WO2005049736A1 - ポリメチン系化合物の非溶媒和型結晶及びその製造方法 - Google Patents

ポリメチン系化合物の非溶媒和型結晶及びその製造方法 Download PDF

Info

Publication number
WO2005049736A1
WO2005049736A1 PCT/JP2004/016830 JP2004016830W WO2005049736A1 WO 2005049736 A1 WO2005049736 A1 WO 2005049736A1 JP 2004016830 W JP2004016830 W JP 2004016830W WO 2005049736 A1 WO2005049736 A1 WO 2005049736A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
polymethine
polymethine compound
crystal
Prior art date
Application number
PCT/JP2004/016830
Other languages
English (en)
French (fr)
Inventor
Keiki Chichiishi
Sayuri Wada
Shigeo Fujita
Original Assignee
Yamamoto Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals, Inc. filed Critical Yamamoto Chemicals, Inc.
Priority to JP2005515592A priority Critical patent/JPWO2005049736A1/ja
Priority to EP04818868A priority patent/EP1686157A4/en
Priority to US10/579,142 priority patent/US7485404B2/en
Publication of WO2005049736A1 publication Critical patent/WO2005049736A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/08Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0092Dyes in solid form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/145Infrared

Definitions

  • the present invention relates to a novel unsolvated crystal of a polymethine compound, a method for producing the same, and a near-infrared absorbing agent using the unsolvated crystal.
  • polymethine-based compounds have been widely used as optical recording media, near-infrared absorption filter materials, photothermal conversion agents for plate making materials using laser light, and the like.
  • general-purpose semiconductor lasers for example, in the laser range of 780 nm to 830 nm, and has good solubility in general-purpose solvents such as methanol and ethanol.
  • general-purpose solvents such as methanol and ethanol.
  • the most common method is to react the indolenium compound of the formula (III) with the dianyl compound of the formula (VI) to synthesize a polymethine compound.
  • the type of the acidic residue Z— is restricted from the viewpoint of the reaction yield of the produced polymethine compound, the operability of isolation and purification, and the like.
  • Halogen ions especially those that are C1- and Br- Is not known.
  • the diformyl compound of formula (V) used here has toxicity with poor storage stability (positive mutagenicity), so it must be handled with care and used as a raw material in industrial production methods.
  • a synthesis example of a compound having the same basic structural formula as the polymethine compound of the present invention in which the counter ion is Br— is disclosed in Example 1 of WO01Z07524. Then, the present inventors tried synthesis of a compound having the same structure as the polymethine compound of the present invention according to the method disclosed in WO01Z07524. However, the obtained compound is a hydrate and a low-purity product, and cannot be used in a system in which use is greatly restricted, for example, in which water has an adverse effect.
  • the method for reacting the indoline compound of the formula (IV) with the dianyl compound of the formula (VI) is a compound having a basic structural formula different from that of the polymethine compound of the present invention.
  • a production example of — is disclosed in Example 3 of JP-A-62-36469.
  • this substance is a hydrate and a very low-purity compound, it cannot be used in a system having a large restriction in use, for example, in a system in which water has an adverse effect.
  • solvate is a generic term including hydrates.
  • known compounds having the same structural formula as the compound of the present invention are solvates caused by the production method thereof, and have low restrictions on use because they are low-purity products.
  • CTP Computer To Plate
  • the solution stability is poor and the purity is not stable.
  • the light-to-heat conversion efficiency fluctuates greatly, and the practical problem is great.
  • An object of the present invention is to provide a novel polymethine compound having good stability in a solution, high gram extinction coefficient, high purity, stability and easy handling, and high sensitivity to a general-purpose semiconductor laser. It is to provide an unsolvated crystal.
  • the present inventors have found that a novel unsolvated crystal having a specific structure has good stability in a solution and a high gram extinction coefficient.
  • the present inventors have found that they can be used as near-infrared absorbers that are highly sensitive to laser light in the vicinity of 780 nm to 830 nm, have high purity, are stable, and can be easily processed for various uses, and have completed the present invention.
  • the first invention of the present application is an unsolvated crystal of a polymethine compound represented by the following formula (I).
  • the unsolvated crystal of the polymethine compound of the present invention has a melting point (decomposition temperature) of not less than 205 ° C when X is C1 and not less than 220 ° C when X is C1, and TG-DTA (thermogravimetric measurement differential). Thermal analysis) In the measurement diagram, the TG weight loss value at 150 ° C or less was 3% or less for both crystals, and the crystals were substantially solvated.
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) in powder X-ray diffraction by Cu—K ray is 11.2 °, 16.7 °, 24.2 °, 25.3 X-ray diffraction pattern showing characteristic peaks at °
  • the diffraction angle (20 ⁇ 0.2 °) in the powder X-ray diffraction method using Cu—K line It is characterized by an X-ray powder diffractogram showing characteristic peaks at 0 °, 20.5 °, 21.1 ° and 24.9 °.
  • the second invention of the present application has the following formula (II):
  • R represents an alkyl group, an alkoxyalkyl group, or an aryl group which may have a substituent.
  • the third invention of the present application is a near-infrared absorbing agent containing an unsolvated crystal of the polymethine compound of the formula (I).
  • FIG. 1 is a powder X-ray diffraction diagram of the polymethine compound of Example 1.
  • FIG. 2 is an IR absorption spectrum of the polymethine compound of Example 1.
  • FIG. 3 is a TG-DTA (thermogravimetric differential thermal analysis) diagram of the polymethine compound of Example 1.
  • FIG. 4 is a powder X-ray diffraction diagram of the polymethine compound of Example 2.
  • FIG. 5 is an IR absorption spectrum of the polymethine compound of Example 2.
  • FIG. 6 is a TG-DTA (thermogravimetric differential thermal analysis) diagram of the polymethine compound of Example 2.
  • FIG. 7 is a powder X-ray diffraction chart of the compound of Comparative Example 1.
  • FIG. 8 is a TG-DTA (thermogravimetry-differential thermal analysis) measurement diagram of the compound of Comparative Example 1.
  • FIG. 9 is a powder X-ray diffraction chart of the compound of Comparative Example 2.
  • FIG. 10 is a TG-DTA (thermogravimetry-differential thermal analysis) measurement diagram of the compound of Comparative Example 2. Detailed description of the invention
  • the compound represented by the known chemical structural formula (I) or the compound of the formula (I) obtained by a known production method is a substance solvated with water or an organic solvent (eg, methanol, ethanol, etc.). And often low purity.
  • the unsolvated crystal of the polymethine compound of the present invention represented by the formula (I) is a completely novel crystal that is not solvated with water or an organic solvent.
  • the melting point (decomposition temperature) is 205 ° C or more, and preferably 210 ° C to 240 ° C. It is. Solvates and Z or low purity products have melting points below 205 ° C.
  • the melting point (decomposition temperature) is 215 ° C or more, preferably 220 ° C to 250 ° C. It is. Solvates and Z or low purity products have melting points below 215 ° C.
  • the melting point (decomposition temperature) can be observed very clearly. May not show a distinct melting point or decomposition temperature.
  • the TG-DTA (Thermal Weight Measurement Differential Thermal Analysis) measurement diagram of the unsolvated crystal of the polymethine compound represented by the formula (I) of the present invention shows that the TG weight loss value at 150 ° C or less is shown. It is at most 3%, preferably at most 2%. Solvates and Z or low purity products have a TG weight loss of less than 150% below 150 ° C.
  • the unsolvated crystal of the polymethine compound represented by the formula (I) of the present invention has a diffraction angle (20 ⁇ 20) in powder X-ray diffraction using Cu— ⁇ ray. 0.2 °) 11.2 °, 16.7 °, 24.2 °, 25.3 °, preferably 11.2 °, 16.7 °, 18.5 °, 24.2 °, 25.3 ° and 26.7 ° show characteristic peaks.
  • the powder X-ray diffraction patterns are completely different.
  • the unsolvated crystal of the polymethine compound of the present invention can be produced for the first time by passing through (as a raw material) a polymethine ether conjugate represented by the formula (II).
  • the unsolvated crystal of the polymethine compound represented by the formula (I) of the present invention is an alcohol-based compound such as methanol or ethanol used in the field of laser thermosensitive recording materials utilizing laser light. It is very suitable for this field of application because the solution stability in a solvent or a ketone solvent such as acetone or methyl ethyl ketone is higher than that of a known solvate compound.
  • the extinction coefficient in the 780-830 nm region is high, it can be suitably used as a general-purpose semiconductor laser having an emission region in the range of 780-830 nm in many recording material fields using laser light. It is extremely useful in the field of recording materials such as laser thermal transfer recording materials and laser thermosensitive recording materials, and plate making materials.
  • the unsolvated crystal of the polymethine compound represented by the formula (I) of the present invention is produced by the following method. Can be built.
  • R represents an alkyl group, an alkoxyalkyl group, or an aryl group which may have a substituent.
  • R is an alkyl group
  • a linear or branched alkyl group having 114 carbon atoms is particularly preferable, and a linear or branched alkyl group having 118 carbon atoms is preferable.
  • Examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl Group, isohexyl group, sec-hexyl group, 2-ethylbutyl group, n-heptyl group, isoheptyl group, sec-heptyl group, n-octyl group, and 2-ethylhexyl group.
  • I can do it.
  • R is an alkoxyalkyl group
  • those having 2 to 8 carbon atoms are preferable, and those having 2 to 4 carbon atoms are particularly preferable.
  • Examples thereof include a methoxymethyl group, a 2-methoxyethyl group, a 3-methoxypropyl group, a 2-ethoxymethyl group, a 2-ethoxyxyl group, a 2-propoxyethyl group, and a 2-butoxyethyl group.
  • R is an aryl group which may have a substituent
  • a substituent examples include a phenyl group which may have a substituent and a naphthyl group which may have a substituent.
  • a phenyl group is preferred.
  • the substituent include an alkyl group, an amino group, a nitro group, an alkoxy group, a hydroxyl group, a halogen atom, and the like, and an alkyl group having 114 carbon atoms or an alkoxy group having 114 carbon atoms is preferable!
  • R is a fuel group having an alkyl group
  • R is a fuel group having an alkyl group
  • Examples of the case where R is a fuel group having an alkyl group include a 2-methylphenyl group, 3-methylphenyl, 4-methylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 3,4-dimethylphenyl, 2,5-dimethylphenyl, 2, 6-dimethylphenyl, 2-elfyl, 3-ethylphenyl, 4-ethylphenyl, 2,3-getylphenol, 2,4-getylphenol, 3,4- Examples include a getylphenol group, a 2,5- getylphenol group, and a 2,6- getylphenol group.
  • Examples of the compound in which R is a fuel group having an alkoxy group include a 2-methoxyphenyl group, a 3-methoxyphenyl group, a 4-methoxyphenyl group, a 2,3-dimethoxyphenyl group, Examples include a 2,4-dimethoxyphenyl group, a 3,4-dimethoxyphenyl group, a 2,5-dimethoxyphenyl group, and a 2,6-dimethoxyphenyl group.
  • organic solvent examples include alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol; ketones such as acetone, methylethylketone, methylpropylketone and methylbutylketone; and tetrahydrofuran and dioxane.
  • alcohols such as methanol, ethanol, n-propanol, iso-propanol and n-butanol
  • ketones such as acetone, methylethylketone, methylpropylketone and methylbutylketone
  • tetrahydrofuran and dioxane examples of the organic solvent.
  • esters such as methyl acetate, ethyl acetate, and butyl acetate; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as dichloromethane, trichloromethane, dichloroethane, and trichloroethane; dimethylformaldehyde; dimethyl
  • aprotic polar solvents such as acetamide and dimethyl sulfoxide include alcohols such as methanol, ethanol, n-propanol, isopropanol, and n-butanol; acetone, methyl ethyl ketone; Chill propyl ketone and methyl butyl ketone, methyl acetic acid, acetic Echiru, esters such as ethyl acetate and butyl acetate are particularly preferred.
  • the proportion of the compound represented by the formula (II) to hydrochloric acid or hydrobromic acid is usually about 0.5 to 3 mol, preferably about 1 to 1.5 mol, per 1 mol of the former.
  • the organic solvent is usually used in an amount of about 110 L, preferably about 3 to 20 L per 1 mol of the compound represented by the specific example (II).
  • the above-mentioned reaction proceeds suitably at a temperature of usually 100 ° C. or lower, preferably 10-70 ° C., and is generally completed in about several minutes to about 5 hours.
  • the target substance After the reaction, the target substance can be easily isolated by filtration and washing. Further, it can be easily purified by a conventional purification means such as recrystallization.
  • Isolation and purification solvents include general-purpose organic solvents such as methanol, ethanol, Alcohols such as pananol, iso-propanol and n-butanol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone and methyl butyl ketone; ethers such as tetrahydrofuran and dioxane; esters such as methyl acetate, ethyl acetate and butyl acetate.
  • general-purpose organic solvents such as methanol, ethanol, Alcohols such as pananol, iso-propanol and n-butanol
  • ketones such as acetone, methyl ethyl ketone, methyl propyl ketone and methyl butyl ketone
  • ethers such as tetrahydrofuran and dioxane
  • esters such as methyl acetate, ethyl acetate and but
  • Benzene, toluene, xylene, etc., aromatic hydrocarbons, dichloromethane, trichloromethane, dichloroethane, trichloroethane, etc., halogenated hydrocarbons, dimethylformaldehyde, dimethylacetamide, dimethylsulfoxide, etc., aprotic polarities Solvents can be used, but ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; or mixed solvents thereof. It is preferred. When a kind of a purification solvent, for example, methanol, ethanol, or toluene is used, solvation may be performed depending on isolation conditions.
  • a kind of a purification solvent for example, methanol, ethanol, or toluene is
  • the polymethine ether conjugate (II) is, for example, a polymethine compound represented by the following formula (VII) and an alkali metal alkoxide salt or alkali represented by the following formula (VIII): Can be produced by reacting metal aryloxide salt in organic solvent
  • M represents an alkali metal
  • R represents the same as described above.
  • Z— represents an acidic residue, for example, F—, Cl—, Br—, ⁇ , BrO—, CIO—, BF
  • TsO p-toluenesulfonate
  • naphthalene carbonate naphthalenedicarbonate
  • naphthalene sulfonate naphthalenedisulfonate
  • CI—, Br—, ⁇ , and CIO— BF-, PF-, SbF-, CF CO- , CF SO-, CH SO-, benzene carbonate, benzene sulfonate, TsO-
  • TsO— is preferred.
  • M includes, for example, alkali metals such as sodium and potassium.
  • Examples of the organic solvent include alcohols such as methanol, ethanol, n-propanol, iso-propanol, and n-butanol; ethers such as tetrahydrofuran and dioxane; esters such as methyl acetate, ethyl acetate and butyl acetate; benzene; Examples include aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as dichloromethane, trichloromethane, dichloroethane, and trichloroethane; and aprotic polar solvents such as dimethylformaldehyde, dimethylacetamide, and dimethyl sulfoxide.
  • alcohols such as methanol, ethanol, n-propanol, iso-propanol, and n-butanol
  • ethers such as tetrahydrofuran and dioxane
  • esters such as methyl
  • the ratio of the compound represented by the general formula (VII) to the compound represented by the general formula (VIII) is usually about 1 to 30 mol, preferably about 2 to 10 mol per 1 mol of the former. I do.
  • the organic solvent is generally used in an amount of about 2 to 30 L, preferably about 5 to 20 L per 1 mol of the compound represented by the general formula (VII).
  • the above reaction proceeds normally at about 0 to 100 ° C, preferably at 10 to 70 ° C, and is generally completed in about several minutes to about 10 hours.
  • the target substance can be easily isolated by filtration and washing. Further, it can be easily purified by conventional purification means, for example, recrystallization, column separation and the like.
  • the compound represented by the general formula (VII) can be synthesized by a method described in, for example, JP-A-2000-226528.
  • a non-solvated crystal of the polymethine compound of the formula (I) may be used alone or, if necessary, a binder resin, other near-infrared absorbing substance, and coloring. You may mix a component, a coloring component, etc.
  • the binder resin for example, a homopolymer or copolymer of an acrylic acid monomer such as acrylic acid, methacrylic acid, acrylate, methacrylate, methylcellulose, and ethylcellulose , Cellulose-based polymers such as cellulose acetate, polystyrene, vinyl chloride-vinyl acetate copolymer, Rubber-based thermoplastics such as copolymers of Bull-based polymers such as mouth lidone, polybutyl butyral, and polyvinyl alcohol, and copolymers of Birui conjugates, condensation polymers such as polyester and polyamide, and butadiene-styrene copolymers
  • the polymer include a polymer and a polymer obtained by polymerizing and crosslinking a photopolymerizable conjugate such as an epoxy conjugate.
  • Examples of the near-infrared absorbing material used in the near-infrared absorbing agent include various known near-infrared absorbing materials in addition to the non-solvated crystal of the polymethine compound of the general formula (I), without departing from the object of the present invention. Can be used together.
  • Examples of near-infrared absorbing substances that can be used in combination include pigments such as carbon black and erin black, and "near-infrared absorbing dyes" (P45-51) of Chemical Industry (May, 1986). "Developments and market trends of functional dyes in the 1990s", CMC (1990) Chapter 2.3.3, polymethine dyes (cyanine dyes), phthalocyanine dyes, dithio-monoole metal complex dyes, naphthoquinone , Anthraquinone dyes, triphenylmethane (similar) dyes, polyamides, diimmonium dyes, etc., azo dyes, indoor diphosphorus metal complex dyes, pigments such as intermolecular CT dyes, dye dyes Is mentioned.
  • the near-infrared absorbing agent of the present invention is used as a photothermal conversion agent for a plate making material using laser light, for example, paper, paper (for example, polyethylene, polypropylene, polystyrene, etc.) laminated paper, Plates of metals such as aluminum (including aluminum alloys), zinc, copper, etc., such as cellulose diacetate, cellulose triacetate, cellulose butyrate, polystyrene terephthalate, polyethylene, polystyrene, polypropylene, polycarbonate, polycarbonate It is possible to produce a printing plate precursor for plate making by applying a solution in which an unsolvated crystal of a polymethine compound represented by the formula (I) is dissolved in an organic solvent on a support such as a plastic film.
  • a solution in which an unsolvated crystal of a polymethine compound represented by the formula (I) is dissolved in an organic solvent on a support such as a plastic film.
  • the solvent used in the solution to be applied is not particularly limited, but examples thereof include hydrocarbons, halogenated hydrocarbons, ethers, ketones, alcohols, cellosolves, etc. Power tetrahydrofuran, dioxane, etc. Particularly preferred are ketones such as ethers, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, alcohol solvents such as methanol, ethanol, and propanol, and cellosolve solvents such as methyl sorb and ethyl sorb.
  • Methyl ethyl ketone Methyl ethyl ketone, methyl isobutyl ketone, ketones such as cyclohexanone, methanol, ethanol Alcohol-based solvents such as ethanol and propanol are preferred! /.
  • a non-solvated crystal of the polymethine compound represented by the formula (I) may be used as a coloring component or A coloring component or the like may be blended and used, or a layer containing a coloring component or a coloring component may be separately provided.
  • the color-forming or coloring components are those that form images by physical and chemical changes due to the heat of sublimable dyes and pigments, electron-donating dye precursors, electron-accepting compounds, and polymerizable polymers. Power Various materials that have been studied can be used.
  • the coloring components of the laser thermal transfer recording material are not particularly limited, pigment types such as titanium dioxide, carbon black, zinc oxide, Prussian blue, sulphide cadmium, iron oxide and lead, Inorganic pigments such as chromates of zinc, barium and calcium, and organic pigments such as azo, thioindigo, anthraquinone, anthanthronic, triphenedoxane, phthalocyanine, and quinacridone pigments.
  • the dye include an acid dye, a direct dye, a disperse dye, an oil-soluble dye, and a metal-containing oil-soluble dye.
  • the color forming component of the laser thermosensitive recording material is not particularly limited, but those conventionally used in thermosensitive recording materials can be used.
  • the electron-donating dye precursor has a property of giving a color by donating electrons or accepting a proton such as an acid, and includes a compound such as ratatone, ratatam, sultone, spiropyran, ester, amide, etc.
  • a compound having a partial skeleton and capable of ring-opening or cleaving the partial skeleton upon contact with an electron-accepting compound is used.
  • triphenylmethane compounds for example, triphenylmethane compounds, fluoran compounds, phenothiazine compounds, indolylphthalide compounds, leucouramine compounds, rhodamine ratatam compounds, triphenylmethane compounds, triazene compounds, spiropyranes Compounds, fluorene compounds and the like.
  • the electron-accepting compound include a phenolic compound, an organic acid or a metal salt thereof, and oxybenzoic acid ester.
  • a non-solvated crystal of a polymethine compound represented by the formula (I) is made of a plastic. ⁇ Mixed with fats and organic solvents as the case may be. It can be produced by making it into a plate shape or a film shape by methods which have been studied.
  • the resin that can be used is not particularly limited, and examples thereof include acrylic resin, polyethylene resin, Shiridani vinyl resin, Shiridani biylidene resin, and polycarbonate resin.
  • the solvent to be used is not particularly limited, and examples thereof include hydrocarbons, halogenated hydrocarbons, ethers, ketones, alcohols, and cellosolves. Particularly, alcohol solvents such as methanol, ethanol, and propanol are used. Solvents: Preferred are cellosolve solvents such as methylcellosolve and ethylcellosolve.
  • the near-infrared absorbing agent of the present invention is used for an optical recording material such as an optical card
  • a solution in which an unsolvated crystal of a polymethine compound represented by the formula (I) is dissolved in an organic solvent is prepared.
  • Conventional methods such as spin coating and the like have been studied by various methods, and can be produced by coating on a substrate such as glass or plastic resin.
  • the resin that can be used for the substrate is not particularly limited, and examples thereof include acrylic resin, polyethylene resin, vinyl chloride resin, Shiridani biureiden resin, and polycarbonate resin.
  • the solvent used for spin coating is not particularly limited, but includes, for example, hydrocarbons, halogenated hydrocarbons, ethers, ketones, alcohols, and cellosolves. Particularly, alcohols such as methanol, ethanol, and propanol.
  • Solvent-based solvents Solvent-based solvents such as methyl-solve and ethyl-solve are preferred.
  • the solubility of the crystals in methanol and ethanol was 25% or more, respectively. Elemental analysis value, melting point (decomposition temperature), absorption maximum wavelength max) and gram absorption The light coefficient ( ⁇ g) was as follows.
  • FIG. 1 shows a powder X-ray diffraction pattern of the obtained crystal.
  • Fig. 2 shows the IR ⁇ vector of the obtained crystal.
  • FIG. 3 shows a TG-DTA (thermogravimetry / differential thermal analysis) diagram of the obtained crystal.
  • the TG weight loss by TG-DTA 150 ° C or lower was 0%.
  • the solubility of this compound in methanol and ethanol was 25% or more, respectively.
  • the elemental analysis value, melting point (decomposition temperature), absorption maximum wavelength ( ⁇ max), and gram absorption coefficient ( ⁇ g) of this crystal were as follows.
  • FIG. 4 shows a powder X-ray diffraction pattern of the obtained crystal.
  • Fig. 5 shows the IR ⁇ vector of the obtained crystal.
  • FIG. 6 shows a TG-DTA (thermogravimetric measurement differential thermal analysis) diagram of the obtained crystals.
  • the TG weight loss by TG-DTA 150 ° C or lower was 0%.
  • Laser light of a single mode semiconductor laser (wavelength 830 nm) was condensed by a lens and arranged so that the beam diameter was 10 m on the surface of the sample.
  • the semiconductor laser was adjusted so that the laser beam reaching the surface could be varied in the range of 50-200 mW, and the sample was irradiated with a single pulse with a pulse width of 20 s. Observation of the irradiated sample by an optical microscope confirmed that a through hole with a diameter of about 10 m was formed when the laser power reaching the surface was 50 mW.
  • FIG. 7 shows a powder X-ray diffraction diagram of the present danjido product.
  • FIG. 8 shows a TG-DTA (thermogravimetry / differential thermal analysis) measurement diagram of the present conjugated product.
  • the TG loss at 150 ° C. or less by TG-DTA was about 3.9%.
  • the maximum absorption wavelength ( ⁇ max) and gram extinction coefficient ( ⁇ g) of the obtained i-danied product are as follows.
  • FIG. 9 shows a powder X-ray diffraction pattern of the obtained i-dangling product.
  • FIG. 10 shows a TG-DTA (thermogravimetry / differential thermal analysis) measurement diagram of the obtained compound.
  • TG weight loss by TG DTA 150 ° C or lower was about 5.8%. Curls the moisture value of the compound As a result of measurement with a Fischer moisture meter, the moisture value was 5.6%.
  • the TG weight loss was due to water, and it was found that the present compound was a hydrate.
  • each of the polymethine compounds shown in Table 1 below was dissolved in a mixed solution of ethanol Z methylethyl ketone (lZl) to a concentration of 5% (w / v) and left indoors (at room temperature) for 10 days. Evaluation was performed by measuring the absorbance (gram extinction coefficient) of the solution before and after standing. The decomposition rate was calculated by the following equation. The results are shown in Table 1.
  • Degradation rate (%) [(absorbance immediately after solution adjustment-absorbance after standing for 10 days) Z absorbance immediately after solution adjustment] X 100
  • the non-solvated crystal of the polymethine compound of the present invention has high stability in a solution and is easy to handle, and has a high gram extinction coefficient and is highly sensitive to a general-purpose semiconductor laser. Further, since it has high solubility in alcohol solvents, it is extremely useful in the field of recording materials and plate making materials using laser light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)

Abstract

 溶液における安定性が良好でグラム吸光係数が高く、保存安定性に優れ、取り扱いが容易であり、汎用半導体レーザーに高感度なポリメチン系化合物の新規な非溶媒和型結晶を提供する。  式(I)のポリメチン系化合物の非溶媒和型結晶及び下式(II)のポリメチン系エーテル化合物と塩酸または臭化水素酸とを反応させることを特徴とする式(I)のポリメチン系化合物の非溶媒和型結晶の製造方法。    【化1】 (式中、XはClまたはBrを示す。)    【化2】 (式中、Rはアルキル基、アルコキシアルキル基または置換基を有してもよいアリール基を示す。)

Description

ポリメチン系化合物の非溶媒和型結晶及びその製造方法
技術分野
[0001] 本発明は、ポリメチン系化合物の新規な非溶媒和型結晶、その製造方法及び該非 溶媒和型結晶を用いた近赤外線吸収剤に関する。
背景技術
[0002] 近年、光学記録媒体、近赤外線吸収フィルター用材料、またはレーザー光を利用 した製版材料用の光熱変換剤等としてポリメチン系化合物が広く使用されている。特 に最近、レーザー光を利用した製版材料分野において、汎用半導体レーザー、例え ば 780nm— 830nmのレーザー域に高感度で、かつ汎用の溶剤、例えばメタノール 、エタノール等のアルコール溶剤に対し良好な溶解性を有する化合物の要求が高ま つている。更に、安定で取扱いが容易であり、且つ種々の用途に悪影響を及ぼすよう な不純物を含んでいないことも重要である。し力しながら、このような要望を満足する ポリメチン系化合物は知られて ヽな 、。
本発明のポリメチン系化合物と構造式自体は類似の化合物は、 Zh.Or.Khim.
(1978), 14(10)において開示されて以来、種々の検討例が存在する。かかる化合物の 合成方法としては、例えば下式 (III) :
[0003] [化 1]
Z® )
Figure imgf000003_0001
(式中、 Rは置換基を有してもよいアルキル基を示し、 Zは酸性残基を示す。 ) で表されるインドレニウム系化合物、または一般式 (IV): [0004] [化 2]
Figure imgf000004_0001
(式中、 は置換基を有してもよいアルキル基を示す。 )
で表されるインドリン系化合物と、式 (V)で表されるジホルミル系化合物または式 (VI) で表されるジァニル系化合物:
[0005] [化 3]
Figure imgf000004_0002
Figure imgf000004_0003
を脂肪酸塩の存在下、脱水性有機酸中にて縮合させる方法が知られている (WO01 Z07524、特開平 10— 195319号公報の頁 8— 10、 J.Org.Chem.1995,60,2394、特 許公報第 3045404号の実施例 1、ドイツ特許公開公報 DE3721850、特開昭 62— 36 469号公報などを参照)。
[0006] これらのうち、前記式 (III)のインドレニウム系化合物と前記式 (VI)のジァニル系化合 物とを反応させてポリメチン系化合物を合成する方法が最も一般的であるが、この場 合、製造されるポリメチン系化合物の反応収率、単離及び精製の操作性等の観点か ら、酸性残基 Z—の種類が制約される。かかる製法は、通常、 Zが過塩素酸残基、四弗 化ホウ素酸残基、 p—トルエンスルホン酸残基であるポリメチン系化合物の製造にはよ く用いられる力 Z—が I—以外のハロゲンイオン、特に C1—及び Br—であるものについて は知られていない。
[0007] つぎに、前記式 (IV)のインドリン系化合物と式 (V)のジホルミル系化合物とを反応さ せる方法にっ 、ては、ポリメチン系化合物のカウンターイオン力 SC1—である合成例がド イツ特許公開公報 DE3721850の実施例 1に開示されている。し力しながら、この文献 に記載の合成法で得られる化合物は、本発明のポリメチン系化合物とは構造式が異 なり、最大吸収波長 ( λ max)以外の物性値の記載もない。ここで開示されている製法 で本発明のポリメチン系化合物 (X=C1)と同じ構造の化合物を製造した場合、低収 率であり、得られた化合物は純度が低ぐ水和物であった。また、ここで用いられてい る式 (V)のジホルミル系化合物は保存安定性が悪ぐ毒性 (変異原性が陽性)がある ため、取扱いに注意を要し、工業的製造方法の原料として用いることは好ましくない カウンターイオンが Br—である本発明のポリメチン系化合物と同じ基本構造式の化 合物の合成例が WO01Z07524の実施例 1に開示されている。そこで、本発明者ら は、 WO01Z07524に開示されている方法に従って本発明のポリメチン系化合物と 同じ構造の化合物の合成を試みた。しかし、得られた化合物は水和物であり、かつ低 純度品で、使用上の制約が大きぐ例えば水が悪影響を与える系では用いることが できない。
前記式 (IV)のインドリン系化合物と式 (VI)のジァニル系化合物とを反応させる方法 につ 、ては、本発明のポリメチン系化合物とは基本構造式が異なる化合物ではある 力 Z—が C1—の製造例が特開昭 62-36469号公報の実施例 3に開示されている。こ こで開示されている製法で本発明のポリメチン系化合物 (X=C1)と同じ構造の化合 物を製造した場合、得られた物質はメタノール和物であり、且つ低純度の化合物であ つた o
[0008] また、最近ではアルドリッチ総合カタログ日本版 (2003— 2004)の試薬カタログに本 発明のポリメチン系化合物と構造式自体は同じィ匕合物 (Xが C1)が記載されて 、るが
、この物質は水和物であって、かつ非常に低純度の化合物であるため、使用上の制 約が大きぐ例えば水が悪影響を与える系では用いることができない。
なお、本発明において、「溶媒和物」とは水和物を含めた総称である。 上記の様に本発明の化合物と構造式が同じ公知の化合物は、その製造方法に起 因する溶媒和物であり、低純度品であるため使用上の制約が大きい。例えば、本発 明の化合物と構造が同じである化合物の溶媒和物を CTP(Computer To Plate)製版 用の光熱変換剤として用いた場合、溶液安定性が悪ぐ純度が安定していないため 、光熱変換効率が大きく変動し、実用的問題が大きい。
なお、ポリメチン系化合物について、化合物の基本構造が同じであっても溶媒和の 有無により溶液中での安定性及び感度に大きな違いがあるとの報告は見当たらない 発明の開示
発明が解決しょうとする課題
[0009] 本発明の目的は、溶液中における安定性が良好で、グラム吸光係数が高ぐ純度 が高く安定で取り扱いが容易であり、汎用半導体レーザーに高感度なポリメチン系化 合物の新規な非溶媒和型結晶提供することである。
課題を解決するための手段
[0010] 前記した課題を解決するために種々検討した結果、本発明者らは、特定の構造 の新規な非溶媒和型結晶が、溶液中における安定性が良好で、グラム吸光係数が 高ぐ 780nm— 830nm付近のレーザー光に対して高感度であり、純度が高く安定 で種々の用途への加工が容易な近赤外線吸収剤として使用し得ることを見出し、本 発明を完成した。
本願の第一の発明は下記式 (I)で表されるポリメチン系化合物の非溶媒和型結晶で ある。
[0011] [化 4]
Figure imgf000007_0001
(式中、 Xは C1または Brを示す。)
本願発明のポリメチン系化合物の非溶媒和型結晶は、 Xが C1の場合、融点 (分解 温度)が 205°C以上、 Brの場合、 220°C以上であり、 TG— DTA (熱重量測定 示差 熱分析)測定図において、 150°C以下での TG減量値が両結晶とも 3%以下であり、 実質的に溶媒和されて 、な 、。
更には Xが C1である場合、 Cu— Kひ線による粉末 X線回折法における回折角(2 Θ ±0. 2° ) 11. 2° 、 16. 7° 、 24. 2° 、 25. 3° に特徴的なピークを示す粉末 X線 回折図により特徴づけられ、 Xが Brである場合、 Cu— Kひ線による粉末 X線回折法に おける回折角(2 0 ±0. 2° ) 17. 0° 、 20. 5° 、 21. 1° 、 24. 9° に特徴的なピ ークを示す粉末 X線回折図により特徴づけられる。
[0012] 本願の第二の発明は下式 (II) :
[化 5]
Figure imgf000007_0002
(式中、 Rはアルキル基、アルコキシアルキル基または置換基を有してもよいァリール 基を示す。 )
で表されるポリメチン系エーテルィ匕合物と、塩酸又は臭化水素酸とを反応させること を特徴とする前記式 (I)で表されるポリメチン系化合物の非溶媒和型結晶の製造方法 である。
本願の第三の発明は、式 (I)のポリメチン系化合物の非溶媒和型結晶を含有する近 赤外線吸収剤である。
図面の簡単な説明
[0013] [図 1]実施例 1のポリメチン系化合物の粉末 X線回折図である。
[図 2]実施例 1のポリメチン系化合物の IR吸収スペクトルである。
[図 3]実施例 1のポリメチン系化合物の TG— DTA (熱重量測定 示差熱分析)図であ る。
[図 4]実施例 2のポリメチン系化合物の粉末 X線回折図である。
[図 5]実施例 2のポリメチン系化合物の IR吸収スペクトルである。
[図 6]実施例 2のポリメチン系化合物の TG— DTA (熱重量測定 示差熱分析)図であ る。
[図 7]比較例 1の化合物の粉末 X線回折図である。
[図 8]比較例 1の化合物の TG - DTA (熱重量測定 -示差熱分析)測定図である。
[図 9]比較例 2の化合物の粉末 X線回折図である。
[図 10]比較例 2の化合物の TG-DTA (熱重量測定-示差熱分析)測定図である。 発明の詳細な記述
[0014] つぎに、本発明につ 、て詳しく説明する。
公知の式 (I)の化学構造式で表される化合物または公知の製造方法で得られる式 (I )の化合物は、水または有機溶媒 (例えばメタノール、エタノール等)と溶媒和された 物質であり、且つ多くの場合低純度である。一方、式 (I)で表される本発明のポリメチ ン系化合物の非溶媒和型結晶は、水または有機溶媒と溶媒和されていない全く新規 な結晶である。
本発明の式 (I)で表されるポリメチン系化合物の非溶媒和型結晶において、 Xが C1 の場合の融点(分解温度)は 205°C以上であり、好ましくは 210°C— 240°Cである。 溶媒和物及び Zまたは低純度品は融点が 205°C未満である。
本発明の式 (I)で表されるポリメチン系化合物の非溶媒和型結晶において、 Xが Br の場合の融点(分解温度)は 215°C以上であり、好ましくは 220°C— 250°Cである。 溶媒和物及び Zまたは低純度品は融点が 215°C未満である。
本発明の非溶媒和型結晶は、いずれも溶け始めると次第に発泡し、分解するため 、融点 (分解温度)を非常に明確に観察することができるが、溶媒和物及び Zまたは 低純度品は明確な融点または分解温度を示さない場合がある。
[0015] 本発明の式 (I)で表されるポリメチン系化合物の非溶媒和型結晶の TG— DTA (熱重 量測定 示差熱分析)測定図は、 150°C以下での TG減量値が 3%以下、好ましくは 2 %以下である。溶媒和物及び Zまたは低純度品は 150°C未満での TG減量値が 3% より多い。
[0016] 本発明の式 (I)で表されるポリメチン系化合物の非溶媒和型結晶は Xが C1である場 合、 Cu— Κ α線による粉末 X線回折法における回折角(2 0 ±0. 2° ) 11. 2° 、 16 . 7° 、 24. 2° 、 25. 3° 、好ましくは 11. 2° 、 16. 7° 、 18. 5° 、 24. 2° 、 25. 3 ° 、 26. 7° に特徴的なピークを示す。 Xが Brである場合、 Cu— Κひ線による粉末 X 線回折法における回折角(2 0 ±0. 2° ) 17. 0° 、 20. 5° 、 21. 1° 、 24. 9° 、好 ましく ίま 9. 6° 、 17. 0° 、 20. 5° 、 24. 9° 、 27. 4° に特徴的なピークを示す。溶 媒和物及び Ζまたは低純度品の場合、全く異なる粉末 X線回折パターンを示す。
[0017] 本発明のポリメチン系化合物の非溶媒和型結晶は、式 (II)で表されるポリメチン系ェ 一テルィ匕合物を経由(原料と)することにより初めて製造できることが判明した。
本発明の式 (I)で表されるポリメチン系化合物の非溶媒和型結晶は、驚くべきことに レーザー光を利用したレーザー感熱記録材料分野等で使用されるメタノール、ェタノ ール等のアルコール系溶媒や、アセトン、メチルェチルケトン系のケトン系溶媒中に おける溶液安定性が公知の溶媒和型化合物に比べて高ぐこの用途分野に非常に 好適である。また、 780— 830nm領域の吸光係数が高いため、レーザー光を利用し た多くの記録材料分野にて 780— 830nmに発光領域を有する汎用の半導体レーザ 一に好適に使用することができ、レーザー光を利用したレーザー熱転写記録材料、 レーザー感熱記録材料等の記録材料分野及び製版材料分野において極めて有用 である。
[0018] [ポリメチン系化合物の非溶媒和型結晶の製造方法]
本発明の式 (I)で表されるポリメチン系化合物の非溶媒和型結晶は下記の方法で製 造することができる。
一般式 (II)のポリメチン系エーテルィ匕合物 (例えば R=CH )と、塩酸または臭化水素
3
酸とを有機溶媒中で反応させることにより製造される。
[0019] [化 6]
Figure imgf000010_0001
(式中、 Rはアルキル基、アルコキシアルキル基または置換基を有してもよいァリール 基を示す。 )
[0020] Rがアルキル基であるものとしては、炭素数 1一 8の直鎖或いは分岐のアルキル基 が好ましぐ炭素数 1一 4の直鎖或いは分岐のアルキル基が特に好ましい。例として はメチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチル基、イソブチル基、 sec—ブチル基、 tert—ブチル基、 n—ペンチル基、イソペンチル基、ネオペンチル基、 n—へキシル基、イソへキシル基、 sec—へキシル基、 2—ェチルブチル基、 n—へプチ ル基、イソへプチル基、 sec—へプチル基、 n—才クチル基、 2—ェチルへキシル基が挙 げられる。
[0021] Rがアルコキシアルキル基であるものとしては、総炭素数 2— 8のものが好ましぐ総 炭素数 2— 4のものが特に好ましい。例としてメトキシメチル基、 2—メトキシェチル基、 3—メトキシプロピル基、 2—エトキシメチル基、 2—エトキシェチル基、 2—プロポキシェ チル基、 2—ブトキシェチル基が挙げられる。
Rが置換基を有しても良いァリール基であるものとしては、置換基を有しても良いフ ヱニル基、置換基を有しても良いナフチル基が挙げられる力 置換基を有しても良い フエニル基が好ましい。置換基としては、アルキル基、アミノ基、ニトロ基、アルコキシ 基、水酸基、ハロゲン原子等が挙げられ、炭素数 1一 4のアルキル基または炭素数 1 一 4のアルコキシ基が好まし!/、。
[0022] Rがアルキル基を有するフエ-ル基であるものの例としては、 2—メチルフエ-ル基、 3 メチルフエ-ル基、 4 メチルフエ-ル基、 2, 3—ジメチルフヱ-ル基、 2, 4 ジメチ ルフヱ-ル基、 3, 4—ジメチルフヱ-ル基、 2, 5—ジメチルフヱ-ル基、 2, 6—ジメチル フエ-ル基、 2 エルフヱ-ル基、 3—ェチルフヱ-ル基、 4—ェチルフヱ-ル基、 2, 3— ジェチルフエ-ル基、 2, 4—ジェチルフエ-ル基、 3, 4—ジェチルフエ-ル基、 2, 5— ジェチルフエ-ル基、 2, 6—ジェチルフエ-ル基が挙げられる。
[0023] Rがアルコキシ基を有するフエ-ル基であるものの例としては、 2—メトキシフエ-ル 基、 3—メトキシフエ-ル基、 4ーメトキシフエ-ル基、 2, 3—ジメトキシフエ-ル基、 2, 4 ージメトキシフエ-ル基、 3, 4—ジメトキシフエ-ル基、 2, 5—ジメトキシフエ-ル基、 2, 6—ジメトキシフエ-ル基が挙げられる。
[0024] 有機溶媒としては、メタノール、エタノール、 n プロパノール、 iso プロパノール、 n—ブタノール等のアルコール類、アセトン、メチルェチルケトン、メチルプロピルケトン 、メチルブチルケトン等のケトン類、テトラヒドロフラン、ジォキサン等のエーテル類、 酢酸メチル、酢酸ェチル、酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン 等の芳香族炭化水素類、ジクロロメタン、トリクロロメタン、ジクロロエタン、トリクロロェ タン等のハロゲン化炭化水素類、ジメチルホルムアルデヒド、ジメチルァセトアミド、ジ メチルスルホキシド等の非プロトン性極性溶媒類が挙げられる力 メタノール、ェタノ ール、 n プロパノール、 iso プロパノール、 n—ブタノール等のアルコール類、ァセト ン、メチルェチルケトン、メチルプロピルケトン、メチルブチルケトン等のケトン類、酢 酸メチル、酢酸ェチル、酢酸ブチル等のエステル類が特に好ましい。
[0025] 式 (II)で表される化合物と塩酸または臭化水素酸との使用割合は、通常前者 1モル に対し後者を 0. 5— 3モル程度、好ましくは 1一 1. 5モル程度を使用する。
[0026] 有機溶媒は、具体例(II)で表される化合物 1モル当たり通常 1一 30L程度、好ましく は 3— 20L程度使用する。
上記反応は通常 100°C以下の温度、好ましくは 10— 70°Cで好適に進行し、一般 に数分一 5時間程度で完結する。
反応後、濾取、洗浄することにより目的物を容易に単離することができる。また、慣 用の精製手段、例えば、再結晶等により容易に精製することができる。
[0027] 単離、精製溶剤としては、汎用の有機溶剤、例えばメタノール、エタノール、 n プロ パノール、 iso—プロパノール、 n—ブタノール等のアルコール類、アセトン、メチルェチ ルケトン、メチルプロピルケトン、メチルブチルケトン等のケトン類、テトラヒドロフラン、 ジォキサン等のエーテル類、酢酸メチル、酢酸ェチル、酢酸ブチル等のエステル類、 ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、トリクロロメタン 、ジクロロェタン、トリクロロェタン等のハロゲン化炭化水素類、ジメチルホルムアルデ ヒド、ジメチルァセトアミド、ジメチルスルホキシド等の非プロトン性極性溶媒類を用い ることができるが、アセトン、メチルェチルケトン、メチルプロピルケトン、メチルブチル ケトン等のケトン系溶剤、酢酸メチル、酢酸ェチル、酢酸ブチル等のエステル系溶剤 またはそれらの混合溶剤が好ましい。精製溶剤の種類、例えば、メタノール、エタノー ル、トルエンを使用した場合、単離条件によっては溶媒和する場合がある。
[0028] なお、前記のポリメチン系エーテルィ匕合物 (II)は、例えば下式 (VII)で表されるポリメ チン系化合物と、下式 (VIII)で表されるアルカリ金属のアルコキシド塩またはアルカリ 金属のァリールォキシド塩を有機溶媒中で反応させることにより製造することができる
[0029] [ィ匕 7]
Figure imgf000012_0001
(式中、 Z—は酸性残基を示す。 )
MOR (VIII)
(式中、 Mはアルカリ金属類を、 Rは前記と同じものを示す。 )
[0030] 前記式中、 Z—は酸性残基を表し、例としては F―、 Cl—、 Br―、 Γ、 BrO―、 CIO―、 BF
4 4 .
―、 PF―、 SbF―、 CF CO―、 CH CO―、 CF SO―、 CH SO―、ベンゼンカルボナ
6 6 3 2 3 2 3 3 3 3
ート、ベンゼンスルホネート、 p—トルエンスルホネート (以下 TsO—と略す)、ナフタレン カルボナート、ナフタレンジカルボナート、ナフタレンスルホネート、ナフタレンジスル ホネート等が挙げられ、特に、 CI—、 Br―、 Γ、 CIO―、 BF―、 PF―、 SbF―、 CF CO― 、 CF SO―、 CH SO―、ベンゼンカルボナート、ベンゼンスルホネート、 TsO—が好ま
3 3 3 3
しぐとりわけ、 CIO―
4、 BF―
4、 TsO—が好ましい。
上記反応において、 Mとしては、例えば、ナトリウム、カリウム等のアルカリ金属が挙 げられる。
[0031] 有機溶媒としては、メタノール、エタノール、 n—プロパノール、 iso—プロパノール、 n ーブタノール等のアルコール類、テトラヒドロフラン、ジォキサン等のエーテル類、酢酸 メチル、酢酸ェチル、酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン等の 芳香族炭化水素類、ジクロロメタン、トリクロロメタン、ジクロロエタン、トリクロロェタン等 のハロゲン化炭化水素類、ジメチルホルムアルデヒド、ジメチルァセトアミド、ジメチル スルホキシド等の非プロトン性極性溶媒が挙げられる。
一般式 (VII)で表される化合物と一般式 (VIII)で表される化合物との使用割合は、通 常前者 1モルに対し後者を 1一 30モル程度、好ましくは 2— 10モル程度使用する。
[0032] 有機溶媒は、一般式 (VII)で表される化合物 1モル当たり通常 2— 30L程度、好まし くは 5— 20L程度使用する。
上記反応は通常 0— 100°C程度、好ましくは 10— 70°Cで好適に進行し、一般に数 分一 10時間程度で完結する。
反応後、濾取、洗浄することにより目的物を容易に単離することがでる。また、慣用 の精製手段、例えば、再結晶、カラム分離等により容易に精製することができる。 なお、前記の一般式 (VII)で表される化合物は、例えば特開 2000— 226528号公報 等に記載の方法により合成することができる。
[0033] [近赤外線吸収剤]
本発明の近赤外線吸収剤としては式 (I)のポリメチン系化合物の非溶媒和型結晶を 単独で用いてもよぐまた必要に応じて適宜バインダー榭脂、他の近赤外線吸収物 質、発色成分及び着色成分等を配合してもよい。
ノ インダー榭脂としては、特に制限はないが、例えば、アクリル酸、メタクリル酸、ァ クリル酸エステル、メタクリル酸エステル等のアクリル酸系モノマーの単独重合体また は共重合体、メチルセルロース、ェチルセルロース、セルロースアセテートのようなセ ルロース系ポリマー、ポリスチレン、塩化ビ-ルー酢酸ビュル共重合体、ポリビュルピ 口リドン、ポリビュルブチラール、ポリビュルアルコールのようなビュル系ポリマー及び ビ-ルイ匕合物の共重合体、ポリエステル、ポリアミドのような縮合系ポリマー、ブタジェ ンースチレン共重合体のようなゴム系熱可塑性ポリマー、エポキシィ匕合物などの光重 合性ィ匕合物を重合'架橋させたポリマーなどを挙げることができる。
近赤外線吸収剤に使用される近赤外線吸収物質としては一般式 (I)のポリメチン系 化合物の非溶媒和型結晶以外に、本発明の目的を逸脱しない範囲で、公知の種々 の近赤外線吸収物質が併用できる。
[0034] 併用できる近赤外線吸収物質としては、カーボンブラック、ァ-リンブラック等の顔 料や『化学工業(1986年、 5月号)』の「近赤外吸収色素」(P45— 51)や『90年代 機能性色素の開発と市場動向』シーエムシー(1990)第 2章 2. 3に記載されている ポリメチン系色素(シァニン色素)、フタロシアニン系色素、ジチォ一ノレ金属錯塩系色 素、ナフトキノン、アントラキノン系色素、トリフエ-ルメタン (類似)系色素、アミ-ゥム、 ジインモニゥム系色素等、またァゾ系色素、インドア二リン金属錯体色素、分子間型 C T色素等の顔料、染料系の色素が挙げられる。
[0035] 本発明の近赤外線吸収剤をレーザー光を利用した製版材料用の光熱変換剤とし て用いる場合は、例えば、紙、プラスチック(例えばポリエチレン、ポリプロピレン、ポリ スチレン等)がラミネートされた紙、例えばアルミニウム (アルミニウム合金も含む)、亜 鉛、銅等のような金属の板、例えば二酢酸セルロース、三酢酸セルロース、酪酸セル ロース、ポリスチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリ カーボネート、ポリビュルァセタール等のプラスチックフィルム等の支持体の上に、式 ( I)で表されるポリメチン系化合物の非溶媒和型結晶を有機溶剤で溶解した液を塗布 することにより製版用印刷原版を作製することができる。塗布する溶液に使用する溶 剤としては、特に制限はないが、例えば炭化水素類、ハロゲン化炭化水素類、エー テル類、ケトン類、アルコール類、セロソルブ類等が挙げられる力 テトラヒドロフラン、 ジォキサン等のエーテル類、メチルェチルケトン、メチルイソブチルケトン、シクロへキ サノン等のケトン類、メタノール、エタノール、プロパノール等のアルコール系溶剤、メ チルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ系溶剤が好ましぐ特に、メチルェ チルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン類、メタノール、エタ ノール、プロパノール等のアルコール系溶剤が好まし!/、。
[0036] 本発明の近赤外線吸収剤をレーザー熱転写記録材料、レーザー感熱記録材料等 の記録材料に用いる場合は、式 (I)で表されるポリメチン系化合物の非溶媒和型結晶 に発色成分または着色成分等を配合して使用してもよいし、発色成分または着色成 分等を含有する層を別途設けてもよい。発色成分または着色成分としては、昇華性 染顔料や電子供与性染料前駆体と電子受容性化合物、重合性ポリマー等の熱によ つて物理的、化学的な変化で画像を形成するもので、従来力 種々検討されている ものが使用できる。 例えば、レーザー熱転写記録材料の着色成分としては、特に限 定するものではないが、顔料タイプのものとして、二酸化チタン、カーボンブラック、酸 化亜鉛、プルシアンブルー、硫ィ匕カドミウム、酸化鉄ならびに鉛、亜鉛、バリウム及び カルシウムのクロム酸塩等の無機顔料ゃァゾ系、チォインジゴ系、アントラキノン系、 アントアンスロン系、トリフェンジォキサン系、フタロシア-ン系、キナクリドン系等の有 機顔料が挙げられる。染料としては、酸性染料、直接染料、分散染料、油溶性染料、 含金属油溶性染料等が挙げられる。
[0037] レーザー感熱記録材料の発色成分としては、特に限定されるものではないが、従 来から感熱記録材料に用いられて 、るものを使用できる。電子供与性染料前駆体と しては、すなわちエレクトロンを供与してまたは酸等のプロトンを受容して発色する性 質を有するものであって、ラタトン、ラタタム、サルトン、スピロピラン、エステル、アミド 等の部分骨格を有し、電子受容性化合物と接触してこれらの部分骨格が開環若くは 開裂する化合物が用いられる。例えば、トリフエ-ルメタン系化合物、フルオラン系化 合物、フエノチアジン系化合物、インドリルフタリド系化合物、ロイコオーラミン系化合 物、ローダミンラタタム系化合物、トリフエニルメタン系化合物、トリァゼン系化合物、ス ピロピラン系化合物、フルオレン系化合物等が挙げられる。電子受容性化合物として は、フエノール性化合物、有機酸若くはその金属塩、ォキシ安息香酸エステル等が 挙げられる。
[0038] 本発明の近赤外線吸収剤を近赤外線吸収フィルター、熱線遮断材、農業用フィル ムに用いる場合は、式 (I)で表されるポリメチン系化合物の非溶媒和型結晶をプラスチ ック榭脂及び場合により有機溶剤と混合し、射出成形法やキャスト法等の従来から種 々検討されている方法で板状若しくはフィルム状にすることにより作製できる。使用で きる榭脂としては、特に制限はないが、例えばアクリル榭脂、ポリエチレン榭脂、塩ィ匕 ビニール榭脂、塩ィ匕ビユリデン榭脂、ポリカーボネート榭脂等が挙げられる。用いる 溶剤としては、特に制限はないが、例えば炭化水素類、ハロゲン化炭化水素類、ェ 一テル類、ケトン類、アルコール類、セロソルブ類が挙げられるが特に、メタノール、 エタノール、プロパノール等のアルコール系溶剤ゃメチルセ口ソルブ、ェチルセロソ ルブ等のセロソルブ系溶剤が好まし 、。
[0039] 本発明の近赤外線吸収剤を光カード等の光記録材料に用いる場合は、式 (I)で表 されるポリメチン系化合物の非溶媒和型結晶を有機溶剤に溶解した液を調製し、スピ ンコート法等の従来力 種々検討されている方法で、例えばガラス、プラスチック榭脂 等の基板上に塗布することにより作製できる。基板に使用できる榭脂としては、特に 制限はないが、例えばアクリル榭脂、ポリエチレン榭脂、塩化ビニール榭脂、塩ィ匕ビ ユリデン榭脂、ポリカーボネート榭脂等が挙げられる。スピンコートに用いる溶剤とし ては、特に制限はないが、例えば炭化水素類、ハロゲン化炭化水素類、エーテル類 、ケトン類、アルコール類、セロソルブ類が挙げられる力 特にメタノール、エタノール 、プロパノール等のアルコール系溶剤ゃメチルセ口ソルブ、ェチルセ口ソルブ等のセ 口ソルブ系溶剤が好まし ヽ。
実施例
[0040] さらに、本発明を実施例及び比較例によりさらに具体的に説明する力 本発明はこ れら実施例により限定されるものではない。
[実施例 1] ポリメチン系化合物の非溶媒和型結晶の合成 (X=C1)
式 (II)で表されるポリメチン系エーテル化合物 (R=CH )15. 45gをアセトン 150ml
3
に加え、これに攪拌下 25— 30°Cで塩酸ガス 2. OOgを吹き込んだ。同温度で 1時間 攪拌後、還流温度へ昇温し、酢酸ェチル 50mlを滴下した。同温度で 1時間攪拌後、 15— 20°Cへ冷却した。析出した結晶を濾別、酢酸ェチルで洗浄後、乾燥し、式 (I)の 化合物 (X=C1) 14.65gを得た。
[0041] この結晶のメタノール及びエタノールに対する溶解度はそれぞれ 25%以上であつ た。この結晶の元素分析値、融点 (分解温度)、吸収極大波長 max)及びグラム吸 光係数( ε g)は以下の通りであった。
元素分析値(C H CI N ): MW= 519. 6
32 36 2 2
C H N
計算値(%) 73.98 6.98 5.39
実測値(%) 73.51 6.86 5.43
融点 (°C) : 212— 217°C (分解)
I max : 783nm (ジアセトンアルコール溶液)
ε g : 5.28 X 105 ml/g-cm
得られた結晶の粉末 X線回折図を図 1に示す。
得られた結晶の IR ^ベクトルを図 2に示す。
得られた結晶の TG— DTA (熱重量測定 示差熱分析)図を図 3に示す。 TG— DTA(1 50°C以下)による TG減量は 0%であった。この結晶の混合溶媒 (エタノール Zメチル ェチルケトン =1Z 中における安定性を表 1に示す。
[実施例 2] ポリメチン系化合物の非溶媒和型結晶の合成 (X= Br)
式(II)で表されるポリメチン系エーテル化合物 (R=CH )15. 45gをアセトン 150ml
3
に加え、これに攪拌下 25— 30°Cで 48%臭化水素酸 5. 60gを滴下した。同温度で 1 時間攪拌後、還流温度へ昇温し、酢酸ェチル 50mlを滴下した。同温度で 1時間攪 拌後、 15— 20°Cへ冷却した。析出した結晶を濾別、酢酸ェチルで洗浄後、乾燥し、 式 (I)の化合物 (X=Br) 16.10gを得た。
この化合物のメタノール及びエタノールに対する溶解度はそれぞれ 25%以上であ つた。この結晶の元素分析値、融点 (分解温度)、吸収極大波長 ( λ max)及びグラム吸 光係数( ε g)は以下の通りであった。
元素分析値(C H BrCIN ): MW= 564. 0
32 36 2
C H N
計算値(%) 68.15 6.43 4.97
実測値(%) 68.01 6.51 4.93
融点 (°C) : 225— 230°C (分解)
I max : 783nm (ジアセトンアルコール溶液) ε g : 4.85 X 105 ml/g-cm
得られた結晶の粉末 X線回折図を図 4に示す。
得られた結晶の IR ^ベクトルを図 5に示す。
得られた結晶の TG— DTA (熱重量測定 示差熱分析)図を図6に示す。 TG— DTA(1 50°C以下)による TG減量は 0%であった。この結晶の混合溶媒 (エタノール Zメチル ェチルケトン = 1Z1)中における安定性を表 1に示す。
[0043] [実施例 3] 近赤外線吸収剤の製造
ノインダーとしてデルペット 80N (旭化成工業 (株)製:アクリル系榭脂): 10g、及び本 発明の式 (I)の結晶(X=C1) :0.2gをトルエン Zメチルェチルケトン Zメタノール(1Z 1Z0.1)混合溶媒 90gに溶解した液を調製し、ワイヤーバーにて乾燥後の膜厚が約 5 μ mとなるよう平均厚さ 5 μ mのポリエチレンテレフタレート (PET)フィルムに塗布し て、近赤外線吸収剤の試料を得た。
単一モード半導体レーザー(波長 830nm)のレーザー光をレンズで集光し、上記 試料の表面でビーム径 10 mとなるように配置した。表面に到達するレーザーのパ ヮ一が 50— 200mWの範囲で変化できるように半導体レーザーを調整し、 20 sの パルス幅で単一のパルスを試料に照射した。照射を完了した試料を光学顕微鏡で観 察したところ、表面に到達するレーザーのパワーが 50mW時、直径約 10 mの貫通 した孔が形成されて ヽることが確認できた。
[0044] [実施例 4] 近赤外線吸収剤の製造
本発明の式 (I)の結晶 (X=C1) : 0.2gの代わりに、本発明の式 (I)の化合物 (X=Br) : 0.2gを用いた以外は [実施例 3]と同様にして、近赤外線吸収剤の試料を得た。 単一モード半導体レーザー(波長 830nm)のレーザー光をレンズで集光し、上記 試料の表面でビーム径 10 mとなるように配置した。表面に到達するレーザーのパ ヮ一が 50— 200mWの範囲で変化できるように半導体レーザーを調整し、 20 sの パルス幅で単一のパルスを試料に照射した。照射を完了した試料を光学顕微鏡で観 察したところ、表面に到達するレーザーのパワーが 50mW時、直径約 10 mの貫通 した孔が形成されて ヽることが確認できた。
[0045] [比較例 1] 巿販ポリメチン系化合物 アルドリッチ総合カタログ日本版 (2003-2004)の試薬カタログにて販売されて!ヽ る、本発明のポリメチン系化合物 (X=C1)と化学構造式が同じィ匕合物の融点、吸収 極大波長 max)及びグラム吸光係数( ε g)は以下の通りであった。
融点 (°C) : 187— 198°C (分解)
λ max : 783nm (ジアセトンアルコール溶液)
Figure imgf000019_0001
本ィ匕合物の粉末 X線回折図を図 7に示す。
本ィ匕合物の TG— DTA (熱重量測定 示差熱分析)測定図を図8に示すが、 TG— DT Aによる 150°C以下での TG減量は約 3.9%であつた。
本ィ匕合物の水分値をカールフィッシャー水分測定器にて測定した結果、水分値が 3.7%であった。 TG減量は水分であり、本ィ匕合物は水和物であることが判明した。こ の化合物の混合溶媒 (エタノール Zメチルェチルケトン = 1/1)中における安定性を 表 1に示す。
[比較例 2]ポリメチン系化合物の合成 (参考: WO01/07524実施例 1(b)) 式 (IV)で表されるインドリン系化合物 (R=CH )13. 2g、無水酢酸 60ml、 48%臭化
3
水素酸 9. 6ml及び酢酸ナトリウム 6. 25gからなる混合物へ式 (V)で表されるジホルミ ル系化合物 (n= 2) 6.63gを 10°C以下の温度で添加した。同混合物を 70°Cへ昇温 後、同温度で 1. 5時間攪拌した。室温まで冷却した後、 450mlの水へカ卩え、ー晚攪 拌した。析出した固形物を濾別し、水洗後、 60°Cで乾燥した。本発明の化合物 (X= Br)と基本構造が同じィ匕合物 13.21gを得た。
得られたィ匕合物の吸収極大波長 ( λ max)及びグラム吸光係数( ε g)は以下の通りで めつに。
融点 (°C) : 212— 218°C (分解)
λ max : 783nm (ジアセトンアルコール溶液)
Figure imgf000019_0002
得られたィ匕合物の粉末 X線回折図を図 9に示す。
得られた化合物の TG— DTA (熱重量測定 示差熱分析)測定図を図 10に示す。 TG DTA(150°C以下)による TG減量は約 5.8%であった。本化合物の水分値をカール フィッシャー水分測定器にて測定した結果、水分値が 5.6%であった。 TG減量は水 分であり、本ィ匕合物は水和物であることが判明した。この化合物の混合溶媒 (エタノー ル Zメチルェチルケトン = 1Z1)中における安定性を表 1に示す。
[0047] <溶液安定性 >
溶液安定性試験として、下記表 1に示す各ポリメチン系化合物をエタノール Zメチ ルェチルケトン (lZl)の混合溶液に 5%(w/v)となるように溶解し、室内 (室温下)にて 10日間放置前後の溶液の吸光度 (グラム吸光係数)を測定することにより評価した。 下記式にて分解率を計算した。結果を表 1に示す。
分解率 (%)= [(溶液調整直後の吸光度 - 10日間放置後の吸光度) Z溶液調整直後の 吸光度] X 100
[0048] [表 1]
Figure imgf000020_0001
例えば、製版用印刷原版を作製する場合、ポリメチン系化合物溶液の安定性が低 いと大量に溶液を調整、保存することができず生産効率が悪い。また、ポリメチン系 化合物の少量の分解でも光熱変換効率の変化や製版用印刷原版の色調変化が生 じる場合があり、製品品質上好ましくない。
産業上の利用可能性
[0049] 本発明のポリメチン系化合物の非溶媒和型結晶は、溶液中での安定性が高いため 取扱いが容易で、グラム吸光係数が高いため汎用半導体レーザーに対して高感度 である。また、アルコール系溶剤に対する溶解性が高いため、レーザー光を利用した 記録材料分野、製版材料分野において極めて有用である。

Claims

請求の範囲 下記式 (I)で表されるポリメチン系化合物の非溶媒和型結
[化 1]
Figure imgf000021_0001
(式中、 Xは C1または Brを示す。)
[2] Xが C1であり、融点(分解温度)が 205°C以上である請求項 1のポリメチン系化合物の 非溶媒和型結晶。
[3] Xが Brであり、融点(分解温度)が 220°C以上である請求項 1のポリメチン系化合物の 非溶媒和型結晶。
[4] TG-DTA (熱重量測定 示差熱分析)測定図にお 、て、 150°C以下での TG減量値 力 3%以下であることを特徴とする、請求項 1一 3いずれかのポリメチン系化合物の非 溶媒和型結晶。
[5] Cu— Κ α線による粉末 X線回折法における回折角(2 0 ±0. 2° ) 11. 2° 、 16. 7 ° 、 24. 2° 、 25. 3° に特徴的なピークを示す粉末 X線回折図により特徴づけられ る請求項 1、 2、 4いずれかのポリメチン系化合物の非溶媒和型結晶。
[6] Cu— Κ α線による粉末 X線回折法における回折角(2 0 ±0. 2° ) 17. 0° 、 20. 5 ° 、 21. 1° 、 24. 9° に特徴的なピークを示す粉末 X線回折図により特徴づけられ る請求項 1、 3、 4いずれかのポリメチン系化合物の非溶媒和型結晶。
[7] 式 (II)で表されるポリメチン系エーテルィ匕合物と塩酸または臭化水素酸とを反応させ ることを特徴とする請求項 1一 6いずれかのポリメチン系化合物の非溶媒和型結晶の 製造方法。
[化 2]
Figure imgf000022_0001
(式中、 Rはアルキル基、アルコキシアルキル基または置換基を有してもよいァリール 基を示す。 )
請求項 1一 6いずれかのポリメチン系化合物の非溶媒和型結晶を含有することを特 徴とする近赤外線吸収剤。
PCT/JP2004/016830 2003-11-21 2004-11-12 ポリメチン系化合物の非溶媒和型結晶及びその製造方法 WO2005049736A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005515592A JPWO2005049736A1 (ja) 2003-11-21 2004-11-12 ポリメチン系化合物の非溶媒和型結晶及びその製造方法
EP04818868A EP1686157A4 (en) 2003-11-21 2004-11-12 NONSOLVATORY CRYSTAL OF A POLYMETHIN COMPOUND AND METHOD FOR THE PRODUCTION THEREOF
US10/579,142 US7485404B2 (en) 2003-11-21 2004-11-12 Nonsolvate-form crystal of polymethine compound and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003392789 2003-11-21
JP2003-392789 2003-11-21

Publications (1)

Publication Number Publication Date
WO2005049736A1 true WO2005049736A1 (ja) 2005-06-02

Family

ID=34616467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016830 WO2005049736A1 (ja) 2003-11-21 2004-11-12 ポリメチン系化合物の非溶媒和型結晶及びその製造方法

Country Status (5)

Country Link
US (1) US7485404B2 (ja)
EP (1) EP1686157A4 (ja)
JP (1) JPWO2005049736A1 (ja)
KR (1) KR20060110329A (ja)
WO (1) WO2005049736A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637520A4 (en) * 2003-06-25 2010-06-30 Yamamoto Chemicals Inc POLYMETHINETHER
EP2635350B1 (en) * 2010-11-02 2018-03-07 Life Technologies Corporation Modified hydrocyanine dyes for the detection of reactive oxygen species
AU2012312041B2 (en) 2011-09-23 2017-03-16 Li-Cor, Inc. Application of reduced dyes in imaging
NL1043573B1 (en) 2020-02-25 2022-01-28 Belanda Tech Docking device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007524A1 (en) * 1999-07-28 2001-02-01 Avecia Limited Cyanine infra-red absorbing compositions and processes for the p roduction thereof
JP2002356069A (ja) * 2001-05-30 2002-12-10 Fuji Photo Film Co Ltd 熱転写シート
WO2005000814A1 (ja) * 2003-06-25 2005-01-06 Yamamoto Chemicals, Inc. ポリメチン系エーテル化合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973572A (en) * 1987-12-21 1990-11-27 Eastman Kodak Company Infrared absorbing cyanine dyes for dye-donor element used in laser-induced thermal dye transfer
US5386058A (en) * 1993-10-29 1995-01-31 Minnesota Mining And Manufacturing Company Method of producing polymethine dyes
US6706466B1 (en) * 1999-08-03 2004-03-16 Kodak Polychrome Graphics Llc Articles having imagable coatings
US6391524B2 (en) * 1999-11-19 2002-05-21 Kodak Polychrome Graphics Llc Article having imagable coatings
JP2004029191A (ja) * 2002-06-24 2004-01-29 Mitsubishi Chemicals Corp ネガ型画像形成材料の製造方法及びネガ画像形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007524A1 (en) * 1999-07-28 2001-02-01 Avecia Limited Cyanine infra-red absorbing compositions and processes for the p roduction thereof
JP2002356069A (ja) * 2001-05-30 2002-12-10 Fuji Photo Film Co Ltd 熱転写シート
WO2005000814A1 (ja) * 2003-06-25 2005-01-06 Yamamoto Chemicals, Inc. ポリメチン系エーテル化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1686157A4 *

Also Published As

Publication number Publication date
EP1686157A1 (en) 2006-08-02
KR20060110329A (ko) 2006-10-24
EP1686157A4 (en) 2009-03-25
JPWO2005049736A1 (ja) 2007-06-07
US7485404B2 (en) 2009-02-03
US20070083048A1 (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US20100274023A1 (en) Novel intermediate compounds for the preparation of meso-substituted cyanine, merocyanine and oxonole dyes
EP1063231B1 (en) Polymethine compounds, method of producing the same, and use thereof
JP4436481B2 (ja) フタロシアニン化合物、その製造方法及びこれを含有する近赤外線吸収剤
WO2005049736A1 (ja) ポリメチン系化合物の非溶媒和型結晶及びその製造方法
JP4790631B2 (ja) ポリメチン系化合物の非溶媒和型結晶、その製造方法及び用途
JP4033516B2 (ja) ベンゼンジチオール銅錯体系光安定化剤、該安定化剤を含有してなる光記録媒体、インク組成物及び樹脂組成物
EP1369862B1 (en) Polymethine compound and near-infrared absorbing material comprising same
EP1006116B1 (en) Polymethine compounds, method of producing same, and use thereof
JP3606165B2 (ja) ポリメチン化合物、その製造法及び用途
JPWO2004113453A1 (ja) 結晶性非溶媒和型ポリメチン系化合物
JP4331516B2 (ja) ポリメチン化合物およびこれを用いる近赤外線吸収剤
US5973140A (en) Phthalocyanine compound, its intermediate, process for producing the compound, and use thereof
JP4422231B2 (ja) フタロシアニン化合物及びこれを用いた近赤外線吸収剤
JP4585068B2 (ja) ポリメチン化合物、その製造方法及び用途
USRE39105E1 (en) Polymethine compounds, method of producing same, and use thereof
JPH089271B2 (ja) 光学記録体
JP3271893B2 (ja) 新規インドアニリン金属錯体、その製造方法、それを用いた透明記録体及び光学記録媒体
US20020051939A1 (en) Polymethine compound, a process for its production, and use of the compound
JP3935538B2 (ja) ポリメチン系化合物、その製造方法、及びこれを含む近赤外線吸収材料
JPH01249860A (ja) 感熱転写シート
JP2001081340A (ja) アントラキノン化合物及びこれを用いた着色樹脂成型組成物
JPH0770453A (ja) シアニン系色素
JPH07112574A (ja) 感熱記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515592

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004818868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007083048

Country of ref document: US

Ref document number: 10579142

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067012116

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004818868

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067012116

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10579142

Country of ref document: US