WO2005054767A1 - 熱貯蔵ユニット - Google Patents

熱貯蔵ユニット Download PDF

Info

Publication number
WO2005054767A1
WO2005054767A1 PCT/JP2004/017834 JP2004017834W WO2005054767A1 WO 2005054767 A1 WO2005054767 A1 WO 2005054767A1 JP 2004017834 W JP2004017834 W JP 2004017834W WO 2005054767 A1 WO2005054767 A1 WO 2005054767A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
supply pipe
storage unit
exchange medium
Prior art date
Application number
PCT/JP2004/017834
Other languages
English (en)
French (fr)
Inventor
Kazuo Takahashi
Hiromiki Yagi
Yasuo Higashi
Toshiya Miyake
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to CA2546687A priority Critical patent/CA2546687C/en
Priority to EP04819844.4A priority patent/EP1693636B1/en
Priority to US10/580,048 priority patent/US20070079951A1/en
Publication of WO2005054767A1 publication Critical patent/WO2005054767A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a heat storage unit capable of storing generated heat and transporting the heat to a remote place.
  • heat generated is used for various facilities near the factory.
  • a heat storage body or the like by temporarily storing the heat generated in the factory in a heat storage body or the like and transporting the heat storage body, the heat can be used even in a place away from the factory.
  • a device for storing heat there is a device that exchanges heat by directly contacting a medium such as oil supplied with heat with a metal hydrate and stores heat in the metal hydrate.
  • the storage container of Patent Document 1 contains a heat storage material such as sodium acetate and the like, and specific gravity and oil more than the heat storage material. Since the specific gravity of the oil is smaller than the oil and the heat storage body, they are stored separately from each other. And pipes are arranged in the oil and the heat storage body, and they are connected to the heat exchange respectively. Oil from one pipe is taken into the heat exchanger, heat is supplied, and the oil is discharged from the other pipe into the regenerator. The discharged oil has a low specific gravity and rises to the upper oil. During the ascent, heat is exchanged by direct contact between the heat storage and the oil. By repeating the above operation, heat is stored in the heat storage body.
  • the pipe of Patent Document 1 has a double pipe structure in order to prevent impurities from being mixed into the pipe and the heat exchanger.
  • Patent Document 1 International Publication Number WO 03/019099 (01)
  • a heat storage material such as sodium acetate that stores heat utilizes latent heat of fusion. By applying heat, the heat storage material changes state into a solid liquid, and heat is stored. ing. For this reason, in Patent Literature 1, at the start of heat supply, since the heat storage is solid, even if the pipes arranged in the heat storage try to discharge the oil supplied with heat, the discharge hole is Oil is not discharged and heat cannot be supplied to the heat storage element until the heat storage element is blocked by the solid heat storage element and heated to become a liquid. As a result, a great deal of time is spent on heat storage.
  • an object of the present invention is to provide a heat storage unit that can efficiently store heat in a short time.
  • the present invention provides a heat storage medium that stores heat due to a state change between a solid and a liquid, and a heat exchange medium that performs heat exchange by directly contacting the heat storage body and separates from the heat storage body having a specific gravity smaller than that of the heat storage body.
  • the supply pipe has a plurality of discharge holes for traversing the boundary between the heat exchange medium and the heat storage medium contained in the storage container and discharging the supplied heat exchange medium. And at least one of the discharge holes is located in the heat exchange medium.
  • the heat exchange medium can be discharged from the supply pipe regardless of the state of the heat storage body.
  • the heat storage body is solid in normal times, and changes into a liquid by storing heat. For this reason, at the start of heat storage, the discharge hole is closed by the solid heat storage body even if the supply pipe arranged in the heat storage body has the discharge hole. Therefore, by providing a discharge hole on the heat exchange medium side, the supplied heat exchange medium can be discharged, and heat can be conducted to the heat storage body.
  • the heat exchange medium can be discharged from the discharge holes provided on the heat storage body side.
  • the heat storage medium and the heat exchange medium can be brought into contact in a short time, so that the heat storage time can be shortened.
  • the discharge hole provided on the heat storage body is closed, so that the heat exchange medium passing through the supply pipe is not discharged and heat may not be stored. be able to.
  • the supply pipe of the invention crosses perpendicularly to the interface.
  • the heat exchange medium can be discharged along the supply pipe because the supply pipe crosses the boundary surface vertically, and heat storage in the vicinity of the supply pipe can be stored.
  • the supply pipe may have a circulation pipe disposed coaxially around the portion having the discharge hole to raise the heat exchange medium discharged from the discharge hole in the vertical direction. I like it.
  • a circulation pipe disposed coaxially around the portion having the discharge hole to raise the heat exchange medium discharged from the discharge hole in the vertical direction.
  • the present invention provides a method for separating a heat storage element that stores heat by a change in state between a solid and a liquid from a heat storage element that performs heat exchange by directly contacting the heat storage element and has a specific gravity smaller than that of the heat storage element.
  • Storage container for storing the heat exchange medium to be heated, a supply pipe for supplying the heat exchange medium into the storage container through at least the heat storage medium accommodated in the storage container, and storing the heat exchange medium accommodated in the storage container.
  • a second supply pipe traversing the interface between the heat exchanger and the heat storage medium and having an outlet in the heat exchange medium.
  • the heat storage time can be reduced by using the first and second flow pipes.
  • the heat storage body can store heat by changing from a solid state to a liquid state. Therefore, at the start of heat storage, the heat storage medium is solid, so that the discharge hole provided in the first supply pipe is closed by the heat storage medium, and the supplied heat exchange medium can be discharged. Absent.
  • the second supply pipe since the second supply pipe has an outlet in the heat exchange medium, the supplied heat exchange medium can always be discharged. For this reason, heat is transferred to the heat storage body by indirect contact of the heat exchange medium flowing through the second supply pipe, and the heat storage body can be changed from a solid to a liquid. Then, the heat storage medium becomes liquid, so that the heat exchange medium can be discharged from the first supply pipe.
  • the second supply pipe surrounds at least a part including the discharge hole of the first supply pipe, and has a communication portion that guides the discharge hole to the heat exchange medium.
  • the heat exchange medium flowing through the second supply pipe causes heat around the second supply pipe and around the first supply pipe.
  • Exchange medium It becomes possible to heat the periphery of the body discharge hole.
  • a switching valve that switches between supply and cutoff of the heat exchange medium to the first and second supply pipes is provided for each of the first and second supply pipes according to the state of the heat storage body.
  • the timing of switching the supply pipes can be changed according to the state of the heat storage body, and heat can be stored more effectively.
  • the heat exchange medium can be supplied to both the first supply pipe and the second supply pipe, and then switched to only the first supply pipe. Can be.
  • a discharge hole is provided in the horizontally extending part so as to open vertically downward. It may be. According to this, since the specific gravity of the heat exchange medium is smaller than that of the heat storage body, the heat storage body does not enter the inside of the discharge hole power supply pipe by directing the discharge hole downward.
  • the supply pipe or the first supply pipe in the heat storage body has a flared shape and an expanded portion provided with the discharge hole on the bottom surface. According to this configuration, since the specific gravity of the heat exchange medium is smaller than that of the heat storage body, there is no possibility that the heat storage body enters the inside of the discharge hole force supply pipe by the discharge hole being directed downward. Further, by making the shape divergent, more heat exchange medium can be discharged, and the heat storage time can be shortened.
  • the present invention relates to a heat storage element that stores heat by a state change between a solid and a liquid, and a heat storage element that performs heat exchange by directly contacting the heat storage element and has a specific gravity smaller than that of the heat storage element.
  • Storage container containing a heat exchange medium that separates the heat exchange medium, a supply pipe that passes the heat exchange medium into the storage container through at least the heat storage medium that is contained in the storage container, and a heat exchange medium that is contained in the storage container
  • a first supply pipe having an outlet for discharging the supplied heat exchange medium into the accommodated heat storage medium; and a first supply pipe having an outlet for discharging the supplied heat exchange medium into the accommodated heat storage body.
  • a second supply pipe having a discharge hole for discharging.
  • the heat exchange medium can always flow through the first supply pipe regardless of the state of the heat storage body, so that heat can be conducted to the heat exchange medium in the second supply pipe.
  • High temperature can be maintained.
  • the heat exchange medium having a high discharge pore force can be discharged, so that sufficient heat can be stored.
  • the heat storage body between the supply pipes is provided with a heat conduction member for conducting heat of the supply pipe. According to this, heat can be supplied to the heat storage body in a shorter time, and the heat storage time can be shortened.
  • the supply pipe of the present invention is provided on the bottom surface of the storage container. According to this configuration, the discharged heat exchange medium rises because the specific gravity is lower than that of the heat storage medium. However, by providing the supply pipe at the bottom, the contact between the discharged heat exchange medium and the heat storage medium is achieved. The time can be longer. Further, in the present invention, it is preferable that the second supply pipe is provided on the bottom surface so as to cover the bottom surface of the storage container. According to this, since the contact surface between the second supply pipe and the heat storage element can store heat from the bottom of the large heat storage element, the heat storage time can be shortened.
  • connection port of the supply pipe of the present invention is located above the connection port of the discharge pipe. According to this configuration, by positioning the connection port of the supply pipe higher than the connection port of the discharge pipe, when the heat storage material or the heat exchange medium flows backward, the discharge pipe force can also cause the heat exchange medium to flow first. If the heat storage element flows backward, the danger can be avoided.
  • the present invention preferably has a wave-dissipating plate that is arranged parallel to the boundary surface between the heat storage medium and the heat exchange medium and perpendicular to the boundary surface to prevent stirring at the boundary surface. According to this configuration, it is possible to prevent agitation at the boundary surface due to vibration during transportation in the heat storage state.
  • the discharge pipe of the present invention be provided with a separation mechanism for separating the heat storage medium and the heat exchange medium.
  • the separation mechanism It has a separator that horizontally circulates the medium and the heat storage element in one direction, and a discharge hole that discharges the precipitated heat storage element from the separator.
  • the separation element has a shape that guides the precipitated heat storage element to the discharge hole. It is preferable to have one. This makes it possible to separate the heat storage medium and the heat exchange medium with a simple structure.
  • the heat storage body of the present invention may be erythritol. According to this, heat can be efficiently stored in a short time.
  • the heat storage unit 1 according to the first embodiment of the present invention is suitably used for a portable heat storage unit.
  • a portable heat storage unit For example, as shown in FIG. 1, when a factory 60 that generates heat and a facility 70 that uses the heat are separated from each other, the present invention is applied to a heat transport system or the like that transports heat.
  • the heat storage unit 1 can be attached to and detached from the connection ports 51 and 52 of the heat exchange 5 & And between the facility 70.
  • the factory 60 is a refuse incineration plant, a power plant, a steel mill, or the like, and heat generated there is stored in the heat storage unit 1 via the heat exchanger 5a.
  • the facility 70 is a facility such as a heated pool or a hospital, and the heat stored in the heat storage unit 1 is applied to the temperature control equipment and the like in the facility 70 via the heat exchanger 5b. In the following description, the heat exchange at the factory 60 will be described.
  • the heat storage unit 1 is a heat storage container la (storage container) containing oil 2 (heat exchange medium) and sodium acetate trihydrate 3 (heat storage material) (hereinafter, referred to as sodium acetate 3). And a supply pipe 4 and a discharge pipe 6. Oil 2 and sodium acetate 3 do not mix with each other, and since oil 2 has a lower specific gravity than sodium acetate 3, in the heat storage vessel la, oil 2 is separated from the upper layer and sodium acetate 3 is separated from the lower layer. It is to be accommodated.
  • oil 2 heat exchange medium
  • sodium acetate trihydrate 3 heat storage material
  • oil 2 and the sodium acetate 3 do not mix with each other, in other words, the oil 2 and the sodium acetate 3 are separated from each other.Therefore, a member or the like for separating each of the oil 2 and the sodium acetate 3 is interposed therebetween. Oil 2 and sodium acetate 3 are in direct contact.
  • the oil 2 exchanges heat with the sodium acetate 3 by direct contact with the sodium acetate 3.
  • the oil 2 is taken into the heat exchanger 5a from a discharge pipe 6 described later, and is supplied with heat in the heat exchanger 5a.
  • the oil 2 supplied with heat by the heat exchange is referred to as oil 2a.
  • the discharged oil 2a has a specific gravity lower than that of sodium acetate 3, it rises to the upper oil 2 and is taken into the oil 2. During this ascent, the heat supplied to the oil 2a is conducted to the sodium acetate 3 by direct contact with the sodium acetate 3.
  • Sodium acetate 3 stores heat conducted from oil 2a described above.
  • Sodium acetate 3 has a melting point of about 58 degrees and is solid at normal times (at room temperature). Then, heat is conducted from the oil 2a by direct contact, so that the state changes from solid to liquid, and heat is stored in the liquid state.
  • the supply pipe 4 extends through the upper part of the heat storage container la where the stored oil 2 is located, and the connection port 41 is detachably connected to the connection port 51 for heat exchange. I have.
  • the supply pipe 4 penetrating the heat storage container la crosses the boundary between the oil 2 and sodium acetate 3 vertically, enters the sodium acetate 3, and then bends into an L shape and extends horizontally. I have.
  • the supply pipe 4 has an internal space, and the oil 2a supplied with heat to the heat exchanger 5a flows through the internal space.
  • the supply pipe 4 has a plurality of discharge holes 4a'4b for discharging the oil 2a flowing therethrough along the axial direction.
  • a plurality of discharge holes 4a are provided in the supply pipe 4 above the boundary between the oil 2 and the sodium acetate 3, that is, on the oil 2 side.
  • one or more discharge holes 4b are provided below the boundary surface, that is, in the supply pipe 4 on the sodium acetate 3 side.
  • a discharge hole 4b provided in a portion of the supply pipe 4 which is bent in an L shape and extends horizontally is provided so as to open vertically downward.
  • the specific gravity of sodium acetate 3 is larger than that of oil 2a, so that oil 2a discharged from discharge hole 4b is pushed away, so that sodium acetate 3 does not penetrate into supply pipe 4. This can prevent sodium acetate 3 from hardening and clogging.
  • the discharge pipe 6 extends through the upper layer of the heat storage container la where the stored oil 2 is located.
  • the connection port 61 of the discharge pipe 6 is detachably connected to the connection port 52 of the heat exchanger 5a, so that the oil 2 in the heat storage container la is taken into the heat exchanger 5a. .
  • the connection port 61 of the discharge pipe 6 is disposed below the connection port 41 of the supply pipe 4, that is, the discharge pipe 6 is disposed below the supply pipe 4 in the heat storage container la. If the supply pipe 4 and the discharge pipe 6 are removed from the heat exchanger 5a by the wrong procedure, the oil 2 or sodium acetate 3 may flow backward due to the difference in pressure between the outside and the inside of the heat storage container la.
  • the non-heated oil 2 flows backward from the discharge pipe 6 by arranging the discharge pipe 6 below the supply pipe 4.
  • the pressure difference with the outside is eliminated, and the danger of the stored sodium acetate 3 flowing backward from the supply pipe 4 can be suppressed.
  • the heat exchanger 5a stores heat generated in the factory 60 in the heat storage container la.
  • the supply pipe 4 and the discharge pipe 6 are detachably connected to the heat exchanger 5a.
  • the supply pipe 4 and the discharge pipe 6 communicate with each other in the heat exchange 5a.
  • a pipe (not shown) for taking in heat generated at the factory 60 as steam and a pipe (not shown) for discharging steam that has removed heat are connected to the heat exchange 5 & , respectively.
  • These pipes communicate with each other in the heat exchange 5a via pipes arranged so as to surround a communication portion between the supply pipe 4 and the discharge pipe 6.
  • a pump (not shown) is provided at the connection port 51 of the heat exchanger 5a, and the heat exchanger 5a takes in the oil 2 and sends the taken oil 2 to the heat storage container la.
  • the heat exchanger 5a takes in the oil 2 in the heat storage container la via a discharge pipe 6 by a pump, and also takes in steam generated in the factory 60 via a pipe.
  • the taken-in steam passes through a communicating portion between the supply pipe 4 and the discharge pipe 6 and conducts heat to the taken-in oil 2 by indirect contact between the pipes.
  • the oil 2a supplied with heat is supplied into the heat storage container la via the supply pipe 4.
  • the steam from which heat has been removed is exhausted through a pipe.
  • the discharge hole 4a is provided on the oil 2 side, the oil 2a can be discharged without closing the discharge hole 4a. Then, the oil 2a discharged from the discharge hole 4a conducts heat to the sodium acetate 3 near the boundary between the oil 2 and the sodium acetate 3. As a result, the sodium acetate 3 gradually changes its solid state into a liquid state from above, and the oil 2a is discharged from the discharge hole 4b. Heat is stored in sodium acetate 3 by direct contact with the discharged oil 2a. The oil 2a flowing through the supply pipe 4 conducts heat to the sodium acetate 3 by indirect contact via the supply pipe 4. As a result, sodium acetate 3 can be changed to a solid liquid more quickly, and the heat storage time can be shortened.
  • the heat exchange on the factory 60 side has been described above, the same applies to the heat exchange on the facility 70 side. That is, the sodium acetate 3 is in a liquid state when stored, and it is possible to extract the stored heat from the liquid.
  • the supply pipe 4 and the discharge pipe 6 of the heat storage unit 1 are connected to a heat exchanger for extracting the heat stored in the heat storage unit 1.
  • the pipe is connected to the pipe that supplies the heated gas or liquid and supplies it to the temperature control equipment of the facility 70.
  • the oil 2 is discharged into the sodium acetate 3 which is stored through the supply pipe 4.
  • heat is transferred from the sodium acetate 3 by direct contact.
  • heat is supplied to the upper oil 2 and is taken into the heat exchange from the discharge pipe 6.
  • liquids such as gas or water are taken in for heat exchange.
  • heat is transferred from the heated oil 2 to a gas or a liquid.
  • the thermally conducted gas or liquid is And supplied to the temperature control equipment in the facility 70.
  • the heat stored in sodium acetate 3 can be extracted by repeating the above operation.
  • the heat generated by garbage incineration at the factory 60 is stored in the heat storage unit 1 by repeating the above-described operation. Since the heat storage unit 1 is detachably connected to the heat exchanger 5a, the heat storage unit 1 is removed after the heat storage is completed, and is transported by the transport device 50 such as a truck to the facility 70 that needs the stored heat. The transported heat storage unit 1 is connected to the heat exchanger 5b to take out the heat stored in the heat storage unit 1 and use it for the temperature control equipment of the facility 70 or the like.
  • discharge hole 4a is provided on oil 2 side of supply pipe 4, even when sodium acetate 3 is solid at the start of heat storage, oil 2a By discharging the gas from the discharge hole 4a, the solid sodium acetate 3 can be converted into a liquid in a shorter time. Thereby, the heat storage time for sodium acetate 3 can be shortened.
  • the oil 2a discharged from the discharge hole 4a allows the sodium acetate 3 closer to the supply pipe 4 to be solidified. It can be in a liquid state, and the oil 2a can be discharged from the discharge hole 4b more quickly. Therefore, the heat storage time can be further reduced.
  • a circulation pipe 4c may be provided as shown in FIG.
  • the circulation pipe 4c is provided so as to surround the outer circumference of the supply pipe 4 which vertically crosses the boundary surface between the oil 2 and the sodium acetate 3, and is discharged from the discharge hole 4b after the sodium acetate 3 changes to a liquid state. It plays the role of a guide to raise the oil 2a to be raised vertically.
  • the heat-supplied oil 2a discharged from the discharge hole 4b rises along the circulation pipe 4c, the low-temperature liquid sodium acetate 3 moves to the lower part of the circulation pipe 4c, as indicated by the arrow in the figure.
  • a circulation flow is generated around the circulation pipe 4c. As a result, heat can be circulated, and the heat can be efficiently stored in the sodium acetate 3, so that the heat storage time can be shortened.
  • a plurality of plates 11 are provided so as to vertically cross the boundary between oil 2 and sodium acetate 3. You may do so.
  • the plate 11 By providing the plate 11, the oil 2 and sodium acetate can be transported during transportation of the heat storage unit 1. Waves are generated by the vibration of the drum 3 and the agitation at the boundary surface can be prevented. By preventing stirring, the heat stored in sodium acetate 3 can be maintained.
  • a separation device 12 may be provided in the middle of the discharge pipe 6.
  • the separation device 12 is a device that separates the oil 2 and the sodium acetate 3 when the sodium 2 is mixed in the oil 2 taken in.
  • the separation device 12 has a structure in which the oil 2 taken in is taken out from the upper portion of the separation device 12 while rotating in a spiral manner.
  • sodium acetate 3 has a higher specific gravity than oil 2, when it hits the side wall surface of separation device 12 by centrifugal force, sodium acetate 3 is discharged from the outlet at the lower part of separation device 12 along the side wall surface, Heat exchange ⁇ 5a is designed to take in only oil 2.
  • sodium acetate 3 can be removed from oil 2 taken into heat exchanger 5a, and there is no risk of failure or the like caused by intrusion of sodium acetate 3 into heat exchanger 5a.
  • the above modification can be applied to the embodiments described below.
  • the supply pipe 4 may obliquely cross the force perpendicular to the boundary between the oil 2 and the sodium acetate 3. Further, the supply pipe 4 may be bent in an L-shape, and the force extending in the horizontal direction may not be extended in the horizontal direction. Any shape can be used as long as the oil 2a can be discharged into the sodium acetate 3. Further, as shown in FIG. 6, the side surface may have a divergent shape, or a divergent supply portion 13 (expanded portion) may be provided in the supply pipe 4. In this case, the shape may be conical or hemispherical. Further, in this case, by providing the discharge hole 13a in the bottom portion, there is no possibility that the sodium acetate 3 may enter the inside.
  • the discharge hole 4b provided in the part of the supply pipe 4 extending horizontally in the sodium acetate 3 is provided below the supply pipe 4, but is provided in the upper part.
  • the power of using sodium acetate as a substance for storing heat and oil as a substance for conducting heat is not limited to this.
  • the heat storage may be erythritol. Since erythritol can be heated with oil at a temperature of 120 ° C or higher, it has an effect that heat can be efficiently stored in a short time.
  • the heat storage unit according to the present embodiment is different from the first embodiment in that it has two supply pipes.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the heat storage unit 1 includes a first supply pipe 7 (first supply pipe) and a second supply pipe 8 (second supply pipe).
  • the first supply pipe 7 and the second supply pipe 8 extend through the upper part of the heat storage container la where the stored oil 2 is located, and are detachably connected to the heat exchanger 5a.
  • the connection port of one supply pipe 11 is detachably connected to the connection port 51 of the heat exchanger 5a, and from the supply pipe 11 to the first supply pipe 7 and the second supply pipe 8. Branched.
  • the first supply pipe 7 and the second supply pipe 8 penetrating into the heat storage vessel la cross the boundary between the oil 2 and sodium acetate 3 vertically, enter the sodium acetate 3, and further form an L-shape. It is bent in a mold and extends horizontally. Further, the second supply pipe 8 vertically crosses the boundary surface between the oil 2 and the sodium acetate 3 from the end of the horizontally extending portion.
  • the first supply pipe 7 and the second supply pipe 8 have an internal space, and the oil 2a supplied with heat by heat exchange flows.
  • the first supply pipe 7 has a plurality of discharge holes 7a for discharging the supplied oil 2a into the sodium acetate 3 along the axial direction.
  • the second supply pipe 8 has an outlet 8a for discharging the supplied oil 2a into the oil 2.
  • the outlet 8a is provided at the end of the second supply pipe 8 so that the oil 2a supplied from the heat exchanger 5a flows through the second supply pipe 8 and is discharged into the oil 2 from the outlet 7a.
  • a discharge hole 4b that extends in the horizontal direction of the first supply pipe 7 and is provided in a round portion is provided in a vertically downward direction.
  • the first supply pipe 7 may have a discharge hole on the oil 2 side.
  • the supply pipe 11 is detachably connected to the heat exchanger 5a, and is separated into the first supply pipe 7 and the second supply pipe 8.
  • the first supply pipe 7 and the second supply pipe 8 are provided with valves 9a and 9b (switching valves), respectively. By opening and closing the valves 9a and 9b, the supply and cutoff of the oil 2a to the first supply pipe 7 and the second supply pipe 8, respectively, can be switched.
  • Valves 9a 'and 9b open and close according to the state of sodium acetate 3. Specifically, sodium acetate When the lithium 3 is solid, the valve 9b is closed so that the oil 2a is not supplied to the second supply pipe 8 so that the oil 2a is supplied only to the first supply pipe 7. When the sodium acetate 3 is liquid, the valve 9a is closed, the valve 9b is opened, and the oil 2a is supplied only to the second supply pipe 8.
  • the valves 9a 'and 9b may be opened and closed manually by an operator, or may be automatically opened and closed by connecting a controller. Note that the other members are the same as in the first embodiment, and a description thereof will not be repeated.
  • the valve 9b When the sodium acetate 3 becomes substantially liquid, the valve 9b is closed and the valve 9a is opened, whereby the second supply pipe 8 is shut off and the oil 2a is supplied to the first supply pipe 7.
  • the oil 2a supplied to the first supply pipe 7 flows through the first supply pipe 7, and is discharged into the sodium acetate 3 from the discharge hole 7a.
  • the oil 2a When the oil 2a is discharged, it rises to the upper oil 2 and is taken in.
  • heat is transferred to sodium acetate 3 by direct contact with sodium acetate 3. Thereby, heat can be stored in the sodium acetate 3.
  • the two supply pipes for supplying the heat-supplied oil 2 a, the first supply pipe 7 and the second supply pipe 8, and the sodium acetate 3 By switching according to the state, it is possible to efficiently store heat in sodium acetate 3.
  • the sodium acetate 3 is solid, so that the oil 2a is not discharged from the discharge hole provided in the sodium acetate 3. Therefore, when the sodium acetate 3 is solid, the oil 2a is supplied to the second supply pipe 8 and heat is transferred to the sodium acetate 3 by indirect contact.
  • the sodium acetate 3 becomes a liquid the oil is supplied to the first supply pipe 7. 2a is supplied and discharged, and it is converted to sodium acetate 3 by direct contact. By conducting the heat, the heat can be efficiently stored in the sodium acetate 3.
  • the first supply pipe 7 may be ruptured because the oil 2a supplied from the discharge hole 7a is not discharged. For this reason, by switching between the first supply pipe 7 and the second supply pipe 8, the first supply pipe 7 can be prevented from being ruptured, and the heat storage unit 1 can be used safely.
  • the oil 2 is supplied only to one of the first supply pipe 7 and the second supply pipe 8 depending on the state of the sodium acetate 3.
  • the present invention is not limited to this.
  • the oil 2a may be supplied only to the second supply pipe 8, and then the oil 2a may be supplied to both the first supply pipe 7 and the second supply pipe 8.
  • the first supply pipe 7a does not have the discharge hole, but may have the discharge hole. Furthermore, it is not necessary to have the valves 9a '9b.
  • the heat storage unit according to the present embodiment is the same as the second embodiment in that it has two supply pipes, except that one supply pipe surrounds the other supply pipe. Is different. Hereinafter, only the differences will be described.
  • the same members as those in the first and second embodiments are denoted by the same reference numerals, and description thereof will be omitted.
  • heat storage unit 1 has two first supply pipes 7 and second supply pipes 10.
  • the first supply pipe 7 and the second supply pipe 10 extend through an upper layer of the heat storage container la where the stored oil 2 is located, and are detachably connected to heat exchange.
  • the connection port of one supply pipe 11 is detachably connected to the connection port 51 of the heat exchanger 5a, and the supply pipe 11 is connected to the first supply pipe 7 and the second supply pipe 10. Branched.
  • the first supply pipe 7 is arranged so as to surround the second supply pipe 10 in the heat storage container la.
  • the first supply pipe 7 and the second supply pipe 10 enter the sodium acetate 3 across the boundary between the oil 2 and the sodium acetate 3 vertically, and further, bend in an L shape and extend horizontally.
  • the first supply pipe 7 and the second supply pipe 10 have an internal space, so that the oil 2a supplied with heat by heat exchange flows.
  • the first supply pipe 7 is disposed in the internal space of the second supply pipe 10.
  • a plurality of supply cylinders 10a that vertically cross the boundary between the oil 2 and the sodium acetate 3 are further provided.
  • the supply cylinder 10a has an outlet 10b on the oil 2 side, and as shown in FIG.
  • the oil 2a flowing through the second supply pipe 10 passes through the supply cylinder 1 Oa and is discharged into the oil 2 from the outlet 10b. It is supposed to be.
  • the second supply pipe 10 is provided with the oil 2a flowing through the first supply pipe 7 in the sodium acetate 3 at a position where the oil 2a is superimposed with the discharge hole 7a of the surrounding first supply pipe 7.
  • a communication part 10c is provided for discharging the air to the air. Note that the other members are the same as in the first embodiment, and a description thereof will not be repeated.
  • the first supply pipe 7 is surrounded by the second supply pipe 10
  • the oil 2b is further supplied with heat by the second supply pipe 10, and the oil 2a is discharged to the sodium acetate 3, whereby heat can be stored more quickly.
  • the first supply pipe located in sodium acetate 3 The area of 7 and the second supply pipe 10 can be reduced.
  • the second supply pipe 10 surrounds only a part of the first supply pipe 7 that surrounds substantially all of the first supply pipe 7 in the sodium acetate 3. It may be. Further, similarly to the second embodiment, after the sodium acetate 3 is changed to a liquid, the oil 2a may be supplied to both the first supply pipe 7 and the second supply pipe 10. Furthermore, it is not necessary to have the valves 9a '9b.
  • the heat storage unit according to the present embodiment includes two supply pipes, and is the same as the third embodiment in that one supply pipe surrounds the other supply pipe.
  • the structure of the supply pipe is different.
  • the same members as those in the first to third embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • heat storage unit 1 has two first supply pipes 15 and second supply pipes 16.
  • the first supply pipe 15 and the second supply pipe 16 extend through the upper part of the heat storage container la where the stored oil 2 is located, and are further connected so as to be able to attach and detach to heat exchange.
  • the connection port of one supply pipe 11 is detachably connected to the connection port 51 of the heat exchanger 5a, and from the supply pipe 11 to the first supply pipe 15 and the second supply pipe 16. Branched.
  • the first supply pipe 15 and the second supply pipe 16 vertically cross the boundary between the oil 2 and the sodium acetate 3 and enter the sodium acetate 3, and then bend into an L shape and extend horizontally. ing.
  • the first supply pipe 15 is further bent in an L shape, traverses the boundary surface again vertically, and is provided with an outlet 15a for discharging the oil 2a at a tip bent in the L shape.
  • the first supply pipe 15 and the second supply pipe 16 have an internal space, so that the oil 2a supplied with heat by the heat exchanger 5a flows.
  • the second supply pipe 16 surrounds the first supply pipe 15 in a portion where the supply pipes 15 and 16 extend horizontally.
  • the contact time between the oil 2a discharged from the discharge hole 16a and the sodium acetate 3 can be made longer, and the heat of the oil 2a can be sufficiently transmitted to the sodium acetate 3.
  • vinegar As sodium acid 3 goes down, oil 2a has a lower specific gravity than sodium acetate 3 and rises when it is discharged from discharge hole 16a. Although it takes time to accumulate heat because it conducts heat to the lithium 3, it is possible to sufficiently store heat in the sodium acetate 3 near the bottom by arranging the supply pipes 15 and 16 on the bottom, shortening the heat storage time I can do it.
  • the second supply pipe 16 is provided with a discharge hole 16a for discharging the oil 2a into the sodium acetate 3 in a direction opposite to the bottom side of the storage container la.
  • the oil 2a supplied to the supply pipe 11 passes through the first supply pipe 15 and is discharged into the oil 2 from the outlet 15a, while the oil 2a passes through the second supply pipe 16 and is discharged from the discharge hole 16a through the discharge hole 16a. It is to be discharged inside.
  • the oil 2a is hard to be discharged from the discharge hole 16a, so that the outlet is blocked, and the oil 2a flows sufficiently through the second supply pipe 16. . In the meantime, the temperature of the oil 2a may decrease.
  • the outlet 15a of the first supply pipe 15 is provided in the oil 2, the oil 2a can always flow through the first supply pipe 15 irrespective of the state of sodium acetate 3 at the start of heat storage. As a result, the oil 2a in the first supply pipe 15 always flows with the high-temperature oil 2a.
  • the oil 2a in the second supply pipe 16 is always in contact with the first supply pipe 15 through which the high-temperature oil 2a flows, so that heat is conducted, and the high temperature can be maintained without lowering the temperature. Thereby, the high temperature oil 2a can be discharged from the discharge hole 16a to the sodium acetate 3.
  • the second supply pipe 16 can also maintain a high temperature, and heat can also be transmitted to the sodium acetate 3 near the second supply pipe 16.
  • the supply pipes 15 and 16 need not be arranged on the force bottom surface arranged on the bottom surface of the heat storage container la.
  • the arrangement position of the discharge hole 16a is as described above. It is not so limited. If supply pipes 15 and 16 are not located on the bottom surface, supply pipes 15 and 16 are preferably located close to the bottom surface.
  • the oil 2a discharged from the discharge hole 16a is thermally conducted from the first supply pipe 15, so that a high temperature can be maintained at all times, and the heat storage time can be reduced. It can be shortened.
  • the supply pipe is arranged on the bottom of the storage container la, the contact time between the discharged oil 2a and the sodium acetate 3 can be made longer.
  • the oil 2a rises after being discharged due to its high specific gravity, and it is difficult for the oil 2a to be stored in the lower sodium acetate 3. I'm sorry to see you.
  • supply pipes 15 and 16 may be arranged side by side at equal intervals in the horizontal direction. By juxtaposition, the oil 2a and the supply pipes 15 and 16 can be brought into direct contact with the sodium acetate 3 over a wider area, and the heat storage time can be further shortened. In this case, it is preferable to provide the corrugated conductive plate 17 (heat conductive member) so as to be continuous with the supply pipes 15 and 16.
  • the conductive plate 17 has a corrugated shape in which arcs are alternately arranged in reverse, and the second supply pipe 16 is fitted to the arc portion, and is arranged on the bottom surface by being closely attached by welding or the like. I have. As a result, the contact area between the second supply pipe 16 and the conductive plate 17 increases, and the amount of heat conducted to the conductive plate 17 increases, so that sufficient heat is supplied to the sodium acetate 3 between the supply pipes 15 and 16. It can conduct. Thereby, the heat storage time can be further shortened.
  • the conductive plate 17 is preferably made of a metal having high heat conductivity such as copper, aluminum, and iron.
  • the conductive plate 17 may have a plate shape instead of a corrugated shape. Further, the supply pipes 15 and 16 may be arranged side by side in the vertical direction, or the adjacent supply pipes 15 and 16 may not be arranged at equal intervals.
  • the second supply pipe 16 covers substantially the entire bottom surface of the storage container 1a, and further, the second supply pipe 16 covers the bottom surface.
  • the first supply pipe 15 may be stretched around the supply pipe 16.
  • the entire lower portion of the sodium acetate 3 can also conduct heat, and the heat storage time can be further shortened.
  • the first supply pipe 15 flows through the entire second supply pipe 16, the oil 2a in the second supply pipe 16 can be maintained at a high temperature. Also in this case It is preferable that the first supply pipe 15 pass near the discharge hole 16a.
  • the temperature of the oil 2a discharged from the discharge hole 16a can be maintained as high as possible, and the heat storage time can be shortened.
  • a separation device 14 (separation mechanism) as shown in FIG. 15 may be provided between the outlet 15a of the first supply pipe 15 and the discharge pipe 6.
  • the separation device 14 is a device that separates the oil 2 and the sodium acetate 3 when the sodium acetate 3 is mixed in the taken oil 2.
  • the separation device 14 has a main body 14a (separator) that takes in the oil 2 containing the sodium acetate 3.
  • the main body 14a is filled with oil 2, so that the oil 2 taken in horizontally flows in one direction in a horizontal direction, and then is discharged.
  • the bottom surface of the main body 14a has a horizontal surface and an inclined surface, and a hole 14b for discharging sodium acetate 3 is provided in the horizontal surface. As will be described later in detail, since the bottom surface has an inclined surface, precipitated sodium acetate 3 is guided to the hole 14b.
  • FIG. 1 is an overall schematic diagram of a heat transport system of the present invention.
  • FIG. 2 is a cross-sectional view of the heat storage unit according to the first embodiment of the present invention.
  • FIG. 3 is a modified example of the heat storage unit according to the first embodiment.
  • FIG. 4 is another modified example of the heat storage unit according to the first embodiment.
  • FIG. 5 is another modified example of the heat storage unit according to the first embodiment.
  • FIG. 6 is another modified example of the heat storage unit according to the first embodiment.
  • FIG. 7 is a cross-sectional view of a heat storage unit according to a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a heat storage unit according to a third embodiment of the present invention.
  • FIG. 9 is a sectional view taken along line IX-IX of FIG.
  • FIG. 10 is a sectional view taken along line X—X in FIG.
  • FIG. 11 is a sectional view of a heat storage unit according to a fourth embodiment of the present invention.
  • FIG. 12 is a sectional view taken along line XII-XII of FIG. 11, showing a modification of the heat storage unit according to the fourth embodiment.
  • FIG. 13 is a sectional view taken along line XIII-XIII of FIG. 11, showing another modification of the heat storage unit according to the fourth embodiment.
  • FIG. 14 is a sectional view taken along line XIV-XIV of FIG. 11, showing another modified example of the heat storage unit according to the fourth embodiment.
  • FIG. 15 is an enlarged cross-sectional view of a separation device in another modified example of the heat storage unit according to the fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 短い時間で効率よく蓄熱する。  固体と液体との状態変化により蓄熱する酢酸ナトリウム3と、酢酸ナトリウム3に直接接触することにより熱交換し、酢酸ナトリウム3よりも比重が小さく分離する油2とを収容する熱貯蔵容器1aを備えている。さらに、少なくとも熱貯蔵容器1aに収容された酢酸ナトリウム3内を通り、油2を熱貯蔵容器1a内に供給する供給管4と、熱貯蔵容器1aに収容された油2を熱貯蔵容器1aの外部に排出する排出管6とを備えている。そして、供給管4は、熱貯蔵容器1aに収容された油2と酢酸ナトリウム3との境界面を横切り、供給された油2aを排出する排出孔を複数有し、排出孔6の少なくとも1つが油2内に位置している。                                                                        

Description

明 細 書
熱貯蔵ユニット
技術分野
[0001] 本発明は、発生した熱を蓄え、離れた場所に熱を輸送することができる熱貯蔵ュ- ットに関するものである。
背景技術
[0002] 工場、例えば、製鉄所、ゴミ処理場等にお 、て発生する熱は工場付近の様々な施 設に利用されている。また、工場で発生した熱を一時的に蓄熱体等に蓄え、その蓄 熱体を輸送することで、工場から離れた場所においても熱を利用することができる。 熱を貯蔵する装置としては、熱供給された油等の媒体と金属水和物とを直接接触す ることにより熱交換をし、金属水和物に熱を蓄えていく装置などがある。
[0003] 例えば特許文献 1の貯蔵容器には、酢酸ナトリウム等の蓄熱体と蓄熱体よりも比重 力 、さい油とが収容されている。油の比重の方が小さぐ油と蓄熱体とは混合しない ため、上下に分離して収容される。そして、油内と蓄熱体内とにパイプが配設され、 夫々熱交^^に接続されている。一方のパイプ力 油を熱交 に取込み、熱供給 し、その熱供給された油をもう一方のパイプから蓄熱体内に排出している。排出され た油は比重が小さいため、上部の油まで上昇する。上昇する間に、蓄熱体と油との 直接接触により、熱交換される。以上の動作を繰り返すことで、蓄熱体に蓄熱される ようになつている。そして、特許文献 1のパイプは、パイプ内や熱交換器内に不純物 が混入するのを防ぐために二重管構造となって 、る。
[0004] 特許文献 1 :国際公開番号 WO 03/019099 (01)
発明の開示
発明が解決しょうとする課題
[0005] 熱を蓄える酢酸ナトリウム等の蓄熱体は、融解潜熱を利用するものであり、熱を加え ていくことで、蓄熱体が固体力 液体へと状態変化を起こし、蓄熱されるようになって いる。このため、特許文献 1において、熱の供給開始時は、蓄熱体は固体であるため 、熱供給された油を蓄熱体内に配置されたパイプ力も排出しょうとしても、排出孔が 固体の蓄熱体に塞がれてしまい、蓄熱体が熱を加えられて液体にとなるまで、油を排 出できなくなり、蓄熱体に熱供給することができない。これにより、蓄熱に多大な時間 を費やしてしまう。
[0006] そこで、本発明の目的は、短時間で効率よく蓄熱することができる熱貯蔵ユニットを 提供することである。
課題を解決するための手段及び効果
[0007] 本発明は、固体と液体との状態変化により蓄熱する蓄熱体と、蓄熱体に直接接触 することにより熱交換し、蓄熱体よりも比重が小さぐ蓄熱体と分離する熱交換媒体と を収容する貯蔵容器と、少なくとも貯蔵容器に収容された蓄熱体内を通り、熱交換媒 体を貯蔵容器内に供給する供給管と、貯蔵容器に収容された熱交換媒体を貯蔵容 器の外部に排出する排出管とを備えており、供給管は、貯蔵容器に収容された熱交 換媒体と蓄熱体との境界面を横切り、供給された熱交換媒体を排出する排出孔を複 数有し、排出孔は、少なくとも 1つが前記熱交換媒体内に位置する。
[0008] この構成によれば、熱交換媒体側に排出孔が設けられていることで、蓄熱体の状 態に関わらず、熱交換媒体を供給管力 排出することができる。蓄熱体は、平時は固 体であり、蓄熱していくことで液体へと変化する。このため、蓄熱開始時は、蓄熱体内 に配置した供給管に排出孔を設けていても排出孔は固体の蓄熱体により塞がれてい る。そこで、熱交換媒体側に排出孔を設けることで供給された熱交換媒体を排出する ことができ、蓄熱体に熱を伝導させることができる。そして、蓄熱体が固体から液体へ と変化すると、蓄熱体側に設けられた排出孔からも熱交換媒体を排出させることがで る。これにより、短時間で蓄熱体と熱交換媒体とを接触させることができるため、蓄熱 時間を短縮することができる。また、熱交換媒体に排出孔が設けられていない場合、 蓄熱体側に設けた排出孔が塞がれることにより、供給管を通る熱交換媒体が排出さ れず蓄熱できないおそれがある力 そのおそれをなくすことができる。
[0009] 本発明の供給管が、境界面に対して垂直に横切って 、ることが好まし 、。これによ ると、供給管が垂直に境界面を横切ることで、供給管に沿って熱交換媒体を排出す ることができ、供給管近傍の蓄熱体力 蓄熱することができる。これにより、熱交換媒 体による蓄熱体への熱交換を効率よく行うことができる。 [0010] この場合、供給管が、排出孔を有する部分の外周に同軸状に配設され、排出孔か ら排出された熱交換媒体を鉛直方向に上昇させる循環管を有していることが好まし い。この構成によると、供給された熱交換媒体を循環管に沿って鉛直方向に排出さ せることで、循環管の周囲には、温度変化に伴う循環流が発生するようになる。これ により、効率よく熱を蓄熱体に伝導させることができ、蓄熱時間を短縮させることがで きる。
[0011] 別の観点において、本発明は、固体と液体との状態変化により蓄熱する蓄熱体と、 蓄熱体に直接接触することにより熱交換し、蓄熱体よりも比重が小さぐ蓄熱体と分離 する熱交換媒体とを収容する貯蔵容器と、少なくとも貯蔵容器に収容された蓄熱体 内を通り、熱交換媒体を貯蔵容器内に供給する供給管と、貯蔵容器に収容された熱 交換媒体を貯蔵容器の外部に排出する排出管とを備えており、供給管は、供給され た熱交換媒体を蓄熱体内に排出する排出孔を有する第 1の供給管と、貯蔵容器に 収容された熱交換媒体と蓄熱体との境界面を横切り、熱交換媒体内に出口を有する 第 2の供給管とを備えている。
[0012] この構成によると、第 1及び第 2の流通管を用いることで、蓄熱時間を短縮させるこ とができる。蓄熱体は、固体から液体に状態変化することで、蓄熱することができる。 このため、蓄熱開始時において、蓄熱体は固体となっているので、第 1の供給管に設 けられた排出孔が蓄熱体により塞がれ、供給された熱交換媒体を排出することができ ない。一方、第 2の供給管は、熱交換媒体内に出口を有しているため、常に供給され た熱交換媒体を排出することができる。このため、第 2の供給管を流通する熱交換媒 体の間接接触により蓄熱体に熱伝導し、蓄熱体を固体から液体にすることができる。 そして、蓄熱体が液体になることで、第 1の供給管の排出孔力 熱交換媒体を排出 することができる。このように 2つの供給管を切替えて蓄熱体に蓄熱することで、蓄熱 時間を短縮することができる。
[0013] 本発明は、蓄熱体内において、第 2の供給管が、第 1の供給管の排出孔を含む少 なくとも一部を囲繞し、排出孔を熱交換媒体に導く連通部を有していることが好まし い。これによると、第 2の供給管が第 1の供給管に囲繞されることで、第 2の供給管を 流通する熱交換媒体によって、第 2の供給管の周囲及び第 1の供給管の熱交換媒 体排出孔の周囲を加熱することが可能となる。これらの部分を早期に加熱し、固体の 蓄熱体を融解させることによって、早期に第 1の供給管力 熱交換媒体の排出をし、 蓄熱体に熱交換媒体を直接接触させることにより、蓄熱時間を短縮することができる
[0014] 本発明は、蓄熱体の状態に応じて、第 1及び第 2の供給管に対して熱交換媒体の 供給と遮断とを切替える切替弁がそれぞれに設けられて 、ることが好ま 、。この構 成によると、蓄熱体の状態に応じて、供給管を切替えるタイミングをかえることができ、 より効果的に蓄熱することができる。例えば、蓄熱開始時には、第 1の供給管と第 2の 供給管との両方に熱交換媒体を供給し、その後、第 1の供給管のみに供給するなど の切替えができ、効率よく蓄熱することができる。
[0015] 本発明は、供給管又は第 1の供給管の少なくとも一部が水平方向に延在する場合 において、水平方向に延在する部分に、鉛直下方向に開口するように排出孔が設け られていてもよい。これによると、熱交換媒体の比重が蓄熱体よりも小さいため、排出 孔が下方に向くことで、蓄熱体が排出孔力 供給管内部に浸入するおそれがなくな る。
[0016] 本発明は、蓄熱体内において、供給管又は第 1の供給管が、末広がり形状で、 つ、底面に前記排出孔が設けられた拡形部を有していることが好ましい。この構成に よると、熱交換媒体の比重が蓄熱体よりも小さいため、排出孔が下方に向くことで、蓄 熱体が排出孔力 供給管内部に浸入するおそれがなくなる。さらに、末広がり形状に することで、より多くの熱交換媒体を排出することができ、蓄熱時間を短縮することが できる。
[0017] また、別の観点において、本発明は、固体と液体との状態変化により蓄熱する蓄熱 体と、蓄熱体に直接接触することにより熱交換し、蓄熱体よりも比重が小さぐ蓄熱体 と分離する熱交換媒体とを収容する貯蔵容器と、少なくとも貯蔵容器に収容された蓄 熱体内を通り、熱交換媒体を貯蔵容器内に供給する供給管と、貯蔵容器に収容され た熱交換媒体を貯蔵容器の外部に排出する排出管とを備えており、供給管は、供給 された熱交換媒体を、収容された蓄熱体内に排出する出口を有する第 1の供給管と 、第 1の供給管の少なくとも一部を内部に有し、供給された熱交換媒体を蓄熱体内に 排出する排出孔を有する第 2の供給管とを備えて 、る。
[0018] この構成によると、蓄熱体の状態に関わらず、熱交換媒体は、第 1の供給管を常に 流通することができるため、第 2の供給管内の熱交換媒体に熱を伝導することができ
、高温を維持することができる。これにより、排出孔力 高温の熱交換媒体を排出でき るため、十分に蓄熱することができる。
[0019] 本発明は、蓄熱体内で供給管が並設されている場合において、供給管間にある蓄 熱体に、供給管の熱を伝導するための熱伝導部材を備えていることが好ましい。これ によると、より短時間で蓄熱体に熱を供給することができ、蓄熱時間を短縮することが できる。
[0020] 本発明の供給管の少なくとも一部が、貯蔵容器の底面に設けられていることが好ま しい。この構成によると、排出される熱交換媒体は、蓄熱体よりも比重が軽いため上 昇していくが、供給管を底部に設けることで、排出された熱交換媒体と蓄熱体との接 触時間をより長くすることができる。また、本発明において、第 2の供給管が、貯蔵容 器の底面を覆うように底面に設けられていることが好ましい。これによると、第 2の供給 管と蓄熱体との接触面が大きぐ蓄熱体の底部から蓄熱できるため、蓄熱時間を短 縮することができる。
[0021] 本発明の供給管の接続口が、排出管の接続口よりも上方に位置して 、ることが好ま しい。この構成によると、供給管の接続口を排出管の接続口よりも高く位置させること で、蓄熱体又は熱交換媒体が逆流した場合、先に排出管力も熱交換媒体を逆流さ せることができ、蓄熱されて!/、る蓄熱体が逆流すると 、う危険を回避することができる
[0022] 本発明は、蓄熱体と熱交換媒体との境界面に沿って、境界面と垂直に平行配置さ れ、境界面における攪拌を防止する消波プレートを有していることが好ましい。この構 成によると、蓄熱状態での輸送中に伴う震動による境界面における撹拌を防止するこ とがでさる。
[0023] 本発明の排出管が、蓄熱体と熱交換媒体とを分離する分離機構を備えていること が好ましい。この構成〖こよると、貯蔵容器の外部に排出する熱交換媒体に、蓄熱体 が混じっている場合、取除くことができる。この場合、分離機構が、取り込んだ熱交換 媒体と蓄熱体とを一方向に水平流通させる分離体と、沈殿する蓄熱体を分離体から 排出する排出穴とを有しており、分離体は、沈殿した蓄熱体を排出穴に導く形状を有 していることが好ましい。これにより、簡単な構造で蓄熱体と熱交換媒体とを分離する ことができる。
[0024] また、本発明の蓄熱体が、エリスリトールであってもよい。これによると、短時間で効 率よく蓄熱することができる。
発明を実施するための最良の形態
[0025] 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
[0026] (第 1の実施形態)
本発明の第 1の実施の形態に係る熱貯蔵ユニット 1は、可搬式の熱貯蔵ユニットに 好適に使用される。例えば、図 1に示すように、熱を発生する工場 60とその熱を利用 する施設 70とが互いにはなれて 、る場合に、熱を輸送する熱輸送システム等に適用 される。熱貯蔵ユニット 1は、熱貯蔵ユニット 1に対し蓄熱 '放熱をする熱交 5& · 5 bの接続口 51 · 52に対して着脱可能となっており、トラック等の輸送機 50により、工場 60と施設 70との間を輸送されるようになっている。工場 60は、ごみ焼却場や発電所 や製鉄所等であり、そこで発生する熱が熱交換器 5aを介して熱貯蔵ユニット 1に蓄え られる。また、施設 70は、温水プールや病院等の施設であり、熱貯蔵ユニット 1に蓄 えられた熱が熱交換器 5bを介して施設 70内の温調設備等に適用される。以下の説 明にお 、て、工場 60側における熱交換にっ 、て説明する。
[0027] 熱貯蔵ユニット 1は、油 2 (熱交換媒体)と酢酸ナトリウム三水和塩 3 (蓄熱体)(以下 、酢酸ナトリウム 3と称する)とが収容された熱貯蔵容器 la (貯蔵容器)と、供給管 4と、 排出管 6とを備えている。油 2と酢酸ナトリウム 3とは互いに混合せず、油 2が酢酸ナト リウム 3よりも比重が小さいため、熱貯蔵容器 la内では、上層に油 2、下層に酢酸ナト リウム 3と互いに分離して収容されるようになっている。また、油 2と酢酸ナトリウム 3とが 互いに混合しない、言い換えれば油 2と酢酸ナトリウム 3とが互いに分離するため、油 2と酢酸ナトリウム 3との間には夫々を分離するための部材等は介在しておらず、油 2 と酢酸ナトリウム 3とは直接接触している。
[0028] 油 2は、酢酸ナトリウム 3との直接接触により、酢酸ナトリウム 3との間で熱交換する。 油 2は、後述する排出管 6から熱交換器 5aに取込まれ、熱交換器 5a内で熱供給され ると (以下の説明で、熱交 で熱供給された油 2を油 2aと称す)、供給管 4を介 して酢酸ナトリウム 3内に排出される。排出された油 2aは、比重が酢酸ナトリウム 3より も小さいため、上層の油 2まで上昇し、油 2に取込まれる。この上昇中に、酢酸ナトリウ ム 3との直接接触により、油 2aに供給された熱が酢酸ナトリウム 3に伝導されるように なっている。
[0029] 酢酸ナトリウム 3は、上述した油 2aから伝導された熱を蓄える。酢酸ナトリウム 3の融 点は約 58度であり、平時 (室温状態)では固体となっている。そして、油 2aから直接 接触により熱が伝導されることにより、固体から液体に状態変化し、液体状態のときに 蓄熱されるようになつている。
[0030] 供給管 4は、収容された油 2が位置する熱貯蔵容器 laの上層部分に貫設されてお り、さらに、接続口 41が熱交 の接続口 51に着脱可能に接続されている。熱貯 蔵容器 laに貫設された供給管 4は、油 2と酢酸ナトリウム 3との境界面を垂直に横切 つて酢酸ナトリウム 3内に進入し、さらに、 L字型に折れ曲がり水平に延びている。供 給管 4は内部空間を有しており、熱交換器 5aに熱供給された油 2aが内部空間を流 通するようになっている。
[0031] また、供給管 4は、内部を流通する油 2aを排出する排出孔 4a'4bをその軸方向に 沿って複数有している。排出孔 4aは、油 2と酢酸ナトリウム 3との境界面を境に、境界 面よりも上方、つまり油 2側にある供給管 4に複数設けられている。また、排出孔 4bは 、境界面よりも下方、つまり酢酸ナトリウム 3側ある供給管 4に 1個以上設けられている 。尚、供給管 4の L字型に折れ曲がり水平に延在している部分に設けられた排出孔 4 bは、鉛直下方向に開口するように設けられている。これにより、酢酸ナトリウム 3は油 2aよりも比重が大きいため、排出孔 4bから排出される油 2aを押しのけて、酢酸ナトリ ゥム 3が供給管 4内に浸入することがなぐ供給管 4の内部で酢酸ナトリウム 3が固まつ て詰まるなどを防止することができるようになって 、る。
[0032] 排出管 6は、収容された油 2が位置する熱貯蔵容器 laの上層部分に貫設されてい る。そして、排出管 6の接続口 61が、熱交換器 5aの接続口 52に着脱可能に接続さ れており、熱貯蔵容器 la内の油 2を熱交換器 5aに取込むようになつている。このとき 、排出管 6の接続口 61が供給管 4の接続口 41よりも下方となる、つまり、排出管 6が 供給管 4の下方となるように熱貯蔵容器 laに配設されて ヽる。間違えた手順で供給 管 4及び排出管 6を熱交換器 5aから取外した場合、外部と熱貯蔵容器 la内部との圧 力の相異により、油 2又は酢酸ナトリウム 3が逆流する場合がある。このため、排出管 6 を供給管 4よりも下方に配置することで、排出管 6から先に熱を帯びていない油 2が逆 流するようにしている。これにより、外部との圧力差がなくなり、蓄熱されている酢酸ナ トリウム 3が供給管 4から逆流する危険を抑えることができる。
[0033] 熱交換器 5aは、工場 60で発生した熱を熱貯蔵容器 laに蓄熱する。上述したよう〖こ 、熱交換器 5aには着脱可能に供給管 4及び排出管 6が接続されている。そして、熱 交翻 5a内で供給管 4と排出管 6とが連通している。さらに、熱交翻5&には、工場 60で発生した熱を蒸気として取込む図示しな ヽパイプと、熱を取除!ヽた蒸気を排出 する同じく図示しないパイプがそれぞれ接続されており、これらのパイプは熱交 5a内で、供給管 4と排出管 6との連通部分を囲繞するように配置されたパイプを介し て連通している。また、熱交換器 5aの接続口 51には、図示しないポンプが配設され ており、熱交換器 5aを油 2取り込み、取込んだ油 2を熱貯蔵容器 laに送り込んでいる
[0034] 熱交換器 5aは、排出管 6を介して熱貯蔵容器 la内の油 2をポンプにより取込み、一 方で、パイプを介して工場 60で発生した蒸気を取込む。取込まれた蒸気は、供給管 4と排出管 6との連通部分にぉ 、てパイプ同士の間接接触により、取込んだ油 2に熱 を伝導する。その後、熱供給された油 2aを、供給管 4を介して熱貯蔵容器 la内に供 給する。また、熱が取除かれた蒸気は、パイプを介して排気される。熱交 が以 上の動作を繰り返すことにより、工場 60で発生した熱を熱貯蔵ユニット 1の酢酸ナトリ ゥム 3に蓄えることができるようになって!/、る。
[0035] 次に、熱貯蔵ユニット 1への蓄熱方法について説明する。
[0036] 工場 60で発生した蒸気が熱交換器 5aに取込まれる。一方で、熱貯蔵容器 la内の 油 2が排出管 6を介して熱交換器 5aに取込まれる。そして、熱交換器 5a内において 、蒸気の熱が取込まれた油 2に伝導される。熱供給された油 2aが供給管 4を介して熱 貯蔵容器 laに戻される。 [0037] 油 2aは、供給管 4内を流通し、排出孔 4a'4bから排出される。蓄熱開始時の酢酸 ナトリウム 3は固体であり、排出孔 4bは酢酸ナトリウム 3側に設けられているため、排出 孔 4bが固体の酢酸ナトリウム 3により塞がれる状態となっている。このため、蓄熱開始 時にお 、て、排出孔 4bからは油 2aが排出されな 、。
[0038] 一方、排出孔 4aは、油 2側に設けられているため、排出孔 4aが塞がれることなく油 2aを排出することができる。そして、排出孔 4aから排出された油 2aは、油 2と酢酸ナト リウム 3との境界面付近で、酢酸ナトリウム 3に熱を伝導する。これにより、酢酸ナトリウ ム 3は、上部から徐々に固体力も液体へと状態変化していき、排出孔 4bからも油 2a が排出されるようになる。排出された油 2aとの直接接触により、酢酸ナトリウム 3に熱 が蓄えられる。また、供給管 4を流通する油 2aは、供給管 4を介して間接接触により、 酢酸ナトリウム 3に熱を伝導する。これにより、より早く酢酸ナトリウム 3を固体力 液体 へと変化させることができ、蓄熱時間を短縮することができる。
[0039] 酢酸ナトリウム 3が液体状態となり、酢酸ナトリウム 3内に油 2aが排出されると、油 2a の比重は酢酸ナトリウム 3よりも小さいため、上層の油 2まで上昇し取込まれる。油 2a は、上昇しながら酢酸ナトリウム 3に熱を伝導している。以上の動作を繰り返すことに より、酢酸ナトリウム 3に蓄熱することができる。
[0040] なお、これまでは、工場 60側における熱交換にっ 、て説明してきたが、施設 70側 における熱交換についても同様である。即ち、酢酸ナトリウム 3は、蓄熱された状態で は液体となっており、この液体から、蓄えられた熱を取出すことが可能となる。熱貯蔵 ユニット 1の供給管 4と排出管 6とは、熱貯蔵ユニット 1に蓄えられた熱を取出す熱交
Figure imgf000011_0001
パイプと、加熱された気体又は液体に供給し、施設 70の温調設備に供給するパイプ とが接続されている。
[0041] 熱交 は、供給管 4を介して蓄熱されている酢酸ナトリウム 3内に油 2を排出す る。排出された油 2は、上昇しながら直接接触により酢酸ナトリウム 3から熱が伝導さ れる。これにより、上層の油 2に熱が供給され、排出管 6から熱交 に取込まれ る。一方で、熱交 には気体又は水などの液体が取込まれる。そして、熱を帯 びた油 2から気体又は液体に熱伝導される。熱伝導された気体又は液体は、パイプ を通り施設 70内の温調設備に供給される。以上の動作と繰り返すことにより酢酸ナト リウム 3に蓄えられた熱を取出すことができる。
[0042] 次に、第 1の実施の形態に係る熱貯蔵ユニット 1を用いた熱輸送システムについて 説明する。工場 60でゴミ焼却などにより発生した熱を、上述した動作を繰り返すこと により、熱貯蔵ユニット 1に蓄える。熱貯蔵ユニット 1は着脱可能に熱交換器 5aに接続 されているため、蓄熱完了後、取り外されて、トラック等の輸送機 50により、蓄熱した 熱を必要とする施設 70まで輸送する。輸送された熱貯蔵ユニット 1を、熱交換器 5bに 接続し熱貯蔵ユニット 1に蓄えられた熱を取出して、施設 70の温調設備等に用いる。
[0043] 以上説明したように、本実施の形態において、供給管 4の油 2側に排出孔 4aが設け られていることで、蓄熱開始時において酢酸ナトリウム 3が固体であっても、油 2aを排 出孔 4aから排出することで、固体の酢酸ナトリウム 3をより短い時間で液体に変えるこ とができる。これにより、酢酸ナトリウム 3に対する蓄熱時間を短縮することができる。
[0044] また、供給管 4を油 2と酢酸ナトリウム 3との境界面を垂直に横切ることにより、排出 孔 4aから排出される油 2aにより、供給管 4のより近傍の酢酸ナトリウム 3を固体力 液 体状態にすることができ、より早く排出孔 4bから油 2aを排出することができる。従って 、蓄熱時間をより短縮することができる。
[0045] 尚、本実施の形態の変形例として、図 3に示すように、循環管 4cを設けるようにして もよい。循環管 4cは、油 2と酢酸ナトリウム 3との境界面を垂直に横切る供給管 4の外 周を取り囲むように設けられており、酢酸ナトリウム 3が液体に状態変化した後、排出 孔 4bから排出される油 2aを鉛直方向に上昇させるガイドの役割を果たしている。排 出孔 4bにより排出される熱供給された油 2aが循環管 4cに沿って上昇することで、温 度の低い液体の酢酸ナトリウム 3が循環管 4cの下部に移動し、図中矢印のように、循 環管 4cの周囲には循環流が発生するようになる。これにより、熱を循環させることが でき、熱を酢酸ナトリウム 3内に効率よく蓄えることにより、蓄熱時間を短縮するという 効果を奏する。
[0046] また、本実施の形態の別の変形例として、図 4に示すように、複数のプレート 11 (消 波プレート)を油 2と酢酸ナトリウム 3との境界面を垂直に横切るように設けるようにして もよい。プレート 11を設けることにより、熱貯蔵ユニット 1の輸送時に、油 2と酢酸ナトリ ゥム 3とが振動することにより波が発生し、境界面における攪拌を防止することができ るようになっている。攪拌を防止することで、酢酸ナトリウム 3に蓄えられた熱を維持し ておくことができる。
[0047] さらに、別の変形例として、排出管 6の途中に分離装置 12を設けるようにしてもよい 。分離装置 12は、取込んだ油 2中に酢酸ナトリウム 3が混合していた場合に、油 2と酢 酸ナトリウム 3とを分離する装置である。例えば、図示しないが、分離装置 12は、取込 んだ油 2をらせん状に回転させながら、分離装置 12の上部から取出す構造となって いる。この場合、酢酸ナトリウム 3は油 2よりも比重が大きいため、遠心力により分離装 置 12の側壁面に当たると、側壁面に沿って酢酸ナトリウム 3が分離装置 12の下部に ある出口から排出され、熱交^^ 5aには油 2のみが取込まれるようになつている。こ れにより、熱交換器 5aに取り込む油 2から酢酸ナトリウム 3を除去することができ、熱 交換器 5a内に酢酸ナトリウム 3が浸入して起こる故障等のおそれがなくなる。上記の 変形例は、後述の実施形態にも適用することができる。
[0048] 尚、上述の本実施の形態では、供給管 4は、油 2と酢酸ナトリウム 3との境界面を垂 直に横切っている力 垂直でなぐ斜めに横切るようにしてもよい。また、供給管 4が L 字型に折れ曲がり、水平方向に延在している力 水平方向に延在していなくてもよい 。酢酸ナトリウム 3内に油 2aを排出できる形状であればよい。さらに、図 6に示すように 、側面が末広がり形状であってもよいし、供給管 4の途中に末広がり形状の供給部 1 3 (拡形部)を設けるようにしてもよい。この場合、円錐形状であってもよいし、半球状 であってもよい。また、この場合、底面部分に排出孔 13aを設けるようにすることで、 内部に酢酸ナトリウム 3が浸入するおそれがなくなる。
[0049] また、本実施の形態では、酢酸ナトリウム 3内において水平に延在する供給管 4の 部分に設けられている排出孔 4bは、供給管 4の下方に設けられているが、上方であ つてもよい。さらに、本実施の形態では、蓄熱するための物質として酢酸ナトリウム、 熱伝導するための物質として油を用いている力 これに限定されることはない。例え ば、蓄熱体をエリスリトールとしてもよい。エリスリトールは、 120°C以上の温度の油で の加熱ができるため、短時間で効率よく蓄熱することができるという効果を奏する。
[0050] (第 2の実施形態) 次に、本発明の第 2の実施の形態に係る熱貯蔵ユニットについて説明する。本実施 の形態に係る熱貯蔵ユニットは、供給管を 2つ備えている点に関して、第 1の実施の 形態と相違する。以下、その相違点についてのみ説明する。尚、第 1の実施の形態と 同一の部材には同一の符号を付記してその説明を省略する。
[0051] 図 7に示すように、本実施の形態に係る熱貯蔵ユニット 1には、第 1供給管 7 (第 1の 供給管)と第 2供給管 8 (第 2の供給管)とを備えて!/、る。第 1供給管 7及び第 2供給管 8は、収容された油 2が位置する熱貯蔵容器 laの上層部分に貫設されており、さらに 、熱交換器 5aに着脱可能に接続されている。具体的には、 1本の供給管 11の接続 口が熱交換器 5aの接続口 51と着脱可能に接続されており、供給管 11から、第 1供 給管 7及び第 2供給管 8に枝分かれしている。熱貯蔵容器 laに貫設された第 1供給 管 7及び第 2供給管 8は、油 2と酢酸ナトリウム 3との境界面を垂直に横切って酢酸ナ トリウム 3内に進入し、さらに、 L字型に折れ曲がり水平に延びている。さらに、第 2供 給管 8は、水平に延びている部分の端部から、油 2と酢酸ナトリウム 3との境界面を垂 直に横切っている。第 1供給管 7及び第 2供給管 8は、内部空間を有しており、熱交 により熱供給された油 2aが流通するようになって 、る。
[0052] 第 1供給管 7は、供給された油 2aを酢酸ナトリウム 3内に排出する複数の排出孔 7a を軸方向に沿って有している。また、第 2供給管 8は、供給された油 2aを油 2内に排 出する出口 8aを有している。出口 8aは、第 2供給管 8の終端部に設けられており、熱 交換器 5aから供給された油 2aが第 2供給管 8を流通し、出口 7aから油 2内に排出す るようになって!/、る。第 1供給管 7の水平方向に延在して 、る部分に設けられた排出 孔 4bは、鉛直下方向に設けられている。尚、第 1供給管 7は、第 1の実施の形態と同 様に、油 2側に排出孔を有していてもよい。
[0053] 上述したように、供給管 11は、熱交換器 5aに着脱可能に接続されており、第 1供給 管 7と第 2供給管 8とに分離している。そして、第 1供給管 7及び第 2供給管 8には、そ れぞれバルブ 9a · 9b (切替弁)が配設されて 、る。バルブ 9a · 9bを開閉することで、 それぞれ第 1供給管 7、第 2供給管 8に対して油 2aの供給と遮断とを切替られるように なっている。
[0054] バルブ 9a' 9bは、酢酸ナトリウム 3の状態に応じて開閉する。具体的には、酢酸ナト リウム 3が固体のときには、第 1供給管 7のみに油 2aが供給されるように、バルブ 9bを 締めて第 2供給管 8に油 2aが供給されないようにしている。また、酢酸ナトリウム 3が 液体のときには、バルブ 9aを締め、バルブ 9bを開放し、第 2供給管 8にのみ油 2aが 供給されるようになっている。バルブ 9a ' 9bは、作業者による手動で開閉してもよいし 、コントローラを接続して自動で開閉してもよい。尚、他の部材に関しては第 1の実施 の形態と同様であるため説明は省略する。
[0055] 次に、熱貯蔵ユニット 1への蓄熱方法について説明する。
[0056] 工場 60から蒸気がパイプを通って熱交換器 5aに取込まれる。一方で、熱貯蔵容器 la内の油 2が排出管 6を介して熱交換器 5aに取込まれる。そして、熱交換器 5a内に おいて、蒸気の熱が取込まれた油 2に熱伝導により供給される。蓄熱開始時におい ては、バルブ 9bのみを開放し、第 2供給管 8にのみ油 2aが供給され、熱供給された 油 2aが第 2供給管 8内を流通する。油 2aは、第 2供給管 8を流通し、出口 8aから油 2 内に排出される。第 2供給管 8を流通する油 2aが、第 2供給管 8を介して間接接触に より酢酸ナトリウム 3に熱を伝導することにより、固体である酢酸ナトリウム 3が液体へと 変化する。
[0057] 酢酸ナトリウム 3が略液体になると、バルブ 9bを閉じ、バルブ 9aを開放することで、 第 2供給管 8が遮断され、第 1供給管 7に油 2aが供給されるようになる。第 1供給管 7 に供給された油 2aは、第 1供給管 7を流通し、排出孔 7aから酢酸ナトリウム 3内に排 出される。油 2aが排出されると、上層の油 2まで上昇し取込まれる。その上昇中に酢 酸ナトリウム 3との直接接触により、酢酸ナトリウム 3に熱が伝導される。これにより、酢 酸ナトリウム 3に蓄熱することができる。
[0058] 以上の説明のように、本実施の形態において、熱供給された油 2aを供給する供給 管を第 1供給管 7と第 2供給管 8との 2本用いて、酢酸ナトリウム 3の状態に応じて切替 えることで、効率よく酢酸ナトリウム 3に蓄熱することができる。蓄熱開始時は、酢酸ナ トリウム 3は固体であるため、酢酸ナトリウム 3内に設けられた排出孔からは油 2aが排 出されなくなつている。このため、酢酸ナトリウム 3が固体のときには、第 2供給管 8に 油 2aを供給し、間接接触により酢酸ナトリウム 3に熱伝導させ、酢酸ナトリウム 3が液 体となると、第 1供給管 7に油 2aを供給して排出し、直接接触により酢酸ナトリウム 3に 熱伝導させることで、効率よく酢酸ナトリウム 3に蓄熱することができる。
[0059] また、蓄熱開始時は、排出孔 7aから供給された油 2aが排出されないことにより、第 1供給管 7が破裂する場合がある。このため、第 1供給管 7と第 2供給管 8とを切替える ことで、第 1供給管 7の破裂などを防ぐことができ、安全に熱貯蔵ユニット 1を使用する ことができる。
[0060] 尚、本実施の形態において、酢酸ナトリウム 3の状態に応じて第 1供給管 7と第 2供 給管 8との 、ずれか一方にのみ油 2を供給するようにして 、るが、これに限定されな い。例えば、蓄熱開始時に、第 2供給管 8にのみ油 2aを供給し、その後、第 1供給管 7と第 2供給管 8との両方に油 2aを供給するようにしてもよい。また、上述の実施の形 態では、第 1供給管 7aは排出孔を有していないが、排出孔を有していてもよい。さら には、バルブ 9a ' 9bを有していなくてもよい。
[0061] (第 3の実施形態)
次に、本発明の第 3の実施の形態に係る熱貯蔵ユニットについて説明する。本実施 の形態に係る熱貯蔵ユニットは、供給管を 2つ備えている点で、第 2の実施の形態と 同じであるが、一方の供給管が他方の供給管を囲繞しているという点で相違している 。以下、その相違点についてのみ説明する。尚、第 1、第 2の実施の形態と同一の部 材については同一の符号を付記してその説明を省略する。
[0062] 図 8に示すように、本実施の形態に係る熱貯蔵ユニット 1は、 2つの第 1供給管 7及 び第 2供給管 10を有している。第 1供給管 7及び第 2供給管 10は、収容された油 2が 位置する熱貯蔵容器 laの上層部分に貫設されており、さらに、熱交 に着脱 可能に接続されている。具体的には、 1本の供給管 11の接続口が熱交換器 5aの接 続口 51に着脱可能に接続されており、供給管 11から、第 1供給管 7及び第 2供給管 10に枝分かれしている。そして、熱貯蔵容器 la内において、第 1供給管 7が、第 2供 給管 10を囲繞するように配置されている。第 1供給管 7及び第 2供給管 10は、油 2と 酢酸ナトリウム 3との境界面を垂直に横切って酢酸ナトリウム 3内に進入し、さらに、 L 字型に折れ曲がり水平に延びている。第 1供給管 7及び第 2供給管 10は、内部空間 を有しており、熱交 により熱供給された油 2aが流通するようになっている。上 述したように、この第 2供給管 10の内部空間に第 1供給管 7が配置されている。 [0063] 第 2供給管 10の水平に延びている部分には、さらに、油 2と酢酸ナトリウム 3との境 界面を垂直に横切る複数の供給筒 10aが配設されている。供給筒 10aは、油 2側に 出口 10bを有しており、図 9に示すように、第 2供給管 10を流通する油 2aが供給筒 1 Oaを通り、出口 10bから油 2内に排出されるようになっている。また、図 10に示すよう に、第 2供給管 10には、囲繞する第 1供給管 7の排出孔 7aと重合する位置に、第 1供 給管 7を流通する油 2aを酢酸ナトリウム 3内に排出するための連通部 10cが設けられ ている。尚、他の部材に関しては第 1の実施の形態と同様であるため説明は省略す る。
[0064] 次に、熱貯蔵ユニット 1への蓄熱方法について説明する。
[0065] 工場 60から蒸気がパイプを通って熱交換器 5aに取込まれる。一方で、熱貯蔵容器 la内の油 2が排出管 6を介して熱交換器 5aに取込まれる。そして、熱交換器 5a内に おいて、蒸気の熱が取込まれた油 2に供給される。蓄熱開始時においては、バルブ 9 bのみを開放し、第 2供給管 10にのみ油 2aが供給されるようになっている。従って、 熱供給された油 2aが第 2供給管 10内を流通し、さらに、供給筒 10aを通り、出口 10b 力 油 2内に排出される。
[0066] 熱供給された油 2aが、第 2供給管 10及び供給筒 10aを流通する際に、油 2aは、第 2供給管 10及び供給筒 10aを介して間接接触により、酢酸ナトリウム 3に熱を伝導す る。これにより、酢酸ナトリウム 3は固体から液体へと徐々に変化する。酢酸ナトリウム 3 が液体となると、バルブ 9bを閉じ、バルブ 9aを開放する。これにより、油 2aは第 1供 給管 7に供給されるようになる。酢酸ナトリウム 3が液体となることで、排出孔 7a及び連 通部 10cが塞がれることがなぐ排出孔 7a及び連通部 10cから油 2aを排出できるよう になる。また、第 1供給管 7を油 2aが流通する際に、囲繞している第 2供給管 10を流 通する油 2aから熱が伝導される。これにより、さらに温度が上昇し、酢酸ナトリウム 3に 蓄熱する時間をさらに短縮することができる。
[0067] 以上説明したように、本実施の形態において、第 2の実施の形態の効果に加え、第 2供給管 10により第 1供給管 7が囲繞されることで第 1供給管 7を流通する油 2bが、 第 2供給管 10によりさらに熱が供給され、その油 2aを酢酸ナトリウム 3に排出すること で、より早く蓄熱することができる。さらに、酢酸ナトリウム 3内に配置される第 1供給管 7及び第 2供給管 10の領域を少なくすることができる。
[0068] 尚、本実施の形態では、第 2供給管 10は、酢酸ナトリウム 3内において、第 1供給管 7の略全てを囲繞している力 第 1供給管 7の一部のみを囲繞するものであってもよい 。また、第 2の実施の形態と同様に、酢酸ナトリウム 3が液体に変化した後、第 1供給 管 7と第 2供給管 10との両方に油 2aを供給するようにしてもよい。さらに、バルブ 9a ' 9bを有していなくてもよい。
[0069] (第 4の実施形態)
次に、本発明の第 4の実施の形態に係る熱貯蔵ユニットについて説明する。本実施 の形態に係る熱貯蔵ユニットは、供給管を 2つ備えており、一方の供給管が他方の供 給管を囲繞している点では第 3の実施形態と同じであるが、それぞれの供給管の構 造が相違している。以下、その相違点についてのみ説明する。尚、第 1一第 3の実施 の形態と同一の部材については同一の符号を付記してその説明を省略する。
[0070] 図 11に示すように、本実施の形態に係る熱貯蔵ユニット 1は、 2つの第 1供給管 15 及び第 2供給管 16を有している。第 1供給管 15及び第 2供給管 16は、収容された油 2が位置する熱貯蔵容器 laの上層部分に貫設されており、さらに、熱交 に着 脱可能に接続されている。具体的には、 1本の供給管 11の接続口が熱交換器 5aの 接続口 51に着脱可能に接続されており、供給管 11から、第 1供給管 15及び第 2供 給管 16に枝分かれしている。
[0071] 第 1供給管 15及び第 2供給管 16は、油 2と酢酸ナトリウム 3との境界面を垂直に横 切って酢酸ナトリウム 3内に進入し、さらに、 L字型に折れ曲がり水平に延びている。 第 1供給管 15は、さらに、 L字型に折れ曲がり、再び境界面を垂直に横切り、 L字型 に折れ曲がった先端に油 2aを排出する出口 15aが設けられている。第 1供給管 15及 び第 2供給管 16は、内部空間を有しており、熱交換器 5aにより熱供給された油 2aが 流通するようになっている。供給管 15 · 16が水平に延びている部分において、第 2供 給管 16が、第 1供給管 15を囲繞するようになっている。
[0072] 供給管 15 · 16の水平に延びている部分は、貯蔵容器 laの底面に配置されている。
これにより、排出孔 16aから排出された油 2aと酢酸ナトリウム 3との接触時間をより長く することができ、油 2aの熱を十分に酢酸ナトリウム 3に伝導することができる。また、酢 酸ナトリウム 3が液ィ匕していくと、油 2aは酢酸ナトリウム 3よりも比重が小さいため、排 出孔 16aから排出されると上昇してしまうため、熱貯蔵容器 laの底面近傍の酢酸ナト リウム 3に熱伝導しに《なり、蓄熱に時間を要するが、供給管 15 · 16を底面に配置 することにより、底面近傍の酢酸ナトリウム 3にも十分に蓄熱することができ、蓄熱時間 を短縮することができるようになって 、る。
[0073] また、第 2供給管 16には、貯蔵容器 laの底面側と反対方向に、油 2aを酢酸ナトリウ ム 3内に排出する排出孔 16aが設けられている。これにより、供給管 11に供給された 油 2aは、第 1供給管 15を通り出口 15aから油 2内に排出され、一方で、第 2供給管 1 6を通り、排出孔 16aから酢酸ナトリウム 3内に排出されるようになっている。
[0074] 次に、熱貯蔵ユニット 1への蓄熱方法について説明する。
[0075] 工場 60から蒸気がパイプを通って熱交換器 5aに取込まれる。一方で、熱貯蔵容器 la内の油 2が排出管 6を介して熱交換器 5aに取込まれる。そして、熱交換器 5a内に おいて、蒸気の熱が取込まれた油 2に供給される。その後、熱供給された油 2aが供 給管 11に供給され、第 1供給管 15と第 2供給管 16とを流通する。第 1供給管 15を流 通する油 2aは、出口 15aから油 2内に排出される。また、第 2供給管 16を流通する油 2aは、排出孔 16aから酢酸ナトリウム 3内へと排出される。
[0076] 蓄熱開始時は、酢酸ナトリウム 3が固体のため、排出孔 16aから油 2aが排出されに くいため出口が塞がってしまい、油 2aは第 2供給管 16を十分に流通しに《なる。そ して、その間に油 2aの温度が低下してしまうおそれがある。一方、第 1供給管 15の出 口 15aが油 2内に設けられているため、蓄熱開始時の酢酸ナトリウム 3の状態に関わ らず、油 2aは第 1供給管 15を常に流通することができ、第 1供給管 15内の油 2aは常 に高温の油 2aが流通している。このため、第 2供給管 16内の油 2aは、常に高温の油 2aが流通する第 1供給管 15と接触することにより熱が伝導され、温度が低下すること なく高温を維持できる。これにより、酢酸ナトリウム 3には排出孔 16aから高温の油 2a を排出できる。また、第 2供給管 16も高温を維持できるようになり、第 2供給管 16の近 傍の酢酸ナトリウム 3にも熱が伝導することができる。
[0077] 尚、本実施の形態では、供給管 15 · 16が熱貯蔵容器 laの底面に配置されている 力 底面に配置されていなくてもよい。この場合、排出孔 16aの配設位置は、上述の ように限定されない。供給管 15 · 16が底面に配置されていない場合は、供給管 15 · 1 6は底面に近接して配置することが好ま U、。
[0078] 以上説明したように、本実施の形態において、排出孔 16aから排出される油 2aが、 第 1供給管 15から熱伝導されるため、常に高温を維持することができ、蓄熱時間を短 縮することができる。また、供給管が貯蔵容器 laの底面に配置されることにより、排出 された油 2aと酢酸ナトリウム 3との接触時間をより長くすることができる。そして、油 2a は、比重が力るいため排出後上昇してしまい、下方の酢酸ナトリウム 3に蓄熱されにく くなるが、供給管を底面に配置することにより、酢酸ナトリウム 3全体に蓄熱することが でさるよう〖こなる。
[0079] また、本実施の形態の変形例として、図 12に示すように、供給管 15 · 16を横方向 に等間隔で並設するようにしてもよい。並設することにより、より広範囲に渡って油 2a や供給管 15 · 16と酢酸ナトリウム 3とを直接接触させることができ、蓄熱時間をより短 くすることができる。この場合、波型の伝導板 17 (熱伝導部材)を、各供給管 15 · 16 に連なるように設けることが好ま 、。
[0080] 伝導板 17は、円弧が交互に逆に連なった波型の形状を有しており、円弧部分に第 2供給管 16が嵌合し、溶接などにより密着させて底面に配置されている。これにより、 第 2供給管 16と伝導板 17との接触面積が大きくなり、伝導板 17に伝導される熱量が 大きくなるため、供給管 15 · 16の間にある酢酸ナトリウム 3に十分に熱を伝導させるこ とができる。これにより、蓄熱時間をより短くすることができる。伝導板 17は、銅、アルミ 、鉄などの熱伝導性の高い金属で構成されていることが好ましい。なお、伝導板 17 は、波型形状でなく板状であってもよい。さらに、供給管 15 · 16は、縦方向に並設す るようにしてもよいし、隣り合う供給管 15 · 16が等間隔でなくてもよい。
[0081] また、別の変形例として、図 13及び図 14に示すように、第 2供給管 16が貯蔵容器 1 aの底面の略全体を覆うようにし、さらに、底面を覆っている第 2供給管 16内に第 1供 給管 15を張り巡らせるようにしてもよい。第 2供給管 16が底面を略覆うように配置する ことで、酢酸ナトリウム 3を下部全体力も熱を伝導させることができ、蓄熱時間をより短 くすることができる。さらに、第 1供給管 15が第 2供給管 16全体を流通するようになつ ているため、第 2供給管 16内の油 2aを高温に維持することができる。また、この場合 、第 1供給管 15は、排出孔 16aの近傍を通るようにすることが好ましい。これにより、 排出孔 16aから排出される油 2aも可能な限り高温に維持することができ、蓄熱時間を 短くすることができる。
[0082] さらに、別の変形例として、第 1供給管 15の出口 15aと排出管 6との間に、図 15に 示すような分離装置 14 (分離機構)を設けるようにしてもよい。分離装置 14は、取込 んだ油 2中に酢酸ナトリウム 3が混合していた場合に、油 2と酢酸ナトリウム 3とを分離 する装置である。分離装置 14は、酢酸ナトリウム 3を含んだ油 2を取り込む本体 14a ( 分離体)を有している。本体 14aには油 2が充填されており、水平に取込まれた油 2が 、水平に一方向に流通し、その後排出されるようになっている。また、本体 14aの底面 は、水平面と傾斜面とを有しており、水平面には、酢酸ナトリウム 3を排出する穴 14b が設けられている。後に詳述するが、底面が傾斜面を有していることにより、沈殿する 酢酸ナトリウム 3が穴 14bに導かれるようになつている。
[0083] 油 2に酢酸ナトリウム 3が含まれた場合、本体 14a内を水平に流通しているあいだに 、油 2よりも比重の大きな酢酸ナトリウム 3は沈殿する。沈殿した酢酸ナトリウム 3は穴 1 4bから排出されるようになっている。また、本体 14aの底面が傾斜面を有していること により、傾斜面上に沈殿した酢酸ナトリウム 3も、穴 14bに向かって摺動し、穴 14bか ら排出されるようになっている。分離装置 14を出口 15aと排出管 6との間に設けること で、油 2aに酢酸ナトリウム 3が含まれることがなくなり、また、酢酸ナトリウム 3が含まれ た場合であっても、酢酸ナトリウム 3を沈殿除去することができるため、熱交 内 に酢酸ナトリウム 3が浸入して起こる故障等のおそれがなくなる。尚、分離装置 14を 排出管 6の途中に設けるようにしてもょ 、。
[0084] 本発明は、上記の好適な実施形態に記載されているが、本発明はそれだけに制限 されない。本発明の精神と範囲力 逸脱することのない様々な実施形態が他になさ れることは理解されよう。さらに、本実施形態において、本発明の構成による作用およ び効果を述べているが、これら作用および効果は、一例であり、本発明を限定するも のではない。
図面の簡単な説明
[0085] [図 1]本発明の熱輸送システムの全体概略図。 [図 2]本発明の第 1の実施の形態に係る熱貯蔵ユニットの断面図。
[図 3]第 1の実施の形態に係る熱貯蔵ユニットの変形例。
[図 4]第 1の実施の形態に係る熱貯蔵ユニットの別の変形例。
[図 5]第 1の実施の形態に係る熱貯蔵ユニットの別の変形例。
[図 6]第 1の実施の形態に係る熱貯蔵ユニットの別の変形例。
[図 7]本発明の第 2の実施の形態に係る熱貯蔵ユニットの断面図。
[図 8]本発明の第 3の実施の形態に係る熱貯蔵ユニットの断面図。
[図 9]図 8の IX— IX線における断面図。
[図 10]図 8の X— X線における断面図。
[図 11]本発明の第 4の実施の形態に係る熱貯蔵ユニットの断面図。
[図 12]第 4の実施の形態に係る熱貯蔵ユニットの変形例で、図 11の XII— XII線におけ る断面図。
[図 13]第 4の実施の形態に係る熱貯蔵ユニットの別の変形例で、図 11の XIII— XIII線 における断面図。
[図 14]第 4の実施の形態に係る熱貯蔵ユニットの別の変形例で、図 11の XIV— XIV線 における断面図。
[図 15]第 4の実施の形態に係る熱貯蔵ユニットの別の変形例で、分離装置の拡大断 面図。
符号の説明
1 熱貯蔵ユニット
la 熱貯蔵容器
2 油
2a (熱供給された)油
3 酢酸ナトリウム
4 供給管
4a -4b 排出孔
5a, 5b 熱交換器
6 排出管

Claims

請求の範囲
[1] 固体と液体との状態変化により蓄熱する蓄熱体と、前記蓄熱体に直接接触すること により熱交換し、前記蓄熱体よりも比重が小さぐ前記蓄熱体と分離する熱交換媒体 とを収容する貯蔵容器と、
少なくとも前記貯蔵容器に収容された前記蓄熱体内を通り、前記熱交換媒体を前 記貯蔵容器内に供給する供給管と、
前記貯蔵容器に収容された前記熱交換媒体を前記貯蔵容器の外部に排出する排 出管と
を備えており、
前記供給管は、
前記貯蔵容器に収容された前記熱交換媒体と前記蓄熱体との境界面を横切り、供 給された前記熱交換媒体を排出する排出孔を複数有し、
前記排出孔の少なくとも 1つが前記熱交換媒体内に位置する
ことを特徴とする熱貯蔵ユニット。
[2] 前記供給管が、
前記境界面に対して垂直に横切って 、る
ことを特徴とする請求項 1に記載の熱貯蔵ユニット。
[3] 前記供給管が、前記排出孔を有する部分の外周に同軸状に配設され、前記排出 孔から排出された前記熱交換媒体を鉛直方向に上昇させる循環管を有している ことを特徴とする請求項 2に記載の熱貯蔵ユニット。
[4] 前記供給管又は前記第 1の供給管の少なくとも一部が水平方向に延在する場合に おいて、
該水平方向に延在する部分に、鉛直下方向に開口するように前記排出孔が設けら れて 、ることを特徴とする請求項 1に記載の熱貯蔵ユニット。
[5] 前記蓄熱体内において、
前記供給管又は前記第 1の供給管が、末広がり形状で、かつ、底面に前記排出孔 が設けられた拡形部を有して 、ることを特徴とする請求項 1に記載の熱貯蔵ユニット。
[6] 前記供給管の接続口が、前記排出管の接続口よりも上方に位置していることを特 徴とする請求項 1に記載の熱貯蔵ユニット。
[7] 前記蓄熱体と前記熱交換媒体との境界面に沿って、前記境界面と垂直に平行配 置され、前記境界面における攪拌を防止する消波プレートを
有して 、ることを特徴とする請求項 1に記載の熱貯蔵ユニット。
[8] 前記排出管が、
前記蓄熱体と前記熱交換媒体とを分離する分離機構を
備えて 、ることを特徴とする請求項 1に記載の熱貯蔵ユニット。
[9] 前記分離機構が、
取り込んだ前記熱交換媒体と前記蓄熱体とを一方向に水平流通させる分離体と、 沈殿する前記蓄熱体を前記分離体から排出する排出穴とを有しており、 前記分離体は、
沈殿した前記蓄熱体を前記排出穴に導く形状を有している
ことを特徴とする請求項 8に記載の熱貯蔵ユニット。
[10] 前記蓄熱体が、
エリスリトールであることを特徴とする請求項 1に記載の熱貯蔵ユニット。
[11] 固体と液体との状態変化により蓄熱する蓄熱体と、前記蓄熱体に直接接触すること により熱交換し、前記蓄熱体よりも比重が小さぐ前記蓄熱体と分離する熱交換媒体 とを収容する貯蔵容器と、
少なくとも前記貯蔵容器に収容された前記蓄熱体内を通り、前記熱交換媒体を前 記貯蔵容器内に供給する供給管と、
前記貯蔵容器に収容された前記熱交換媒体を前記貯蔵容器の外部に排出する排 出管と
を備えており、
前記供給管は、
供給された前記熱交換媒体を前記蓄熱体内に排出する排出孔を有する第 1の供 給管と、
前記貯蔵容器に収容された前記熱交換媒体と前記蓄熱体との境界面を横切り、該 熱交換媒体内に供給された前記熱交換媒体を排出する出口を有する第 2の供給管 と、
を備えて ヽることを特徴とする熱貯蔵ユニット。
[12] 前記蓄熱体内において、
前記第 2の供給管が、前記第 1の供給管の前記排出孔を含む少なくとも一部を囲 繞し、前記排出孔を前記熱交換媒体に導く連通部を有して 、る
ことを特徴とする請求項 11に記載の熱貯蔵ユニット。
[13] 前記蓄熱体の状態に応じて、前記第 1及び第 2の供給管に対して前記熱交換媒体 の供給と遮断とを切替える切替弁がそれぞれに設けられていることを特徴とする請求 項 11に記載の熱貯蔵ユニット。
[14] 前記供給管又は前記第 1の供給管の少なくとも一部が水平方向に延在する場合に おいて、
該水平方向に延在する部分に、鉛直下方向に開口するように前記排出孔が設けら れて 、ることを特徴とする請求項 11に記載の熱貯蔵ユニット。
[15] 前記蓄熱体内において、
前記供給管又は前記第 1の供給管が、末広がり形状で、かつ、底面に前記排出孔 が設けられた拡形部を有して 、ることを特徴とする請求項 11に記載の熱貯蔵ユニット
[16] 前記供給管の接続口が、前記排出管の接続口よりも上方に位置していることを特 徴とする請求項 11に記載の熱貯蔵ユニット。
[17] 前記蓄熱体と前記熱交換媒体との境界面に沿って、前記境界面と垂直に平行配 置され、前記境界面における攪拌を防止する消波プレートを
有して 、ることを特徴とする請求項 11に記載の熱貯蔵ユニット。
[18] 前記排出管が、
前記蓄熱体と前記熱交換媒体とを分離する分離機構を
備えて 、ることを特徴とする請求項 11に記載の熱貯蔵ユニット。
[19] 前記分離機構が、
取り込んだ前記熱交換媒体と前記蓄熱体とを一方向に水平流通させる分離体と、 沈殿する前記蓄熱体を前記分離体から排出する排出穴とを有しており、 前記分離体は、
沈殿した前記蓄熱体を前記排出穴に導く形状を有している
ことを特徴とする請求項 18に記載の熱貯蔵ユニット。
[20] 前記蓄熱体が、
エリスリトールであることを特徴とする請求項 11に記載の熱貯蔵ユニット。
[21] 固体と液体との状態変化により蓄熱する蓄熱体と、前記蓄熱体に直接接触すること により熱交換し、前記蓄熱体よりも比重が小さぐ前記蓄熱体と分離する熱交換媒体 とを収容する貯蔵容器と、
少なくとも前記貯蔵容器に収容された前記蓄熱体内を通り、前記熱交換媒体を前 記貯蔵容器内に供給する供給管と、
前記貯蔵容器に収容された前記熱交換媒体を前記貯蔵容器の外部に排出する排 出管と
を備えており、
前記供給管は、
供給された前記熱交換媒体を、前記貯蔵容器に収容された前記熱交換媒体内に 排出する出口を有する第 1の供給管と、
前記第 1の供給管の少なくとも一部を内部に有し、供給された前記熱交換媒体を前 記蓄熱体内に排出する排出孔を有する第 2の供給管と
を備えて ヽることを特徴とする熱貯蔵ユニット。
[22] 前記蓄熱体内で前記供給管が並設されて!/、る場合にぉ 、て、
前記供給管の熱を伝導するための熱伝導部材を備えていることを特徴とする請求 項 21に記載の熱貯蔵ユニット。
[23] 前記供給管の少なくとも一部が、
前記貯蔵容器の底面に設けられていることを特徴とする請求項 22に記載の熱貯蔵 ユニット。
[24] 前記第 2の供給管が、
前記貯蔵容器の底面を覆うように前記底面に設けられていることを特徴とする請求 項 21に記載の熱貯蔵ユニット。
[25] 前記供給管の接続口が、前記排出管の接続口よりも上方に位置していることを特 徴とする請求項 21に記載の熱貯蔵ユニット。
[26] 前記蓄熱体と前記熱交換媒体との境界面に沿って、前記境界面と垂直に平行配 置され、前記境界面における攪拌を防止する消波プレートを
有して 、ることを特徴とする請求項 21に記載の熱貯蔵ユニット。
[27] 前記排出管が、
前記蓄熱体と前記熱交換媒体とを分離する分離機構を
備えて 、ることを特徴とする請求項 21に記載の熱貯蔵ユニット。
[28] 前記分離機構が、
取り込んだ前記熱交換媒体と前記蓄熱体とを一方向に水平流通させる分離体と、 沈殿する前記蓄熱体を前記分離体から排出する排出穴とを有しており、 前記分離体は、
沈殿した前記蓄熱体を前記排出穴に導く形状を有している
ことを特徴とする請求項 27に記載の熱貯蔵ユニット。
[29] 前記蓄熱体が、
エリスリトールであることを特徴とする請求項 21に記載の熱貯蔵ユニット。
PCT/JP2004/017834 2003-12-02 2004-12-01 熱貯蔵ユニット WO2005054767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2546687A CA2546687C (en) 2003-12-02 2004-12-01 Heat storage unit
EP04819844.4A EP1693636B1 (en) 2003-12-02 2004-12-01 Heat storage unit
US10/580,048 US20070079951A1 (en) 2003-12-02 2004-12-01 Heat storage unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-402457 2003-12-02
JP2003402457 2003-12-02
JP2004116574A JP4469208B2 (ja) 2003-12-02 2004-04-12 熱貯蔵ユニット
JP2004-116574 2004-04-12

Publications (1)

Publication Number Publication Date
WO2005054767A1 true WO2005054767A1 (ja) 2005-06-16

Family

ID=34656195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017834 WO2005054767A1 (ja) 2003-12-02 2004-12-01 熱貯蔵ユニット

Country Status (5)

Country Link
US (1) US20070079951A1 (ja)
EP (1) EP1693636B1 (ja)
JP (1) JP4469208B2 (ja)
CA (1) CA2546687C (ja)
WO (1) WO2005054767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707257A (zh) * 2019-10-25 2020-01-17 中铁轨道交通装备有限公司 一种具有加热功能的电池箱系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031209B2 (ja) 2005-08-05 2012-09-19 株式会社神戸製鋼所 蓄熱ユニット及び蓄熱ユニットの運転方法
JP4641490B2 (ja) * 2005-11-08 2011-03-02 株式会社神戸製鋼所 蓄熱式熱供給装置
JP2007132569A (ja) * 2005-11-09 2007-05-31 Kurimoto Ltd 潜熱蓄熱装置
JP4617505B2 (ja) * 2005-11-09 2011-01-26 三機工業株式会社 潜熱蓄熱装置
JP4890029B2 (ja) * 2006-01-06 2012-03-07 三機工業株式会社 潜熱蓄熱装置およびその運転方法
JP4494375B2 (ja) * 2006-08-11 2010-06-30 株式会社神鋼環境ソリューション 熱輸送システム
JP2008128593A (ja) * 2006-11-22 2008-06-05 Kobe Steel Ltd 蓄熱装置
JP2008157578A (ja) * 2006-12-26 2008-07-10 Kobe Steel Ltd 蓄熱システム及び蓄熱装置
JP4680941B2 (ja) * 2007-01-11 2011-05-11 株式会社神鋼環境ソリューション 熱貯蔵器
JP2008180428A (ja) * 2007-01-24 2008-08-07 Kobelco Eco-Solutions Co Ltd 熱貯蔵器
JP2008180434A (ja) * 2007-01-24 2008-08-07 Kobelco Eco-Solutions Co Ltd 熱貯蔵器
JP2008190747A (ja) * 2007-02-02 2008-08-21 Kobe Steel Ltd 蓄熱装置
JP2008249192A (ja) * 2007-03-29 2008-10-16 Kobe Steel Ltd 蓄熱装置
JP2008298390A (ja) * 2007-06-01 2008-12-11 Kobelco Eco-Solutions Co Ltd 熱有効利用システム
JP4851394B2 (ja) * 2007-06-12 2012-01-11 三機工業株式会社 蓄熱装置
DE102007049385A1 (de) * 2007-10-15 2009-04-16 Rev Renewable Energy Ventures, Inc. Latentwärmespeicher
CN101855508B (zh) 2007-11-13 2012-05-30 松下电器产业株式会社 化学储热装置
JP5160202B2 (ja) * 2007-11-22 2013-03-13 株式会社神鋼環境ソリューション 熱媒油の劣化防止方法、および熱輸送システム
KR100950299B1 (ko) 2008-03-27 2010-03-31 주식회사 케너텍 급속 축열 및 방열이 가능한 축열콘테이너
KR100950302B1 (ko) 2008-03-27 2010-03-31 주식회사 케너텍 센서형 축열콘테이너
JP5257982B2 (ja) * 2008-07-15 2013-08-07 三機工業株式会社 蓄熱装置および蓄熱ユニット
JP5252282B2 (ja) * 2008-09-22 2013-07-31 三機工業株式会社 蓄熱装置
JP5133321B2 (ja) 2009-10-13 2013-01-30 株式会社神戸製鋼所 蓄熱装置
EP2476736A1 (de) * 2011-01-12 2012-07-18 Gebr. Bruns GmbH Latentwärmespeicher mit Korrosionsschutzpolster
CN102538063A (zh) * 2012-03-15 2012-07-04 上海海事大学 耦合式相变移动供热装置及其供热方法
DK178864B1 (en) * 2016-02-23 2017-04-10 Suntherm Aps Faseændringsmateriale-baseret varmesystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086958A (en) 1976-02-21 1978-05-02 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Heat exchange method and apparatus including two non-mixable media
JPH04297769A (ja) * 1991-03-06 1992-10-21 Mitsubishi Electric Corp 氷蓄熱装置
DE4443320A1 (de) 1993-12-09 1995-06-22 St Speichertechnologie Gmbh Latentwärmespeicher
DE19500105A1 (de) * 1995-01-04 1996-07-11 Franz Hegele Latentwärmespeicher
WO2003019099A1 (de) 2001-08-24 2003-03-06 Transheat International Latentwärmespeichereinheit mit einem absperrorgan zum im wesentlichen förder-absperren

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996894A (en) * 1956-12-13 1961-08-22 Gen Electric Method and apparatus for the recovery of latent heat of fusion
AT358608B (de) * 1977-10-10 1980-09-25 Stiebel Eltron Gmbh & Co Kg Verfahren zur ladung und entladung eines latentwaerme-speichermediums und waermespeicher
SE408955B (sv) * 1977-11-14 1979-07-16 Teknoterm Systems Ab Forfarande och anordning for att lagra vermeenergi
US4219072A (en) * 1978-02-10 1980-08-26 Barlow Donald W Sr Phase change material heat exchanger
DK26179A (da) * 1979-01-22 1980-07-23 Eftex Innovation A S Varmelager
DE3028153C2 (de) * 1980-07-25 1985-09-12 Alfred Schneider KG, 7630 Lahr Latentwärmespeicher
JPS63271095A (ja) * 1987-04-28 1988-11-08 Central Res Inst Of Electric Power Ind クラスレ−ト蓄冷熱槽
US4953330A (en) * 1987-12-01 1990-09-04 Mitsui Kensetsu Kabushiki Kaisha Damping device in a structure and damping construction and damping method using those devices
KR100426828B1 (ko) * 1995-07-12 2004-05-24 미쓰비시 가가꾸 가부시키가이샤 축열재조성물
DE19530378C1 (de) * 1995-08-18 1997-03-06 Laengerer & Reich Gmbh & Co Wärmespeicher für ein Kraftfahrzeug
JP2000038577A (ja) * 1998-07-24 2000-02-08 Mitsubishi Chemicals Corp 蓄熱方法及び蓄熱装置
JP2001004290A (ja) * 1999-06-22 2001-01-12 Kobe Steel Ltd 潜熱蓄熱材の融解方法および潜熱蓄熱装置
JP2002081752A (ja) * 2000-09-01 2002-03-22 Hitachi Ltd 熱回収式蓄熱装置
JP2003329382A (ja) * 2002-05-09 2003-11-19 Energy Support Corp 蓄熱装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086958A (en) 1976-02-21 1978-05-02 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Heat exchange method and apparatus including two non-mixable media
JPH04297769A (ja) * 1991-03-06 1992-10-21 Mitsubishi Electric Corp 氷蓄熱装置
DE4443320A1 (de) 1993-12-09 1995-06-22 St Speichertechnologie Gmbh Latentwärmespeicher
DE19500105A1 (de) * 1995-01-04 1996-07-11 Franz Hegele Latentwärmespeicher
WO2003019099A1 (de) 2001-08-24 2003-03-06 Transheat International Latentwärmespeichereinheit mit einem absperrorgan zum im wesentlichen förder-absperren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1693636A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707257A (zh) * 2019-10-25 2020-01-17 中铁轨道交通装备有限公司 一种具有加热功能的电池箱系统

Also Published As

Publication number Publication date
JP2005188916A (ja) 2005-07-14
CA2546687A1 (en) 2005-06-16
EP1693636B1 (en) 2015-02-11
US20070079951A1 (en) 2007-04-12
JP4469208B2 (ja) 2010-05-26
CA2546687C (en) 2010-02-16
EP1693636A4 (en) 2012-12-19
EP1693636A1 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
WO2005054767A1 (ja) 熱貯蔵ユニット
CN100550212C (zh) 用于熔化堆芯材料的被动冷却和滞留装置
CA2550845C (en) Heat-storage unit and operation method of heat-storage unit
CN104269194B (zh) 一种温度触发的池式反应堆非能动事故余热排出系统
JPH0210092A (ja) 加熱された物質を処理する容器およびその冷却方法
CN108520785B (zh) 用于熔盐堆的非能动余热排出系统及余热排出方法
JP2006266605A (ja) 蓄熱式熱供給装置
JP4823713B2 (ja) 貯湯式給湯機
JP4951046B2 (ja) 熱貯蔵ユニット
JP4494375B2 (ja) 熱輸送システム
JP2006308256A (ja) 蓄熱装置及び蓄熱装置の運転方法
KR102227825B1 (ko) 현열 회수 설비 및 현열 회수 방법
JP2008045821A (ja) 貯湯式給湯器
JP2003329382A (ja) 蓄熱装置
JP2010071620A (ja) 蓄熱装置
JP2004198022A (ja) 中温排熱回収システム
JP6586272B2 (ja) 原子炉格納容器保全設備および原子炉格納容器保全方法
JPH11159884A (ja) 蓄熱装置
JP2011075142A (ja) 熱輸送システムの潜熱蓄熱体凝固物の除去方法及び放熱ユニット
JP2000121158A (ja) 貯湯型電気温水器
TW406177B (en) Electric arc furnace cooling apparatus
JP2004092980A (ja) 廃熱回収ボイラ装置
WO2024131546A1 (zh) 一种核反应堆
JP4914327B2 (ja) 熱媒体循環経路の閉塞防止方法、および熱輸送システム
JP4870733B2 (ja) 直接接触式蓄熱装置を用いた放熱システムおよびその運転方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004819844

Country of ref document: EP

Ref document number: 2546687

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007079951

Country of ref document: US

Ref document number: 10580048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004819844

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10580048

Country of ref document: US