WO2005056181A1 - 炭化水素部分酸化用金触媒 - Google Patents

炭化水素部分酸化用金触媒 Download PDF

Info

Publication number
WO2005056181A1
WO2005056181A1 PCT/JP2004/018502 JP2004018502W WO2005056181A1 WO 2005056181 A1 WO2005056181 A1 WO 2005056181A1 JP 2004018502 W JP2004018502 W JP 2004018502W WO 2005056181 A1 WO2005056181 A1 WO 2005056181A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
titanium
partial oxidation
hydrocarbon
containing silicate
Prior art date
Application number
PCT/JP2004/018502
Other languages
English (en)
French (fr)
Other versions
WO2005056181A8 (ja
Inventor
Anil Kumar Sinha
Sindhu Seelan
Susumu Tsubota
Masatake Haruta
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005516198A priority Critical patent/JP5126731B2/ja
Publication of WO2005056181A1 publication Critical patent/WO2005056181A1/ja
Publication of WO2005056181A8 publication Critical patent/WO2005056181A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a catalyst for partial oxidation of hydrocarbons.
  • the present invention also relates to a method for producing an oxygen-containing organic compound using the catalyst, and a method for regenerating the catalyst.
  • the conversion of unsaturated hydrocarbons to epoxides involves the industrial production of ethylene oxide from ethylene and the production of butadiene monooxide from butadiene.
  • Patent Document 1 JP-A-8-127550
  • Patent Document 2 JP-A-11 76820
  • an object of the present invention is to provide a catalyst which can synthesize an oxygen-containing organic compound at a high conversion rate, and has a high selectivity of the oxygen-containing organic compound and a high utilization efficiency of hydrogen.
  • the present invention provides, in the oxidation reaction of hydrocarbons in the presence of oxygen and hydrogen, in addition to a high conversion rate, a high selectivity of an oxygen-containing organic compound and a good use efficiency of hydrogen. It is an object of the present invention to provide a method capable of synthesizing an organic compound containing oxygen.
  • Another object of the present invention is to provide a method for efficiently regenerating the above catalyst.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems.
  • a catalyst in which gold nanoparticles are solidified on a titanium-containing silicate having a pore diameter of not less than nm and a titanium in which gold nanoparticles are immobilized are described.
  • the catalyst obtained by modifying the contained silicate with a silane coupling agent is excellent in the selectivity of the oxygen-containing organic compound in the reaction of partially oxidizing the hydrocarbon in the presence of oxygen and hydrogen, and has a high power. It has been found that the oxygen-containing organic compound has high conversion efficiency and high hydrogen utilization efficiency.
  • the present invention provides the following catalysts for partial oxidation of hydrocarbons: Item 1.
  • Item 2 The catalyst for partial oxidation of hydrocarbons according to Item 1, wherein the pore structure of the titanium-containing silicate is a sponge-like structure.
  • Item 3 The catalyst for partial oxidation of hydrocarbon according to Item 1, wherein the titanium-containing silicate porous body has an average pore diameter of 415 nm.
  • Item 2 The hydrocarbon partially oxidizing catalyst according to Item 1, which is Zioo.
  • Item 5 A catalyst for partial oxidation of hydrocarbons, wherein a titanium-containing silicate having gold nanoparticles immobilized thereon is modified with a silane coupling agent.
  • Item 7 The catalyst for partial oxidation of hydrocarbons according to Item 6, wherein at least one compound selected from the group consisting of barium nitrate, magnesium nitrate and calcium nitrate is supported.
  • Item 8 The catalyst for partial oxidation of hydrocarbon according to Item 5, wherein the titanium-containing silicate porous body has an average pore diameter of 415 nm.
  • Item 9 The hydrocarbon partial oxidation catalyst according to Item 5, wherein the titanium-containing silicate has an atomic ratio of Ti to Si (TiZSi) of 1 / 10000-20 Z100.
  • Item 10 Power of silane coupling agent From methoxytrimethylsilane, methoxytriethylsilane, methoxytriethylpurosilane, ethoxytrimethylsilane, ethoxytriethylsilane, ethoxytriylpurosilane, trimethylsilyltrifluoromethanesulfonate and triethylsilyltrifluoromethanesulfonate Item 6.
  • At least one compound selected from the group consisting of an alkali metal compound and an alkaline earth metal compound is added to 100 parts by weight of the titanium-containing silicate on which the gold nanoparticles are immobilized.
  • the present invention is a method for producing an oxygen-containing organic compound described below:
  • Item 12 Production of an oxygen-containing organic compound, comprising oxidizing a hydrocarbon in the presence of hydrogen and oxygen using the catalyst for partial oxidation of a hydrocarbon according to any one of Items 1 to 11. Method.
  • Item 13 The method according to Item 12, which is a method for producing an epoxide by partially oxidizing an unsaturated hydrocarbon.
  • Item 14 The production method according to Item 12, wherein the hydrocarbon is a saturated hydrocarbon having 3 to 12 carbons or an unsaturated hydrocarbon having 2 to 12 carbons.
  • Item 15 The method according to Item 12, wherein the hydrocarbon is oxidized under a temperature condition of 0 to 300 ° C.
  • the present invention relates to a method for regenerating a catalyst for partial oxidation of hydrocarbons as described below: Item 16.
  • the method for regenerating a catalyst for partial oxidation of hydrocarbon according to any one of Items 11 to 11 described above.
  • Item 17 The regeneration method according to Item 16, wherein the treatment with the mixed gas is performed at 100 to 400 ° C.
  • FIG. 1 shows an example of a pore structure of a titanium-containing silicate, in which pores having a one-dimensional channel structure are arranged in a hexagonal structure (hexagonal structure).
  • FIG. 2 is a diagram showing an example of a pore structure of a titanium-containing silicate, which is a structure in which pores having a one-dimensional channel structure are irregularly aggregated (irregular structure).
  • FIG. 3 is a diagram showing a structure (cubic structure) in which pores having a one-dimensional channel structure are three-dimensionally connected, which is an example of a pore structure of a titanium-containing silicate.
  • FIG. 4 shows an example of a pore structure of a titanium-containing silicate, which has a sponge-like structure (a sponge-like structure) in which pores are three-dimensionally and irregularly continuous! It is a figure (transmission electron microscope photograph).
  • the term "oxygenated organic compound” refers to an organic compound obtained by partially oxidizing a hydrocarbon.
  • Organic compounds specifically, alcohols, ketones, epoxides and the like.
  • the “conversion rate of hydrocarbons” indicates the ratio (molar ratio) (%) of hydrocarbons consumed by the reaction among the hydrocarbons used as raw materials.
  • the “selectivity of the oxygen-containing organic compound” indicates the ratio (molar ratio) (%) of hydrocarbons converted into the oxygen-containing organic compound among the hydrocarbons consumed by the reaction.
  • yield of the oxygen-containing organic compound indicates the ratio (molar ratio) (%) of the generated oxygen-containing organic compound to the hydrocarbon as the raw material.
  • the term “hydrogen conversion ratio” refers to the ratio (molar ratio) (%) of hydrogen consumed by the reaction to the hydrogen subjected to the reaction.
  • the catalyst for partial oxidation of hydrocarbons of the present invention is characterized in that gold nanoparticles are fixed to a porous body of titanium-containing silicate having an average pore diameter of not less than nm.
  • the hydrocarbon partial oxidation catalyst will be described in detail.
  • gold nanoparticles are gold fine particles having an average particle size of lOnm or less.
  • the gold nanoparticles preferably have an average particle diameter in the range of 2 to 5 nm. It is desirable that such gold nanoparticles are firmly fixed and supported on a titanium-containing silicate carrier.
  • the particle size of gold is significantly larger than lOnm, the specific surface area power tends to be too small, and the conversion ratio of hydrocarbon tends to be low.
  • the diameter is significantly smaller than 2 nm, the properties of gold as a metal are lost, and the hydrogenation reaction of the unsaturated hydrocarbon proceeds preferentially, and there is a tendency that the partial oxidation reaction does not proceed.
  • the content ratio of the gold nanoparticles in the catalyst of the present invention is preferably 0.001 part by weight or more, more preferably 0.01 to 20 parts by weight, based on 100 parts by weight of the titanium-containing silicate.
  • Mashima The amount is more preferably in the range of 0.05 to 10 parts by weight. If the loading ratio of the gold nanoparticles is significantly less than 0.001 parts by weight, the activity of the catalyst decreases, which is not preferable. On the other hand, even if the loading ratio of gold is more than 20 parts by weight, there is no difference in the activity of the catalyst as compared with the case where gold is loaded within the above range.
  • the catalyst of the present invention uses a porous body of a titanium-containing silicate having an average pore diameter of S4 nm or more.
  • the It is preferably a titanium-containing silicate porous body of 5 nm or more, more preferably 7 nm or more.
  • the upper limit of the average pore size of the porous body of the titanium-containing silicate is not particularly limited, but is usually 50 nm, preferably 30 nm.
  • the average pore diameter of the porous body of the titanium-containing silicate a range of 4-1 50 ⁇ m, preferably 4-1 30 nm, more preferably 7-30 nm can be exemplified.
  • the average pore diameter is a value measured by a nitrogen adsorption method.
  • the porous body of titanium-containing silicate is a porous body of silicate containing titanium atoms as a constituent.
  • it is desirable that the titanium atoms are in a state of being isolated and dispersed in the silicate.
  • the type of the titanium-containing silicate is not particularly limited. Examples include zeolite-based materials in which part of aluminum is replaced by titanium and titanium is incorporated in the zeolite lattice, part of silica is replaced by titanium atoms, and composite oxides of titanium and silicon. Can be. In addition, those in which a very small amount of titanium oxide is highly dispersed and supported on these titanium-containing silicates can also be used.
  • the pore structure of the titanium-containing silicate is not particularly limited.
  • Examples of the pore structure of titanium-containing silicate include a structure in which pores having a one-dimensional channel structure are arranged in a hexagonal structure (hereinafter, this structure is referred to as a hexagonal structure) (see Fig. 1).
  • a structure in which pores with the original channel structure are irregularly aggregated hereinafter referred to as the irregular structure) (see Fig. 2), and pores with a one-dimensional channel structure are three-dimensionally connected.
  • a cubic structure (see FIG. 3)
  • a sponge-like structure hereinafter referred to as a sponge-like structure
  • Preferred is a titanium-containing silicate having a sponge-like structure.
  • the shape of the titanium-containing silicate is not particularly limited, and may be a powdery shape or may be formed into other various shapes.
  • the production of the titanium-containing silicate used in the present invention depends on the pore size / pore structure, etc.
  • Specific examples of the method for producing a titanium-containing silicate having a sponge-like structure include, for example, a sol-gel method or an improved method thereof (for example, SA Bagshaw et al., Science, 1995, vol. 269, p. 1242; and Z. Shang et al., Chem. Eur. J., 2001, Vol. 7, p. 1437). Further, specific examples of a method for producing a titanium-containing silicate having a hexagonal structure, an irregular structure, or a cubic structure include, for example, a hydrothermal synthesis method (for example, Tatsumi et al., JP-A-7-300312). K. Koyano et al., Stud. Surf. Sci. Catal., 1997, vol. 105, p. 93).
  • the titanium-containing silicate can be used in a state of being fixed to a preformed support in order to further improve the activity of the catalyst.
  • a metal oxide containing no titanium or a material made of various metals can be used. Specific examples include alumina (aluminum oxide: Al 2 O 3), silica (silicon dioxide: SiO 2), and magnesia (magnesium oxide:
  • MgO cordierite, zirconium oxide, ceramics made of these complex oxides, foams made of various metals, honeycomb supports made of various metals, pellets of various metals, and the like.
  • alumina and silica are preferable, and those containing silica are particularly preferable.
  • “containing alumina and silica” includes the case where zeolite (aluminosilicate) or silica-alumina is contained.
  • the crystal structure, shape, size, and the like of the support are not particularly limited.
  • the area is preferably 50 m 2 / g or more, more preferably 100 m 2 / g or more.
  • specific surface area of the support is 50 m 2 / g or more, side reactions such as sequential oxidation can be further suppressed, and hydrocarbons can be partially oxidized efficiently, and catalyst performance can be improved. Is further improved.
  • the amount of the titanium-containing silicate is preferably about 120% by weight based on the support.
  • a sol-gel method using an alkoxide, a kneading method, a coating method, or the like can be applied. It can be dispersed and supported so as to form a so-called island structure.
  • the method for producing the catalyst of the present invention is not particularly limited as long as the method is capable of fixing gold nanoparticles to a titanium-containing silicate.
  • Specific examples of the method for producing the catalyst include a precipitation precipitation method described in JP-A-7-8797, and a vapor deposition method and an impregnation method described in JP-A-9122478.
  • a precipitation precipitation method described in JP-A-7-8797 and a vapor deposition method and an impregnation method described in JP-A-9122478.
  • JP-A-9122478 there is no particular limitation.
  • the procedure of fixing the gold nanoparticles to the titanium-containing silicate by the precipitation method will be described.
  • an aqueous solution containing a gold compound is prepared, heated to a temperature in the range of 30 to 100 ° C., more preferably in the range of 50 to 95 ° C., and then, while stirring, using an alkaline aqueous solution.
  • the pH of the aqueous solution is adjusted within the range of 6-12, more preferably within the range of 7-10.
  • a titanium-containing silicate is added to the aqueous solution at a time or several times within several minutes while stirring at the above temperature.
  • alkali component constituting the above-mentioned alkaline aqueous solution include sodium carbonate, potassium carbonate, sodium hydrogencarbonate, sodium hydroxide, potassium hydroxide, and the like.
  • gold compound examples include salted gold acid (HAuCl), sodium chloroaurate (AP), and sodium chloroaurate (APCl).
  • HuCl salted gold acid
  • sodium chloroaurate sodium chloroaurate
  • Water-soluble gold salts such as ethylamineauric acid [(CH) NH-AuCl] are exemplified.
  • the concentration of gold in the gold compound-containing aqueous solution used at the time of dropping is not particularly limited, but it is appropriate that gold generally contains about 0.1-0.
  • the amount of the titanium-containing silicate to be added to the water is not particularly limited.
  • the amount may be such that it can be uniformly dispersed or suspended in the water. Around 10 to 200 gZl is usually appropriate.
  • the amount of addition is not particularly limited as long as the aqueous solution can sufficiently contact the surface of the compact according to the shape of the compact.
  • the catalyst of the present invention can also be produced by a method according to the method for producing an ultrafine gold particle fixing substance using vapor of an organic gold complex described in JP-A-9122478.
  • the evaporated organic gold complex is adsorbed to the titanium-containing silicate under reduced pressure, and then heated to 100 to 700 ° C to fix the gold-particle-containing titanium-containing silicate. Obtainable.
  • the organic gold complex is not particularly limited as long as it has volatility.
  • the titanium-containing silicate can also be used by previously performing a heat treatment at about 200 ° C to remove moisture and the like on the surface.
  • the organic gold complex can be vaporized by heating.
  • the heating temperature is usually about 0 to 90 ° C. without any particular limitation so long as rapid vaporization and adsorption or decomposition do not occur.
  • the vaporization may also be carried out under reduced pressure, typically 1 X 10- 4 as a pressure in this case - Be about 2 X 10- 3 Torr good! ⁇ .
  • the vaporized organic gold complex is adsorbed to a titanium-containing silicate under reduced pressure.
  • the U "vacuo" in the present invention may be lower than the atmospheric pressure refers to the normal 1 10 4 -200 chome 0 about pressures.
  • the amount of the organic gold complex to be introduced varies depending on the type of the gold complex to be used, and may be appropriately adjusted so as to finally obtain the above-mentioned fixed amount.
  • the pressure may be adjusted by a known vacuum pump or the like.
  • the titanium-containing silicate to which the organic gold complex has been adsorbed is heated in air at about 100 to 700 ° C., preferably 300 to 500 ° C.
  • the organic components in the organic gold complex are decomposed and oxidized, and the organic gold complex is reduced to gold, and deposited and fixed as gold nanoparticles on the titanium-containing silicate.
  • the heating time can be appropriately set according to the amount of the organic gold complex supported, the heating temperature and the like. In this way, a titanium-containing silicate in which the gold nanoparticles are fixed can be obtained.
  • the titanium-containing silicate can be surface-treated by calorie heating usually at about 100 to 700 ° C prior to the adsorption of the organic gold complex. Furthermore, this surface treatment can be performed in an oxidizing gas or reducing gas atmosphere. This makes it easier to control the amount and state of defects on the surface of the titanium-containing silicate, and it is possible to more finely control the particle size and the amount of gold carried.
  • oxidizing gas known ones can be used, and examples thereof include oxygen gas and nitric oxide gas.
  • reducing gas known ones can be used, and examples thereof include a hydrogen gas and a carbon monoxide gas.
  • gold nanoparticles are firmly fixed on a titanium-containing silicate with a relatively uniform distribution. Can be.
  • the catalyst of the present invention is used by being supported on a support, a method in which titanium-containing silicate is supported on the support and then gold is fixed is preferable.
  • titanium is used instead of titanium-containing silicate in the above-described method of depositing and depositing gold and the method of using vapor of an organic gold complex.
  • a support supporting the contained silicate may be used.
  • it is manufactured by a method of depositing and depositing gold. This is advantageous in that the gold nanoparticles hardly precipitate on the support and are fixed only on the titanium-containing silicate (particularly, where titanium ions are present).
  • the method of depositing and precipitating gold fixes gold nanoparticles only on the titanium-containing silicate with particularly high selectivity. It is very advantageous in that it can be used.
  • the present invention provides a catalyst for partial oxidation of hydrocarbons, wherein a titanium-containing silicate having gold nanoparticles immobilized thereon is modified with a silane coupling agent.
  • a titanium-containing silicate having gold nanoparticles immobilized thereon is modified with a silane coupling agent.
  • the gold nanoparticles that can be used in the catalyst of the present invention are the same as those that can be used in the above (1-1).
  • the mixing ratio of the gold nanoparticles to the titanium-containing silicate is the same as the above-mentioned (1-1), the mixing ratio of the gold nanoparticles to the titanium-containing silicate.
  • the type of the titanium-containing silicate used in the catalyst of the present invention is not particularly limited.
  • a titanium-containing silicate in which part of aluminum of a zeolite-based material is replaced by titanium and titanium is incorporated in a zeolite lattice examples thereof include those obtained by partially replacing silica with a titanium atom, and composite oxides of titanium and silicon.
  • a material in which a very small amount of titanium oxide is highly dispersed and supported on these titanium-containing silicates can also be used.
  • the form of the titanium-containing silicate is not particularly limited, but is preferably a porous body having an average pore diameter of 4 nm or more. From the viewpoint of improving the conversion of the oxygen-containing organic compound, the porous body is more preferably 5 nm or more, more preferably 7 nm or more.
  • the upper limit of the average pore size of the porous body of the titanium-containing silicate is not particularly limited, but is usually 50 ⁇ m, preferably 30 nm.
  • As an example of the average pore diameter of the porous body of the titanium-containing silicate a range of 4-1 50 nm, preferably 4-1 30 nm, more preferably 7-30 nm can be exemplified.
  • the pore structure is not particularly limited.
  • the pore structure of the titanium-containing silicate include a hexagonal structure, an irregular structure, a cubic structure, and a sponge-like structure. Among these, those having a sponge-like structure are preferred.
  • the content of titanium in the titanium-containing silicate is used in (11) described above. Is the same as the content of titanium in the titanium-containing silicate.
  • the titanium-containing silicate used in the present invention can be produced according to a known production method.
  • the titanium-containing silicate can be used in a state of being fixed to a pre-formed support in order to improve the activity of the catalyst, as in (1-1) described above.
  • the support is also the same as that used in the above (1-1).
  • the method for fixing the gold nanoparticles to the titanium-containing silicate is not particularly limited, and examples thereof include a precipitation method described in (1-1) above.
  • the catalyst of the present invention is one in which the surface of the gold nanoparticle-fixed titanium-containing silicate obtained as described above is modified with a silane coupling agent.
  • silane coupling agent for modifying the gold nanoparticle-fixed titanium-containing silicate conventionally known silane coupling agents can be used without limitation.
  • the silane coupling agent include, for example, methoxytrimethylsilane, methoxytriethylsilane, methoxytriisopropyl silane, ethoxytrimethylsilane, ethoxytriethylsilane, ethoxytriisopropyl silane, trimethylsilyltrifluoromethanesulfonate, and triethylsilyl. Trifluoromethanesulfonate and the like can be mentioned.
  • silane coupling agents may be used alone or in any combination of two or more!
  • the modification with the titanium coupling agent is performed by reacting a hydroxyl group on the surface of the titanium silicate immobilized with gold nanoparticles with the silane coupling agent.
  • a conventionally known surface treatment method using a silane coupling agent can be employed.
  • an inert gas such as argon gas is passed through the silane coupling agent to vaporize the silane coupling agent, and then the vapor containing the silane coupling agent is converted to gold nanoparticles immobilized titanium-containing silicate in the next step (1).
  • treating in the above-mentioned inert gas atmosphere at about 50 to 200 ° C. for about 5 to 60 minutes.
  • a gold-particle-fixed titanium-containing silicate is diluted with a dilute solution of a silane coupling agent.
  • At least one compound selected from the group consisting of an alkali metal compound and an alkaline earth metal compound is added to the titanium-containing silicate (hereinafter, this may be referred to as "alkali conjugate").
  • alkali conjugate a compound selected from the group consisting of an alkali metal compound and an alkaline earth metal compound.
  • examples of the alkali metal include sodium, potassium, cesium and the like
  • examples of the alkali metal compound include nitrates, sulfates, carbonates, hydrogencarbonates, hydroxides, and salts of these alkali metals.
  • Various salts such as acid salts and acetates are exemplified.
  • Examples of the alkaline earth metal include calcium, magnesium, strontium, nickel, beryllium, and the like.
  • Examples of the alkaline earth metal compound include nitrates, sulfates, and carbonates of these alkaline earth metals. And various salts such as hydrogen carbonate, hydroxide salt, oxalate, acetate and the like.
  • alkali metal compounds and alkaline earth metal compounds preferred are salts of cesium, norium, magnesium, calcium, etc., and more preferred are salts of barium, magnesium, etc.
  • specific examples of preferable compounds include barium nitrate, magnesium nitrate and calcium nitrate, and more preferably barium nitrate and magnesium nitrate.
  • These alkali metal compounds and alkaline earth metal compounds may be used alone or in any combination of two or more.
  • the ratio of the titanium-containing silicate to the alkalinized conjugate differs depending on the type of the titanium-containing silicate used, the type of the alkali metal, and the like, and cannot be uniformly defined.
  • the alkalinity conjugate is generally 0.001 to 10 parts by weight, preferably 0.001 to 1 part by weight, more preferably 0.001 to 0.2 parts by weight based on 100 parts by weight of the fixed silicate containing titanium. Parts by weight.
  • the alkalizide can be fixed by using an alkalizide in place of the gold compound.
  • the alkalizide instead of dropping an aqueous solution of a gold compound, 0.001 to 10 mmol, preferably 0.001.
  • the fixation of the alkalizide to the titanium-containing silicate may be performed after the gold fine particles are fixed to the titanium-containing silicate, or the gold fine particles may be fixed to the titanium-containing silicate. You may go ahead. Further, the immobilization of the gold nanoparticles and the alkalinity conjugate to the titanium-containing silicate can be performed simultaneously. Preferably, they are performed simultaneously. In order to simultaneously fix the gold fine particles and the alkaline earth metal, for example, in the method for fixing the gold nanoparticles to the titanium-containing silicate by the precipitation method described in (1) described above, It can be carried out by using an aqueous solution containing a predetermined amount of an alkali compound together with the compound.
  • a saturated hydrocarbon having about 3 to 12 carbons or an unsaturated hydrocarbon having about 2 to 12 carbons can be used as the hydrocarbon as the starting material.
  • a product having a carbon number of up to about 6 which can easily release the catalyst layer even at a low temperature of around 100 ° C. is suitable as a raw material.
  • the saturated hydrocarbon include propane, n-butane, isobutane, cyclobutane, n-pentane, 2-methylbutane, cyclopentane, n-xane, 2-methylpentane, 3-methylpentane, and cyclohexane.
  • unsaturated hydrocarbons include compounds having a double bond, for example, ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 2-methyl-1-butene, 3-methyl- 1-butene, cyclopentene, 1-xen, 2-xen, 3-xen, 2-methyl-1-pentene, 3-methyl-1-pentene, cyclohexene, 1-methyl-1-cyclopentene, 3-methyl-1-cyclopentene, 4-methyl-1-pent And the like.
  • the catalyst used in the method of the present invention is the catalyst of the above (1).
  • the amount of the catalyst used is not particularly limited, it is practically appropriate to set the amount to be in the range of about a space velocity (SV) force of about 00—100OOhr—mlZg ′ cat.
  • the presence of hydrogen is essential. Even if the mixed gas consisting of oxygen, hydrocarbons and, in some cases, a diluent gas is reacted in the absence of hydrogen in the presence of the above catalyst, the reaction starts to occur at 200 ° C or higher, Only the generation of carbon dioxide is mainly recognized, and the generation of the oxygen-containing organic compound is not recognized at all. However, when hydrogen is present in the reaction system, the appearance of the reaction changes completely, and even at a low temperature of about 50 ° C., the formation of the above-mentioned oxygen-containing organic compound can be observed.
  • the amount of hydrogen present is not particularly limited, it can be practically used within the range of about 1/10 to 100Z1 by volume of the hydrogen Z raw material, but the reaction rate generally increases as the proportion of hydrogen increases. Since it rises, it is preferable to adopt a higher value within this range.
  • the amount of oxygen present is not particularly limited, but is usually determined by the volume ratio of the oxygen Z raw material.
  • LZio approximately loZi. If the amount of oxygen is smaller than this range, the amount of the obtained partially oxidized product is reduced, which is not preferable. Does not increase, but rather decreases the selectivity of the oxygen-containing organic compound (increases the amount of produced carbon dioxide), which is not preferable.
  • the reaction temperature in the present invention is usually in the range of about 0 to 300 ° C, more preferably in the range of about 50 to 200 ° C.
  • the reaction pressure employed usually about 0.01 to IMPa
  • the reaction temperature is too high, the combustion reaction to carbon dioxide tends to occur easily, and at the same time, consumption of hydrogen by water to carbon dioxide increases, which is not preferable. Therefore, although there is an optimum reaction temperature depending on the difference of the raw materials used, a preferable reaction temperature is considered to be in a range of approximately 50-200 ° C.
  • a mixed gas containing hydrocarbons, hydrogen, oxygen, and, if necessary, a diluent gas eg, nitrogen, argon, helium, carbon dioxide, etc.
  • a diluent gas eg, nitrogen, argon, helium, carbon dioxide, etc.
  • reaction in the present invention is carried out in a liquid phase, it is not necessary to consider the desorption from the catalyst layer as described above.
  • the reaction pressure and the reaction temperature are selected so as to keep the raw material in a liquid state, or a solvent (for example, a hydrocarbon solvent such as benzene, a methylene chloride or the like) is used.
  • the reaction can be performed by using a halogenated hydrocarbon solvent or the like) and publishing a mixed gas of a raw material compound, hydrogen, oxygen, and, in some cases, a diluent gas in the presence of a suspended catalyst.
  • the hydrocarbon partially oxidized is treated by treating the hydrocarbon partially oxidized catalyst with a mixed gas containing oxygen and hydrogen. Catalyst can be regenerated.
  • the ratio of oxygen and hydrogen is not particularly limited, but as an example, the ratio of oxygen: hydrogen is 0.1: 99.9-99.9: 0. 1, preferably 10:90 to 90:10, more preferably 25:75 to 75:25.
  • the mixed gas contains a diluent gas (for example, nitrogen, argon, helium, carbon dioxide, etc.) in addition to the above oxygen and hydrogen.
  • a diluent gas for example, nitrogen, argon, helium, carbon dioxide, etc.
  • the diluent gas is usually 1 to 999 parts by volume, preferably 1 to 199 parts by volume, more preferably 1 to 1 part by volume based on 1 part by volume of the total volume of oxygen and hydrogen.
  • the ratio can be 9 volumes.
  • the temperature conditions for treating the hydrocarbon partial oxidation catalyst with the above mixed gas include, for example, 0 to 500 ° C, preferably 50 to 400 ° C, and more preferably 100 to 300 ° C. Especially preferred Can be about 250 ° C. When the temperature is within the above range, the catalyst can be efficiently regenerated.
  • the method for treating the hydrocarbon partial oxidation catalyst with the mixed gas is not particularly limited, as long as the regenerated hydrocarbon partial oxidation catalyst is brought into contact with the mixed gas.
  • a method in which the mixed gas is continuously supplied to and extracted from a container filled with the hydrocarbon partial oxidation catalyst, and a method in which the mixed gas is charged into the container and hermetically sealed are used.
  • a method of supplying the above-mentioned mixed gas instead of the reaction gas in the reactor used for partial oxidation of hydrocarbons can be exemplified.
  • the ratio of the mixed gas to be brought into contact with the hydrocarbon partial oxidation catalyst varies depending on the component ratio of the mixed gas used, the degree of loss of activity of the hydrocarbon partial oxidation catalyst, and the like.
  • the total amount of the mixed gas is 0.1 to 100 L, preferably 1 to 50 L, and more preferably 5 to 25 L per 1 g of the hydrocarbon partial oxidation catalyst.
  • the ratio can be mentioned.
  • the titanium-containing silicate thus obtained has a TiZSi atomic ratio of the titanium-containing silicate of 3/100, and has a sponge-like structure having an average pore diameter of 7.4 nm. The latter was confirmed by powder X-ray diffraction (XRD), nitrogen adsorption (BET), and analysis by TEM (transmission electron microscope).
  • XRD powder X-ray diffraction
  • BET nitrogen adsorption
  • TEM transmission electron microscope
  • Catalytic reaction cell quartz inner diameter 10 mm
  • Reaction temperature 150 ° C.
  • Example 1 the catalyst in which the fine gold particles were supported on a titanium-containing silicate having an average pore diameter of 7.4 nm (Example 1) had a small pore diameter or a pore diameter of Comparative Example 11 having no pore. It was confirmed that the propylene conversion ratio was higher and the propylene oxide yield was higher than in Example 6. In Example 1, it was also clear that the selectivity of propylene oxide was as good as 90% or more, and the hydrogen conversion was as good as about 14%.
  • Example 2 gold nanoparticles were fixed to the titanium-containing silicate shown in Table 3. It was standardized. Then, while flowing Ar gas into a vessel filled with methoxytrimethylsilane at 25 ° C to generate a vapor containing methoxytrimethylsilane, the vapor was supplied for 30 minutes at a flow rate of 10 mlZ, and the gold filled in the reaction tube was supplied. It is passed through 0.15 g of a titanium-containing silicate having fine particles immobilized thereon, and then is subjected to a process of flowing Ar gas at 200 ° C for 5 hours at a flow rate of lOmlZ, whereby the gold-containing titanium-containing silicate is treated. An acid salt silylate was performed.
  • the silylation was performed in the same manner as in 2-3.
  • the following catalysts were prepared: using the titanium-containing silicate shown in Table 3 (TiO-SiO; sponge-like titanium-containing silicate prepared in Example 1), Only the immobilization of gold nanoparticles was performed according to the method described (Comparative Examples 7 and 8); using the titanium-containing silicate shown in Table 3, gold fine particles and Ba ( NO)) (Comparative Example 9); and the titanium-containing case shown in Table 3.
  • Catalytic reaction cell quartz inner diameter 10 mm
  • Catalyst pretreatment Argon ZH at 250 ° C
  • the oxygen-containing organic compound in the reaction for partially oxidizing hydrocarbons in the presence of oxygen and hydrogen, the oxygen-containing organic compound can be converted at a high conversion and a high selectivity. It becomes possible to synthesize, and at the same time, it is possible to realize efficient production of oxygen-containing organic compounds while suppressing unnecessary consumption of hydrogen (production of water). [0104] Therefore, according to the method for partially oxidizing hydrocarbons using the catalyst for partial oxidation of hydrocarbons of the present invention, the hydrocarbon-containing organic compounds such as alcohols, ketones, and epoxides can be produced in one step. Can be manufactured efficiently.
  • the catalyst for partial oxidation of hydrocarbons of the present invention can be easily regenerated by treating with a mixed gas containing oxygen, hydrogen and argon gas even if the catalytic activity is reduced by use. Therefore, it is suitable for industrial use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

 本発明は、含酸素有機化合物を高い転化率で製造でき、しかも含酸素有機化合物の選択率や水素の利用効率が高い触媒を提供することを目的とする。  平均孔径が4nm以上のチタン含有珪酸塩の多孔体に金ナノ粒子を固定化することにより炭化水素部分酸化用触媒を調整する。

Description

明 細 書
炭化水素部分酸化用金触媒
技術分野
[0001] 本発明は、炭化水素部分酸ィ匕用触媒に関する。また、本発明は、該触媒を使用す る含酸素有機化合物の製造方法、並びに該触媒の再生方法に関する。
背景技術
[0002] 酸素を用いて炭化水素を含酸素有機化合物に変換する方法は、極めて有益な技 術であり、これまで近代化学産業に対して多くの恩恵を与えてきた。し力しながら、有 用な化合物であるアルコールおよびケトンを飽和炭化水素から、また、エポキシドを 不飽和炭化水素から、それぞれ直接得ることは、一部の例外を除いて一般に困難で あるとされている。例えば、分子状酸素を酸化剤として用いて飽和炭化水素をアルコ ールおよびケトンへ転換する技術では、シクロへキサンを原料とするシクロへキサノー ルおよびシクロへキサノンの製造が工業的に実施されているのみである。また、不飽 和炭化水素のエポキシドへの転換にっ 、ても、エチレンからエチレンォキシドの製造 や、ブタジエン力 ブタジエンモノォキシドの製造が工業的に実施されているが、他 の不飽和炭化水素からのエポキシドの製造、例えばプロピレンからのプロピレンォキ シドの一段階での合成等は、非常に困難であるとされている。
[0003] これまでに、一段階で炭化水素をエポキシド、アルコール、ケトン等の含酸素有機 化合物に変換することを可能とする触媒として、金 -酸化チタン (特許文献 1参照)や 金微粒子を固定化したチタン含有珪酸塩 (特許文献 2参照)が報告されている。これ らの触媒を用いて水素の共存下で含酸素有機化合物の合成を行うことにより、(0酸 素化合物の合成の選択率が高くなる、 GO水以外は副生成物が生じないため、目的 の含酸素有機化合物の精製が容易であり、しかも環境への負荷が少ない、等という 利点が得られる。特に、後者の触媒は、前者の触媒に比べて、長期間安定に転化率 を維持できる点で優れて 、る。
[0004] しかしながら、これらの触媒は、工業的生産への実用化を視野に入れると、反応効 率、特に炭化水素の転化率や水素の利用効率の点で、更なる改善が望まれる。また 、工業的に使用される触媒には、触媒活性が低減した場合に、その活性を回復する ための有効な再生方法が確立されて 、ることが望まれて 、る。
特許文献 1:特開平 8- 127550号公報
特許文献 2:特開平 11 76820号公報
発明の開示
発明が解決しょうとする課題
[0005] そこで本発明は、含酸素有機化合物を高い転化率で合成でき、しかも含酸素有機 化合物の選択率や水素の利用効率が高い触媒を提供することを目的とするものであ る。
[0006] また、本発明は、酸素と水素存在下での炭化水素の酸化反応において、高い転ィ匕 率に加えて、含酸素有機化合物の選択率が高ぐ良好な水素の利用効率で、含酸 素有機化合物を合成できる方法を提供することを目的とするものである。
[0007] 更に、本発明は、上記触媒の効率的な再生方法を提供することを目的とするもので ある。
課題を解決するための手段
[0008] 本発明者らは、上記課題を解決すべく鋭意検討したところ、孔径カ nm以上のチ タン含有珪酸塩に金ナノ粒子を固体化した触媒、及び金ナノ粒子を固定化したチタ ン含有珪酸塩をシランカップリング剤で修飾することにより得られる触媒は、酸素及び 水素の存在下で炭化水素を部分酸ィ匕する反応において、含酸素有機化合物の選択 性に優れており、し力も含酸素有機化合物の転ィ匕率や水素の利用効率が高いことを 見出した。また、上記の触媒を用いて、酸素及び水素の存在下に炭化水素を部分酸 化することによって、高い転ィ匕率に加えて、選択性も高ぐ良好な水素の利用効率で 、エポキシド、アルコール、ケトン等の含酸素有機化合物を得ることができることを見 出した。また、当該触媒が使用によって触媒活性が低減した場合、酸素、水素及び アルゴンガスを含有する混合ガスを用いて処理することによって、該触媒活性が効果 的に回復されることを見出した。本発明は、力かる知見に基づいて、更に検討を重ね て完成されたものである。
[0009] 即ち、本発明は、下記に掲げる炭化水素部分酸ィ匕用触媒である: 項 1. 平均孔径カ nm以上のチタン含有珪酸塩の多孔体に金ナノ粒子を固定ィ匕し た炭化水素部分酸化用触媒。
項 2. チタン含有珪酸塩の細孔構造がスポンジ状構造である、項 1に記載の炭化水 素部分酸化用触媒。
項 3. チタン含有珪酸塩の多孔体の平均孔径が 4一 50nmである、項 1に記載の炭 化水素部分酸化用触媒。
項 4. チタン含有珪酸塩における Tiと Siの原子比率 (TiZSi)が、 1/10000-20
Ziooである、項 1に記載の炭化水素部分酸ィ匕用触媒。
項 5. 金ナノ粒子を固定ィ匕したチタン含有珪酸塩がシランカップリング剤で修飾され ている、炭化水素部分酸化用触媒。
項 6. 更に、アルカリ金属化合物及びアルカリ土類金属化合物よりなる群から選択さ れる少なくとも 1種の化合物を担持させたものである、項 5に記載の炭化水素部分酸 化用触媒。
項 7. 硝酸バリウム、硝酸マグネシウム及び硝酸カルシウムよりなる群力 選択される 少なくとも 1種の化合物が担持されたものである、項 6に記載の炭化水素部分酸ィ匕用 触媒。
項 8. チタン含有珪酸塩の多孔体の平均孔径が 4一 50nmである、項 5に記載の炭 化水素部分酸化用触媒。
項 9. チタン含有珪酸塩における Tiと Siの原子比率 (TiZSi)が、 1/10000-20 Z100である、項 5に記載の炭化水素部分酸ィ匕用触媒。
項 10. シランカップリング剤力 メトキシトリメチルシラン、メトキシトリエチルシラン、メ トキシトリイロプルシラン、エトキシトリメチルシラン、エトキシトリエチルシラン、エトキシ トリイロプルシラン、トリメチルシリルトリフルォロメタンスルホネート及びトリェチルシリ ルトリフルォロメタンスルホネートよりなる群力も選択される少なくとも 1種である、項 5 に記載の炭化水素部分酸化用触媒。
項 11. 金ナノ粒子が固定ィ匕されたチタン含有珪酸塩 100重量部に対して、アルカリ 金属化合物及びアルカリ土類金属化合物よりなる群力 選択される少なくとも 1種の 化合物が、 0. 001— 10重量部の割合で担持されている、項 6に記載の炭化水素部 分酸化用触媒。
[0010] また、本発明は、下記に掲げる含酸素有機化合物の製造方法である:
項 12. 項 1一 11のいずれかに記載の炭化水素部分酸ィ匕用触媒を用いて、水素及 び酸素の存在下で、炭化水素を酸化することを特徴とする含酸素有機化合物の製造 方法。
項 13. 不飽和炭化水素を部分酸ィ匕してエポキシドを製造する方法である、項 12に 記載の方法。
項 14. 炭化水素が、炭素数 3— 12の飽和炭化水素又は炭素数 2— 12の不飽和炭 化水素である、項 12に記載の製造方法。
項 15. 炭化水素の酸ィ匕を 0— 300°Cの温度条件下で行う、項 12に記載の製造方 法。
[0011] 更に本発明は、下記に掲げる炭化水素部分酸ィ匕用触媒の再生方法である: 項 16. 項 1一 11の 、ずれかに記載の炭化水素部分酸化用触媒の再生方法であつ て、酸素及び水素を含有する混合ガスを用いて、該炭化水素部分酸化用触媒を処 理することを特徴とする、炭化水素部分酸化用触媒の再生方法。
項 17. 上記混合ガスによる処理を 100— 400°Cで行う、項 16に記載の再生方法。 図面の簡単な説明
[0012] [図 1]図 1は、チタン含有珪酸塩の細孔構造の一例である、一次元のチャンネル構造 を持つ細孔が六方構造に配列して 、る構造 (へキサゴナル構造)を示す図である。
[図 2]図 2は、チタン含有珪酸塩の細孔構造の一例である、一次元のチャンネル構造 を持つ細孔が不規則に集合している構造 (不規則構造)を示す図である。
[図 3]図 3は、チタン含有珪酸塩の細孔構造の一例である、一次元のチャンネル構造 を持つ細孔が 3次元的に連結している構造 (キュービック構造)を示す図である。
[図 4]図 4は、チタン含有珪酸塩の細孔構造の一例である、細孔が三次元的に不規 則に連貫して!/ヽるスポンジ状の構造 (スポンジ状構造)を示す図 (透過型電子顕微鏡 写真)である。
発明を実施するための最良の形態
[0013] 本発明にお 、て、「含酸素有機化合物」とは、炭化水素を部分酸化して得られる有 機化合物、具体的にはアルコール、ケトン、エポキシド等のことを意味する。「炭化水 素の転化率」とは、原料となる炭化水素の内、反応によって消費される炭化水素の割 合 (モル比)(%)を示す。「含酸素有機化合物の選択率」とは、反応によって消費され た炭化水素の内、含酸素有機化合物に変換されたものの割合 (モル比)(%)を示す 。「含酸素有機化合物の収率」とは、原料となる炭化水素に対して、生成した含酸素 有機化合物の割合 (モル比)(%)を示す。「水素の転ィ匕率」とは、反応に供した水素 の内、反応によって消費される水素の割合 (モル比)(%)を示す。以下に、本発明を 詳細に説明する。
[0014] (1)炭化水素部分酸化用触媒
(1 1)本発明の炭化水素部分酸ィ匕用触媒は、平均孔径カ nm以上のチタン含有 珪酸塩の多孔体に金ナノ粒子が固定ィ匕されていることを特徴とするものである。以下 、当該炭化水素部分酸ィ匕用触媒について詳細に説明する。
[0015] 本発明にお 、て、金ナノ粒子とは、平均粒径が lOnm以下の金微粒子のことである
[0016] 本発明の触媒において、金ナノ粒子は、平均粒子径が 2— 5nmの範囲内であるこ とが好ましい。このような金ナノ粒子が、チタン含有珪酸塩の担体に強固に固定ィ匕さ れて、担持されていることが望ましい。金の粒子径が lOnmよりも著しく大きい場合に は、その比表面積力 、さくなりすぎて、炭化水素の転ィ匕率が低くなつてしまう傾向が みられる。一方、 2nmより著しく小さくなると、金属としての金の性質が失われ、不飽 和炭化水素の水素化反応が優先的に進行し、部分酸ィ匕反応が進まなくなる傾向が 現れることがある。
[0017] 本発明の触媒における金ナノ粒子の含有割合は、チタン含有珪酸塩 100重量部に 対して、 0. 001重量部以上が好ましぐ 0. 01— 20重量部の範囲内がより好ましぐ 0. 05— 10重量部の範囲内がさらに好ましい。金ナノ粒子の担持割合が 0. 001重 量部より著しく少ないと触媒の活性が低下するので好ましくない。一方、金の担持割 合を 20重量部より多くしても、金を上記の範囲内で担持させた場合と比較して、触媒 の活'性に違いはない。
[0018] 本発明の触媒には、平均孔径カ S4nm以上のチタン含有珪酸塩の多孔体を使用す る。好ましくは 5nm以上、更に好ましくは 7nm以上のチタン含有珪酸塩の多孔体で ある。
上記範囲内の平均孔径のチタン含有珪酸塩を使用することにより、含酸素有機化合 物の転ィ匕率を向上させることが可能となる。当該チタン含有珪酸塩の多孔体の平均 孔径の上限については、特に制限されないが、通常 50nm、好ましくは 30nmを挙げ ることができる。当該チタン含有珪酸塩の多孔体の平均孔径の一例として、 4一 50η m、好ましくは 4一 30nm、更に好ましくは 7— 30nmとなる範囲を例示できる。なお、 本発明において、平均孔径は、窒素吸着法による測定値とする。
[0019] チタン含有珪酸塩の多孔体とは、チタン原子を構成成分として含有する珪酸塩の 多孔体のことである。該チタン含有珪酸塩の多孔体において、チタン原子は、珪酸塩 の中で孤立分散した状態であることが望ま U、。
[0020] チタン含有珪酸塩の種類は、特に限定されな ヽ。一例として、ゼォライト系材料の アルミニウムの一部がチタンで置き換わってチタンがゼォライト格子内に組み込まれ たもの、シリカの一部をチタン原子で置換したもの、チタンとシリコンの複合酸化物等 を挙げることができる。また、これらのチタン含有珪酸塩上に微少量の酸ィ匕チタンが 高分散担持されてなるものを用いることもできる。
[0021] チタン含有珪酸塩の細孔構造については、特に制限されるものではない。チタン含 有珪酸塩の細孔構造の一例として、一次元のチャンネル構造を持つ細孔が六方構 造に配列している構造 (以下、該構造をへキサゴナル構造という)(図 1参照)、一次 元のチャンネル構造を持つ細孔が不規則に集合している構造 (以下、該構造を不規 則構造という)(図 2参照)、一次元のチャンネル構造を持つ細孔が 3次元的に連結し ている構造 (以下、該構造をキュービック構造という)(図 3参照)、並びに細孔が三次 元的に不規則に連貫して 、るスポンジ状の構造 (以下、該構造をスポンジ状構造と ヽ う)(図 4参照)等を挙げることができる。好ましくはスポンジ状構造のチタン含有珪酸 塩である。スポンジ状構造のチタン含有珪酸塩を用いることによって、より高い転化率 で含酸素有機化合物を得ることが可能となる。
[0022] チタン含有珪酸塩の形状は、特に限定されるものではなぐ粉体状であってもよぐ また他の各種の形状に成形したものであってもよ 、。 [0023] チタン含有珪酸塩におけるチタンの含有量は、 Tiと Siの原子比率 (以下、「TiZSi」 と表記する)に換算して、 1Z10000— 20Z100の範囲内力 子ましく、 1Z100— 10 /100の範囲内がより好ましい。チタンの含有量が Ti/Si= 1/10000よりも著しく 少ないと、シリカ単独の担体を用いた場合と同様の触媒特性となり、炭化水素の選択 酸化が起きないので不適切である。一方、チタンの含有量を TiZSi=20Zl00より 著しく多くすると、酸ィ匕チタンをシリカ上に担持した担体と同様の触媒特性となり、触 媒活性の経時劣化を避けることができな 、ので好ましくな 、。
[0024] 本発明に使用されるチタン含有珪酸塩の製造は、その孔径ゃ細孔構造等に応じて
、公知の製造方法に従って、行うことができる。
[0025] スポンジ状構造のチタン含有珪酸塩の製造方法の具体例としては、例えば、ゾル ゲル法又はその改良方法(例えば、 S. A. Bagshaw等、 Science, 1995年、第 269卷、 第 1242頁;及び Z. Shang等、 Chem. Eur. J.、 2001年、第 7卷、第 1437頁)を挙げること ができる。また、細孔構造がへキサゴナル構造、不規則構造又はキュービック構造の チタン含有珪酸塩の製造方法の具体例としては、例えば、水熱合成法 (例えば、辰 巳等、特開平 7- 300312号公報; K. Koyano等、 Stud. Surf. Sci. Catal.、 1997年、第 105卷、第 93頁)を挙げることができる。
[0026] 上記チタン含有珪酸塩は、触媒の活性をより向上させるために、予め成形された支 持体に固定ィ匕した状態で用いることもできる。支持体としては、チタンを含まない金属 酸ィ匕物や各種金属からなる材料を用いることができる。具体例としては、アルミナ (酸 化アルミニウム: Al O )、シリカ(二酸化珪素: SiO )、マグネシア(酸化マグネシウム:
2 3 2
MgO)、コージェライト、酸ィ匕ジルコニウム、これらの複合酸化物等からなるセラミック ス、各種金属からなる発泡体、各種金属からなるハニカム担体、各種金属のペレット 等が挙げられる。
[0027] 上記支持体としては、アルミナ及びシリカの少なくとも一種を含有するものが好まし ぐシリカを含有するものが特に好ましい。ここで、「アルミナおよびシリカを含有する」 とは、ゼォライト (アルミノシリケート)やシリカアルミナを含有する場合も含むこととする
[0028] 上記支持体の結晶構造、形状、大きさ等は、特に限定されるものではないが、比表 面積が 50m2/g以上であることが好ましぐ 100m2/g以上であることがより好ましい 。支持体の比表面積が 50m2/g以上である場合には、遂次酸ィ匕等の副反応がより 一層抑制され、効率的に炭化水素類を部分酸ィ匕することができ、触媒性能がより一 層向上する。
[0029] チタン含有珪酸塩を支持体に固定ィ匕して用いる場合には、チタン含有珪酸塩の量 は、支持体を基準として 1一 20重量%程度であることが好ましい。チタン含有珪酸塩 をシリカやアルミナ等の担体に担持させるには、例えば、アルコキシドを用いたゾルー ゲル法、混練法、コーティング法などの方法を適用することができ、これらの方法によ つて、 V、わゆる島状構造をなすように分散させて担持させることができる。
[0030] 以下に、本発明の触媒の製造方法について説明する。
[0031] 本発明触媒の製造方法としては、金ナノ粒子をチタン含有珪酸塩に固定ィ匕できる 方法であれば、特に限定されない。
[0032] 該触媒の製造方法の具体例としては、例えば、特開平 7 - 8797号公報に記載の析 出沈殿法や、特開平 9 122478号広報に記載の蒸着法、含浸法等を挙げることがで きるが、特に限定されるものではない。以下に上記方法のうち、析出沈殿法で金ナノ 粒子をチタン含有珪酸塩に固定ィ匕する手順について説明する。
[0033] まず、金化合物を含有する水溶液を調製し、 30— 100°Cの範囲内、より好ましくは 50 一 95°Cの範囲内に加温した後、攪拌しながら、アルカリ水溶液を用いて上記水溶液 の pHを 6— 12の範囲内、より好ましくは 7— 10の範囲内に調整する。次に、この水溶 液にチタン含有珪酸塩を、上記温度で攪拌しながら、一度に、若しくは数分以内に 数回に分けて投入する。
[0034] チタン含有珪酸塩を投入した後、所定時間、上記温度で攪拌を続けることにより、 当該チタン含有珪酸塩の表面に金水酸化物が付着 (析出沈殿)してなる固形物 (金ナ ノ粒子固定ィ匕物)が得られる。当該固形物を濾別して取り出し、水洗した後、 100— 800°Cの範囲で空気中で焼成する。これにより、金微粒子がチタン含有珪酸塩に担 持される。
[0035] 上記のアルカリ水溶液を構成するアルカリ成分としては、具体的には、例えば、炭 酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、 水酸ィ匕セシウム、アンモニア、テトラメチルアンモ -ゥム等が挙げられる。
[0036] 上記の金化合物としては、具体的には、塩ィ匕金酸 (HAuCl )、塩化金酸ナトリウム(
4
NaAuCl )、シアン化金(AuCN)、シアン化金カリウム {K〔Au(CN)〕 }、三塩化ジ
4 2
ェチルアミン金酸〔(C H ) NH-AuCl 〕等の水溶性金塩が例示されるが、これらに
2 5 2 3
限定されるものではない。
[0037] 滴下時に用いる金化合物含有水溶液における金の濃度は特に限定されないが、 金が通常 0. 1-0. OOlmol/1程度含まれているものが適当である。
[0038] チタン含有珪酸塩の水中への添加量は、特に限定はなぐ例えば粉体状のチタン 含有珪酸塩を用いる場合には、それを水中に均一に分散乃至縣濁できるような量で あればよぐ通常 10— 200gZl程度が適当である。また、チタン含有珪酸塩を成形 体として用いる場合には、成形体の形状に応じて、その表面に水溶液が充分に接触 できる状態であれば、添加量は、特に限定されない。
[0039] また、本発明の触媒は、特開平 9 122478号公報に記載された有機金錯体の蒸 気を用いる金超微粒子固定ィ匕物質の製造方法に準じた方法で製造することもできる
。以下、この方法について簡単に説明する。
[0040] この方法では、気化した有機金錯体を、チタン含有珪酸塩に減圧下で吸着させた 後、 100— 700°Cに加熱することにより金ナノ粒子を固定ィ匕したチタン含有珪酸塩を 得ることができる。
[0041] 有機金錯体としては、揮発性を有するものであれば特に制限されず、例えば (CH
3
) Au (CH COCHCOCH )、 (CH ) Au (CF COCHCOCH )、 (CH ) Au (CF C
2 3 3 3 2 3 3 3 2 3
OCHCOCF )、(C H ) Au (CH COCHCOCH )、 (CH ) Au(C H OOCHCO
3 2 5 2 3 3 3 2 6 5
CF )、CH C AuP (CH )及び CH AuP (CH )等の少なくとも 1種を用いることがで
3 3 2 3 3 3 3 3
きる。
[0042] なお、チタン含有珪酸塩は、予め 200°C程度で加熱処理することにより、表面にあ る水分等を除去して用いることもできる。
[0043] 有機金錯体の気化は、加熱により行うことができる。加熱温度は、急激な気化と吸 着或いは分解を起こさないようにすれば特に制限はなぐ通常 0— 90°C程度とする。 また、上記気化は、減圧下で行うこともでき、この場合に圧力としては通常 1 X 10— 4— 2 X 10— 3Torr程度とすれば良!ヽ。
[0044] 気化した有機金錯体は、減圧下でチタン含有珪酸塩に吸着させる。本発明で ヽぅ「 減圧下」とは、大気圧よりも低ければ良いが、通常 1 10—4—200丁0 程度の圧カを いう。有機金錯体の導入量は、用いる金錯体の種類により異なり、最終的に前記した 固定ィ匕量となるように適宜調節すれば良い。また、圧力は、公知の真空ポンプ等で 調節すれば良い。
[0045] 次いで、有機金錯体が吸着したチタン含有珪酸塩を空気中で通常 100— 700°C 程度、好ましくは 300— 500°Cで加熱する。これにより、有機金錯体中の有機成分が 分解'酸化されるとともに有機金錯体が金に還元され、チタン含有珪酸塩上に金ナノ 粒子として析出して固定されることとなる。加熱時間は、有機金錯体の担持量、加熱 温度等に応じて適宜設定することができる力 通常は 1一 24時間程度で良い。このよ うにして金ナノ粒子を固定ィ匕したチタン含有珪酸塩が得られる。
[0046] 上記製造方法では、有機金錯体の吸着に先立って、通常 100— 700°C程度でカロ 熱することによりチタン含有珪酸塩を表面処理することもできる。さらに、この表面処 理は、酸ィ匕性ガス又は還元性ガス雰囲気下で行うこともできる。これにより、チタン含 有珪酸塩表面の欠陥量と状態の制御がより容易となり、金の粒径及び担持量をより 細力べ制御することができる。
[0047] 上記酸ィ匕性ガスとしては、公知のものが使用でき、例えば酸素ガス、一酸化窒素ガ ス等が挙げられる。また、上記還元性ガスとしては、公知のものが使用でき、例えば 水素ガス、一酸化炭素ガス等が挙げられる。
[0048] 以上説明した金を析出沈殿させる方法、及び有機金錯体の蒸気を用いる方法によ れば、金ナノ粒子を比較的均一な分布でチタン含有珪酸塩上に強固に固定ィ匕する ことができる。
[0049] 本発明の触媒を支持体に担持させて用いる場合には、チタン含有珪酸塩を支持体 に担持させた後、金を固定ィ匕する方法が好適である。支持体に担持させたチタン含 有珪酸塩に金を固定化するには、上記した金を析出沈殿させる方法、及び有機金錯 体の蒸気を用いる方法において、チタン含有珪酸塩に代えて、チタン含有珪酸塩を 担持した支持体を使用すればよい。特に、金を析出沈殿させる方法によって製造す れば、金ナノ粒子は、支持体上にはほとんど析出せず、チタン含有珪酸塩上 (特に、 チタンイオンの存在する場所)にのみ固定ィ匕される点で有利である。また、シリカ単独 の支持体又はシリカを含む支持体を用いる場合には、金を析出沈殿させる方法によ れば、特に高い選択性をもってチタン含有珪酸塩上にのみ金ナノ粒子を固定ィ匕する ことができる点で非常に有利である。
[0050] (1-2) また、本発明は、金ナノ粒子を固定ィ匕したチタン含有珪酸塩がシランカツ プリング剤で修飾されていることを特徴とする炭化水素部分酸化用触媒を提供する。 以下、当該触媒について、詳細に説明する。
[0051] 本発明の触媒に使用できる金ナノ粒子は、前述の(1—1)に使用できるものと同様 である。また、金ナノ粒子のチタン含有珪酸塩に対する配合割合についても、前述す る(1—1)のチタン含有珪酸塩に対する金ナノ粒子の配合割合と同様である。
[0052] 本発明の触媒に用いるチタン含有珪酸塩の種類は、特に制限されるものではない 力 例えば、ゼォライト系材料のアルミニウムの一部がチタンで置き換わってチタンが ゼォライト格子内に組み込まれたもの、シリカの一部をチタン原子で置換したもの、チ タンとシリコンの複合酸ィ匕物等を挙げることができる。また、これらのチタン含有珪酸 塩上に微少量の酸ィ匕チタンを高分散担持させたものを用いることもできる。
[0053] チタン含有珪酸塩の形態については、特に制限されないが、平均孔径が 4nm以上 の多孔体のものが好ま 、。含酸素有機化合物の転化率を向上させると!、う観点か ら、更に好ましくは 5nm以上、より好ましくは 7nm以上の多孔体である。当該チタン含 有珪酸塩の多孔体の平均孔径の上限については、特に制限されないが、通常 50η m、好ましくは 30nmを挙げることができる。当該チタン含有珪酸塩の多孔体の平均 孔径の一例として、 4一 50nm、好ましくは 4一 30nm、更に好ましくは 7— 30nmとな る範囲を例示できる。
[0054] また、チタン含有珪酸塩の多孔体を用いる場合、その細孔構造については特に限 定されるものではない。チタン含有珪酸塩の細孔構造として、例えば、へキサゴナル 構造、不規則構造、キュービック構造、及びスポンジ状構造のものを挙げることができ る。これらの中で、好ましくはスポンジ状構造のものである。
[0055] チタン含有珪酸塩におけるチタンの含有量については、前述する(1 1)で使用す るチタン含有珪酸塩におけるチタンの含有量と同様である。
[0056] 本発明に使用するチタン含有珪酸塩は、公知の製造方法に従って製造することが できる。
[0057] また、上記チタン含有珪酸塩は、前述する(1—1)と同様に、触媒の活性を向上させ るために、予め成形された支持体に固定ィ匕した状態で用いることもできる。当該支持 体についても、前述する(1—1)で用いられるものと同様である。
[0058] チタン含有珪酸塩に金ナノ粒子を固定ィ匕する方法としては、特に制限されないが、 例えば、前述する(1—1)に記載の析出沈殿法を挙げることができる。
[0059] 本発明の触媒は、上記のようにして得られる金ナノ粒子固定ィ匕チタン含有珪酸塩 の表面がシランカップリング剤で修飾されてなるものである。
[0060] 金ナノ粒子固定ィ匕チタン含有珪酸塩を修飾するシランカップリング剤としては、従 来公知のものを制限なく使用することができる。好ま 、シランカップリング剤としては 、例えば、メトキシトリメチルシラン、メトキシトリエチルシラン、メトキシトリイロプルシラン 、エトキシトリメチルシラン、エトキシトリエチルシラン、エトキシトリイロプルシラン、トリメ チルシリルトリフルォロメタンスルホネート、トリェチルシリルトリフルォロメタンスルホネ 一ト等を挙げることができる。これらの中でも、特にメトキシトリメチルシランゃメトキシト リエチルシランを使用することによって、より一層高い転ィ匕率で酸素含有有機化合物 を合成することが可能となる。これらのシランカップリング剤は、 1種単独で使用しても よぐまた 2種以上を任意に組み合わせて使用してもよ!、。
[0061] チタンカップリング剤による修飾は、金ナノ粒子固定化チタン含有珪酸塩の表面の 水酸基とシランカップリング剤とを反応させることにより行われる。
[0062] 金ナノ粒子が固定ィ匕されたチタン含有珪酸塩をシランカップリング剤で修飾する方 法としては、従来公知のシランカップリング剤による表面処理方法を採用することがで きる。例えば、シランカップリング剤中にアルゴンガス等の不活性ガスを通気してシラ ンカップリング剤を気化させ、次!ヽで該シランカップリング剤を含む蒸気を金ナノ粒子 固定化チタン含有珪酸塩と接触させた後、上記不活性ガス雰囲気中で 50— 200°C 程度で、 5— 60分程度処理する方法を挙げることができる。また、その他の方法とし て、例えば、金ナノ粒子固定ィ匕チタン含有珪酸塩をシランカップリング剤の希薄溶液 でスラリー化したり、浸漬させる方法 (湿式法)や、金微粒子固定化チタン含有珪酸塩 を高速攪拌しながら、シランカップリング剤の原液ある 、は溶液を均一に分散させる 方法 (乾式法)等を例示することができる。
[0063] 更に、チタン含有珪酸塩にアルカリ金属化合物及びアルカリ土類金属化合物よりな る群力 選択される少なくとも 1種の化合物(以下、これを「アルカリィ匕合物」と表記す ることもある)を固定ィ匕して (担持させて)おくことによって、より一層含酸素有機化合 物の転ィ匕率を向上させることが可能となる。
[0064] ここで、アルカリ金属としては、ナトリウム、カリウム、セシウム等が挙げられ、アルカリ 金属化合物としては、これらのアルカリ金属の硝酸塩、硫酸塩、炭酸塩、炭酸水素塩 、水酸化物塩、シユウ酸塩、酢酸塩等の各種の塩が挙げられる。
[0065] また、アルカリ土類金属としては、カルシウム、マグネシウム、ストロンチウム、ノ リウ ム、ベリリウム等が挙げられ、アルカリ土類金属化合物としては、これらのアルカリ土類 金属の硝酸塩、硫酸塩、炭酸塩、炭酸水素塩、水酸化物塩、シユウ酸塩、酢酸塩等 の各種の塩が挙げられる。
[0066] これらアルカリ金属化合物及びアルカリ土類金属化合物の中で、好ましくはセシゥ ム、ノ リウム、マグネシウム、カルシウム等の塩であり、更に好ましくはバリウム、マグネ シゥム等の塩を挙げることができる。特に、これらアルカリ金属化合物及びアルカリ土 類金属化合物の内、好ましい化合物の具体例として、硝酸バリウム、硝酸マグネシゥ ム、硝酸カルシウムが挙げられ、更に好ましくは硝酸バリウム及び硝酸マグネシウムを 挙げることができる。これらアルカリ金属化合物及びアルカリ土類金属化合物は、 1種 単独で使用しても、また 2種以上を任意に組み合わせて使用してもよ 、。
[0067] チタン含有珪酸塩とアルカリィ匕合物との割合については、使用するチタン含有珪酸 塩の種類、アルカリ金属等の種類等によって異なり一律に規定することができな 、が 、例えば金ナノ粒子固定ィ匕チタン含有珪酸塩 100重量部に対してアルカリィ匕合物が 総量で、通常 0. 001— 10重量部、好ましくは 0. 001— 1重量部、更に好ましくは 0. 001—0. 2重量部を挙げることができる。
[0068] アルカリィ匕合物をチタン含有珪酸塩に固定ィ匕する方法としては、特に制限されない 。例えば、前述する(1 1)に記載する析出沈殿法による金ナノ粒子のチタン含有珪 酸塩への固定化方法に準じて、金化合物の代わりにアルカリィ匕合物を使用すること によって、アルカリィ匕合物の固定ィ匕を行うことができる。より具体的には、前述する(1 1)に記載する析出沈殿法による金ナノ粒子の固定ィ匕方法において、金化合物水 溶液を滴下する代わりに、 0. 001— lOmmolZl、好ましくは 0. 001—0. 2mmol/ 1のアルカリ化合物の水溶液を、チタン含有珪酸塩に担持させるアルカリ化合物の量 に応じた量を滴下することによって、アルカリィ匕合物の固定ィ匕を行うことができる。
[0069] アルカリィ匕合物のチタン含有珪酸塩への固定ィ匕は、チタン含有珪酸塩に金微粒子 を固定ィ匕した後に行ってもよぐまたチタン含有珪酸塩に金微粒子を固定ィ匕する前 に行ってもよい。また、金ナノ粒子及びアルカリィ匕合物のチタン含有珪酸塩への固定 化を同時に行うこともできる。好ましくは、同時に行う方法である。金微粒子及びアル カリ土類金属の固定ィ匕を同時に行うには、例えば、前述する(1)に記載する析出沈 殿法による金ナノ粒子のチタン含有珪酸塩への固定ィ匕方法において、金化合物と共 に所定量のアルカリ化合物を含有する水溶液を使用することによって実施することが できる。
[0070] (2)含酸素有機化合物の製造方法
以下、本発明の触媒を用いて炭化水素を部分酸化させて、含酸素有機化合物を 製造する方法にっ 、て説明する。
[0071] 本製造方法において、原料ィ匕合物である炭化水素としては、炭素数 3— 12程度の 飽和炭化水素又は炭素数 2— 12程度の不飽和炭化水素を用いることができる。また 、気相で反応を行う場合には、生成物が 100°C前後の低温においても容易に触媒層 力も脱離しうる炭素数が 6程度までのものが、原料として適している。飽和炭化水素と しては、例えば、プロパン、 n ブタン、イソブタン、シクロブタン、 n ペンタン、 2—メチ ルブタン、シクロペンタン、 n キサン、 2—メチルペンタン、 3—メチルペンタン、シク 口へキサン等が挙げられ、また不飽和炭化水素としては、 2重結合を有する化合物、 例えば、エチレン、プロピレン、 1ーブテン、 2—ブテン、イソブテン、 1—ペンテン、 2—ぺ ンテン、 2—メチルー 1ーブテン、 3—メチルー 1ーブテン、シクロペンテン、 1 キセン、 2 キセン、 3 キセン、 2—メチルー 1 ペンテン、 3—メチルー 1 ペンテン、シクロへ キセン、 1ーメチルー 1ーシクロペンテン、 3—メチルー 1ーシクペンテン、 4ーメチルー 1ーぺ ンテン等が挙げられる。
[0072] 不飽和炭化水素を原料ィ匕合物とする場合には、高 、選択性でエポキシドが生成さ れる。
[0073] また、飽和炭化水素を原料化合物とする場合には、 2級炭素一水素結合が酸化さ れる際には、主としてケトンが生成され、 3級炭素-水素結合が酸化される際には、主 としてアルコールが生成される。炭素一水素結合の反応性の順序は、 3級 > 2級 > 1 級であり、 1級炭素一水素結合は、ほとんど反応しない。
[0074] 本発明方法で使用する触媒は、上記(1)の触媒である。触媒の使用量は、特に限 定されるものではないが、実用的には、空間速度(SV)力 00— lOOOOhr— mlZg' cat程度の範囲内となる量とすることが適している。
[0075] 本発明にお 、ては、水素の存在が必須である。仮に水素が共存しな 、状態で、即 ち酸素、炭化水素そして場合により希釈ガスからなる混合ガスを上記触媒下の存在 下に反応させたとしても、 200°C以上で反応が起こりはじめるものの、二酸化炭素の 生成が主に認められるのみで、上記の含酸素有機化合物の生成は、全く認められな い。しかるに、水素を反応系内に存在させると、反応の様相は一変し、 50°C程度の 低温においてさえ、上記の含酸素有機化合物の生成が認められるようになる。水素 の存在量は、特に限定されるものではないが、通常水素 Z原料の体積比で、 1/10 一 100Z1程度の範囲内で実用可能であるが、一般に水素の割合が大きい程反応 速度が上昇するので、この範囲内で高目の値を採用することが好ましい。
[0076] 酸素の存在量は、特に限定されるものではないが、通常、酸素 Z原料の体積比で
、 lZio— loZi程度の範囲が適当である。この範囲より酸素の存在量が少ないと、 得られる部分酸ィ匕生成物の量が少なくなるので好ましくなぐ一方、この範囲より酸素 の存在量を多くしても、得られる含酸素有機化合物の量は増加せず、かえって、含酸 素有機化合物の選択率の低下(二酸化炭素の生成量の増加)を生じるので好ましく ない。
[0077] 本発明における反応温度は、通常 0— 300°C程度、より好ましくは 50— 200°C程度 の範囲が適している。気相で反応を行なう場合には、触媒層からの生成物の脱離が 容易に行われる様に、採用する反応圧 (通常 0. 01— IMPa程度)下で生成物が充 分に揮発性を示す温度を選ぶ必要がある。一方、反応温度をあまり高温にすると、二 酸ィ匕炭素への燃焼反応が起こり易くなると同時に、水素の水への酸ィ匕による消費が 増大するため、好ましくない。従って、用いる原料の相違により、最適反応温度がある ものの、好適な反応温度は、ほぼ 50— 200°Cの範囲に入ると思われる。
[0078] 気相反応は、本発明触媒を充填した反応装置に炭化水素、水素、酸素および必要 ならば希釈ガス (例えば、窒素、アルゴン、ヘリウム、二酸化炭素など)を含む混合ガ スを供給し、所定の反応条件で反応させればよい。
[0079] 本発明における反応を液相で行なう場合には、上記のような触媒層からの脱離を 考慮する必要がないので、多くの場合 100°C以下で行い得る。また、液相で反応を 行う場合には、原料を液体状態を保持させるような反応圧と反応温度とを選ぶか、或 いは溶媒 (例えば、ベンゼンなどの炭化水素系溶媒、塩化メチレンなどのハロゲンィ匕 炭化水素系溶媒など)を用いて、懸濁した触媒の存在下に原料化合物、水素、酸素 、場合によっては希釈ガスの混合ガスをパブリングさせることにより反応を行うことがで きる。
[0080] (3)上記炭化水素部分酸化用触媒の再生方法
上記炭化水素部分酸化用触媒が使用によりその触媒活性が低減した場合、酸素 及び水素を含有する混合ガスを用いて、該炭化水素部分酸化用触媒を処理すること によって、該炭化水素部分酸ィ匕用触媒を再生することができる。
[0081] 上記混合ガスにおいて、酸素と水素の割合は、特に制限されるものではないが、一 例として、酸素:水素が体積比で、 0. 1 : 99. 9一 99. 9 :0. 1、好ましくは 10: 90— 9 0: 10、更に好ましくは 25 : 75— 75 : 25となる割合が挙げられる。
[0082] また、上記混合ガスには、上記の酸素及び水素に加えて、希釈ガス (例えば、窒素 、アルゴン、ヘリウム、二酸ィ匕炭素など)を含有させて使用することが望ましい。希釈ガ スを混合ガスに含有させる場合、例えば、酸素と水素の総容量 1容量部に対して、希 釈ガスが通常 1一 999容量部、好ましくは 1一 99容量部、更に好ましくは 1一 9容量 部となる割合を挙げることができる。
[0083] 炭化水素部分酸ィ匕用触媒を上記混合ガスで処理する際の温度条件としては、例え ば、 0— 500°C、好ましくは 50— 400°C、更に好ましくは 100— 300°C、特に好ましく は 250°C程度を挙げることができる。上記温度の範囲内であれば、触媒の再生を効 率的に行うことができる。
[0084] 炭化水素部分酸ィ匕用触媒を上記混合ガスで処理する方法としては、再生させる炭 化水素部分酸化用触媒が上記混合ガスと接触される限り、特に制限されないが、例 えば、該炭化水素部分酸化用触媒を充填した容器に上記混合ガスを連続的に供給 及び抜き取りを行う方法や、当該容器に上記混合ガスを入れて密閉する方法を挙げ ることができる。簡便には、炭化水素の部分酸ィ匕に使用した反応装置において、反 応ガスの代わりに上記混合ガスを供給する方法を例示することができる。
[0085] 上記炭化水素部分酸ィ匕用触媒に対して接触させる上記混合ガスの割合としては、 使用する混合ガスの成分比、炭化水素部分酸化用触媒の活性喪失の程度等によつ て異なり、一律に規定することはできないが、例えば、該炭化水素部分酸化用触媒 1 gに対して、上記混合ガスの総量 0. 1— 100L、好ましくは 1一 50L、更に好ましくは 5 一 25Lとなる割合を挙げることができる。
実施例
[0086] 以下、実施例を挙げて本発明をより詳細に説明する。ただし、本発明はこれらの実 施例によって限定されることはない。
実施例 1
1.チタン含有珪酸塩の調製
チタニウムブトキシド溶液 (Ti=6mol%) 0. 7gをテトラェチルオルト珪酸塩 20. 8gに 滴下した。次いで、これに、トリエタノールァミン 29. 8gを滴下、混合した後、脱イオン 水 19. 8gを添加した。得られた溶液を 2時間攪拌した後、テトラエチルアンモ-ゥムヒ ドロキシド 14. 7gを滴下した。斯くして得られた混合液を室温で 24時間静置した後、 100°Cで 12時間乾燥し、次いで空気中で 700°Cで 10時間焼成した。このようにして 得られたチタン含有珪酸塩は、チタン含有珪酸塩の TiZSi原子比が 3/100であり 、平均細孔径 7. 4nmのスポンジ状構造を有していること力 前者について ICP元素 分析法により、後者については粉末 X線回折法 (XRD)、窒素吸着 (BET)法、及び TEM (透過型電子顕微鏡)による分析で確認された。
2.余ナノ粒早の困定化 蒸留水 1200mlに塩化金酸 · 4水和物(HAuCl ·4Η 0) 1. 0g (2. 43mmol)を溶
4 2
解し、 70°Cに加温し、 0. INNaOH水溶液により PHを 7. 5とした後、激しく撹拌しな がら、上記で得られたチタン含有珪酸塩 6gを一度に加え、同温度で 1時間撹拌を続 け、該チタン含有珪酸塩上に水酸化金 Au(OH)を析出沈殿させた。この懸濁液を
3
静置し、室温まで放冷した後、上澄液を除去し、新たに蒸留水 3000mlを加え、室温 で 5分間撹拌し、再び静置後上澄液を除去した。この洗浄操作を数回繰り返した後、 ろ過し、得られたペーストを室温で 12時間真空乾燥し、空気中 400°Cで 4時間焼成 することにより、金超微粒子が担持されたチタン含有珪酸塩触媒を得た。使用した塩 化金酸の量は、チタン含有珪酸塩 (TiO-SiO)に対して 8重量%であった力 分析の 結果、実際に担持された金の量は 0. 42重量%であった。
3.プロピレンの部分酸化 ]^
上記で得られた触媒を使用し、固定床流通式触媒反応装置を用いてプロピレンの 部分酸化反応を行った。反応条件は下記の通りである。
触媒反応セル:石英製内径 10mm、
触媒量: 0. 15g、
触媒前処理: 250°Cにてアルゴン ZH
2 =9Zl (容量比)の混合ガスを 30分流通後、 2
50°Cにてアルゴン ZO =9/1 (容量比)の混合ガスを 30分流通、
2
• 2 z ゝ 空間速度: 4000h— 1 · ml/g · cat,
反応温度: 150°C。
[0087] また、比較として、下表 1に示す細孔径及び細孔構造を有するチタン含有珪酸塩 ( 比較例 1一 4)及び、細孔構造を有しない珪酸塩担持チタン (比較例 5)、細孔構造を 有しない二酸ィ匕チタン (比較例 6)を用いて、上記と同様の方法で金微粒子を固定ィ匕 して、プロピレンの部分酸化反応を行った。
[0088] [表 1] 平均孔径 細孔構造
比較例 1 TS - 1 0. 55 キュービック
比較例 2 T i -MCM- 41 3. 7 へキサゴナル
比較例 3 T i一 MCM - 48 3. 9 キュービック
比較例 4 T i一 HMM 3. 3 不規則構造
比較例 5 T i - S i 02 無細孔構造
比較例 6 T i o2 無細孔構造
[0089] 実施例 1及び比較例 1一 6の触媒を用いてプロピレンの部分酸ィヒ反応を行った結 果(プロピレンの転化率、プロピレンオキサイドの選択率、プロピレンオキサイドの収 率、及び水素の転化率)を下表 2に示す。
[0090] [表 2]
Figure imgf000020_0001
[0091] これらの結果から、平均細孔径が 7.4nmのチタン含有珪酸塩に金微粒子を担持さ れた触媒 (実施例 1)は、細孔の孔径が小さいか、あるいは有しない比較例 1一 6に比 して、プロピレンの転ィ匕率が高ぐプロピレンオキサイドの収率も高いことが確認され た。また、実施例 1は、プロピレンオキサイドの選択率が 90%以上と良好であり、水素 転ィ匕率も 14%程度と良好であることも明ら力となった。
[0092] 実飾 12— 4
1. の言周 実施例 1に記載の方法に従って、表 3に示すチタン含有ケィ酸塩に金ナノ粒子を固 定化した。次いで、 25°Cのメトキシトリメチルシランを満たした容器内に Arガスを流入 して、メトキシトリメチルシランを含有する蒸気を発生させながら、当該蒸気を 30分間 、流速 lOmlZ分、反応管に充填した金微粒子を固定化したチタン含有ケィ酸塩 0. 1 5gに流通され、その後、 Arガスを流速 lOmlZ分、 200°Cで 5時間流通させる処理を することによって、金ナノ粒子固定ィ匕チタン含有ケィ酸塩のシリレートイ匕を行った。
(ii)実施例 4
蒸留水 1200mlに塩化金酸 · 4水和物(HAuCl ·4Η 0) 1. 0g (2. 43mmol)と共
4 2
に Ba (NO ) 0. 261g (0. lmmol)を溶解した溶液を用いて、実施例 1に記載の金
3 2
微粒子の固定化方法と同条件で表 3に示すチタン含有ケィ酸塩を処理することによ つて、チタン含有ケィ酸塩に金ナノ粒子と Ba (NO ) を固定ィ匕した。次いで、実施例
3 2
2— 3と同じ方法で、シリレートイ匕を行った。
(iii)比 7— 10
比較のために、以下に示す触媒を調製した:表 3に示すチタン含有ケィ酸塩 ( TiO-SiO;実施例 1で調製したスポンジ状構造のチタン含有珪酸塩)を用いて、実施 例 1に記載の方法に従って金ナノ粒子の固定ィ匕のみを行ったもの(比較例 7及び 8); 表 3に示すチタン含有ケィ酸塩を用いて、実施例 4に記載の方法に従って金微粒子 と Ba (NO ) の固定ィ匕のみを行ったもの(比較例 9) ;及び表 3に示すチタン含有ケィ
3 2
酸塩を用いて、実施例 4に記載の方法において、 Ba (NO ) の代わりに Mg (NO )
3 2 3 2
6水和物 0· 256g(0. lmmol)を用いて金微粒子と Mg (NO ) の固定化のみを行つ
3 2
たもの(比較例 10)。
2.プロピレンの部分酸化反]^
カゝくして得られた触媒 (実施例 2— 4及び比較例 7— 10)を使用し、実施例 1と同条件 でプロピレンの部分酸化反応を行い、反応開始 0. 5時間後と 4時間後のプロピレン の転化率、プロピレンオキサイドの選択率、プロピレンオキサイドの収率、及び水素転 化率について調べた (但し、比較例 8— 10については、反応開始 1時間後のみ測定)
[0093] 得られた結果を表 3に併せて示す,
[0094] [表 3] チタン含 表面処理 反応開 ブロピ プロピ ブロピ 水素転 有ケィ酸 始後の レン転 レンキ レンォ 化 率 塩 (Ti Si 経過時 化 率 サイ ド キサイ ( %) 原子比) 間 ( %) 選択率 ド収率
(hrs) (%) (%) 実施例 2 TiO-SiO 金ナノ粒子固定 · 0.5 6.5 93 6.1 16
(2/100) シリレー卜化 4 3.8 96 3.7 9.7 実施例 3 TiO SiO 金ナノ粒子固定 · 0.5 6.6 95 6.3 16
(3/100) シリレート化 4 4.1 96 3.9 10 実施例 4 TiO-SiO 金 ナ ノ 粒 子 0.5 9.8 90 8.8 22
(3/100) /BaNOs固定 'シ
リレート化 4 6.3 92 5.8 17 比較例 7 TiO-SiO 0.5 5.0 91 4.6 14 金ナノ粒子固定
(2/100) 4 2.2 96 2.1 7.7 比較例 8 TiO-SiO
(3/100) 金ナノ粒子固定 1 3.5 94 3.3 10 比較例 9 TiO-SiO 金 ナ ノ 粒 子
1 4.0 89 3.6 20 (3/100) /BaNOs固定
比較例 10 TiO-SiO 金 ナ / 粒 子
1 3.3 93 3.1 29 (3/100) MgN03固定 ·
[0095] この結果、金微粒子を固定ィ匕したチタン含有ケィ酸塩をシリレートイ匕した触媒 (実施 例 2— 4)では、比較例 7— 10に比べて、プロピレンオキサイドをプロピレンの高い転ィ匕 率で、且つ高 、選択率で得ることができることが確認さ
れた。特に、金微粒子と共に Ba (NO ) を固定ィ匕したチタン含有ケィ酸塩をシリレー
3 2
ト化した触媒 (実施例 4)では、より一層高!、プロピレンの転ィ匕率及びプロピレンォキ サイドの選択率が達成できることが明らかとなった。
[0096] 実施例 5
実施例 2のシリレートイ匕した金ナノ粒子固定ィ匕チタン含有ケィ酸塩を触媒として用 いて、以下の試験を行った。
[0097] 上記触媒を使用し、固定床流通式触媒反応装置を用いてプロピレンの部分酸化反 応を 5時間行った。反応条件は下記の通りである。
触媒反応セル:石英製内径 10mm、
触媒量: 0. 15g、
触媒前処理: 250°Cにて、アルゴン ZH
2 =9Zl (容量比)の混合ガスを 30分流通後、
250。Cにてアルゴン Ζθ = 9Zl (容量比)の混合ガスを 30分流通、
2
• 2 1 " ゝ 空間速度: 4000h— 1 · ml/g · cat、
反応温度: 165°C。 [0098] 当該反応 (再生処理回数 0回)におけるプロピレンの転ィ匕率、プロピレンオキサイド の選択率、プロピレンオキサイドの収率、及び水素の転ィ匕率を求めた。
[0099] 次 、で、反応後、触媒を反応セルに充填したままの状態で、以下の条件で再生処 理を行った。
触媒前処理: 250°Cにて、アルゴン ZH /O =8ZlZlの混合ガスを 30分間流通、
2 2
空間速度: 4000h— 1 · ml/g · cat,
処理温度: 250°C
力かる再生処理した触媒 (再生処理回数 1回)を用いて、上記反応条件で、再度プ ロピレンの部分酸化反応を行い、プロピレンの転ィ匕率、プロピレンオキサイドの選択 率、プロピレンオキサイドの収率、及び水素の転化率を求めた。
[0100] 更に、当該触媒の再生及び反応を上記条件で再度繰り返し行い (再生処理回数 2 回)、プロピレンの転化率、プロピレンオキサイドの選択率、プロピレンオキサイドの収 率、及び水素の転化率を求めた。
[0101] 得られた結果を表 4に示す。この結果、使用により活性が低下した触媒を、
本発明の再生方法の処理に供することによって、再度優れた触媒活性を回復できる ことが確認された。
[0102] [表 4]
Figure imgf000023_0001
産業上の利用可能性
[0103] 本発明の炭化水素部分酸化用触媒によれば、酸素及び水素の存在下で炭化水素 類を部分酸化する反応において、高い転化率でかつ高い選択率で、含酸素有機化 合物を合成することが可能となり、一方、同時に無駄な水素の消費 (水の生成)を抑制 し、効率よく含酸素有機化合物を製造することが実現できる。 [0104] 故に、本発明の炭化水素部分酸ィ匕用触媒を用いて、炭化水素類を部分酸化する 方法によれば、炭化水素類力 一段階でアルコール、ケトン、エポキシド等の含酸素 有機化合物を効率的に製造することが可能となる。
[0105] また、本発明の炭化水素部分酸ィ匕用触媒は、使用により触媒活性が低減しても、 酸素、水素及びアルゴンガスを含有する混合ガスで処理することによって、容易に再 生されるので、工業的利用に好適である。

Claims

請求の範囲
[I] 平均孔径カ nm以上のチタン含有珪酸塩の多孔体に金ナノ粒子を固定ィ匕した炭化 水素部分酸化用触媒。
[2] チタン含有珪酸塩の細孔構造力スポンジ状構造である、請求項 1に記載の炭化水素 部分酸化用触媒。
[3] チタン含有珪酸塩の多孔体の平均孔径カ 一 50nmである、請求項 1に記載の炭化 水素部分酸化用触媒。
[4] チタン含有珪酸塩における Tiと Siの原子比率 (Ti/Si)が、 1/10000-20/100 である、請求項 1に記載の炭化水素部分酸ィ匕用触媒。
[5] 金ナノ粒子を固定ィ匕したチタン含有珪酸塩がシランカップリング剤で修飾されて!、る
、炭化水素部分酸化用触媒。
[6] 更に、アルカリ金属化合物及びアルカリ土類金属化合物よりなる群から選択される少 なくとも 1種の化合物を担持させたものである、請求項 5に記載の炭化水素部分酸ィ匕 用触媒。
[7] 硝酸バリウム、硝酸マグネシウム及び硝酸カルシウムよりなる群力 選択される少なく とも 1種の化合物が担持されたものである、請求項 6に記載の炭化水素部分酸ィ匕用 触媒。
[8] チタン含有珪酸塩の多孔体の平均孔径力 4一 50nmである、請求項 5に記載の炭 化水素部分酸化用触媒。
[9] チタン含有珪酸塩における Tiと Siの原子比率 (TiZSi)力 1/10000-20/100 である、請求項 5に記載の炭化水素部分酸ィ匕用触媒。
[10] シランカップリング剤力 メトキシトリメチルシラン、メトキシトリエチルシラン、メトキシトリ イロプルシラン、エトキシトリメチルシラン、エトキシトリエチルシラン、エトキシトリイロプ ルシラン、トリメチルシリルトリフルォロメタンスルホネート及びトリェチルシリルトリフル ォロメタンスルホネートよりなる群力も選択される少なくとも 1種である、請求項 5に記 載の炭化水素部分酸化用触媒。
[II] 金ナノ粒子が固定ィ匕されたチタン含有珪酸塩 100重量部に対して、アルカリ金属化 合物及びアルカリ土類金属化合物よりなる群力 選択される少なくとも 1種の化合物 力 0. 001— 10重量部の割合で担持されている、請求項 6に記載の炭化水素部分 酸化用触媒。
[12] 請求項 1一 11のいずれかに記載の炭化水素部分酸ィ匕用触媒を用いて、水素及び 酸素の存在下で、炭化水素を酸化することを特徴とする含酸素有機化合物の製造方 法。
[13] 不飽和炭化水素を部分酸ィ匕してエポキシドを製造する方法である、請求項 12に記 載の方法。
[14] 炭化水素が、炭素数 3— 12の飽和炭化水素又は炭素数 2— 12の不飽和炭化水素 である、請求項 12に記載の製造方法。
[15] 炭化水素の酸ィ匕を 0— 300°Cの温度条件下で行う、請求項 12に記載の製造方法。
[16] 請求項 1一 11のいずれかに記載の炭化水素部分酸ィ匕用触媒の再生方法であって、 酸素及び水素を含有する混合ガスを用いて、該炭化水素部分酸化用触媒を処理す ることを特徴とする、炭化水素部分酸化用触媒の再生方法。
[17] 上記混合ガスによる処理を 100— 400°Cで行う、請求項 16に記載の再生方法。
PCT/JP2004/018502 2003-12-11 2004-12-10 炭化水素部分酸化用金触媒 WO2005056181A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516198A JP5126731B2 (ja) 2003-12-11 2004-12-10 炭化水素部分酸化用金触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003412869 2003-12-11
JP2003-412869 2003-12-11

Publications (2)

Publication Number Publication Date
WO2005056181A1 true WO2005056181A1 (ja) 2005-06-23
WO2005056181A8 WO2005056181A8 (ja) 2005-08-25

Family

ID=34675041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018502 WO2005056181A1 (ja) 2003-12-11 2004-12-10 炭化水素部分酸化用金触媒

Country Status (2)

Country Link
JP (1) JP5126731B2 (ja)
WO (1) WO2005056181A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215534A (ja) * 2009-03-13 2010-09-30 Tokyo Metropolitan Univ プロピレンオキサイドの製造方法
CN103752353A (zh) * 2014-01-24 2014-04-30 华东理工大学 一种丙烯环氧化制备环氧丙烷的催化剂的再生方法
CN108971515A (zh) * 2018-10-24 2018-12-11 吉林大学 一种一锅法合成具有sers活性的空心金纳米花的方法
US11161093B1 (en) 2021-04-16 2021-11-02 King Abdulaziz University Gold-decorated magnesium silicate catalyst for producing light olefins
WO2023210199A1 (ja) * 2022-04-25 2023-11-02 住友化学株式会社 チタン含有珪素酸化物の製造方法、エポキシドの製造方法、及びチタン含有珪素酸化物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176820A (ja) * 1997-09-05 1999-03-23 Agency Of Ind Science & Technol 炭化水素部分酸化用触媒及び含酸素有機化合物の製造方法
JP2000279809A (ja) * 1999-03-30 2000-10-10 Nippon Shokubai Co Ltd エポキシド製造用触媒及びエポキシドの製法
JP2000514428A (ja) * 1996-07-01 2000-10-31 ザ・ダウ・ケミカル・カンパニー オレフィン類をオレフィンオキシド類へと直接酸化するための方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514428A (ja) * 1996-07-01 2000-10-31 ザ・ダウ・ケミカル・カンパニー オレフィン類をオレフィンオキシド類へと直接酸化するための方法
JPH1176820A (ja) * 1997-09-05 1999-03-23 Agency Of Ind Science & Technol 炭化水素部分酸化用触媒及び含酸素有機化合物の製造方法
JP2000279809A (ja) * 1999-03-30 2000-10-10 Nippon Shokubai Co Ltd エポキシド製造用触媒及びエポキシドの製法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215534A (ja) * 2009-03-13 2010-09-30 Tokyo Metropolitan Univ プロピレンオキサイドの製造方法
CN103752353A (zh) * 2014-01-24 2014-04-30 华东理工大学 一种丙烯环氧化制备环氧丙烷的催化剂的再生方法
CN108971515A (zh) * 2018-10-24 2018-12-11 吉林大学 一种一锅法合成具有sers活性的空心金纳米花的方法
CN108971515B (zh) * 2018-10-24 2021-07-27 吉林大学 一种一锅法合成具有sers活性的空心金纳米花的方法
US11161093B1 (en) 2021-04-16 2021-11-02 King Abdulaziz University Gold-decorated magnesium silicate catalyst for producing light olefins
US11203008B1 (en) 2021-04-16 2021-12-21 King Abdulaziz University Method for making nanomaterial catalyst having gold nanoparticles
US11241672B1 (en) 2021-04-16 2022-02-08 King Abdulaziz University Method for oxidative cracking of hydrocarbon
WO2023210199A1 (ja) * 2022-04-25 2023-11-02 住友化学株式会社 チタン含有珪素酸化物の製造方法、エポキシドの製造方法、及びチタン含有珪素酸化物

Also Published As

Publication number Publication date
JPWO2005056181A1 (ja) 2007-07-05
JP5126731B2 (ja) 2013-01-23
WO2005056181A8 (ja) 2005-08-25

Similar Documents

Publication Publication Date Title
Choudhary et al. Oxidation catalysis by supported gold nano-clusters
JP3978234B2 (ja) 担持型パラジウム・金触媒を製造する改良された方法
WO1999043431A1 (fr) Catalyseur d'oxydation partielle d'hydrocarbure insature
JP4000392B2 (ja) 炭化水素の部分酸化用触媒及び含酸素有機化合物の製法
JP5434162B2 (ja) プロピレンオキサイドの製造方法
JP2010520043A (ja) 炭化物を基材とする促進化フィッシャー−トロプシュ触媒、その製造方法およびその使用
JP2003519560A5 (ja)
JP4016121B2 (ja) 炭化水素部分酸化用触媒及び含酸素有機化合物の製造方法
RU2232157C2 (ru) Способ окисления углеводородов и катализатор для окисления углеводородов
CN108067263B (zh) 一种具有壳核结构的催化剂及其制备方法和应用
Shin et al. The effects of impregnation of precious metals on the catalytic activity of titanium silicate (TS-1) in epoxidation of propene using hydrogen peroxide
JP6670843B2 (ja) 分散した金およびパラジウムを含む触媒、および選択的水素化におけるそれの使用
JP5126731B2 (ja) 炭化水素部分酸化用金触媒
JP4512688B2 (ja) 含酸素有機化合物の製造方法
TWI301078B (en) Ethylene oxide catalyst carrier preparation
RU2659256C1 (ru) Способ получения высокотемпературных адсорбентов CO2
JP4395580B2 (ja) エポキシドの製造方法
US20220105496A1 (en) Cobalt-Based Single-Atom Dehydrogenation Catalysts Having High Selectivity and Regenerability and Method for Producing Corresponding Olefins from Paraffins Using the Same
CN111957311A (zh) 一种介微复合钛硅材料负载Au-Pd纳米催化剂的制备方法
Gunawan et al. Heterogeneous gold catalysts for selective oxidation reactions
WO2017154927A1 (ja) 金複合材料、その製造方法及び金ナノ触媒
JP7246040B2 (ja) 触媒、触媒の製造方法、及び合成ガスの製造方法
TW200803983A (en) Oxidation catalyst
CN116196932A (zh) 二氧化碳加氢催化剂及其制备方法和应用
Wang et al. Bifunctional Titanosilicate Systems for the Gas‐Phase Catalytic Propylene Epoxidation with Hydrogen and Oxygen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 25/2005 UNDER (72, 75) REPLACE "SINHA, ANIL, KUMAR" BY "SINHA, ANIL, KUMAR"

WWE Wipo information: entry into national phase

Ref document number: 2005516198

Country of ref document: JP

122 Ep: pct application non-entry in european phase