WO2005055282A2 - Low loop height ball bonding method and apparatus - Google Patents

Low loop height ball bonding method and apparatus Download PDF

Info

Publication number
WO2005055282A2
WO2005055282A2 PCT/US2004/039676 US2004039676W WO2005055282A2 WO 2005055282 A2 WO2005055282 A2 WO 2005055282A2 US 2004039676 W US2004039676 W US 2004039676W WO 2005055282 A2 WO2005055282 A2 WO 2005055282A2
Authority
WO
WIPO (PCT)
Prior art keywords
wire
bond
capillary
fold
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2004/039676
Other languages
English (en)
French (fr)
Other versions
WO2005055282A3 (en
Inventor
Ivy W. Qin
Robert Wise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kulicke and Soffa Investments Inc
Original Assignee
Kulicke and Soffa Investments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kulicke and Soffa Investments Inc filed Critical Kulicke and Soffa Investments Inc
Priority to JP2006541443A priority Critical patent/JP2007512714A/ja
Publication of WO2005055282A2 publication Critical patent/WO2005055282A2/en
Publication of WO2005055282A3 publication Critical patent/WO2005055282A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • B23K20/004Wire welding
    • B23K20/005Capillary welding
    • B23K20/007Ball bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/78268Discharge electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/85051Forming additional members, e.g. for "wedge-on-ball", "ball-on-wedge", "ball-on-ball" connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the invention pertains to wire bonding on semiconductor devices.
  • the wire 17 is passed through a set of clamps 18 and
  • wire "tail” 23 is protruding from the tip of the capillary 11 , as shown in Figure
  • spark 16 termed an electric flame off (EFO) from an EFO wand 24.
  • EFO electric flame off
  • the capillary 11 is
  • This bond typically is termed a ball bond or first
  • the capillary 11 is then lowered to pinch the wire between the capillary and
  • ultrasonic energy may be applied to bond the pinched portion of the wire to the lead finger 21. This bond is termed a stitch bond or second bond.
  • connection 22 is termed a wire loop and is illustrated in Figure 11.
  • the minimal loop height is normally over 150
  • Loop height is defined as the maximum height of the wire above the
  • bonding surface e.g., the top surface of the bond pad.
  • the neck is the
  • thinner packages are generally referred to in the trade as low profile packages.
  • the desire to reduce the height of the package is the desire to reduce the height of the highest point of the wire loops, which, in many instances, is the limiting factor as to the height of an integrated circuit package.
  • reverse looping a wire looping technique known as reverse looping was developed.
  • the premise behind reverse looping is that, because the highest point of the wire loop is adjacent the ball bond, it would be desirable reverse the looping process so as to make the first, ball bond on the lead frame (or other substrate) and make the second, stitch bond on the bond pad of the die because the surface of the lead frame is lower than the surface of the die.
  • the highest point of the wire loop is near the lower bonding surface, thus reducing the overall height.
  • the stitch bond requires the capillary to come in contact with the bonding surface.
  • the bond pads on a die usually are very small and, thus, it is difficult to make a stitch bond on a bond pad on a die without the capillary contacting and, hence, damaging surrounding circuitry on the die.
  • the wire loops tends to sag to their lowest points close to the stitch bond.
  • the stitch bond site is higher than the ball bond site, the wire might contact the edge or the top surface of the die. This could lead to electrical shorts or breakage of the wire.
  • stitch bond 43 is formed on top of the first ball bond (or bump) 25.
  • This reverse looping process can provide low loop heights for
  • top of the die bond pad must be large enough to provide support for a stitch
  • the diameter of the bump will increase in the lateral
  • a bump is formed on the die
  • the capillary undergoes a set of coordinated xyz
  • bond site e.g., the lead frame or other substrate
  • capillary is raised in the z direction a designated height (herein termed the
  • the capillary may or may not be raised
  • FIGS. 1 A through 11 are elevation views illustrating the steps
  • Figures 2A through 2C are elevation views illustrating steps of a
  • Figure 3 is a pictorial elevation view of a folded wire loop
  • Figure 4 is a pictorial elevation view showing the various components
  • FIGS. 5A through 5O are elevation views illustrating the steps
  • Figure 6 is a pictorial elevation view showing the various components
  • Figure 7 is a side view of a bump and fold formed using the
  • Figures 8A and 8B are scanning electron micrographs of a
  • Figure 3 is a side elevation pictorial of a folded forward wire
  • FIG. 3 shows an
  • integrated circuit die 51 including a bond pad 53 on its top surface and a lead
  • the wire loop 45 is formed in accordance with the technique of the present invention may be considered to comprise five
  • Figures 5A through 5O illustrate the position of the capillary of
  • the vertical direction is termed the z direction and the
  • Figure 5E shows the capillary position after this step.
  • the direction of the fold offset is exactly opposite the xy direction toward the second bond site 65.
  • the distance of this xy motion is herein
  • the capillary 11 is raised again (in the positive z direction) a
  • Figure 5H shows the position of the capillary 11 and the condition of
  • the fold return motion is in the xy direction exactly opposite the
  • the fold return motion preferably is a purely horizontal (i.e.,
  • the fold return motion 78 may include a negative z component to return the capillary to the same height that
  • the capillary returns to a height below the
  • the fold return motion 78 may include a positive
  • the fold return offset In other words, the fold return
  • fold return motion 78 is less than the fold offset motion 76, the fold return
  • fold return motion 78 is longer than the fold offset motion 76, the fold return
  • the fold return motion 78 have the same xy (i.e., horizontal) magnitudes, then
  • the fold return offset is zero.
  • ultrasonic energy may be applied to facilitate bonding of the
  • Figure 5J shows the process at this point, which is essentially the same position as shown in Figure 51 since the capillary
  • FIG. 5K and 5L show the position of the capillary 11
  • the coordinated xyz motion can be relatively simple, comprising
  • the wire loop 59 is continuous with the bump 56, fold 57, and stitch
  • Heat and/or ultrasonic energy may be
  • Figure 5N illustrates the position of the capillary at this point in the process.
  • clamps 18 are then closed and the capillary 11 is raised further to snap
  • the looping technique of the present invention provides ultra-low loop heights because the wire exits the ball bond site pointing horizontally rather than vertically upward.
  • the wire bonding machine is controlled by motion control
  • the circuitry comprises a digital processing device such as a programmed general purpose computer, a digital signal processor, a state machine, a combinational logic circuit, a microprocessor, an application specific integrated circuit, or any other known digital processing means. If the circuitry comprises a computer, the invention
  • Figure 6 shows exemplary parameters that were used to form the fold shown in Figure 7 and subsequently the loop profile shown in Figures 8A and 8B.
  • the first three motions (separation height 75, fold offset 76 and fold factor 77) collectively determine the amount
  • the fold return motion 78 determines the final shape of the
  • the fold return motion 78 is specified by two parameters. Specifically, (1) the aforementioned fold return
  • bump height normally should be a
  • the bump height is -1.25 mil and the separation
  • the final position of the capillary is about 0.25 mil above the bump 56. This provides just enough flattening of the wire to form

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Wire Bonding (AREA)
PCT/US2004/039676 2003-11-26 2004-11-24 Low loop height ball bonding method and apparatus Ceased WO2005055282A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006541443A JP2007512714A (ja) 2003-11-26 2004-11-24 低いループ高さのボールボンディング方法およびその装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US52530503P 2003-11-26 2003-11-26
US60/525,305 2003-11-26
US10/988,053 US7347352B2 (en) 2003-11-26 2004-11-12 Low loop height ball bonding method and apparatus
US10/988,053 2004-11-12

Publications (2)

Publication Number Publication Date
WO2005055282A2 true WO2005055282A2 (en) 2005-06-16
WO2005055282A3 WO2005055282A3 (en) 2006-02-09

Family

ID=34595261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/039676 Ceased WO2005055282A2 (en) 2003-11-26 2004-11-24 Low loop height ball bonding method and apparatus

Country Status (5)

Country Link
US (2) US7347352B2 (enExample)
JP (1) JP2007512714A (enExample)
SG (1) SG123792A1 (enExample)
TW (1) TWI367533B (enExample)
WO (1) WO2005055282A2 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012187A1 (en) * 2005-07-26 2007-02-01 Microbonds Inc. System and method for assembling packaged integrated circuits using insulated wire bond

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229906B2 (en) * 2002-09-19 2007-06-12 Kulicke And Soffa Industries, Inc. Method and apparatus for forming bumps for semiconductor interconnections using a wire bonding machine
US7464854B2 (en) * 2005-01-25 2008-12-16 Kulicke And Soffa Industries, Inc. Method and apparatus for forming a low profile wire loop
DE102006011352A1 (de) * 2005-03-23 2006-10-05 Unaxis International Trading Ltd. Verfahren zur Herstellung einer Drahtverbindung
US8016182B2 (en) * 2005-05-10 2011-09-13 Kaijo Corporation Wire loop, semiconductor device having same and wire bonding method
JP4530984B2 (ja) * 2005-12-28 2010-08-25 株式会社新川 ワイヤボンディング装置、ボンディング制御プログラム及びボンディング方法
WO2007134317A1 (en) * 2006-05-15 2007-11-22 Texas Instruments Incorporated Downhill wire bonding for semiconductor device
US20080286959A1 (en) * 2007-05-14 2008-11-20 Texas Instruments Incorporated Downhill Wire Bonding for QFN L - Lead
US20100186991A1 (en) * 2006-10-18 2010-07-29 Kulicke And Soffa Industries, Inc. conductive bumps, wire loops including the improved conductive bumps, and methods of forming the same
JP5481769B2 (ja) * 2006-11-22 2014-04-23 日亜化学工業株式会社 半導体装置及びその製造方法
US8637394B2 (en) * 2007-07-05 2014-01-28 Stats Chippac Ltd. Integrated circuit package system with flex bump
US8048720B2 (en) * 2008-01-30 2011-11-01 Kulicke And Soffa Industries, Inc. Wire loop and method of forming the wire loop
JP4625858B2 (ja) * 2008-09-10 2011-02-02 株式会社カイジョー ワイヤボンディング方法、ワイヤボンディング装置及びワイヤボンディング制御プログラム
JP4344002B1 (ja) 2008-10-27 2009-10-14 株式会社新川 ワイヤボンディング方法
JP5062283B2 (ja) * 2009-04-30 2012-10-31 日亜化学工業株式会社 半導体装置及びその製造方法
AU2010254811B2 (en) 2009-06-05 2015-02-19 FUJIFILM Cellular Dynamics, Inc. Reprogramming T cells and hematopoietic cells
DE102009029040A1 (de) * 2009-08-31 2011-03-03 Robert Bosch Gmbh Vorrichtung und Verfahren zur Herstellung einer Vorrichtung
JP2012004464A (ja) * 2010-06-18 2012-01-05 Toshiba Corp 半導体装置、半導体装置の製造方法及び半導体装置の製造装置
US20120032354A1 (en) * 2010-08-06 2012-02-09 National Semiconductor Corporation Wirebonding method and device enabling high-speed reverse wedge bonding of wire bonds
US7918378B1 (en) 2010-08-06 2011-04-05 National Semiconductor Corporation Wire bonding deflector for a wire bonder
CN102412167B (zh) 2010-09-25 2016-02-03 飞思卡尔半导体公司 用于线接合的固定
CN102487025B (zh) 2010-12-08 2016-07-06 飞思卡尔半导体公司 用于长结合导线的支撑体
US8609525B2 (en) * 2011-03-21 2013-12-17 Stats Chippac Ltd. Integrated circuit packaging system with interconnects and method of manufacture thereof
MY181180A (en) * 2011-09-09 2020-12-21 Carsem M Sdn Bhd Low loop wire bonding
TWI543284B (zh) * 2014-02-10 2016-07-21 新川股份有限公司 半導體裝置的製造方法以及打線裝置
US12057431B2 (en) * 2020-12-18 2024-08-06 Kulicke And Soffa Industries, Inc. Methods of forming wire interconnect structures and related wire bonding tools
US12142595B2 (en) * 2020-12-23 2024-11-12 Skyworks Solutions, Inc. Apparatus and methods for tool mark free stitch bonding
WO2023158625A1 (en) * 2022-02-15 2023-08-24 Kulicke And Soffa Industries, Inc. Methods of determining a sequence for creating a plurality of wire loops in connection with a workpiece

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437604A (en) * 1982-03-15 1984-03-20 Kulicke & Soffa Industries, Inc. Method of making fine wire interconnections
US4824005A (en) * 1986-08-13 1989-04-25 Orthodyne Electronics Corporation Dual mode ultrasonic generator in a wire bonding apparatus
JPH04273135A (ja) 1991-02-27 1992-09-29 Shinkawa Ltd ワイヤボンデイング方法
US5111989A (en) * 1991-09-26 1992-05-12 Kulicke And Soffa Investments, Inc. Method of making low profile fine wire interconnections
JP3152764B2 (ja) 1992-10-21 2001-04-03 株式会社東芝 ワイヤボンダ−
US5421503A (en) * 1994-08-24 1995-06-06 Kulicke And Soffa Investments, Inc. Fine pitch capillary bonding tool
US5842628A (en) * 1995-04-10 1998-12-01 Fujitsu Limited Wire bonding method, semiconductor device, capillary for wire bonding and ball bump forming method
JPH0951011A (ja) 1995-08-10 1997-02-18 Tanaka Denshi Kogyo Kk 半導体チップのワイヤボンディング方法
JP3370539B2 (ja) 1997-01-13 2003-01-27 株式会社新川 ワイヤボンディング方法
JP3413340B2 (ja) * 1997-03-17 2003-06-03 株式会社新川 ワイヤボンディング方法
JP3455092B2 (ja) * 1997-10-27 2003-10-06 株式会社新川 半導体装置及びワイヤボンディング方法
JP2000082717A (ja) * 1998-09-07 2000-03-21 Shinkawa Ltd ワイヤボンディング方法
JP3522123B2 (ja) * 1998-09-30 2004-04-26 株式会社新川 ワイヤボンディング方法
JP2000114304A (ja) * 1998-10-08 2000-04-21 Shinkawa Ltd ワイヤボンディング方法
JP2000174054A (ja) 1998-12-04 2000-06-23 Kaijo Corp ワイヤボンダ用ボール形成装置
JP3457196B2 (ja) 1998-12-22 2003-10-14 株式会社カイジョー ボールボンディング方法
JP3932235B2 (ja) 1999-02-25 2007-06-20 株式会社カイジョー ワイヤボンダ用ボール形成装置及びその方法
JP3913134B2 (ja) * 2002-08-08 2007-05-09 株式会社カイジョー バンプの形成方法及びバンプ
JP2003100793A (ja) 2001-09-25 2003-04-04 Kaijo Corp ワイヤボンディング方法
JP3765778B2 (ja) * 2002-08-29 2006-04-12 ローム株式会社 ワイヤボンディング用キャピラリ及びこれを用いたワイヤボンディング方法
US7229906B2 (en) * 2002-09-19 2007-06-12 Kulicke And Soffa Industries, Inc. Method and apparatus for forming bumps for semiconductor interconnections using a wire bonding machine
JP2004172477A (ja) * 2002-11-21 2004-06-17 Kaijo Corp ワイヤループ形状、そのワイヤループ形状を備えた半導体装置、ワイヤボンディング方法及び半導体製造装置
US6815836B2 (en) * 2003-03-24 2004-11-09 Texas Instruments Incorporated Wire bonding for thin semiconductor package
JP4021378B2 (ja) * 2003-06-27 2007-12-12 株式会社新川 ワイヤボンディング方法
US7494042B2 (en) * 2003-10-02 2009-02-24 Asm Technology Singapore Pte. Ltd. Method of forming low wire loops and wire loops formed using the method
US20060011710A1 (en) * 2004-07-13 2006-01-19 Asm Technology Singapore Pte Ltd Formation of a wire bond with enhanced pull
US7188759B2 (en) * 2004-09-08 2007-03-13 Kulicke And Soffa Industries, Inc. Methods for forming conductive bumps and wire loops
JP4298665B2 (ja) * 2005-02-08 2009-07-22 株式会社新川 ワイヤボンディング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012187A1 (en) * 2005-07-26 2007-02-01 Microbonds Inc. System and method for assembling packaged integrated circuits using insulated wire bond

Also Published As

Publication number Publication date
SG123792A1 (en) 2006-07-26
US7347352B2 (en) 2008-03-25
US7584881B2 (en) 2009-09-08
JP2007512714A (ja) 2007-05-17
TW200524068A (en) 2005-07-16
US20050109819A1 (en) 2005-05-26
TWI367533B (en) 2012-07-01
US20080111252A1 (en) 2008-05-15
WO2005055282A3 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US7584881B2 (en) Low loop height ball bonding method and apparatus
US7651022B2 (en) Method and apparatus for forming bumps for semiconductor interconnections using a wire bonding machine
US5111989A (en) Method of making low profile fine wire interconnections
US6715666B2 (en) Wire bonding method, method of forming bump and bump
CN103069557B (zh) 引线环、形成引线环的方法及相关处理
CN102187444B (zh) 导电凸部、引线环及导电凸部、引线环的形成方法
EP0983607B1 (en) Bump forming method and bump bonder
TW200529397A (en) Method for producing a wedge-wedge wire connection
US7214606B2 (en) Method of fabricating a wire bond with multiple stitch bonds
KR102443487B1 (ko) 반도체 장치의 강화된 강성을 갖는 전기적 연결부 및 그 형성방법
US6270000B1 (en) Wire bonding method
US20240128228A1 (en) Security wire over stitch bond
CN1886226A (zh) 低回路高度球焊方法和设备
US12374563B2 (en) Semiconductor device manufacturing method
TWI721404B (zh) 打線接合裝置、半導體裝置的製造方法以及半導體裝置
CN113785386B (zh) 打线接合装置、半导体装置的制造方法以及半导体装置
US12107070B2 (en) Wire bonding apparatus and method for manufacturing semiconductor device
JP2004319921A (ja) ワイヤボンディング方法
EP1722409B1 (en) Wire bonding method
TW202347535A (zh) 半導體裝置的製造方法
JPH0590320A (ja) ボール式ワイヤーボンデイング方法
JPH07130785A (ja) ワイヤボンディング方法
JP2008098549A (ja) 半導体装置
JPH0447972B2 (enExample)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035037.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006541443

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase