが可能であることが知られているこ と力ら (Journal of Immunological Methods (1999) 231: 177-89)、 triabodyを作製する 場合には可変領域間のペプチドリンカ一を 0— 2アミノ酸にすることが好ましぐ特に 0 又は 1アミノ酸とすることが好ましい。本発明において、 0アミノ酸のペプチドリンカ一と は、ペプチドリンカ一を介していなことを示し、従って、 2つの可変領域が直接結合さ れていることを示す。
[0043] 本発明の triabodyを作製する際には、 3つの scFvをリンカ一などで結合して、一本鎖 ポリペプチドとしてもよい。この場合、一本鎖ポリペプチド中に 6つの可変領域が含ま れることとなる。この場合、 scFv間のペプチドリンカ一は十分に長いペプチドリンカ一 であることが好まし 、。以上のようにして作製された抗体が triabodyである力否かは、 精製ポリペプチドをゲルろ過クロマトグラフィーなどで分離し、 3量体に相当する分子 量の位置に精製ポリペプチドのピークを検出することで判断できる。なお、本発明に お!、てゲルろ過クロマトグラフィーに用いる担体としては Superdex 200あるいは Superose 6などが挙げられる。
[0044] その他、抗原結合部位を 3つ含む抗体の例としては、例えば、 3つの可変領域を含 む一本鎖ポリペプチドの 2量体を挙げることができる。この場合、通常、一方の一本鎖 ポリペプチドには 2つの重鎖可変領域 (VH)と 1つの軽鎖可変領域 (VL)が含まれ、他 方の一本鎖ポリペプチドには 2つの VLと 1つの VHが含まれる。又、一方の一本鎖ポリ ペプチドに 3つの重鎖可変領域 (VH)を含み、他方の一本鎖ポリペプチドに 3つの軽 鎖可変領域が含まれて ヽてもよ ヽ。
[0045] (3)-2-2. Tandem Diabody
「sc(Fv)2」は 2つの scFv等をリンカ一などで結合させて一本鎖ポリペプチドとした抗 体であり、 4つの可変領域を含む。従って、 sc(Fv)2の 2量体である Tandem Diabodyは 、 8つの可変領域を含む。 Tandem Diabodyを構成する sc(Fv)2は、通常、以下の構造 を持つ。
[可変領域] -リンカ一 (1)- [可変領域] -リンカ一 (2)- [可変領域] -リンカ一 (3)- [可変領域 ]
[0046] 通常、 Tandem Diabodyに含まれる 8つの可変領域のうち 4つが VHであり、 4つが VL である。 Tandem Diabodyを構成する sc(Fv)2の可変領域は、 2分子の sc(Fv)2が組合わ された場合に、 4つの VH及び 4つの VLを有するようになればよぐ一方の分子中の可 変領域は、 0— 4個の VHにより構成され得る (残りの可変領域は VLとする)。その場合 の VHと VLの順序は特に限定されず、どのような順序で並べられていてもよい。従つ て、 Tandem Diabodyは、(1)2つの VHと 2つの VLを含む 2個の sc(Fv)2、(2)4つの VHを もつ sc(Fv)2、及び 4つの VLをもつ sc(Fv)2、または (3)3つの VHと 1つの VLを持つ sc(Fv)2、及び 3つの VLと 1つの VHを持つ sc(Fv)2により構成され得る。本発明の Tandem Diabodyには、それら全ての Tandem Diabodyが含まれる。可変領域を結ぶリ ンカーとしてはどのようなリンカ一を用いてもよい。例えば、ペプチドリンカ一、合成化 合物リンカ一等が挙げられる力 好ましくはペプチドリンカ一を用いる。ペプチドリンカ 一の長さは特に限定されず、 目的に応じて当業者が適宜選択することが可能である 。 Tandem Diabodyを形成する為には、リンカ一 (1)とリンカ一 (3)を短いペプチドリンカ 一とすることが好ましぐ例えば、 0— 10アミノ酸、好ましくは 2— 8アミノ酸、さらに好まし くは 4一 6アミノ酸 (例えば 5アミノ酸)のリンカ一とする。一方、リンカ一 (2)は長いべプチ ドリンカ一とすることが好ましぐ例えば、 10— 30アミノ酸、好ましくは 12— 20アミノ酸、 さらに好ましくは 14一 16アミノ酸 (例えば 15アミノ酸)とする。
本発明の Tandem Diabodyを作製する際には、 2つの sc(Fv)2をリンカ一などで結合し て、一本鎖 Tandem Diabodyとしてもよい。この場合、一本鎖ポリペプチドには、 8つの 可変領域が含まれる。
[0047] 以上のようにして作製された抗体力 tandem Diabodyであるか否かは、精製ポリぺプ チドをゲルろ過クロマトグラフィーなどで分離し、 2量体に相当する分子量の位置に精 製ポリペプチドのピークを検出することで判断できる。なお、本発明においてゲルろ 過クロマトグラフィーに用いる担体としては Superdex 200あるいは Superose 6などが挙 げられる。
その他、抗原結合部位を 4つ含む抗体の例としては、例えば、 scFvの 4量体などを 挙げることができる。これら全ての抗体が、本発明の抗原結合部位が 4つの抗体に含 まれる。
[0048] 以上、本発明の抗体の好ま 、態様として、抗原結合部位力 ¾つ又は 4つの抗体の 例を挙げたが、同じ原理を用いて、抗原結合部位が 5つ以上の抗体を作製することも 可能である。
[0049] (3)- 2- 3.リンカ一
本発明にお 、て、低分子化抗体のリンカ一にはどのようなリンカ一を用いてもよぐ 例えば、遺伝子工学により導入し得る任意のペプチドリンカ一、又は合成化合物リン カー(例えば、 Protein Engineering (1996) 9(3): 299- 305参照)を用いることができる。 本発明において使用できるペプチドリンカ一の長さは特に限定されず、 目的に応じ て当業者が適宜選択することが可能である。通常、 scFVのペプチドリンカ一としては 、 1一 100アミノ酸、好ましくは 5— 30アミノ酸、特に好ましくは 12— 18アミノ酸 (例えば、 15アミノ酸)が用いられる。本発明におけるペプチドリンカ一を構成するアミノ酸配列 としては、例えば、以下のような配列を挙げることができる:
¾er
uly ber
uly uly ber
bef uly uly GlyGlyGlySer
Ser'GlyGlyGly
Gly · Gly · Gly · Gly · Ser
Ser · Gly · Gly · Gly · Gly
Gly · Gly · Gly · Gly · Gly · Ser
Ser · Gly · Gly · Gly · Gly · Gly
Gly · Gly · Gly · Gly · Gly · Gly · Ser
Ser · Gly · Gly · Gly · Gly · Gly · Gly
(GlyGlyGlyGlySer)n
(Ser-GlyGlyGlyGly)n
Ala · Ala · Asp · Ala · Ala · Ala · Ala · Gly · Gly · Pro · Gly · Ser
[nは 1以上の整数である]
[0050] 本発明の抗体に用いることができる合成化学物リンカ一 (ィ匕学架橋剤)は、ペプチド の架橋に通常用いられている架橋剤、例えば、 N-ヒドロキシスクシンイミド (NHS)ジス クシンイミジルスべレート(DSS)、ビス(スルホスクシンィミジル)スべレート(BS3)、ジチ オピス(スクシンィミジルプロピオネート)(DSP)、ジチオピス(スルホスクシンィミジルプ 口ピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート) (EGS )、エチレングリコールビス(スルホスクシンィミジルスクシネート)(スルホー EGS)、ジス クシンィミジル酒石酸塩(DST)、ジスルホスクシンィミジル酒石酸塩 (スルホー DST)、 ビス [2- (スクシンイミドォキシカルボ-ルォキシ)ェチル]スルホン(BSOCOES)、ビス [ 2- (スルホスクシンイミドォキシカルボ-ルォキシ)ェチル]スルホン(スルホー
BSOCOES)などであり、これらの架橋剤は巿販されている。
[0051] 4つの抗体可変領域をリンカ一により結合する場合には、通常、 3つのリンカ一が必 要となる力 全て同じリンカ一を用いてもよいし、異なるリンカ一を用いてもよい。また 、場合によってはリンカ一を介さずに可変領域同士を連結してもよ 、。
[0052] (3)-3.抗 TRAIL受容体抗体の可変領域
本発明のキメラ抗体、ヒト化抗体及び低分子化抗体の作製にぉ ヽて利用できる抗 TRAIL受容体抗体の可変領域は、当業者に公知の方法により得ることができる。例え ば、既に公知の抗体 (例えば、 WO02/94880に記載の抗体など)の可変領域を用いる ことが可能である。又、 TRAIL受容体又はその断片を免疫原として当業者に公知の 方法で抗体を作製し、その可変領域を用いることもできる。公知の抗体、または公知 の方法により得られた抗体の可変領域の配列を解読し、遺伝子工学的手法に作製さ れた可変領域を利用することも可能である。可変領域、及び可変領域中の CDRの由 来は特に限定されず、どのような動物由来でもよい。例えば、マウス抗体、ラット抗体 、ゥサギ抗体、ラクダ抗体などの配列を用いることが可能である。
[0053] さらに可変領域 (例えば、 FR部分)のアミノ酸を改変してもよい。アミノ酸の改変には 、アミノ酸の置換、欠失、付加及び Z又は挿入が含まれ、これらのアミノ酸改変操作 は、当業者に公知の方法により行うことが可能である。具体的には、部位特異的変異 誘発法(Hashimoto— Gotoh et al, Gene (1995) 152: 271—5; Zoller and Smith, Methods Enzymol. (1983) 100: 468—500; Kramer et al., Nucleic Acids Res. (1984) 12: 9441-56; Kramer and Fritz, Methods Enzymol. (1987) 154: 350-67; Kunkel, Proc. Natl. Acad. Sci. USA (1985) 82: 488-92; Kunkel, Methods Enzymol. (1988) 85: 2763-6)などの手法を用いることができる。
[0054] 抗体においてアミノ酸残基を変異させる場合、元のアミノ酸残基の側鎖と同等な性 質を有する別のアミノ酸に変異させることが望ましい。例えばアミノ酸側鎖の性質に基 づいてアミノ酸を分類すると:疎水性アミノ酸 (A、 I、 L、 M、 F、 P、 W、 Y、 V)、親水性ァ ミノ酸 (R、 D、 N、 C、 E、 Q、 G、 H、 K、 S、 T)、脂肪族側鎖を有するアミノ酸 (G、 Aゝ V、 L 、 I、 P)、水酸基含有側鎖を有するアミノ酸 (S、 Τ、 Υ)、硫黄原子含有側鎖を有するァ ミノ酸 (C、 M)、カルボン酸及びアミド含有側鎖を有するアミノ酸 (D、 N、 E、 Q)、塩基 含有側鎖を有するアミノ酸 (R、 K、 Η)、芳香族含有側鎖を有するアミノ酸 (H、 F、 Y、 W)に分類することができる(括弧内はいずれもアミノ酸の一文字標記を表す)。このよ うな分類に基づいて、同等な性質を有する側鎖を選択することができる。あるポリぺプ チドのアミノ酸配列のうち 1又は複数個のアミノ酸残基力 欠失、付加及び Z又は他 のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチド力 元となつ たポリペプチドの生物学的活性を維持して 、ることはすでに知られて 、る (Mark et al" Proc. Natl. Acad. Sci. USA (1984) 81: 5662—6; Zoller and Smith, Nucleic Acids Res. (1982) 10: 6487—500; Wang et al, Science (1984) 224: 1431-3;
Dalbadie— McFarland et al., Proc. Natl. Acad. Sci. USA (1982) 79: 6409—13)。そこで 、本発明の抗体に適宜変異を導入することにより、該抗体と同等な結合特異性を有 する機能的に同等、または場合によっては安定性、結合親和性等が改善された抗体 を調製することができる。
[0055] 本発明者らは、一般的に、抗体の改変前と改変後ではァゴ-スト活性に差があるこ とを見出した。即ち、改変前にァゴ-スト活性を有していない抗体でも、低分子化など の改変によりァゴ-スト活性を示す場合がある。そこで、本発明の改変された抗体の 設計にあたっては、元々はァゴ-スト活性を有していないが TRAIL受容体に結合す る抗体の可変領域を用い、ァゴニスト活性を示す改変抗体を作製してもよ 、。
[0056] 本発明の好ましい態様の一つとして、以下のいずれかに記載のアミノ酸配列を有す る低分子化抗体を挙げることができる。
(1)配列番号: 2に記載のアミノ酸配列
(2)配列番号: 4に記載のアミノ酸配列
(3)配列番号: 6に記載のアミノ酸配列
(4)配列番号: 8に記載のアミノ酸配列
(1)一 (3)に記載の抗体は、好ましくは配列番号: 2、 4、あるいは 6に記載のアミノ酸 配列を有する抗体(それぞれ ScFvH2L、 ScFvHIL,および ScFvHOL)、またはその多 量体であり、より好ましくは配列番号: 2、 4、あるいは 6に記載のアミノ酸配列を有する 抗体の 3量体 (Triabody)である。
(4)に記載の抗体は、好ましくは配列番号: 8に記載のアミノ酸配列を有する抗体( PCXND3/KMTR1 Tandabにコードされる抗体)またはその多量体であり、より好ましく は配列番号: 8に記載のアミノ酸配列を有する抗体の 2量体 (Tandem Diabody)である なお、 ScFvH2Lをコードする塩基配列を配列番号: 1に、 ScFvHILをコードする塩基 配列を配列番号: 3に、 ScFvHOLをコードする塩基配列を配列番号: 5に、
PCXND3/KMTR1 Tandabをコードする塩基配列を配列番号: 7に示す。
[0057] 本発明は、また、上記配列を有する抗体と機能的に同等な抗体を包含する。このよ うな抗体には、例えば、これら抗体の変異体等が含まれる。
機能的に同等な抗体を調製するための具体的な方法として、上記抗体の可変領域 (例えば、 FR部分)のアミノ酸を改変する方法が挙げられる。アミノ酸の改変には、アミ ノ酸の置換、欠失、付加及び Z又は挿入が含まれ、これらのアミノ酸改変操作は、当 業者に公知の方法により行うことが可能である。具体的には、部位特異的変異誘発 法(Hashimoto— Gotoh et al, Gene (1995) 152: 271—5; Zoller and Smith, Methods Enzymol. (1983) 100: 468—500; Kramer et al., Nucleic Acids Res. (1984) 12:
9441-56; Kramer and Fritz, Methods Enzymol. (1987) 154: 350—67; Kunkel, Proc. Natl. Acad. Sci. USA (1985) 82: 488—92; Kunkel, Methods Enzymol. (1988) 85: 2763-6)などの手法を用いることができる。
抗体の可変領域においてアミノ酸残基を変異させる場合、元のアミノ酸残基の側鎖 と同等な性質を有する別のアミノ酸に変異させることが望ましい。例えばアミノ酸側鎖 の性質に基づいてアミノ酸を分類すると:疎水性アミノ酸 (A、 I、 L、 M、 F、 P、 W、 Y、 V )、親水性アミノ酸 (R、 D、 N、 C、 E、 Q、 G、 H、 K、 S、 T)、脂肪族側鎖を有するアミノ酸 (G、 A、 V、 L、 I、 P)、水酸基含有側鎖を有するアミノ酸 (S、 T、 Υ)、硫黄原子含有側 鎖を有するアミノ酸 (C、 M)、カルボン酸及びアミド含有側鎖を有するアミノ酸 (D、 N、 E、 Q)、塩基含有側鎖を有するアミノ酸 (R、 K、 Η)、芳香族含有側鎖を有するアミノ酸 (H、 F、 Y、 W)に分類することができる(括弧内はいずれもアミノ酸の一文字標記を表 す)。このような分類に基づいて、同等な性質を有する側鎖を選択することができる。 あるポリペプチドのアミノ酸配列のうち 1又は複数個のアミノ酸残基力 欠失、付加及 び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチド 力 元となったポリペプチドの生物学的活性を維持していることはすでに知られてい る(Mark et al., Proc. Natl. Acad. Sci. USA (1984) 81: 5662—6; Zoller and Smith, Nucleic Acids Res. (1982) 10: 6487—500; Wang et al" Science (1984) 224: 1431-3; Dalbadie— McFarland et al., Proc. Natl. Acad. Sci. USA (1982) 79: 6409—13)。そこで 、本発明の抗体に適宜変異を導入することにより、該抗体と同等な結合特異性を有 する機能的に同等、または場合によっては安定性、結合親和性等が改善された抗体 を調製することができる。 [0059] 本発明の抗体のアミノ酸配列に複数個のアミノ酸残基が付加された抗体には、これ ら抗体と他のポリペプチドとが融合された融合タンパク質が含まれる。融合タンパク質 を作製する方法は、本発明の抗体をコードする DNAと他のペプチド又はタンパク質を コードする DNAをフレームが一致するように連結してこれを発現ベクターに導入し、 宿主で発現させればよぐ当業者に公知の手法を用いることができる。本発明の抗体 との融合に付される他のペプチド又はタンパク質としては、例えば、 FLAG (Hopp et al, Bio/Technology (1988) 6: 1204- 10)、 6個の His (ヒスチジン)残基からなる 6 X His 、 10 X His,インフルエンザ凝集素(HA)、ヒト c-mycの断片、 VSV- GPの断片、 pl8HIV の断片、 T7-tag、 HSV-tag、 E-tag、 SV40T抗原の断片、 lck tag, a -tubulinの断片、 B-tag、 Protein Cの断片等の公知のペプチドを使用することができる。また、本発明 の抗体との融合に付される他のタンパク質としては、例えば、 GST (ダルタチオン- S- トランスフェラーゼ)、 HA (インフルエンザ凝集素)、ィムノグロブリン定常領域、 βーガ ラタトシダーゼ、 ΜΒΡ (マルトース結合タンパク質)等が挙げられる。市販されているこ れらペプチドまたはタンパク質をコードする DNAを、本発明の抗体をコードする DNAと 融合させ、これにより調製された融合 DNAを発現させることにより、融合タンパク質を 調製することができる。上記各配列を有する Triabody、及び Tandem Diabodyは、 Flag タグが付加されているので、この Flagタグ部分を除き、他のペプチドまたは蛋白質と 融合することも可能である。
[0060] 2.杭原結合き β位 3っ以 h含む、アポトーシス 謙走 3する杭体
本発明において、出願人は、 TRAIL受容体が in vivoにおいて、 3量体として機能し ている点に着目した。まず、一本鎖 Fv(scFv)の VH及び VL間を、 2、 1または Omerのリ ンカーとすることにより 3価の抗原結合部位を持つ Triabody、並びに、 sc(Fv)2のリンカ 一長を 5-12_5merにすることで、 4価の抗原結合部位を形成する Tandem Diabodyを 作製し、その活性を調べた。その結果、これらの低分子化抗体は受容体を発現して いる腫瘍細胞に対して、単独で顕著な細胞傷害活性を示した。 Triabodyや Tandem Diabodyが細胞膜表面上の TRAIL受容体の重合を促進することにより、 TRAIL受容体 の 3量体を介したアポトーシスシグナルの伝達が促進されたものと考えられる。この結 果から、同様に 3量体で機能し、細胞死を誘導する TNF受容体、 Fas受容体などの TNF受容体ファミリーに対しても、 Triabodyや Tandem Diabodyなどの抗原結合部位 を 3つ以上持つ低分子化抗体力 ァゴニスト的に働き、細胞死のシグナルをより効率 的に伝えるものと考えられた。
[0061] そこで、本発明は、抗原結合部位を 3つ以上含む、細胞にアポトーシスを誘起する 抗体を提供するものである。当該抗体は好ましくは、抗原結合部位を 3つ以上含み、 細胞にアポトーシスを誘起する低分子化抗体である。また、好ましくは Triabody等、抗 原結合部位を 3つ持つ抗体である。または、好ましくは、 Tandem Diabody等の抗原結 合部位を 4つ持つ抗体である。
[0062] 本発明の抗体がアポトーシスを誘起する細胞は好ましくは腫瘍細胞である。腫瘍細 胞は特に限定されず、例えば、大腸癌、肺癌、乳癌、黒色腫、結腸直腸癌、脳腫瘍、 腎細胞癌、膀胱癌、白血病、リンパ腫、 T細胞リンパ腫、多発性骨髄腫、脾臓癌、胃 癌、子宮頸癌、子宮内膜癌、卵巣癌、食道癌、肝臓癌、頭頸部扁平上皮癌、皮膚癌 、尿路癌、前立腺癌、絨毛癌、咽頭癌、喉頭癌、きょう膜腫、男性胚腫、子宮内膜過 形成、子宮内膜症、胚芽腫、線維肉腫、力ポジ肉腫、血管腫、海面状血管腫、血管 芽腫、網膜芽腫、星状細胞腫、神経線維腫、稀突起謬腫、髄芽腫、神経芽腫、神経 謬腫、横紋筋肉腫、謬芽腫、骨原性肉腫、平滑筋肉腫、甲状肉腫、ウィルムス腫瘍 等由来の細胞を挙げることができる。
[0063] 上記 1.の (3)-2.において TRAIL受容体に対する低分子化抗体について述べたが、 同様の手法により、 TNF受容体ファミリーの他の受容体、例えば TNF受容体、 Fas受 容体等に対する低分子化抗体を作成することができる。
[0064] 3.抗体をコードするポリヌクレオチド
本発明により、上記 1.及び 2.の抗体をコードするポリヌクレオチドも提供される。本発 明のポリヌクレオチドは、本発明の抗体をコードする限り、特に限定されず、複数のデ ォキシリボ核酸 (DNA)またはリボ核酸 (RNA)等の塩基または塩基対力 なる重合体で ある。天然以外の塩基を含んでいてもよい。
[0065] 本発明のポリヌクレオチドは、抗体を遺伝子工学的手法により発現させる際に使用 することができる。また、本発明の抗体と同等な機能を有する抗体をスクリーニングす る際に、プローブとして用いることもできる。即ち、本発明の抗体をコードするポリヌク レオチド、またはその一部をプローブとして用い、ハイブリダィゼーシヨン、遺伝子増 幅技術 (例えば、 PCR)等の技術により、該ポリヌクレオチドとストリンジェントな条件下 でハイブリダィズし、かつ本発明の抗体と同等の活性を有する抗体をコードする DNA を得ることができる。このような DNAも、本発明のポリヌクレオチドに含まれる。ハイブリ ダイゼーシヨン技術(Sambrook et al" Molecular Cloning 2nd ed.(1989) 9.47-9.58, Cold Spring Harbor Lab. press)は当業者によく知られた技術である。ハイブリダィゼ ーシヨンの条件としては、例えば、低ストリンジェントな条件が挙げられる。低ストリンジ ェントな条件では、ハイブリダィゼーシヨン後の洗浄を例えば、 42°C、 0.1 X SSC、 0.1 %SDSの条件、好ましくは 50°C、 0.1 X SSC、 0.1%SDSの条件で行う。より好ましいノヽ イブリダィゼーシヨンの条件としては、高ストリンジェントな条件が挙げられる。高ストリ ンジヱントな条件では例えば、 65°C、 5 X SSC及び 0.1%SDSの条件で洗浄を行う。こ れらの条件において、温度を上げる程に高い相同性を有する DNAが効率的に得ら れることが期待できる。ハイブリダィゼーシヨンのストリンジエンシーに影響する要素と しては温度、塩濃度の他にも複数の要素が考えられるが、当業者であればこれら要 素を考慮し、適当な条件を設定することで上記条件と同様のストリンジエンシーを実 現することが可能である。
[0066] これらハイブリダィゼーシヨン技術や遺伝子増幅技術により得られる DNAがコードす る、本発明の抗体と機能的に同等な抗体は、通常、本発明の抗体とアミノ酸配列に ぉ 、て高 、相同性を有する。
[0067] 4.ベクター
本発明は、さらに、上記 3.のポリヌクレオチドを含むベクターを提供する。 本発明のベクターは、本発明のポリヌクレオチドが組み込まれている限りどのような ベクターであってもよぐ特に限定されない。例えば、大腸菌を宿主とする場合には、 ベクターを大腸菌(例えば、 JM109、 DH5 a、 HB101、 XLlBlue)などで大量に増幅さ せ大量調製するために、大腸菌で増幅されるための「ori」をもち、さらに形質転換さ れた大腸菌での選抜を可能とする遺伝子 (例えば、なんらかの薬剤 (アンピシリン、テ トラサイクリン、カナマイシン、クロラムフエ-コール等)による判別を可能にする薬剤 耐性遺伝子)を有することが好ましい。このようなベクターの例としては、 M13系べクタ 一、 pUC系ベクター、 pBR322、 pBluescript、 pCR-Scriptなどが挙げられる。また、 cDNAのサブクローユング、切り出しを目的とした場合、上記ベクターの他に、例えば 、 pGEM- T、 pDIRECT、 pT7などが挙げられる。
[0068] 本発明のベクターとしては、特に、発現ベクターが有用である。例えば、大腸菌で の本発明の抗体の発現を目的とする発現ベクターの場合、ベクターの増幅を可能に する上記構成に加えて、効率よ 、抗体の発現を可能にするプロモーターを持つ必要 がある。例えば、宿主を JM109、 DH5 a、 HB101、 XLl-Blueなどの大腸菌とした場合 には、 lacZプロモーター(Ward et al, Nature (1989) 341: 544-6; FASEB J. (1992) 6: 2422- 7)、 araBプロモーター(Better et al., Science (1988) 240: 1041- 3)、及び T7プ 口モーターなどが例示される。このようなベクターとしては、上記ベクターの他に pGEX- 5X- 1 (Pharmacia製)、「QIAexpress system」(Qiagen製)、 pEGFP、または pET( この場合、宿主は T7 RNAポリメラーゼを発現している BL21が好ましい)などが挙げら れる。
[0069] また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれて!/、てもよ!/ヽ 。蛋白質分泌のためのシグナル配列としては、大腸菌のペリブラズムに産生させる場 合、 pelBシグナル配列(Lei et al., J. Bacteriol. (1987) 169: 4379)を使用すればよい 。宿主細胞へのベクターの導入は、例えば、塩ィ匕カルシウム法またはエレクトロボレ ーシヨン法を用いて行うことができる。
[0070] 本発明のベクターとしては、哺乳動物由来の発現ベクター(pcDNA3 (Invitrogen製) 、 pEGF-BOS (Nucleic Acids. Res. (1990) 18(17): 5322)、 pEF、 pCDM8等)、昆虫細 胞由来の発現ベクター(「Bac— to— BAC baculovairus expression system」(GIBCO BRL製)、 pBacPAK8等)、植物由来の発現ベクター(ρΜΗ1、 pMH2等)、動物ウィルス 由来の発現ベクター(pHSV、 pMV、 pAdexLcw等)、レトロウイルス由来の発現べクタ 一(pZIPneo等)、酵母由来の発現ベクター (「Pichia Expression KitJ (Invitrogen製)、 pNVl l、 SP-Q01等)、枯草菌由来の発現ベクター(pPL608、 pKTH50等)も使用する ことができる。
CHO細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場合には 、細胞内で発現させるために必要なプロモーターとして、例えば SV40プロモーター( Mulligan et al, Nature (1979) 277: 108)、 MMLVLTRプロモーター、 EF1 αプロモー ター(Mizushima et al., Nucleic Acids Res. (1990) 18: 5322)、 CMVプロモーターなど を持っていることが不可欠である。さらに、細胞がベクターにより形質転換されたかど うかを判定するための遺伝子 (例えば、薬剤 (ネオマイシン、 G418など)により判別で きるような薬剤耐性遺伝子)を有すればさらに好ましい。このような特性を有するベタ ターとしては、例えば、 pMAM、 pDR2、 pBK- RSV、 pBK- CMV、 pOPRSV、 pOP13が挙 げられる。
[0071] さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を 目的とする場合には、例えば、核酸合成経路を欠損した CHO細胞に、その欠損を補 ぅジヒドロ葉酸レダクターゼ (DHFR)遺伝子を有するベクター(pCHOIなど)を導入し、 DHFRの拮抗阻害を行うメトトレキセート(MTX)存在下でインキュベートすることにより ベクターを増幅させることができる。また、遺伝子の一過性の発現を目的とする場合 には、 SV40 T抗原を発現する遺伝子を染色体上に持つ COS細胞を用いて SV40の複 製起点を持つベクター (pcDなど)で形質転換する方法が挙げられる。複製開始点と しては、また、ポリオ一マウィルス、アデノウイルス、ゥシパピローマウィルス(BPV)等の 由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、 発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ (APH)遺伝子 、チミジンキナーゼ (TK)遺伝子、大腸菌キサンチングァニンホスホリボシルトランスフ エラーゼ (Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる
[0072] 5.宿主細胞及び宿主、並びにそれらを用いた抗体産牛.
本発明により、上記 3.のポリヌクレオチドまたは上記 4.のベクターを保持する宿主細 胞が提供される。ここで、宿主細胞は、特に制限されず、例えば、大腸菌や種々の動 物細胞などを挙げることができる。宿主細胞は、例えば、本発明の抗体の製造や発 現のための産生系として使用することができる。ポリペプチド製造のための産生系に は、 in vitroおよび in vivoの産生系がある。 in vitroの産生系としては、真核細胞を使 用する産生系及び原核細胞を使用する産生系が挙げられる。
[0073] 宿主細胞として使用できる真核細胞として、例えば、動物細胞、植物細胞、真菌細 胞が挙げられる。動物細胞としては、哺乳類細胞、例えば、 CH0 (J. Exp. Med. (1995) 108: 945)、 COSゝ 3T3、ミエローマ、 BHK (baby hamster kidney)、 HeLa、 Vero 等、両生類細胞、例えばアフリカッメガエル卵母細胞(Valle et al., Nature (1981) 291: 338-340)、及び昆虫細胞、例えば、 S19、 S121、 Tn5が例示される。本発明の抗 体の発現においては、 CHO- DG44、 CHO- DX11B、 COS7細胞、 BHK細胞が好適に 用いられる。動物細胞において、大量発現を目的とする場合には特に CHO細胞が 好ましい。宿主細胞へのベクターの導入は、例えば、リン酸カルシウム法、 DEAEデキ ストラン法、カチォニックリボソーム DOTAP (Boehringer Mannheim製)を用いた方法、 エレクト口ポーレーシヨン法、リポフエクシヨンなどの方法で行うことが可能である。
[0074] 植物細胞としては、例えば、ニコチアナ 'タパカム(Nicotiana tabacum)由来の細胞 が蛋白質生産系として知られており、この細胞をカルス培養する方法により本発明の 抗体を産生させることができる。真菌細胞としては、酵母、例えば、サッカロミセス( Saccharomyces)厩の糸田胞 サッカロミセス ·セレヒンェ (Saccharomyces cerevisiae)、 サッカロミセス.ボンべ(Saccharomyces pombe)等)、及び糸状菌、例えば、ァスペル ギルス (Aspergillus)属の細胞(ァスペルギルス · -ガー(Aspergillus niger)等)を用い た蛋白質発現系が公知であり、本発明の抗体産生の宿主として利用できる。
[0075] 原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、上 述の大腸菌(E. coli)に加えて、枯草菌を用いた産生系が知られており、本発明の抗 体産生に利用できる。
[0076] 本発明の宿主細胞を用いて抗体を産生する場合、本発明の抗体をコードするポリ ヌクレオチドを含む発現ベクターにより形質転換された宿主細胞の培養を行 ヽ、ポリ ヌクレオチドを発現させればよい。培養は、公知の方法に従って行うことができる。例 えば、動物細胞を宿主とした場合、培養液として、例えば、 DMEM、 MEM, RPMI1640 、 IMDMを使用することができる。その際、 FBS、牛胎児血清 (FCS)等の血清補液を 併用しても、無血清培養により細胞を培養してもよい。培養時の pHは、約 6— 8とする のが好ましい。培養は、通常、約 30— 40°Cで約 15— 200時間行い、必要に応じて培 地の交換、通気、攪拌を加える。
[0077] 一方、 in vivoでポリペプチドを産生させる系としては、例えば、動物を使用する産生 系や植物を使用する産生系が挙げられる。これらの動物又は植物に目的とするポリ ヌクレオチドを導入し、動物又は植物の体内でポリペプチドを産生させ、回収する。 本発明における「宿主」とは、これらの動物、植物を包含する。
[0078] 動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物として は、ャギ、ブタ、ヒッジ、マウス、ゥシ等を用いることができる(Vicki Glaser,
SPECTRUM Biotechnology Applications (1993))。また、哺乳類動物を用いる場合、ト ランスジ ニック動物を用いることができる。
例えば、本発明の抗体をコードするポリヌクレオチドを、ャギ j8カゼインのような乳汁 中に固有に産生されるポリペプチドをコードする遺伝子との融合遺伝子として調製す る。次いで、この融合遺伝子を含むポリヌクレオチド断片をャギの胚へ注入し、この胚 を雌のャギへ移植する。胚を受容したャギから生まれるトランスジエニックャギ又はそ の子孫が産生する乳汁から、目的の抗体を得ることができる。トランスジエニックャギ から産生される抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジェ ニックャギに投与してもよい(Ebert et al., Bio/Technology (1994) 12: 699-702)。
[0079] また、本発明の抗体を産生させる昆虫としては、例えばカイコを用いることができる。
カイコを用いる場合、目的の抗体をコードするポリヌクレオチドを挿入したバキュロウィ ルスをカイコに感染させることにより、このカイコの体液から目的の抗体を得ることがで きる(Susumu et al" Nature (1985) 315: 592—4)。
[0080] さらに、植物を本発明の抗体産生に使用する場合、例えばタバコを用いることがで きる。タバコを用いる場合、目的とする抗体をコードするポリヌクレオチドを植物発現 用ベクター、例えば pMON 530に挿入し、このベクターをァグロバタテリゥム'ッメファ シエンス(Agrobacterium tumefaciens)のようなバクテリアに導入する。このバクテリア をタバコ、例えば、ニコチアナ'タパカム(Nicotiana tabacum)に感染させ、本タバコの 葉より所望の抗体を得ることができる(Ma et al., Eur. J. Immunol. (1994) 24: 131-8)
[0081] このようにして得られた抗体は、宿主細胞内または細胞外 (培地、乳汁など)から単 離し、実質的に純粋で均一な抗体として精製することができる。抗体の分離、精製は 、通常のポリペプチドの精製で使用されている分離、精製方法を使用すればよぐ何 ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過 、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、 SDS-ポリアクリルアミドゲル電気泳 動、等電点電気泳動法、透析、再結晶等を適宜選択、組合わせて抗体を分離、精製 することができる。
クロマトグラフィーとしては、例えばァフィユティークロマトグラフィー、イオン交換クロ マトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着ク 口マトグラフィ一等が挙げられる(Strategies for Protein Purification and
Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al.(1996) Cold Spring Harbor Laboratory Press)。これらのクロマトグラフィーは、液相クロマトグ ラフィー、例えば HPLC、 FPLC等の液相クロマトグラフィーを用いて行うことができる。 ァフィユティークロマトグラフィーに用いるカラムとしては、プロテイン Aカラム、プロティ ン Gカラムが挙げられる。例えば、プロテイン Aを用いたカラムとして、 Hyper D, POROS, Sepharose F. F. (Pharmacia製)等が挙げられる。
[0082] 必要に応じ、抗体の精製前又は精製後に適当な蛋白質修飾酵素を作用させること により、任意に修飾を加えたり部分的にペプチドを除去することもできる。蛋白質修飾 酵素としては、例えば、トリプシン、キモトリブシン、リシルエンドべプチダーゼ、プロテ インキナーゼ、ダルコシダーゼなどが用いられる。
[0083] 本発明で開示されて!、る抗体 (例えば、低分子化抗体や抗原結合部位を 3つ以上 有する抗体、など)が認識する抗原は、 TRAIL受容体のみならず、他の 3量体以上の 受容体であってもよい。従って、本発明には、抗 TRAIL受容体抗体のみならず、他の 3量体以上の受容体に対する抗体も含まれる。
[0084] 他の 3量体以上の受容体は特に限定されず、いかなる受容体であってもよいが、例 えば TNF Familyの受容体を挙げることができる。 TNF Familyの受容体としては、 p55-R, CD 120a, TNF— R— I p55, TNF— R, TNFR1, TNFAR, TNF— R55, p55TNFR, TNFR60,CD120b, p75, TNF— R, TNF— R— Π, TNFR80, TNFR2.TNF-R75, TNFBR, p75TNFR,TNFRSF3, TNFR2-RP, CD18, TNFR-RP, TNFCR, TNF— R— ΠΙ,ΟΧ40, ACT35, TXGPlL,p50, Bp50, CD40.FAS, CD95, APO— 1, APTl,DcR3, M68, TR6, HGNC: 15888, NHL, DKFZP434C013, KIAA1088, bK3184A7.3, C20orf41,Tp55, S152, CD27,Ki"l, D1S166E, CD30,4— 1BB, CD137, ILA,DR4, Apo2, TRAILR-1 ,DR5, KILLER, TRICK2A, TRAIL— R2, TRICKB,DcRl, TRAILR3, LIT, TRID,DcR2, TRUNDD, TRAILR4,RANK,OPG, OCIF, TR1,DR3, TRAMP, WSL— 1, LARD, WSL-LR,DDR3, TR3, AP〇— 3,DR3L,TACI,BAFFR,HVEM, ATAR, TR2, LIGHTR, HVEA,TNFRSF16, p75NTR,BCMA, TNFRSF13,AITR, GITR, TAJ— alpha, TROY, TAJ, TRADE,FLJ14993, RELT,DR6,SOBa, Tnfrh2, 2810028K06Rik,mSOB, Tnfrhl などを挙げることができる。(これら TNF Familyの受容体は、 HUGO Gene
Nomanclature Committee【こお!/、て【ま、 tumor necrosis ractor receptor superfamily, member 1A、 tumor necrosis factor receptor superfamily, member IB、 lymphotoxin beta receptor (TNFR superfamily, member 3)、 tumor necrosis factor receptor superfamily, member 4、 tumor necrosis factor receptor superfamily, member 5、 tumor necrosis factor receptor superfamily, member 6、 tumor necrosis factor receptor superfamily, member 6b, decoy、 tumor necrosis factor receptor superfamily, member 7、 tumor necrosis factor receptor superfamily, member 8、 tumor necrosis factor receptor superfamily, member 9、 tumor necrosis factor receptor superfamily, member 10a、 tumor necrosis factor receptor superfamily, member 10b、 tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain、 tumor necrosis factor receptor superfamily, member lOd, decoy with truncated death domain、 tumor necrosis factor receptor superfamily, member 11a, activator of NFKB、 tumor necrosis factor receptor superfamily, member lib (osteoprotegerin)、 tumor necrosis factor receptor superfamily, member 12— like、 tumor necrosis factor receptor superfamily, member 13B、 tumor necrosis factor receptor superfamily, member 13C、 tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry mediator)、 nerve growth factor receptor (TNFR superfamily, member 16)、 tumor necrosis factor receptor superfamily, member 17、 tumor necrosis factor receptor superfamily, member 18、 tumor necrosis factor receptor superfamily, member 19、 tumor necrosis factor receptor superfamily, member 19— like、 tumor necrosis factor receptor superfamily, member 21、 tumor necrosis factor receptor superfamily, member 22、 tumor necrosis factor receptor superfamily, member 23、等の名称で認証されている。 )
[0085] 従って本発明は、 TNF Family受容体等の、 3量体以上の受容体に対する抗体を含 む。 TRAIL受容体以外の 3量体以上の受容体に対する抗体についても、抗 TRAIL受 容体抗体と同様に、低分子化抗体や 3つ以上の抗原結合部位を有する抗体 (例えば 、 Triabodyや Tandem Diabodyなど)であることが好ましい。
これらの受容体は 3量体以上であれば特に限定されず、例えば、 4量体、 5量体、 6 量体、 7量体などを挙げることができる力 好ましくは 3量体又は 4量体であり、特に好 ましくは 3量体である。
[0086] 6. 医蓉組成物
本発明は、上記 1.または 2.に記載の抗体を含む医薬組成物を提供する。抗体が、 細胞にアポトーシスを誘起する抗体である場合には (例えば、抗 TRAIL受容体抗体 である場合には)、該抗体を含有する医薬組成物は、特に抗癌剤として有用である。 例えば、大腸癌、肺癌、乳癌、黒色腫、結腸直腸癌、脳腫瘍、腎細胞癌、膀胱癌、白 血病、リンパ腫、 T細胞リンパ腫、多発性骨髄腫、脾臓癌、胃癌、子宮頸癌、子宮内 膜癌、卵巣癌、食道癌、肝臓癌、頭頸部扁平上皮癌、皮膚癌、尿路癌、前立腺癌、 絨毛癌、咽頭癌、喉頭癌、きょう膜腫、男性胚腫、子宮内膜過形成、子宮内膜症、胚 芽腫、線維肉腫、力ポジ肉腫、血管腫、海面状血管腫、血管芽腫、網膜芽腫、星状 細胞腫、神経線維腫、稀突起謬腫、髄芽腫、神経芽腫、神経謬腫、横紋筋肉腫、謬 芽腫、骨原性肉腫、平滑筋肉腫、甲状肉腫、ウィルムス腫瘍等において、腫瘍細胞 のアポトーシスを誘起することにより抗癌活性を示すことが期待される。
[0087] 又、 TNF Family受容体は、 Crohn病、 Behcet病などの炎症性疾患(TNFR)や慢性 関節リウマチ (TNFR)、全身性エリトマト一デス (BAFFR)などの自己免疫疾患等に関 与していることが知られているので、例えば、抗体が抗 TNF Family受容体抗体である 場合には、該抗体を含有する医薬組成物は、炎症性疾患や自己免疫疾患等の治療 •予防に有用である。
[0088] 本発明の抗体を医薬組成物に用いる場合には、当業者に公知の方法で製剤化す ることが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌 性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上 許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、 懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、べヒクル、防腐剤、結合剤などと適 宜組合わせて、一般に認められた製薬実施に要求される単位用量形態で混和する ことによって製剤化することが考えられる。これら製剤における有効成分量は、指示さ れた範囲の適当な容量が得られるように設定する。
[0089] 注射のための無菌組成物は注射用蒸留水のようなべヒクルを用いて通常の製剤実 施に従って処方することができる。
注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬 (例えば D-ソルビトール、 D-マンノース、 D-マン-トール、塩化ナトリウム)を含む等張液が挙 げられる。適当な溶解補助剤、例えばアルコール (エタノール等)、ポリアルコール( プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソル ペート 80 (TM)、 HCO- 50等)を併用してもよい。
油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル及 び Zまたはべンジルアルコールを併用してもよい。また、緩衝剤(例えば、リン酸塩緩 衝液及び酢酸ナトリウム緩衝液)、無痛化剤 (例えば、塩酸プロ力イン)、安定剤 (例え ば、ベンジルアルコール及びフエノール)、酸化防止剤と配合してもよい。調製された 注射液は通常、適当なアンプルに充填する。
[0090] 本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、注射剤 型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物とすることができる。例えば 、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に 投与することができる。
投与方法は、患者の年齢、症状により適宜選択することができる。抗体または抗体 をコードするポリヌクレオチドを含有する医薬糸且成物の投与量は、例えば、一回につ き体重 lkgあたり O.OOOlmgから lOOOmgの範囲に設定することが可能である。または、 例えば、患者あたり 0.001— lOOOOOmgの投与量とすることもできる力 本発明はこれら の数値に必ずしも制限されるものではない。投与量及び投与方法は、患者の体重、 年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投 与量及び投与方法を設定することが可能である。
[0091] また、必要に応じ本発明の抗体を、その他の医薬成分と組合わせて製剤化すること もできる。例えば、複数種の TRAIL受容体に対する抗体を組合わせて医薬組成物と することができる。また、化学療法、及び Zまたは放射線療法を組合わせて行うことに より抗腫瘍活性が増幅される抗 TRAIL- R2抗体も知られて!/、ることから(Buchsbaum et al, Clin. Cancer Res.(2003) 9: 3731-41)、本発明の抗体を含む医薬組成物による 治療も、化学療法及び放射線療法と組合わせて行ってもよい。化学療法に使用され る医薬成分としては、例えば、塩酸ドキソルビシン製剤、パクリタクセル等が挙げられ る。本発明の抗体と組合わせて使用される医薬成分は、抗体及び医薬成分の活性 が阻害されず、同じ投与経路により投与されるものであれば組合わせて 1つの医薬製 剤とすることも可能である。
さらに本発明は、本発明の抗体を用いることにより、細胞の細胞死を誘導する方法 に関する。具体的には、本発明の抗体を細胞に接触させることにより、該細胞に細胞 死を誘導する方法に関する。
なお本明細書において引用された全ての先行技術文献は、参照として本明細書に 組み入れられる。
実施例
[0092] 以下、本発明を実施例により詳細に説明するが、本発明はこれら実施例により制限 されるものではない。
1. Diabody、 Triabody、 Tandem diabodyおよび Whole IgG発現ベクターの構築
1-1. Diabody発現ベクターの構築
抗体の細胞障害性活性を評価する Diabody抗体として、特許 (WO 02/094880 A1) に記載の塩基配列に基づ 、て可変領域配列を決定した KMTR1抗体を作製した。 重鎖可変領域としては、 WO 02/094880 A1中、配列番号: 32の塩基配列 81番目の アデニン (A)から 497番目のアデニン (A)までの配列を採用した。これには重鎖シグ ナル配列が含まれる。軽鎖可変領域としては、 WO 02/094880 A1中、配列番号: 34 の塩基配列 123番目のグァニン(G)から 443番目のアデニン (A)までの配列を採用し た。これは、シグナル配列を含まない成熟体の配列である。 [0093] 抗体断片をコードする遺伝子断片は、以下の様にデザインした。発現ベクター
PCXND3へ挿入するために、該遺伝子断片の 5,末端および 3,末端はそれぞれ制限 酵素 EcoRIおよび Notl認識配列が付カ卩されて!/、る。 EcoRI認識配列に続 、て Kozakコ ンセンサス配列 CCACC、続いてシグナル配列を含む重鎖可変領域配列(Heavy Chain Variable Region; VH)、さらに Gly- Gly- Gly- Gly- Ser (配列番号: 10)力らなる 5 merのリンカ一配列が付カ卩されている。このリンカ一をコードする DNA配列は 5' - GGT GGA GGC GGA TCG -3' (配列番号: 9)である。これに続いてシグナル配列を含ま ない軽鎖可変領域配列(Light Chain Variable Region; VL)が連結し、さらにェピトー プタグ Flag (Asp- Tyr- Lys-Asp-Asp-Asp-Asp- LysZ配列番号: 12)の配列が付カロさ れている。 Flagをコードする塩基配列は 5' - GAC TAC AAG GAT GAC GAC GAT AAG -3' (配列番号: 11)である。そしてストップコドンを 2回連結し、最後に Notl認識 配列が付加されている。デザインされた Diabodyをコードする塩基配列を配列番号: 1 3に示す。
[0094] この Diabody全長をコードする塩基配列を作成するために合計 12本の合成オリゴ
DNAを設計した。これらはセンス配列とアンチセンス配列力 なり、長さが 79塩基から 103塩基にわたる。またアセンブリングによる連結に必要な互いに相補的な配列を含 む。この工程を模式的に表したものを図 4および 5に示す。各合成オリゴ DNAの塩基 配列を配列番号: 14から配列番号: 25に示す。これら配列番号は以下の反応で用 V、るオリゴ DNAの名称と以下のように対応する:
配列番号: 14 ; Sl、
配列番号: 15 ; AS1、
配列番号: 16 ; S2、
配列番号: 17 ; AS2、
配列番号: 18 ; S3、
配列番号: 19 ; AS3、
配列番号: 20 ; S4、
配列番号: 21 ; AS4、
配列番号: 22 ; S5、 配列番号: 23 ;AS5、
配列番号: 24 ; S6、および
配列番号: 25 ;AS6。
これらの合成オリゴ DNAにつ 、て、まず、 3段階力 なるアセンブリングを行った。ァ センブリングの条件は以下のとおりである。第 1段階アセンブリングは次の 6本のチュ ーブで反応を行った:
1)チューブ A:合成 DNA S1および AS1、
2)チューブ B :合成 DNA S2および AS2、
3)チューブ C :合成 DNA S3および AS3、
4)チューブ D :合成 DNA S4および AS4、
5)チューブ E:合成 DNA S5および AS5、並びに
6)チューブ F:合成 DNA S6および AS6。
各チューブに、各合成 DNAは 40 pmolずつ添カ卩し、それぞれに dATP、 dGTP、 dTTP 、 dCTP各々を 250 μ Μ含む dNTP mix, l X TaKaRa pyrobset™ DNA Polymeraseバッ ファー、および 1.25ユニットの TaKaRa pyrobset™ DNA Polymeraseを含む 25 μ Lの反 応溶液を調製した。各チューブをサーマルサイクラ一 Gene Amp PCR System 2400 ( PERKIN ELMER) (以下のすべての反応においてこのサーマルサイクラ一を使用)に セットした。 94°Cにて 1分の変性の後、 94°C、 30秒; 72°C、 30秒力 なるサイクルを 5サ イタル行った。第 2段階アセンブリングはチューブを 4本準備した:
1)チューブ 1:チューブ Aおよび Bの反応産物、
2)チューブ 2:チューブ Bおよび Cの反応産物、
3)チューブ 3:チューブ Dおよび Eの反応産物、並びに
4)チューブ 4:チューブ Eおよび Fの反応産物。
各チューブにおいて、各反応産物を 10 Lずつ混合し、サーマルサイクラ一で 94 °Cにて 1分間の変性を行った後、 94°C、 30秒; 72°C、 30秒力 なるサイクルを 5サイク ル行った。第 3段階アセンブリングはチューブを 2本準備した:
1)チューブ 1+2 :チューブ 1および 2の反応産物、並びに
2)チューブ 3+4:チューブ 3および 4の反応産物。 各チューブにおいて各反応産物を 20 Lずつ混合し、サーマルサイクラ一で 94°C にて 1分間の変性を行った後、 94°C、 30秒; 72°C、 30秒力 なるサイクルを 5サイクル 行った。
[0096] 上記 3段階のアセンブリングに続いて PCRを行った。この PCRではチューブを 2本準 備した。 1本目のチューブ (チューブ H)は、チューブ 1+2の反応産物を 1 μ L、各 40 pmolの外部プライマー KMTRl HI (配列番号: 26)および KMTRl H2 (配列番号: 27 )、 dATP、 dGTP、 dTTP、 dCTP各々を 250 μ Μ含む dNTP mix, I X TaKaRa pyrobset™ DNA Polymeraseバッファー、並びに 2.5ユニットの TaKaRa pyrobset™ DNA
Polymeraseを含む 50 μ Lの反応溶液を含む。もう一方のチューブ (チューブ L)は、チュ ーブ 3+4の反応産物を 1 μ L、各 40 pmolの外部プライマー KMTRl L1 (配列番号: 28) および KMTRl L2 (配列番号: 29)、 dATP、 dGTP、 dTTP、 dCTP各々を 250 μ Μ含む dNTP mix, I X TaKaRa pyrobset™ DNA Polymeraseバッファー、並びに 2.5ユニットの TaKaRa pyrobset™ DNA Polymeraseを含む 50 μ Lの反応溶液を含む。チューブ Hお よび Lをサーマルサイクラ一で 94°Cにて 1分間の変性に付した後、 94°C、 30秒; 72°C、 30秒カゝらなるサイクルを 30サイクル行った。
[0097] 上記 PCRで得た産物は、さらに、それぞれ以下のようにアセンブリングおよび PCRに よる増幅を行った。まず、 1本のチューブ Kにおいてチューブ Hおよび Lで得た産物を 各 2.5 μ Lずつ添加し、 dATP、 dGTP、 dTTP、 dCTP各々を 250 μ Μ含む dNTP mix, 1 X TaKaRa pyrobset™ DNA Polymeraseバッファー、および 2.5ユニットの TaKaRa pyrobset™ DNA Polymeraseを含む 50 μ Lの反応溶液を調製した。これをサーマルサ イクラ一で 94°Cにて 1分の変性の後、 94°C、 30秒; 72°C、 30秒力もなるサイクルを 5サイ クル行った。次にチューブ K-2中に、チューブ Kで得た反応産物 1 μ Lに 40 pmolずつ の外部プライマー KMTRl HI (配列番号: 26)および KMTRl L2 (配列番号: 29)、 dATP、 dGTP、 dTTP、 dCTP各々を 250 μ Μ含む dNTP mix, I X TaKaRa pyrobset™
DNA Polymeraseバッファー、並びに 5ユニットの TaKaRa pyrobset DNA Polymerase を含む 50 Lの反応溶液を調製した。これをサーマルサイクラ一で 94°Cにて 1分の変 性の後、 94°C、 30秒; 72°C、 60秒力 なるサイクルを 30サイクル行った。反応産物を 1.2%ァガロースゲル電気泳動で分離し、 目的のサイズ 800 bpの断片をゲルから切り 出し、 QIAquick Gel Extraction Kit (QIAGEN)で精製した。次に断片を制限酵素 EcoRIおよび Notlで消化後、 QIAquick Nucleotide Removal Kit (QIAGEN)で精製した 。こうして得た断片を予め制限酵素 EcoRIおよび Notlで開裂した発現ベクター
PCXND3に挿入し、塩基配列を決定した。 目的の配列をもつプラスミドを
pCXND3/KMTRl#33と命名した。
[0098] 1-2. Triabody発現ベクターの構築
scFvの構造において、リンカ一の長さを適切にデザインすれば、 scFvは 3量体を形 成し、これ力 ^価の抗原結合部位を形成する Triabodyとして機能しうることが文献的に 報告されている(J. Immunol. Methods (1999) 231: 177-89)。これを参考に、ここでは リンカ一アミノ酸 Glyの個数を 2、 1または 0個の 3種類で構築し、各リンカ一を持つ Triabodyを評価した。各 Triabodyを構成する scFvを ScFvH2L、 ScFvHlL、および ScFvHOLと命名した。各 Triabodyを製造するための発現ベクターを以下のように構築 した。
[0099] 1-2-1. ScFvH2Lの構築
Diabody発現ベクター pCXND3/KMTRl#33のリンカ一部分(Gly- Gly- Gly- Gly- Ser Z配列番号: 10)を含む領域を挟むように該ベクターにハイブリダィズし、かつこれら のプライマーを用いて増幅された断片中のリンカ一が Gly-Glyの 2 merになるようなプ ライマー ScFv-2S (配列番号: 30)および ScFv-2A (配列番号:31)を設計した。設計 に際しては、 pCXND3/KMTRl#33を铸型として、 KMTR1 HI (配列番号: 26)と ScFv-2Aとの組合わせ、及び、 ScFv-2Sと KMTR1 L2 (配列番号: 29)とでそれぞれ PCRを行って得られる 2つの断片力 互いの相補性によってアセンブルできるよう 18 塩基の重なりを互いに持たせるようなデザインとした。
[0100] チューブ 2-1では、各 50 pmolのプライマー KMTR1 HIおよび ScFv2Aを次の反応溶 液(以下 1-2.、 1-3-2.および 1-4-2.の項目では PCR反応溶液と呼ぶ)に添加した:铸 型として 100 ngの pCXND3/KMTRl#33、 dATP、 dGTP、 dTTP、 dCTP各々を 250 μ Μ 含む dNTP mix, l X TaKaRa pyrobset™ DNA Polymeraseバッファー、および 5ユニット の TaKaRa pyrobset™ DNA Polymeraseを含む最終容量 50 μ Lの反応溶液。この PCR 反応溶液を含むチューブ 2-1をサーマルサイクラ一で 94°Cにて 1分の変性した後、 94 °C、 30秒; 72°C、 60秒力 なるサイクルを 30サイクル行った。反応産物を 1.2%ァガロー スゲル電気泳動で分離し、 目的のサイズ 400 bpの断片をゲルから切り出し、 QlAquick Gel Extraction Kit (QIAGEN)で精製した。
[0101] チューブ 2-2では各 50 pmolのプライマー ScFv2Sおよび KMTR1 L2を PCR反応溶液 に添加し、総量 50 Lとなるよう調製した。チューブ 2-1と同様にして、チューブ 2-2の 反応溶液についても PCRを行い、 目的サイズ 400 bpの断片を精製した。
[0102] チューブ 2-1およびチューブ 2-2のそれぞれの反応産物から得た増幅 DNA断片は 以下の手順によりアセンブルおよび増幅を行った。
チューブ 2-1およびチューブ 2-2から得た DNA断片を 1 μ Lずつ以下の反応溶液 (以 下 1-2.の項目中、アセンブル溶液と呼ぶ)に添カ卩した: dATP、 dGTP、 dTTP、 dCTP各 々を 250 μ Μ含む dNTP mix, l X TaKaRa pyrobset™ DNA Polymeraseバッファー、お よび 5ユニットの TaKaRa pyrobset™ DNA Polymeraseを含む最終容量 50 μ Lの反応 溶液。この溶液を含むチューブ 2をサーマルサイクラ一で 94°Cにて 1分変性した後、 94°C、 30秒; 72°C、 60秒力 なるサイクルを 5サイクル行いアセンブルした。さらに反応 溶液に、各 0.5 μ Lの 100 μ Μの KMTR1 HIおよび KMTR1 L2を添加し、 94。Cで 1分の 変性した後、 94°C、 60秒; 72°C、 60秒カゝらなるサイクルを 30サイクル行い増幅を行った 。反応産物は 1.2%ァガロースゲル電気泳動で分離し、 目的のサイズ 800 bpの断片を ゲル力ら切り出し、 QlAquick Gel Extraction Kit (QIAGEN)で精製した。精製した断 片は制限酵素 EcoRIおよび Notlで消化し、予め制限酵素 EcoRIおよび Notlで開裂し た発現ベクター PCXND3に挿入し、断片の塩基配列を決定した。 目的の配列をもつ プラスミドを pCXND3/KMTRlScFv2と命名した。
[0103] 1-2-2. ScFvHILの構築
プライマー ScFv-lS (配列番号: 32)および ScFv-lA (配列番号: 33)を、 Diabody発 現ベクター pCXND3/KMTRl#33のリンカ一部分(Gly- Gly- Gly- Gly- SerZ配列番号: 10)を含む領域を挟むようにハイブリダィズし、かつこれらのプライマーを用いて増幅 された断片のリンカ一部分力 SGlyとなるよう設計した。 pCXND3/KMTRl#33を铸型とし て、 KMTR1 HI (配列番号: 26)と ScFv-lA、及び ScFv-lSと KMTR1 L2 (配列番号: 2 9)の 2組のプライマーの組合わせそれぞれで PCRを行って得られる断片同士力 互 いの相補性によるアセンブルを可能にする 18塩基の重なりを持つように、プライマー をデザインした。
[0104] チューブ 1-1では、各 50 pmolのプライマー KMTRl HIおよび ScFvlAを PCR反応溶 液に添カ卩し、サーマルサイクラ一で 94°Cにて 1分変性させた後、 94°C、 30秒; 72°C、 60 秒カゝらなるサイクルを 30サイクル行った。反応産物は 1.2%ァガロースゲル電気泳動で 分離し、 目的のサイズ 400 bpの断片をゲルから切り出し、 QIAquick Gel Extraction Kit (QIAGEN)で精製した。
[0105] チューブ 1-2では、各 50 pmolのプライマー ScFvlSおよび KMTRl L2を PCR反応溶 液に添加し、総量 50 Lとなるよう調製した。チューブ 1-1と同様に、チューブ 1-2につ いても PCRを行い、 目的サイズ 400 bpの断片を精製した。
[0106] チューブ 1-1およびチューブ 1-2のそれぞれの反応産物から得た増幅 DNA断片を 次のようにアセンブルおよび増幅した:チューブ 1-1およびチューブ 1-2から得た DNA 断片を 1 μ Lずつアセンブル溶液に添加した。この混合反応溶液を含むチューブ 1を サーマルサイクラ一で 94°Cにて 1分間の変性に付した後、 94°C、 30秒; 72°C、 60秒か らなるサイクルを 5サイクル行いアセンブルした。このチューブに、さらに各 0.5 μしの 100 μ MOKMTR1 HIおよび KMTRl L2を添加し、 94°C、 1分間の変性を行い、続い て 94°C、 60秒; 72°C、 60秒からなるサイクルを 30サイクル行い増幅を行った。反応産 物は 1.2%ァガロースゲル電気泳動で分離し、 目的のサイズ 800 bpの断片をゲルから 切り出し、 QIAquick Gel Extraction Kit (QIAGEN)で精製した。精製した断片を制限 酵素 EcoRIおよび Notlで消化し、予め制限酵素 EcoRIおよび Notlで開裂した発現べク ター PCXND3に挿入し、断片の塩基配列を決定した。 目的の配列をもつプラスミドを pCXND3/KMTRlScFvlと命名した。
[0107] 1-2-3. ScFvHOLの構築
プライマー ScFv-0S (配列番号: 34)および ScFv-0A (配列番号: 35)を、 Diabody発 現ベクター pCXND3/KMTRl#33のリンカ一部分(Gly- Gly- Gly- Gly- SerZ配列番号: 10)を含む領域を挟むようにハイブリダィズし、かつこれらのプライマーを用いて増幅 された断片にはリンカ一が含まれないよう設計した。 pCXND3/KMTRl#33を铸型とし て、 KMTRl HI (配列番号: 26)と ScFv-0、及び ScFv-OSと KMTRl L2 (配列番号: 29 )との各プライマーの組合わせで PCRを行った場合に得られる 2つの断片同士力 互 いの相補性によってアセンブルできるような 18塩基の重なりをそれぞれ持つように、 各プライマーをデザインした。
[0108] チューブ 0-1では、各 50 pmolのプライマー KMTRl HIおよび ScFvOAを PCR反応溶 液に添カ卩し、サーマルサイクラ一で 94°C、 1分の変性を行った後、 94°C、 30秒; 72°C、
60秒からなるサイクルを 30サイクル行った。反応産物は 1.2%ァガロースゲル電気泳動 で分離し、 目的のサイズ 400 bpの断片をゲルから切り出し、 QlAquick Gel Extraction
Kit (QIAGEN)で精製した。
[0109] チューブ 0-2では、各 50 pmolのプライマー ScFvOSおよび KMTRl L2を PCR反応溶 液に添加し、総量 50 Lとなるよう調製した。チューブ 0-1と同様に、チューブ 0-2につ いても PCRを行い、 目的サイズ 400 bpの断片を精製した。
[0110] チューブ 0-1およびチューブ 0-2のそれぞれの反応産物から得た増幅 DNA断片を 次のようにアセンブルおよび増幅した:チューブ 0中のアセンブル溶液に、チューブ
0- 1およびチューブ 0-2から得た DNA断片を 1 μ Lずつ添カ卩した。この混合反応溶液 をサーマルサイクラ一で 94°Cにて 1分変性させた後、 94°C、 30秒; 72°C、 60秒力 なる サイクルを 5サイクル行いアセンブルを行った。これに 100 Mの KMTRl HIおよび KMTRl L2を 0.5 μ Lずつ添加し、 94°Cで 1分の変性した後、 94°C、 60秒; 72°C、 60秒 力 なるサイクルを 30サイクル行!、増幅を行った。反応産物は 1.2%ァガロースゲル電 気泳動で分離し、 目的のサイズ 800 bpの断片をゲルから切り出し、 QlAquick Gel Extraction Kit (QIAGEN)で精製した。精製した断片を制限酵素 EcoRIおよび Notlで 消化し、予め制限酵素 EcoRIおよび Notlで開裂した発現ベクター pCXND3に挿入し、 断片の塩基配列を決定した。 目的の配列をもつプラスミドを pCXND3/KMTRlScFvO と命名した。
[0111] 1-3. Tandem Diaboody発現ベクターの構築
1- 3-1. Tandem Diabodyのデザイン
重鎖可変領域 (VH)と軽鎖可変領域 (VL)とを 2つずつ VH-VL-VH-VLの順でタンデ ムに連結した sc(Fv)2において、その可変領域間のリンカ一を適切にデザインすれば タンパクとして発現させた場合、 2つの sc(Fv)2分子の間で組みになった VH-VLが互 いに会合し、合計 4つの抗原結合部位を持つ Tandem Diabodyを形成できることが報 告されている(Cancer Research (2000) 60: 4336-41)。
ここでは、 sc(Fv)2の可変領域間の 3つのリンカ一が、 5 mer、 12 mer及び 5 merの順 に構成される sc(Fv)2をデザインした。具体的には、 12 merのリンカ一配列として、上 記報告に記載の SL配列(Arg- Ala- Asp- Ala- Ala- Ala- Ala- Gly- Gly- Pro- Gly- SerZ配 列番号: 36)を採用し、 5 merのリンカ一として Gly-Gly-Gly-Gly-Ser (配列番号: 10) を採用した。構築したベクターにコードされるアミノ酸配列はァミノ末端力 順に (VH シグナル配列)-(VH) - (5 merリンカ一)-(VL) - (12 merリンカ一)-(VH) - (5 merリン カー) - (VL) - (Flagタグ) - (終止コドン)である。
[0112] このような sc(Fv)2をコードする DNA断片を得るために、 1-1.で作製した Diabody発現 ベクター pCXND3/KMTRl#33を铸型とした PCRを行った。 PCRにより、(VHシグナル 配列)- (VH) - (5 merリンカ一)- (VL) - (12 merリンカ一の一部)をコードする DNA断 片フラグメント 1、及び、(12 merリンカ一の一部)- (VH) - (5 merリンカ一)- (VL) - ( Flagタグ) - (終止コドン)をコードする DNA断片フラグメント 2を得た。これら 2つのフラグ メントを 12 merのリンカ一内に存在する Smal制限酵素認識配列を利用して連結するこ とにより sc(Fv)2をコードする DNA断片を構築した。
[0113] 1-3-2. Tandem Diabodyの構築
プライマー KMTRltanA (配列番号: 37)は、 Diabody発現ベクター
pCXND3/KMTRl#33の VHの末端にハイブリダィズする配列に続く Smal認識配列を 含む 12 merのリンカ一配列をコードする配列からなるアンチセンス配列を持つ。プラ イマ一 KMTRltanS (配列番号: 38)は Smal認識配列を含む 12 merのリンカ一配列を コードする配列に続く Diabody発現ベクター pCXND3/KMTRl#33の VLの末端にハイ ブリダィズする配列からなるセンス配列を持つ。これらのプライマーを用いてフラグメ ント 1および 2を増幅した。
[0114] チューブ #1では、各 50 pmolのプライマー KMTR1 HI (配列番号: 26)および
KMTRltanAを、 pCXND3/KMTRl#33を铸型として含む PCR反応溶液(1-2.に記載) に添カ卩し、サーマルサイクラ一で 94°Cにて 1分の変性、 94°C、 30秒; 72°C、 60秒からな るサイクルを 30サイクル行った。反応産物は 1%ァガロースゲル電気泳動で分離し、 目 的のサイズ 800 bpの断片をゲルから切り出し、 QIAquick Gel Extraction Kit (QIAGEN )で精製した。これを制限酵素 EcoRIおよび Smalにより消化し、予め制限酵素 EcoRIお よび Smalで開裂したベクター pBluescript(R)II (TOYOBO)に挿入し、断片の塩基配列 を決定した。 目的の配列をもつプラスミドを pBS/KMTRltanFrlと命名した。
[0115] チューブ #2では、各 50 pmolのプライマー KMTR1 L2 (配列番号: 29)および
KMTRltanSを pCXND3/KMTRl#33を铸型として含む PCR反応溶液(1-2.に記載)に 添加し、サーマルサイクラ一で 94°Cにて 1分の変性、 94°C、 30秒; 72°C、 60秒からなる サイクルを 30サイクル行った。反応産物は 1%ァガロースゲル電気泳動で分離し、 目的 のサイズ 800 bpの断片をゲルから切り出し、 QIAquick Gel Extraction Kit (QIAGEN) で精製した。これを制限酵素 Smalおよび Notlにより消化し、予め制限酵素 Smalおよび Notlで開裂したベクター pBluescript(R)IIに挿入し、断片の塩基配列を決定した。 目的 の配列をもつプラスミドを pBS/KMTRltanFr2と命名した。
[0116] 次に、 pBS/KMTRltanFrlは制限酵素 EcoRIおよび Smalで、また pBS/KMTRltanFr2 は制限酵素 Smalおよび Notlでそれぞれ消化し、反応産物を 1%ァガロースゲル電気泳 動で分離し、 目的のサイズ 800 bpの各断片をゲル力 切り出し、 QIAquick Gel Extraction Kit (QIAGEN)で精製した。これらの各断片を予め制限酵素 EcoRIおよび Notlで開裂した発現ベクター pCXND3に挿入し、 目的の長さの断片をもつプラスミド を PCXND3/KMTR1 Tandabと命名した。
[0117] 1-4. Whole IgG発現ベクターの構築
1-4-1. Whole IgG発現ベクターのデザイン
既に特許 (WO 92/19759)で報告されているように、発現ベクター HEF- PMh- g γ 1 にシグナル配列および VHからなる断片を挿入すると、ヒト EF1 αプロモーターの制御 下で、該 VH断片にヒト Η鎖定常領域が付加された Whole IgGの H鎖を発現する。同様 に、発現ベクター HEF-PMlk-g κは、シグナル配列および VLとからなる断片の挿入 により、ヒト EF1 αプロモーターの制御下で、該 VL断片にヒト L鎖定常領域が付加され た Whole IgGの L鎖を発現する。これら H鎖および L鎖の発現ベクターを動物細胞 COS-7等に共導入すれば Whole IgGを発現させることができる。
[0118] H鎖発現ベクターの構築は、以下のようにして行うことができる。 Diabody発現べクタ 一 pCXND3/KMTRl#33には、シグナル配列および VHをコードする配列が一続きの DNAとして挿入されている。そこで、発現ベクター HEF-PMh-g y 1にこのシグナル配 列および VHコード DNAを組み換えるには、最初に、 pCXND3/KMTRl#33を铸型とし 、適切なプライマーを用いて、 PCR法により対応する配列部分を増幅する必要がある 。次に、増幅された配列を必要に応じ制限酵素等で処理した後に、適切な処理をし た発現ベクター HEF-PMh-g y 1に挿入すればよ!、。
[0119] また、 L鎖発現ベクターの構築は次のようにして行うことができる。 Diabody発現べク ター pCXND3/KMTRl#33には、 VLが挿入されているがそのシグナル配列は含まれ ていない。そこで、特許 (WO 02/094880 A1)に記載されている KMTR1抗体 L鎖シグ ナル配列に相当する塩基配列を VLに付加することができるセンスプライマーを設計 · 合成し、適切なアンチセンスプライマーとを組合わせて pCXND3/KMTRl#33を铸型 とした PCRを行うことでシグナル配列を持つ VLを増幅することができる。このようにして 増幅された断片を必要に応じ制限酵素により処理した後、適切な処理をした発現べ クタ一 HEF-PMlk-g κに挿入することにより L鎖発現ベクターを構築することができる
[0120] 1-4-2. Whole IgG発現ベクターの構築
センスプライマー KMTRVHsp (配列番号: 39)を pCXND3/KMTRl#33のコード配列 中、ァミノ末端にハイブリダィズするよう設計した。 KMTRVHspには、クロー-ングのた めに Hindm制限酵素認識配列が付加されて 、る。アンチセンスプライマー
KMTRVHap (配列番号: 40)は pCXND3/KMTRl#33のコード配列中、カルボキシ末 端にハイブリダィズし、カルボキシ末端の直後にスプライスドナー配列を持つよう設計 した。 KMTRVHapには、クローユングのために BamHI制限酵素認識配列が付加され ている。センスプライマー KMTRVLsp (配列番号: 41)は、特許 (WO 02/094880)に記 載の KMTR1 VLのシグナル配列をコードする配列を含み、その上流に Kozakコンセン サス配列 CCACCおよび BamHI制限酵素認識配列を持つよう設計した。 KMTRVLsp は、 pCXND3/KMTRl#33のコード配列中、 VLのァミノ末端にハイブリダィズするよう 設計した。さらに、クローユングのために Hindm制限酵素認識配列が付加されている 。アンチセンスプライマー KMTRVLap (配列番号: 42)は pCXND3/KMTRl#33のコー ド配列中、 VLのカルボキシ末端にハイブリダィズし、カルボキシ末端の直後にスプラ イスドナー配列を持つよう設計した。 KMTRVLapは、クローユングのために BamHI制 限酵素認識配列が付加されて!ヽる。
[0121] チューブ VHでは、各 50 pmolのプライマー KMTRVHspおよび KMTRVHapを
pCXND3/KMTRl#33を铸型として含む PCR反応溶液(1-2.に記載)に添カ卩し、サー マルサイクラ一で 94°Cにて 1分の変性を行った後、 94°C、 30秒; 72°C、 60秒力 なるサ イタルを 30サイクル行った。反応産物は 1%ァガロースゲル電気泳動で分離し、 目的の サイズ 400 bpの断片をゲルから切り出し、 QIAquick Gel Extraction Kit (QIAGEN)で 精製した。これを制限酵素 BamHIおよび Hindlllにより消化し、予め制限酵素 BamHIお よび Hindlllで開裂した発現ベクター HEF-PMh-g y 1に挿入し、断片の塩基配列を決 定した。 目的の配列をもつプラスミドを pHEF-KMTRlVH-g y 1と命名した。
[0122] チューブ VLでは、各 50 pmolのプライマー KMTRVLspおよび KMTRVLapを
pCXND3/KMTRl#33を铸型として含む PCR反応溶液(1-2.に記載)に添カ卩し、サー マルサイクラ一で 94°Cにて 1分の変性を行った後、 94°C、 30秒; 72°C、 60秒力 なるサ イタルを 30サイクル行った。反応産物は 1%ァガロースゲル電気泳動で分離し、 目的の サイズ 400 bpの断片をゲルから切り出し、 QIAquick Gel Extraction Kit (QIAGEN)で 精製した。これを制限酵素 BamHIおよび Hindlllにより消化し、予め制限酵素 BamHIお よび Hindlllで開裂した発現ベクター HEF-PMlk-g κに挿入し、断片の塩基配列を決 定した。 目的の配列をもつプラスミドを pHEF- KMTR1VL- g κと命名した。
[0123] 2. Diabodyゝ Triabody、 Tandem diabodyおよび Whole IgGの発現
1.において構築した各発現ベクター各 10 /z gずつを、 Gene Pulser装置を用いたェ レクト口ポレーシヨン法により COS-7細胞に導入した。すなわち、各 DNA (10 g)を PBS中に懸濁した 1 X 107細胞の 0.8 mLのァリコートに加え、 1500 V、 25 μ Fの用量に てパルスを与えた。室温にて 10分間の回復期間の後、エレクト口ポレーシヨン処理さ れた細胞を、 10%ゥシ胎児血清(GIBCO BRL)を含む DMEM培地(GIBCO BRL) 30 mLに播種した。これを 37°C、 5%COの条件下で終夜培養した後、培地除去後、 PBS
2
にて細胞を 4回洗浄し、 CHO-S-SFMII培地(GIBCO BRL) 15 mLを添カ卩した。これを 37°C、 5%COの条件下で 72時間培養し、遠心分離により細胞破砕物を除去した上清 を得、さらに 0.45 mのフィルターで処理して得たものを培養上清として細胞傷害活 性の測定に用いた。
[0124] 3.発現産物の濃度測定
3-1. Diabody、 Triabodyおよび Tandem Diabodyの濃度測定
2.で発現させた培養上清中の Diabody、 Triabodyおよび Tandem Diabodyの濃度は 、表面プラズモン共鳴を利用したバイオセンサー BIAcore2000 (BIACORE)を用いて 濃度測定した。これらの抗体には Flagタグが付加されていた。そこで、抗 Flag抗体 M2 (Sigma)を利用して解析を行った。より具体的には、該抗体をセンサーチップ CM5 ( BIACORE)にァミンカップリング法で固相化し、このセンサーチップを用いた培養上 清の解析により表面プラズモン共鳴シグナルを測定した。
[0125] 3-2. Whole IgGの濃度測定
2.で発現させた培養上清中の IgG濃度測定は ELISAで行った。 ELISA用 96穴プレー ト Maxisorp (NUNC)の各穴にコーティングバッファー(0.1 M NaHCO、 0.02% NaN、
3 3
PH9.6)により 1 g/mLの濃度に調製したャギ抗ヒ HgG抗体(BIOSOURCE) 100 μ L を加え、室温で 1時間のインキュベーションを行い固相化した。 100 /z Lの希釈バッフ ァー(50 mM Tris— HC1、 ImM MgCl、 0.15 M NaCl、 0.05% Tween20、 0.02% NaN、 1%
2 3 ゥシ血清アルブミン(BSA)、 pH8.1)でブロッキングした後、 Whole IgGを発現させた培 養上清を順次段階希釈して各穴に 100 Lずつ加え、室温で 1時間のインキュベーシ ヨンした。各穴を洗浄した後、アルカリフォスファターゼ標識ャギ抗ヒ HgG (
BIOSOURCE) 100 Lを加えた。室温にて 1時間のインキュベーションを行い、洗浄し た後、基質バッファー(50 mM NaHCO、 10 mM MgCl、 pH9.8)に溶解した 1 mg/mL
3 2
の基質溶液(Sigmal04、 p-二トロフエ-ルリン酸、 Sigma) 100 μ Lを加え、 405 nmでの 吸光度を MICROPLATE READER Model 3550 (Bio-Rad)を用いて測定した。濃度測 定の標準品としてヒト IgGl κ (The Binding Site)を用いた。
[0126] 4.細胞傷害活性の評価
2.で発現させた培養上清中の Diabody、 Triabodyおよび Tandem Diabodyの生物 活性は細胞傷害活性で評価した。具体的には、実際に TRAIL受容体の発現が認め られている大腸癌細胞株 COLO 205 (ATCC CCL-222)を細胞培養用 96穴マイクロ プレート(FALCON)に 7.5 X 104細胞/ゥエルで播種し、 CHO- S- SFMII (GIBCO BRL) で順次段階希釈した各培養上清を各穴に添加した。必要に応じてクロスリンカ一とし て抗 Flag抗体 M2 (Sigma)を 10 g/mLの濃度で添加した。細胞傷害活性評価の陽性 対照には TRAIL天然リガンド Apo2L組み換え体(Sigma)を CHO-S-SFMIIで希釈して 用いた。こうして調製したマイクロプレートは 37°C、 5% COの条件で終夜培養し、翌日
2
に細胞増殖/細胞毒性測定試薬 Cell Counting Kit_8 (WAKO)を添カ卩して発色させた 後、 450 nmでの吸光度 Microplate Spectrophotometer Benchmark Plus Bio- Rad )で測定した。
[0127] Diabodyの細胞傷害活性評価の結果を図 1に示す。この結果、 Diabodyのみを添カロ した細胞の減少は観察されず、 Diabody単独では細胞傷害活性が認められなカゝつた 。どころが、 Diabodyに M2抗体を添カ卩し、 Diabodyをクロスリンクすると顕著な細胞傷害 活性が認められた。このことから、細胞膜表面上での TRAIL受容体の重合を促進す ることでアポトーシスシグナルが効率よく伝達されることが示唆された。そこで、単独の 分子としてより活性の高 、形態を探索した。
[0128] Triabodyおよび Whole IgGの細胞傷害活性評価の結果を図 2に示す。この結果、
Diabodyおよび Whole IgGには顕著な細胞傷害活性が認められな力つた。それに対し 、 Triabodyを添加した細胞は劇的に減少し、 Triabodyには明らかな細胞傷害活性が 検出された。とりわけ、リンカ一長が 1 merおよび 0 merの Triabodyの活性が顕著であ つた。本実験では Whole IgG (lgGl/ κ )には細胞傷害活性が認められな力つた。この 結果は、特許 (WO 02/094880 A1)では同じ抗体が IgGlの形態で COLO 205細胞に 対して半数殺傷濃度 LD50=100 ng/mLを示すことと一致しなカゝつた。そこで本実験で 用いた Whole IgGの COLO 205細胞に対する結合活性をセルソーターで評価した。 その結果、 mockに比較して十分ヒストグラムのシフトが検出されたことから、 Whole IgGは、結合活性を保持しているものと考えられた。
[0129] 次に、 Triabodyと Tandem Diabodyの細胞傷害活性の比較を行った。結果を図 3に 示す。この結果、 Tandem Diabodyは Triabodyを上回る活性を示し、その活性は、天 然リガンド Apo2Lと同等かそれ以上であった。これらの結果は、比較した分子のうち、 Tandem Diabodyが単独で最も有効な分子であることを示す。 [0130] 以上、単独の分子として Tandem Diabodyおよび Triabodyは Whole IgGを上回る細 胞傷害活性を示す分子形態であることが示された。この結果は TRAIL受容体を細胞 膜表面上で重合させる場合、その重合程度に応じて細胞死誘導シグナルの活性ィ匕 の度合いが異なり、重合度が高いほどより細胞死誘導シグナルが活性ィ匕されることを 示唆する新規な知見である。同様の細胞内シグナル伝達機構で細胞死シグナルを 伝達する Fas受容体、 TNF受容体を含む TNF受容体ファミリーについても一般に、こ のような現象が予測される。従って、 Tandem Diabody及び Triabody等の 3つ以上の抗 原結合部位を含む抗体は、 TRAIL受容体以外のこれらの受容体を介したアポトーシ スの誘導にも利用できることが期待される。
産業上の利用可能性
[0131] 抗体を低分子化することにより、より高い比活性、及びより短い血中半減期を持つよ うにすることができる。そのため、低分子化抗体の投与では有効血中濃度の調節が 容易となり、臨床応用上 IgG等の全長抗体と比べ有利である。従って、低分子化抗体 は、従来のァゴ-スト抗体よりも優れた性質の抗癌剤となり得るものと期待される。ま た、低分子化抗体は、糖鎖が結合していないことから、組み換え型タンパクとして発 現させる場合にも、その発現系が制限されない。例えば、哺乳動物由来の細胞株、 酵母、昆虫細胞、大腸菌等、多様な発現系により製造することが可能である。また、 本発明により、多価、特に 3価以上の抗原結合部位を有する低分子化抗体が、 TRAIL受容体のような 3量体を形成してシグナル伝達を行う受容体に対するァゴニス ト抗体として特に有効であることが示された。

Claims

請求の範囲
[I] TNF関連アポトーシス誘導リガンド受容体 (TRAIL受容体)を認識する抗体。
[2] 低分子化抗体である請求項 1に記載の抗体。
[3] 抗原結合部位を 3つ以上含むことを特徴とする請求項 1及び 2に記載の抗体。
[4] 抗原結合部位が 3つである請求項 3に記載の抗体。
[5] 3つの scFvが 3量体を形成して ヽることを特徴とする請求項 4に記載の抗体。
[6] scFv中の 2つの可変領域が 0— 2アミノ酸のリンカ一で結合されている請求項 5に記 載の抗体。
[7] リンカ一が 0アミノ酸である請求項 6に記載の抗体。
[8] リンカ一が 1アミノ酸である請求項 6に記載の抗体。
[9] 抗原結合部位が 4つである請求項 3に記載の抗体。
[10] 4つの可変領域を含むポリペプチドが 2量体を形成して 、る請求項 9に記載の抗体
[II] TRAIL受容体力TRAIL- R1又は TRAIL- R2である請求項 1一 10のいずれかに記載 の抗体。
[12] 細胞にアポトーシスを誘起することを特徴とする請求項 1一 11のいずれかに記載の 抗体。
[13] 細胞が腫瘍細胞である請求項 12に記載の抗体。
[14] 配列番号: 2に記載のアミノ酸配列を有する抗体。
[15] 配列番号: 4に記載のアミノ酸配列を有する抗体。
[16] 配列番号: 6に記載のアミノ酸配列を有する抗体。
[17] 配列番号: 8に記載のアミノ酸配列を有する抗体。
[18] 抗原結合部位を 3つ以上含み、細胞にアポトーシスを誘起する抗体。
[19] 抗原結合部位が 3つである請求項 18に記載の抗体。
[20] 抗原結合部位が 4つである請求項 18に記載の抗体。
[21] 細胞が腫瘍細胞である請求項 18— 20のいずれかに記載の抗体。
[22] 請求項 1一 21の 、ずれかに記載の抗体をコードするポリヌクレオチド。
[23] 請求項 22に記載のポリヌクレオチドとストリンジェントな条件下でノ、イブリダィズし、 かつ請求項 1一 21の ヽずれかに記載の抗体と同等の活性を有する抗体をコードす るポリヌクレオチド。
[24] 請求項 22または 23に記載のポリヌクレオチドを含むベクター。
[25] 請求項 22または 23に記載のポリヌクレオチドまたは請求項 24に記載のベクターを 保持する宿主細胞。
[26] 請求項 1一 21のいずれかに記載の抗体を含有する、医薬組成物。
PCT/JP2004/018507 2003-12-12 2004-12-10 3量体以上の受容体を認識する改変抗体 WO2005056605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/582,654 US20080206229A1 (en) 2003-12-12 2004-12-10 Modified Antibodies Recognizing Receptor Trimers or Higher Multimers
JP2005516203A JPWO2005056605A1 (ja) 2003-12-12 2004-12-10 3量体以上の受容体を認識する改変抗体
EP04820317A EP1710255A4 (en) 2003-12-12 2004-12-10 MODIFIED ANTIBODIES RECOGNIZING A TRIMER OR LARGER RECEPTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-415735 2003-12-12
JP2003415735 2003-12-12

Publications (1)

Publication Number Publication Date
WO2005056605A1 true WO2005056605A1 (ja) 2005-06-23

Family

ID=34675141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018507 WO2005056605A1 (ja) 2003-12-12 2004-12-10 3量体以上の受容体を認識する改変抗体

Country Status (4)

Country Link
US (1) US20080206229A1 (ja)
EP (1) EP1710255A4 (ja)
JP (1) JPWO2005056605A1 (ja)
WO (1) WO2005056605A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020094A1 (ja) * 2007-08-09 2009-02-12 Daiichi Sankyo Company, Limited 疎水性分子で修飾した抗体
EP2046836A1 (en) * 2006-07-05 2009-04-15 Ajou University Industry-Academic Cooperation Foundation Antibody specifically binding to dr5 and composition for preventing or treating cancers comprising the same
JP2014527515A (ja) * 2011-07-22 2014-10-16 アフィメート テラポイティクス アーゲー 多価抗原結合Fv分子
JP2014230545A (ja) * 2008-07-21 2014-12-11 アポゲニクス ゲゼルシャフト ミット ベシュレンクテル ハフツングApogenix GmbH Tnfsf一本鎖分子
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696325B2 (en) * 1999-03-10 2010-04-13 Chugai Seiyaku Kabushiki Kaisha Polypeptide inducing apoptosis
CN1308447C (zh) * 2000-10-20 2007-04-04 中外制药株式会社 低分子化的激动剂抗体
ATE391174T1 (de) * 2000-10-20 2008-04-15 Chugai Pharmaceutical Co Ltd Modifizierter tpo-agonisten antikörper
DE60324700D1 (de) * 2002-10-11 2008-12-24 Chugai Pharmaceutical Co Ltd Zelltod-induzierender wirkstoff
JP2004279086A (ja) * 2003-03-13 2004-10-07 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
US20070003556A1 (en) * 2003-03-31 2007-01-04 Masayuki Tsuchiya Modified antibodies against cd22 and utilization thereof
WO2004111233A1 (ja) * 2003-06-11 2004-12-23 Chugai Seiyaku Kabushiki Kaisha 抗体の製造方法
TW200530266A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Method of reinforcing antibody activity
CA2548929A1 (en) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Cell death inducing agent
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
JPWO2005056602A1 (ja) * 2003-12-12 2008-03-06 中外製薬株式会社 アゴニスト活性を有する改変抗体のスクリーニング方法
EP1870459B1 (en) 2005-03-31 2016-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
WO2006123724A1 (ja) * 2005-05-18 2006-11-23 The University Of Tokushima 抗hla抗体を利用した新規医薬品
TW200718780A (en) * 2005-06-10 2007-05-16 Chugai Pharmaceutical Co Ltd Sc(Fv)2 site-directed mutant
DK2009101T3 (en) 2006-03-31 2018-01-15 Chugai Pharmaceutical Co Ltd Antibody modification method for purification of a bispecific antibody
US20100040600A1 (en) * 2006-06-14 2010-02-18 Chugai Seiyaku Kabushiki Kaisha Agents for Promoting the Growth of Hematopoietic Stem Cells
JPWO2008007755A1 (ja) * 2006-07-13 2009-12-10 中外製薬株式会社 細胞死誘導剤
CL2008000719A1 (es) * 2007-03-12 2008-09-05 Univ Tokushima Chugai Seiyaku Agente terapeutico para cancer resistente a agentes quimioterapeuticos que comprende un anticuerpo que reconoce hla de clase i como ingrediente activo; composicion farmaceutica que comprende dicho anticuerpo; y metodo para tratar cancer resistente a
WO2009040811A2 (en) * 2007-09-24 2009-04-02 Bar-Ilan University Polymer nanoparticles coated by magnetic metal oxide and uses thereof
US20130079280A1 (en) 2010-04-13 2013-03-28 Medlmmune, Llc Fibronectin type iii domain-based multimeric scaffolds
CA2925256C (en) 2013-09-27 2023-08-15 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
EP3398965A4 (en) 2015-12-28 2019-09-18 Chugai Seiyaku Kabushiki Kaisha METHOD FOR PROMOTING THE EFFICACY OF PURIFYING A POLYPEPTIDE CONTAINING AN FC REGION

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1997001633A1 (en) 1995-06-29 1997-01-16 Immunex Corporation Cytokine that induces apoptosis
WO2002094880A1 (en) 2001-05-18 2002-11-28 Kirin Beer Kabushiki Kaisha Anti-trail-r antibodies
WO2002097033A2 (en) * 2001-05-25 2002-12-05 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to trail receptors

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727112B2 (ja) * 1988-04-26 1998-03-11 コニカ株式会社 安定なペルオキシダーゼ組成物及び安定な抗体組成物
US5077216A (en) * 1988-07-06 1991-12-31 The Trustees Of Dartmouth College Monoclonal antibodies specific for a human mononculear phagocyte-specific antigen
US5073627A (en) * 1989-08-22 1991-12-17 Immunex Corporation Fusion proteins comprising GM-CSF and IL-3
US5223241A (en) * 1990-10-01 1993-06-29 The General Hospital Corporation Method for early detection of allograft rejection
US5637481A (en) * 1993-02-01 1997-06-10 Bristol-Myers Squibb Company Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell
CA2126967A1 (en) * 1992-11-04 1994-05-11 Anna M. Wu Novel antibody construct
US5747654A (en) * 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
US5731168A (en) * 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US6872568B1 (en) * 1997-03-17 2005-03-29 Human Genome Sciences, Inc. Death domain containing receptor 5 antibodies
US20040136951A1 (en) * 1997-03-17 2004-07-15 Human Genome Sciences, Inc. Death domain containing receptor 5
US20050220787A1 (en) * 2002-11-07 2005-10-06 Lobo Peter I Naturally occuring IgM antibodies that bind to lymphocytes
WO2000075191A2 (en) * 1999-06-09 2000-12-14 Genentech, Inc. Apo-2L RECEPTOR AGONIST AND CPT-11 SYNERGISM
DK2857516T3 (en) 2000-04-11 2017-08-07 Genentech Inc Multivalent antibodies and uses thereof
US20040058393A1 (en) * 2000-04-17 2004-03-25 Naoshi Fukishima Agonist antibodies
EP1314437B1 (en) * 2000-08-11 2014-06-25 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing preparations
DK1399484T3 (da) * 2001-06-28 2010-11-08 Domantis Ltd Dobbelt-specifik ligand og anvendelse af denne
SI1475101T1 (sl) * 2002-02-14 2011-03-31 Chugai Pharmaceutical Co Ltd Farmacevtski proizvodi iz raztopine, ki vsebuje protitelo
US8030461B2 (en) * 2002-04-15 2011-10-04 Chugai Seiyaku Kabushiki Kaisha Methods for constructing scDb libraries
EP1541165A4 (en) * 2002-08-27 2009-06-24 Chugai Pharmaceutical Co Ltd METHOD FOR STABILIZING PROTEIN PREPARATION
DE60324700D1 (de) * 2002-10-11 2008-12-24 Chugai Pharmaceutical Co Ltd Zelltod-induzierender wirkstoff
CA2502825A1 (en) * 2002-10-22 2004-05-06 Dainippon Pharmaceutical Co., Ltd. Stabilized composition
JP4477579B2 (ja) * 2003-01-21 2010-06-09 中外製薬株式会社 抗体の軽鎖スクリーニング方法
EP1616880A4 (en) * 2003-03-13 2006-07-26 Chugai Pharmaceutical Co Ltd LIGAND WITH AGONISTIC ACTIVITY AGAINST A MUTED RECEPTOR
JP2004279086A (ja) * 2003-03-13 2004-10-07 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
US20070003556A1 (en) * 2003-03-31 2007-01-04 Masayuki Tsuchiya Modified antibodies against cd22 and utilization thereof
WO2004111233A1 (ja) * 2003-06-11 2004-12-23 Chugai Seiyaku Kabushiki Kaisha 抗体の製造方法
JPWO2005056602A1 (ja) * 2003-12-12 2008-03-06 中外製薬株式会社 アゴニスト活性を有する改変抗体のスクリーニング方法
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
TW200530266A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Method of reinforcing antibody activity
CA2548929A1 (en) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Cell death inducing agent
KR20070010046A (ko) * 2004-04-06 2007-01-19 제넨테크, 인크. Dr5 항체 및 그의 용도
US20080274110A1 (en) * 2004-04-09 2008-11-06 Shuji Ozaki Cell Death-Inducing Agents
US20090062184A1 (en) * 2005-03-24 2009-03-05 Dainippon Sumitomo Pharma Co., Ltd. Fine particulate preparation comprising complex of nucleic acid molecule and collagen
EP1870459B1 (en) * 2005-03-31 2016-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
EP1870458B1 (en) * 2005-03-31 2018-05-09 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2 STRUCTURAL ISOMERS
WO2006123724A1 (ja) * 2005-05-18 2006-11-23 The University Of Tokushima 抗hla抗体を利用した新規医薬品
CN101262885B (zh) * 2005-06-10 2015-04-01 中外制药株式会社 含有sc(Fv)2的药物组合物
CN101410140B (zh) * 2006-02-02 2016-10-26 综合医院公司 改造抗体-应激蛋白融合物
DK2006381T3 (en) * 2006-03-31 2016-02-22 Chugai Pharmaceutical Co Ltd PROCEDURE FOR REGULATING ANTIBODIES BLOOD PHARMACOKINETICS
AU2007285217B2 (en) * 2006-08-14 2013-02-07 Forerunner Pharma Research Co., Ltd Diagnosis and treatment of cancer using anti-desmoglein-3 antibodies
WO2009001840A1 (ja) * 2007-06-25 2008-12-31 Forerunner Pharma Research Co., Ltd. ADCC活性又はCDC活性を有する抗Prominin-1抗体
PT2234600E (pt) * 2007-12-21 2014-09-25 Hoffmann La Roche Formulação de anticorpos
TW201118166A (en) * 2009-09-24 2011-06-01 Chugai Pharmaceutical Co Ltd HLA class I-recognizing antibodies

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1997001633A1 (en) 1995-06-29 1997-01-16 Immunex Corporation Cytokine that induces apoptosis
WO2002094880A1 (en) 2001-05-18 2002-11-28 Kirin Beer Kabushiki Kaisha Anti-trail-r antibodies
WO2002097033A2 (en) * 2001-05-25 2002-12-05 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to trail receptors

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"Strategies for Protein Purification and Characterization: A Laboratory Course Manual", 1996, COLD SPRING HARBOR LABORATORY PRESS
BELYAVSKY ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2919 - 32
BIO/TECHNOLOGY, vol. 12, 1994, pages 699 - 702
BODER ET AL., NAT. CELL. BIOL., vol. 2, 2000, pages 241 - 3
BUCHSBAUM ET AL., CLIN. CANCER RES., vol. 9, 2003, pages 3731 - 41
CANCER RESEARCH, vol. 60, 2000, pages 4336 - 41
CHIRGWIN ET AL., BIOCHEMISTRY, vol. 18, 1979, pages 5294 - 9
CHOMCZYNSKI ET AL., ANAL. BIOCHEM., vol. 162, 1987, pages 156 - 9
CHUNTHARAOPAI ET AL., J.IMMUNOL., vol. 166, 2001, pages 4891 - 8
CHUNTHARAPAI A. ET AL.: "Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4", J. IMMUNOL., vol. 166, 2001, pages 4891 - 4898, XP002300581 *
COCHLOVIUS B. ET AL.: "Cure of Bunkitt's lymphoma in severe combined immunodeficiency mice by T cells tetravalent CD3xCD19 tandem diabody, and CD28 constimulation", CANCER RESERACH, vol. 60, 2000, pages 4336 - 4341, XP001026130 *
DEGLI-ESPOSTI ET AL., J. EXP. MED., vol. 186, 1997, pages 1165 - 70
EMERY ET AL., J. BIOL. CHEM., vol. 273, 1998, pages 14363 - 7
FROHMAN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 8998 - 9002
GRIFFITH ET AL., J.IMMUNOL., vol. 162, 1999, pages 2597 - 605
GRIFFITH T.S. ET AL.: "Function analysis of TRIAL receptors using monoclonal antibodies", J. IMMUNOL., vol. 162, 1999, pages 2597 - 2605, XP008097495 *
HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 8
HOLLIGER ET AL., PROTEIN ENGINEERING, vol. 9, 1996, pages 299 - 305
HUDSON P.J. ET AL.: "High avidity scFv multimers; diabodies and triabodies", J. IMMUNOL. METHOD., vol. 231, 1999, pages 177 - 189, XP004187644 *
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 83
JOHN ET AL., PROTEIN ENGINEERING IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 89
JOHNSON ET AL., METHOD IN ENZYMOLOGY, vol. 203, 1991, pages 88 - 98
MA, EUR. J. IMMUNOL., vol. 24, 1994, pages 131 - 138
MARSTERS ET AL., CURR. BIOL., vol. 7, 1997, pages 1003 - 6
PAN ET AL., SCIENCE, vol. 276, 1997, pages 111 - 3
PAN ET AL., SCIENCE, vol. 277, 1997, pages 815 - 8
PERISIC, STRUCTURE, vol. 2, 1994, pages 1217 - 26
PLICKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER VERLAG, pages: 269 - 315
PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305
SAMBROOK ET AL.: "Molecular Cloning 2nd ed.", 1989, COLD SPRING HARBOR LAB. PRESS, pages: 9.47 - 9.58
See also references of EP1710255A4 *
SHERIDAN ET AL., SCIENCE, vol. 277, 1997, pages 818 - 21
SUSUMU ET AL., NATURE, vol. 315, 1985, pages 592 - 594
VANDAMME ET AL., EUR. J. BIOCHEM., vol. 192, 1990, pages 767 - 75
WALCZAK ET AL., EMBO J., vol. 16, 1997, pages 5386 - 97
WILBUR; LIPMAN, PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 726 - 30
WILEY ET AL., IMMUNOLOGY, vol. 3, 1995, pages 673 - 82

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US9777066B2 (en) 2005-06-10 2017-10-03 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
EP2046836A1 (en) * 2006-07-05 2009-04-15 Ajou University Industry-Academic Cooperation Foundation Antibody specifically binding to dr5 and composition for preventing or treating cancers comprising the same
EP2046836A4 (en) * 2006-07-05 2012-11-21 Ajou Univ Ind Acad Coop Found ANTIBODY BINDING SPECIFICALLY TO DR5 AND COMPOSITION FOR PREVENTING OR TREATING CANCER, AND COMPRISING THE SAME
WO2009020094A1 (ja) * 2007-08-09 2009-02-12 Daiichi Sankyo Company, Limited 疎水性分子で修飾した抗体
JP2014230545A (ja) * 2008-07-21 2014-12-11 アポゲニクス ゲゼルシャフト ミット ベシュレンクテル ハフツングApogenix GmbH Tnfsf一本鎖分子
JP2014230546A (ja) * 2008-07-21 2014-12-11 アポゲニクス ゲゼルシャフト ミット ベシュレンクテル ハフツングApogenix GmbH Tnfsf一本鎖分子
JP2014527515A (ja) * 2011-07-22 2014-10-16 アフィメート テラポイティクス アーゲー 多価抗原結合Fv分子

Also Published As

Publication number Publication date
EP1710255A1 (en) 2006-10-11
US20080206229A1 (en) 2008-08-28
JPWO2005056605A1 (ja) 2007-12-06
EP1710255A4 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
WO2005056605A1 (ja) 3量体以上の受容体を認識する改変抗体
TWI830761B (zh) 針對cldn18.2和cd3之抗體構建體
KR101413402B1 (ko) 항 글리피칸 3 항체
US20230151112A1 (en) Immunoactivating antigen-binding molecule
JP5620626B2 (ja) 会合制御によるポリペプチド製造方法
JP5224580B2 (ja) sc(Fv)2部位特異的変異体
TWI564306B (zh) 雙特異性抗體
CN109111524B (zh) 控制了重链与轻链的缔合的抗原结合分子
TWI548418B (zh) Anti-NR10 / IL-31RA antibody and its use
JPWO2004087763A1 (ja) Cd22に対する改変抗体およびその利用
TW200530269A (en) Anti-Mpl antibodies
JP4634305B2 (ja) 抗体の活性を増強させる方法
JP4767016B2 (ja) 細胞死誘導剤
US10851162B2 (en) Anti-Orai1 antibody
WO2005107784A1 (ja) 血小板減少症治療剤
CN116897207A (zh) 稳定的多特异性分子及其应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516203

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004820317

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004820317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10582654

Country of ref document: US