WO2005040252A1 - スラッシュ成形用パウダーの製造方法 - Google Patents

スラッシュ成形用パウダーの製造方法 Download PDF

Info

Publication number
WO2005040252A1
WO2005040252A1 PCT/JP2004/015326 JP2004015326W WO2005040252A1 WO 2005040252 A1 WO2005040252 A1 WO 2005040252A1 JP 2004015326 W JP2004015326 W JP 2004015326W WO 2005040252 A1 WO2005040252 A1 WO 2005040252A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
powder
block copolymer
parts
acrylic
Prior art date
Application number
PCT/JP2004/015326
Other languages
English (en)
French (fr)
Inventor
Akihisa Hirota
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP04773777A priority Critical patent/EP1676872A4/en
Priority to US10/576,895 priority patent/US20070191589A1/en
Priority to JP2005514940A priority patent/JPWO2005040252A1/ja
Publication of WO2005040252A1 publication Critical patent/WO2005040252A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a thermoplastic elastomer composition powder suitable for powder slush molding. More specifically, the present invention relates to a method for producing a composition powder containing an acrylic block copolymer.
  • an acryl-based block copolymer having methyl methacrylate or the like as a hard segment and butyl acrylate or the like as a soft segment has properties as a thermoplastic elastomer.
  • Japanese Patent Publication No. 25553034 discloses the mechanical properties of an acryl-based block copolymer having a methacryl block and an acryl block manufactured by the iniferter method.
  • the acrylic block copolymer is characterized by having excellent weather resistance, heat resistance, durability and oil resistance. Further, by appropriately selecting the components constituting the block body, it is possible to give an elastomer that is extremely soft as compared with other thermoplastic elastomers such as a styrene-based block body.
  • the main method of forming these skin materials is powder slush molding, in which a resin powder as a raw material is poured into a molding die, and after a certain period of time has been melt-molded, the skin is removed.
  • the skin material obtained by such a molding method may generate pinholes or mix bubbles depending on conditions such as the fluidity, particle size, and particle size distribution of the raw resin powder.
  • thermoplastic elastomer composition powder having an average sphere-equivalent particle diameter of 700 ⁇ m or less by an underwater cutting method (for example, Japanese Patent Application Laid-Open No. 2002-166 6 4 17) o
  • the die temperature should be 230 to 350 ° C.
  • thermal decomposition of the methacrylic polymer block is likely to occur in this temperature range.
  • Pulverizers of various types are known according to the target particle size of the pulverized material and the properties of the raw materials (for example, the pulverization section in the Chemical Engineering Handbook, published in 1999, Maruzen Shikisha, 842). ⁇ 852,).
  • Various types of impact mills such as a turbo mill, a pin mill, and a hammer mill are generally used as the mill.
  • the thermoplastic elastomer is soft and elastic, it is extremely difficult to grind it with an impact-type pulverizer.
  • there are problems such as the need to employ a method of freezing and pulverization using liquid nitrogen or the like in order to increase brittleness as described above. Disclosure of the invention
  • An object of the present invention is to provide a simple method for producing a powder comprising a thermoplastic elastomer composition suitable for powder slush molding, particularly an acrylic block copolymer composition.
  • the present inventors have conducted intensive studies on a method for producing a powder comprising a thermoplastic elastomer composition, and as a result, a method of pulverizing by a shearing action with a fixed blade and a rotary blade is useful.
  • a product it has been found that stable production is possible by selecting the type of additive on the powder surface and the monomer composition constituting the polymer, and the present invention has been completed.
  • the present invention relates to a method for producing a powder for slush molding obtained by crushing a thermoplastic elastomer composition, wherein the powder is crushed by a shearing action of a fixed blade and a rotary blade.
  • the present invention relates to a method for manufacturing a paddle.
  • the present invention relates to a method for producing a powder for slush molding, wherein the thermoplastic elastomer composition is a composition containing the acryl-based block copolymer (A).
  • 100 parts by weight of the composition containing the acrylic block copolymer (A) is added to a group consisting of calcium carbonate, talc, kaolin, silicon dioxide, fatty acid amide, fatty acid ester, and metal stone. And pulverizing at least one selected from the group consisting of 2 to 20 parts by weight, and a method for producing slush molding powder.
  • the acrylic Proc copolymer (A) is 5 0-9 0 by weight 0/0 of the acrylic polymer block (a) and 5 0-1 0 weight percent of the methacrylic polymer
  • the present invention relates to a method for producing a slush molding powder, which is a block copolymer comprising a block (b).
  • the acrylic polymer block (a) is selected from the group consisting of mono-n-butyl acrylate, ethyl acrylate, mono-2-methoxyl acrylate, and poly-2-ethylhexyl acrylate.
  • a block formed by polymerizing at least one monomer as a main component, and the methacrylic polymer block (b) is a block.
  • the present invention relates to a method for producing slush molding powder, which is a block obtained by polymerizing a monomer containing methyl methacrylate as a main component.
  • the composition containing the acrylyl block copolymer (A) is 100 to 100 parts by weight of the acrylic block copolymer (A), and the calcium carbonate powder is 10 to 100 parts by weight.
  • the present invention relates to a method for producing a slush molding powder characterized by being mixed in parts by weight.
  • the composition containing the acrylic block copolymer (A) comprises 0.1 to 10 parts by weight of silicone oil based on 100 parts by weight of the acrylic block copolymer (A).
  • the present invention relates to a method for producing a powder for slush molding, characterized by being mixed in parts.
  • the composition for slush molding is characterized in that pulverization is performed while supplying 2 to 20 parts by weight of water to 100 parts by weight of a composition containing the acrylic block copolymer (A).
  • the present invention relates to a method for producing powder.
  • thermoplastic elastomer composition suitable for powder slush molding.
  • FIG. 1 is a schematic view of a crusher used in the present invention.
  • FIG. 2 is a schematic diagram of a crusher used in the present invention.
  • reference numeral 1 denotes an electromagnetic feeder
  • reference numeral 2 denotes a mill
  • reference numeral 3 denotes a cyclone
  • reference numeral 4 denotes a blower
  • reference numeral 5 denotes a pug filter
  • reference numeral 6 denotes a metering pump.
  • the present invention relates to a method for producing a powder for slush molding obtained by pulverizing a thermoplastic elastomer composition, wherein the powder is pulverized by a shearing action of a fixed blade and a rotary blade.
  • a thermoplastic elastomer composition used in the present invention an acrylic block copolymer (A) alone and an acrylic block copolymer (A) are used.
  • Compositions containing are preferably used, but polyester-, polyurethane-, polyolefin-, polystyrene-, polyamide-, silicone-, and fluoropolymer-based thermoplastic elastomers, and compositions thereof, can also be used.
  • the structure of the block copolymer (A) may be a linear block copolymer, a branched (star) block copolymer, or a mixture thereof.
  • the structure of the block copolymer (A) may be appropriately selected depending on the required physical properties of the block copolymer (A). However, from the viewpoint of cost and ease of polymerization, the linear block copolymer (A) is used. It is preferred that they are united.
  • the linear block copolymer may have any linear block structure, but from the viewpoint of its physical properties or physical properties when formed into a composition, an acrylic block copolymer (A Acrylic polymer block (a) (hereinafter also referred to as polymer block (a) or block (a)) and methacrylic polymer block (b) (hereinafter polymer block (b)) Or block (b)) force S, general formula: (a—b) n , general formula: b— (a—b) n , general formula: (a—b) n -a (where n is 1 to 3) It is preferably at least one type of block copolymer selected from the group consisting of the block copolymers represented by: Of these, a-b type diblock copolymers, b-a-b type triploc copolymers or these are preferred in terms of ease of handling during processing and physical properties of the composition. Are preferred.
  • the number average molecular weight of the block copolymer (A) measured by gel permeation chromatography is not particularly limited, but is preferably 30,000 to 500,000, and more preferably 50,000 to 400,000.
  • the viscosity is low when the number average molecular weight is J, and the viscosity tends to be high when the number average molecular weight is high. Therefore, it is set according to the required processing characteristics.
  • the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the block copolymer measured by gel permeation chromatography is not particularly limited, but is preferably 1.8 or less, more preferably 1.5 or less. MwZM If n exceeds 1.8, the uniformity of the block copolymer tends to decrease.
  • composition ratio of the methacrylic polymer block (b) and the acrylic polymer block ( a ) of the block copolymer (A) is 5 to 90% by weight for the block (b) and 95 for the block (a). It is 10% by weight.
  • the hardness of the elastomer composition when the proportion of (b) is small, the hardness tends to be low, and when the proportion of (b) is large, the hardness tends to be high. It can be set according to the hardness to be performed. From the viewpoint of processing, the viscosity tends to be low when the proportion of (b) is small, and the viscosity tends to be high when the proportion of (b) is large. Therefore, the setting should be made according to the required processing characteristics. Can be.
  • Acrylic polymer block (a) is a block obtained by polymerizing a monomer mainly composed of acrylic acid ester, Akuriru ester 5 0 1 0 0 wt 0/0 Oyo Pikore copolymerizable And preferably 50% by weight.
  • Examples of the acrylate constituting the acrylic polymer block (a) include methyl acrylate, ethyl acrylate, mono-n-propyl acrylate, isopropyl acrylate, _n-butyl acrylate, and acrylic acid Isoptizole, acrylic acid-t-butyl, acrylic acid-n-pentyl, acrylic acid-n-xyl, cyclohexyl acrylate, acrylic acid-n-butyl, acrylic acid-n-octyl, atarilic acid-2 Ethylhexyl, nonyl acrylate, decyl acrylate, dodecyl acrylate, phenyl acrylate, toluyl acrylate, benzyl acrylate, isoporyl acrylate, 1-2-methoxethyl acrylate, 1-3-methoxybutyl acrylate, acrylic Acid 1 2-Hydroxyshetyl, Atari / leic acid-2
  • mono-n-butyl acrylate is preferred in terms of rubber elasticity, low-temperature characteristics and cost balance. Further, when low-temperature properties, mechanical properties and compression set are required, it is only necessary to copolymerize 2-ethylhexyl acrylate. When oil resistance and mechanical properties are required, ethyl acrylate is preferred. In addition, when it is necessary to provide low-temperature characteristics and oil resistance, and to improve the surface tackiness of the resin, -2-methoxyethyl acrylate is preferred.
  • a combination of ethyl acrylate, n- butyl acrylate, and methacrylic acid methacrylate is preferred.
  • tert-butyl acrylate is a precursor for introducing an acid anhydride group.
  • Examples of the vinyl monomer copolymerizable with the acrylate constituting the acrylic polymer block (a) include methacrylate, an aromatic alkenyl compound, a cyanide butyl compound, a conjugated gen compound, Examples include a halogen-containing unsaturated compound, a silicon-containing unsaturated compound, an unsaturated dicarboxylic acid compound, a vinyl ester compound, and a maleimide compound.
  • methacrylate examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, monobutyl methacrylate, and methacrylate.
  • Examples of the aromatic alkenyl compound include styrene, CK-methylstyrene, p-methylstyrene, p-methoxystyrene and the like.
  • Examples of the cyanide butyl compound include acrylonitrile and metathalonitrile.
  • Examples of the conjugated diene compound include butadiene and isoprene.
  • Examples of the halogen-containing unsaturated compound include, for example, vinyl chloride, vinylidene chloride, perfluoroethylene, perfluorophenolene, vinylidene fluoride and the like.
  • Examples of the silicon-containing unsaturated compound include burtrimethoxysilane, burtriethoxysilane, and the like.
  • Unsaturated dicarboxylic acid compounds include, for example, anhydrous maleic acid, maleic acid, maleic acid monoalkyl / lequinolestenole and dia / hexyl esters, fumaric acid, monoalkyl esters of fumaric acid, and dia / lekilyes. Tell and others.
  • the beer ester compound include, for example, pulp acetate, vinyl propionate, pulpate pulp, benzoate pulp, citrate pulp and the like.
  • Maleimide compounds include, for example, maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, bunoremareimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleide, phenylmaleimide, and shik. Can be used for mouth hexylmaleide.
  • butyl monomers have a glass transfer temperature and oil resistance required for the acrylic polymer block (a), and are compatible with the methacrylic polymer block (b). From the above, preferred ones can be selected.
  • the glass transition temperature of the acrylic polymer block (a) is preferably 25 ° C. or less, more preferably 0 ° C. or less, and still more preferably 1 ° C. or less, from the viewpoint of rubber elasticity of a pair of elastomers. 0 is the following. If the glass transition temperature of the acrylic polymer block (a) is higher than the temperature of the environment in which the elastomer composition is used, rubber elasticity is hardly exhibited, which is disadvantageous.
  • the methacrylic polymer block (b) is a block obtained by polymerizing a monomer mainly composed of methacrylic acid ester, and is copolymerized with 50 to 100% by weight of methacrylic acid ester. It is preferable that the content be from 0 to 50% by weight of a possible butyl monomer.
  • ester methacrylate constituting the methacrylic polymer block (b) examples include, for example, a vinyl monomer copolymerizable with the ester acrylate constituting the acrylic polymer block (a). And the same monomers as the above-mentioned esternomethacrylate.
  • methinolate methacrylate is preferred in terms of processability, cost and availability.
  • Examples of the vinyl monomer copolymerizable with the methacrylic acid ster constituting the methacrylic polymer block (b) include, for example, ester acrylate, aromatic alkenyl compounds, conjugated gen compounds, and halogen-containing unsaturated compounds. Compounds, silicon-containing unsaturated compounds, unsaturated dicarboxylic acid compounds, butyl ester compounds, maleimide compounds and the like can be mentioned.
  • Examples of the acrylate include the same monomers as the acrylate illustrated as the acrylate constituting the acrylic polymer bronk (a).
  • aromatic alkenyl compounds examples include acrylyl.
  • cyanide butyl compounds examples include acrylyl.
  • conjugated gen conjugates examples include halogen-containing unsaturated compounds, silicon-containing unsaturated compounds, unsaturated dicarboxylic acid compounds, butyl ester compounds, and maleimide compounds.
  • halogen-containing unsaturated compounds examples include acrylyl.
  • the same monomers as those exemplified as the monomers constituting the polymer block (a) can be used.
  • butyl monomers are preferably selected from the viewpoints of adjusting the glass transition temperature required for the methacrylic polymer block (b) and compatibility with the acrylic polymer block (a). can do.
  • the glass transition temperature of (b) is preferably 25 ° C or more, more preferably 40 ° C or more, and still more preferably 50 ° C or more, from the viewpoint of thermal deformation of the elastomer composition. . If the glass transition temperature of (b) is lower than the temperature of the environment in which the elastomer composition is used, thermal deformation may be likely due to a decrease in cohesive force.
  • the method for producing the acrylic block copolymer (A) is not particularly limited, but it is preferable to use controlled polymerization.
  • Controlled polymerization includes living anion polymerization, radical transfer polymerization using a chain transfer agent, and recently developed living radical polymerization. I can give it.
  • Living radical polymerization is preferred from the viewpoint of controlling the molecular weight and the structure of the block copolymer and the fact that a monomer having a crosslinkable functional group can be copolymerized.
  • Living polymerization in a narrow sense, refers to polymerization in which the terminals are always active, but generally also includes pseudo-living polymerization in which the terminal is inactivated and the terminal is in equilibrium.
  • the living radical polymerization in the present invention is a radical polymerization in which the activated and inactivated ones of the polymerization are maintained in an equilibrium state, and various groups have been actively researching these in recent years. .
  • Examples include those that use chain transfer agents such as polysulfides, radical scavengers such as cono-topanolophylline complexes (Journal of American Chemical Society, 1999, 116, 7943) and nitroxide compounds. What is used (Macromolecules, 1994, 27, 7228), atom transfer radical polymerization (ATRP) using an organic halide as an initiator and a transition metal complex as a catalyst And so on. In the present invention, which method is used is not particularly limited, but atom transfer radical polymerization is preferable because of its easy control.
  • chain transfer agents such as polysulfides, radical scavengers such as cono-topanolophylline complexes (Journal of American Chemical Society, 1999, 116, 7943) and nitroxide compounds. What is used (Macromolecules, 1994, 27, 7228), atom transfer radical polymerization (ATRP) using an organic halide as an initiator and a transition metal complex as
  • an organic halide or a sulfonyl halide compound is used as an initiator, and a metal complex containing a metal of group 8, 9, 10, or 11 of the periodic table as a metal.
  • a metal complex containing a metal of group 8, 9, 10, or 11 of the periodic table is used as a metal.
  • Polymerized as a catalyst see, for example, Matyjaszewski et al., Journal of American Chemical Society 1995, 1 17, 56 14, Macropmo lecules, 1995, 28, 7901, Science, 1996, 272, 866, or Sawamoto et al., Commerce Lecules, 1995, 28, 172 1).
  • a monofunctional, difunctional or polyfunctional compound can be used as an organic halide or a sulfonyl halide compound used as an initiator. These can be used properly according to the purpose.
  • a diblock copolymer a monofunctional compound is preferred.
  • a bifunctional compound When producing an a—ba—a type triblock copolymer and a b—a—b type triplock copolymer, it is preferable to use a bifunctional compound.
  • a polyfunctional compound When producing a branched block copolymer, it is preferable to use a polyfunctional compound.
  • the transition metal complex used as the catalyst for the atom transfer radical polymerization is not particularly limited. Preferred examples thereof include complexes of monovalent and zero-valent copper, divalent ruthenium, divalent iron and divalent nickel. I can give it. Among these, a copper complex is preferable from the viewpoint of cost and reaction control.
  • the atom transfer radical polymerization can be performed without solvent (bulk polymerization) or in various solvents.
  • the amount of the solvent can be appropriately determined from the relationship between the viscosity of the entire system and the required stirring efficiency.
  • the atom transfer radical polymerization can be carried out preferably at room temperature to 200 ° C., and more preferably at 50 to 150 ° C. If the atom transfer radical polymerization temperature is lower than room temperature, the viscosity may become too high and the reaction rate may be reduced. If it exceeds 200 ° C., an inexpensive polymerization solvent may not be used.
  • the reaction solution obtained by the polymerization contains a mixture of the polymer and the metal complex.
  • the metal complex can be removed by adding an organic acid.
  • an acryl-based block copolymer solution containing an acryl-based block copolymer can be obtained by removing impurities by an adsorption treatment.
  • the organic acid that can be used in the present invention is not particularly limited, but is preferably an organic substance containing a carboxylic acid group or a sulfonic acid group.
  • the amount of residual solvent in the resin is 100 000 ppm or less. If the amount of the residual solvent exceeds 100 ppm, the working environment is deteriorated due to the problem of the odor of the solvent and the load on the environment is undesirably increased.
  • the acrylic block copolymer (A) from which the organic solvent has been separated by evaporation in this manner is continuously formed into a shape suitable for the powdering process by, for example, pelletizing.
  • pelletizing a method is used in which a resin is extruded in a molten state in a strand form from a die having a desired hole diameter, cut after cooling, and processed into a pellet shape.
  • a hot cutting method in which the polymer is cut by a rotating blade that rotates at a high speed in the vicinity of the die, and an underwater cutting method in which the same method as described above is performed in cooling water can be applied.
  • An antioxidant may be present when devolatilizing operation is performed from a resin solution as a means for suppressing the deterioration of the quality due to the heat history at the time of the evaporation of the polymer solution and the melting in the extruder described above. It is preferable that these antioxidants have a function as a radical chain inhibitor. Such a substance is not particularly limited, and examples thereof include a phenol-based antioxidant and a amine-based antioxidant.
  • thermoplastic elastomer composition is crushed by the shearing action of the fixed blade and the rotary blade.
  • the acrylic block copolymer (A) and its composition formed into pellets and the like as described above are pulverized by a pulverizer using a shearing action by a fixed blade and a rotary blade.
  • the mill according to this method will be described in detail.
  • the resin is crushed by the shearing action.
  • two disks a fixed blade and a rotary blade, are used.
  • the fixed blade and the rotary blade are installed with a certain clearance (clearance), and a shear force is generated depending on the speed difference between the fixed blade and the rotary blade, and the size of the clearance.
  • the milled raw material is supplied from the center of the disk, moves in the outer circumferential direction under centrifugal force while being ground by shearing action, and is taken out from the outer circumference of the disk.
  • the shape and arrangement of the blades on the disk surface are also important.
  • the blade section be inclined to some extent, rather than being placed in parallel with the outer circumference from the center of the disk.
  • Air cooling is an effective means for removing frictional heat.
  • an air transfer method in which the raw material pellets are transported in an air stream in a cylindrical pipe, other conveyor methods, a screw feeder, etc. can be applied, and there is no particular limitation.
  • Most preferred is an air transfer system that can use as a cooling medium.
  • the cooling capacity is determined by the air flow rate and temperature.
  • the air flow rate is determined by the stability of the raw material supply and the stability of the transfer of the pulverized material.
  • the air temperature is preferably 10 to 50 ° C. At less than 10 ° C, there is no problem with the cooling capacity, but an expensive cooling system is required. On the other hand, in the temperature range exceeding 50 ° C, melting of the resin cannot be prevented, and it is necessary to drastically reduce the throughput in order to suppress the generation of frictional heat.
  • a small amount of water can be added to the raw material pellets to prevent the temperature from rising due to the latent heat of water evaporation.
  • the water supply method such as a method in which ice is added to the crushed raw material in advance, or a method in which the water is supplied to a crusher separately from the crushed raw material. If water is applied in advance, it will remain attached when manufacturing raw material pellets
  • the water used can be used as it is.
  • a general-purpose metering pump can be used when supplying to the powder crate.
  • the form of the supply port is not particularly limited, but it is preferable to supply it in the form of a mist via a nozzle in consideration of uniformly supplying moisture and efficiently preventing generation of static electricity.
  • the amount of water to be added can be defined in terms of parts by weight based on the raw material.
  • the amount of water to be added is preferably 2 to 20 parts by weight based on 100 parts by weight of the pulverized raw material. If it is less than 2 parts by weight, the cooling effect by water is low and the effect of suppressing static electricity is low. On the other hand, if the amount exceeds 20 parts by weight, unevaporated moisture remains in the powder, which adversely affects the product quality. It also has an adverse effect on the handling of the ground powder.
  • Water to be added can be any of pure water, clean water, industrial water and the like.
  • Pulverized thermoplastic elastomers tend to cause cohesion due to softening due to heat generated during pulverization.
  • thermoplastic elastomers not only thermoplastic elastomers but also crushed materials have a large specific surface area, and generally tend to cause mutual adhesion. If co-adhesion occurs, it is expected that not only the fluidity, which is a characteristic required of the pulverized powder, will be significantly reduced, but also that stable operation will be hindered, such as adhesion of resin in the equipment.
  • a method of adding various types of powder for preventing adhesion to a surface of a pellet or the like before pulverization can be considered.
  • 100 parts by weight of the composition containing the acrylic block copolymer (A) is at least one selected from the group consisting of calcium carbonate, tanolek, kaolin, silicon dioxide, fatty acid amide, fatty acid ester, and metal pallid.
  • the term “external addition” as used herein means not to be kneaded into the composition, but to be added so as to cover the surface of a pellet or the like. If the amount is less than 2 parts by weight, the effect is not sufficient. If the amount is more than 20 parts by weight, the mechanical properties of the obtained powder are adversely affected.
  • fatty acid amides include stearic acid amide, ethylene bisstearic acid amide, erlic acid amide, ethylene bis erlic acid amide, oleic acid amide, ethylene bis oleic acid amide, and Nitrate amide, ethylene histamine laurate and the like can be mentioned.
  • fatty acid esters examples include methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl oleate, methyl enolecaate, methyl behenate, butyl laurate, butyl stearate, isoprist myristate Mouth pill, isopropyl palmitate, octyl palmitate, octyl stearate and the like can be mentioned.
  • metal stones examples include metal stones using potassium, sodium, aluminum, calcium, zinc, magnesium, barium and the like.
  • an inorganic filler is mixed with the acrylic block copolymer (A) before pulverization, and the composition is prepared in advance.
  • Inorganic fillers include titanium oxide, zinc sulfide, zinc oxide, carbon black, calcium carbonate, calcium silicate, clay, kaolin, silica, mica powder, alumina, glass fiber, metal fiber, titanic acid whisker, Aspest, wollastonite , Talc, glass flakes, milled fiber, metal powder, etc., but are not limited to these. These may be used alone or in combination of two or more.
  • calcium carbonate is particularly preferably used.
  • the addition amount of these inorganic fillers is preferably from 100 to 100 parts by weight based on 100 parts by weight of the acrylic block copolymer (A). If the amount is less than 10 parts by weight, the effect for preventing mutual adhesion is insufficient. If it exceeds 100 parts by weight, the mechanical properties of the composition may be impaired.
  • Another effective means is to compound silicone oil, extremely hardened tallow oil, various waxes, carbon black, and the like into the acryl-based block copolymer in advance.
  • These additives may be used alone or in combination of two or more. Of these, silicone oil is particularly preferably used.
  • the amount of addition can be selected from the physical properties of the molded product, but is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the acryl-based block copolymer (A). If the amount is less than 0.1 part by weight, the effect for preventing mutual adhesion becomes insufficient. If it exceeds 1 part by weight, the mechanical properties of the composition may be impaired as in the case of the inorganic filler.
  • pellets are typical as the raw material shape before pulverization, but most of them are columnar, having a diameter of ⁇ 1 to 10 mm and a height of 1 to 10 mm. If the size is larger than this, depending on the target particle size, it is possible to cope with this by performing multi-stage grinding.
  • the powder obtained by the above method preferably has a bulk density of 0.4 to 0.8 g / mL and an angle of repose of 25 to 45 degrees.
  • the particle diameter of the powder is preferably 500 ⁇ or less when the particles are substantially spherical.
  • the maximum length of the particles is preferably 1000 / zm or less.
  • Molecular weight measurement method The molecular weight shown in this example was measured with a GPC analyzer shown below, and the molecular weight in terms of polystyrene was determined using chloroform as a mobile phase.
  • the system used was a GPC system manufactured by Waters, and the column used was Shode XK-804 (polystyrene gel) manufactured by Showa Denko KK.
  • Sample preparation The sample was diluted about 3-fold with ethyl acetate, and butyl acetate was used as an internal standard.
  • the surface potential of the powder shown in this example was measured with a measuring device described below.
  • the melting characteristics of the powders shown in the examples were evaluated by the following methods.
  • Metal plate with leather sips (sheet thickness 4.5 mm, grain depth 80%)
  • a nitrogen purged 500 L reactor was charged with 53.7 kg of butyl acrylate, 27.2 kg of 2-methoxyethyl acrylate, and 0.649 kg of cuprous bromide, and stirring was started. Continue passing warm water through the jacket, and raise the temperature of the solution to 70 ° C.
  • the polymer concentration in toluene was added 160 kg
  • the obtained block copolymer solution was 25 weight 0/0.
  • 1.29 kg of p-toluenesulfonic acid was added, the atmosphere in the reactor was replaced with nitrogen, and the mixture was stirred at 30 ° C. for 3 hours.
  • the reaction solution was sampled, and after confirming that the solution was colorless and transparent, 2.39 kg of Showa Chemical Industry's Radiolite # 3000 was added.
  • the pressure of the post-reactor was increased to 0.1 to 0.4 MPaG with nitrogen, and a pressure filter equipped with a polyester felt as a filter medium (filtration area 0.
  • the solid was separated using 45 m 2 ).
  • the solvent component was evaporated from the polymer solution.
  • the evaporator used was SCP 100 (heat transfer area 1 m 2 ) manufactured by Kurimoto Tetsusho Co., Ltd. Evaporation of the polymer solution was performed by setting the heat medium oil at the evaporator inlet to 180 ° C, the degree of vacuum of the evaporator to 90 Torr, the screw rotation speed to 60 rpm, and the feed rate of the polymer solution to 32 kg / h.
  • the polymer was made into a strand through a ⁇ 4 mm die, cooled in a water bath, and then pelletized with a pelletizer (polymer pellet 1).
  • the pellets were compounded with carbon black (Asahi Carbon Co., Ltd., Asahi # 15).
  • LABOT EX manufactured by Japan Steel Works was used as an extruder.
  • Raw material is supplied at a ratio of 0.3 parts by weight of carbon black to 100 parts by weight of pellets, discharged as strands at a cylinder temperature of 80 to 100 ° C and a screw rotation speed of 100 rpm, and then continuously discharged by a pelletizer.
  • a cylindrical pellet was used (polymer pellet 2).
  • the polymer pellet 1 obtained in Production Example 1 was compounded with calcium bicarbonate (Bihoku Powder Chemical Industry, Softon 3200) and carbon black (Asahi Carbon Co., Ltd., Asahi # 15).
  • LAB OTEX manufactured by Japan Steel Works was used as an extruder.
  • Raw materials are supplied at a ratio of 43 parts by weight of calcium carbonate and 0.3 parts by weight of carbon black to 100 parts by weight of the pellet, and discharged as a strand at a cylinder temperature of 80 to 100 ° C and a screw rotation speed of 100 rpm.
  • the obtained pellets were dry-blended with 0.3 parts by weight of silica powder (Microcrystalline soft silica A_10, manufactured by Tatsumori Co., Ltd.).
  • the polymer pellet 1 obtained in Production Example 1 was prepared using calcium bicarbonate (Bihoku Powder Chemical Industry, Softon 3200), carbon black (Asahi Carbon Co., Ltd., Asahi # 15), silicone oil (Toshiba Silicone ( Co., Ltd., TSF 451—1000), tallow electrode W
  • the solid was separated using 45 m 2 ).
  • the solvent component was evaporated from the polymer solution.
  • SCP 100 heat transfer area lm 2
  • the heat transfer oil at the evaporator inlet was set at 180 ° C
  • the evaporator vacuum was set at 90 Torr
  • the screw rotation speed was set at 60 rpm
  • the supply speed of the polymer solution was set at 32 kgZhJ to evaporate the polymer solution.
  • the polymer was made into a strand through a ⁇ 4 mm die, cooled in a water bath, and a pelletized pellet 3 ⁇ 4r was obtained using a pelletizer.
  • the obtained pellet was fed to a twin-screw extruder, and re-extrusion was performed at 250 ° C and a residence time of 3 minutes.
  • the molten resin was pelletized by underwater cutting (polymer pellet 3).
  • evaporator As the evaporator, SCP 100 (heat transfer area lm 2 ) manufactured by Kurimoto Tetsusho Co., Ltd. was used. Evaporate the polymer solution by setting the heating medium oil at the evaporator inlet to 180 ° C, evaporator vacuum to 90 Torr, screw rotation speed to 60 rpm, and polymer solution feed rate to 32 kg / h. did. The polymer was made into a strand through a ⁇ 4 mm die, cooled in a water bath, and then pelletized with a pelletizer.
  • the obtained pellet was fed to a twin-screw extruder, and re-extrusion was performed at 250 ° C and a residence time of 3 minutes.
  • the molten resin was pelletized by underwater cutting (polymer pellet 4).
  • FIG. 1 shows an outline of the test facility.
  • the crusher is a UCM150 (disk diameter 300 mm, motor output 3.7 kW) manufactured by Mitsui Mining Co., Ltd.
  • the raw material pellet is supplied to the pulverizer 2 via the electromagnetic feeder 11.
  • Raw pellets and crushed materials are transferred by the airflow generated by the blower.
  • the crushed material is captured and collected by cyclone 3.
  • the fine particles that have passed through the cyclone are collected by the bag filter 5.
  • a freeze-pulverization treatment was performed using the polymer bellet 2 obtained in Production Example 1. After sufficiently cooling the pellet with liquid nitrogen, a pulverized product was obtained using a pulverizer. The pulverized product had slightly coagulated at room temperature. A skin was prepared from this ground material at 250 ° C using a metal plate with a grain in the same manner as in Example 1, and the presence or absence of underfill and bubbles in the skin was observed. Table 1 shows the results I will write it together.
  • Pulverization was performed using the pellets obtained in Production Example 6.
  • Figure 2 shows an outline of the test facility.
  • the crusher is UCM150 (disc diameter 30 Omm, motor output 3.7 kW) manufactured by Mitsui Mining Co., Ltd.
  • the raw material pellet is supplied to the mill 2 via the electromagnetic feeder 11.
  • the cooling water is supplied to the crusher 2 via the metering pump 6.
  • the raw material pellets and the crushed material are transferred by the airflow generated by the blower 14.
  • the crushed material is captured and collected by cyclone 3.
  • the fine particles that have passed through the cyclone are collected by the bag filter 5.
  • the powder according to the production method of the present invention can be used for the skin of home appliance OA equipment, powder paint, paste, sealant, etc., in addition to automobile interior parts by slush molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

パウダースラッシュ成形に好適な熱可塑性エラストマー組成物からなるパウダーの簡便な製造方法を提供すること。 熱可塑性エラストマー組成物を粉砕して得られるスラッシュ成形用パウダーの製造方法であって、固定刃と回転刃による剪断作用により粉砕することを特徴とするスラッシュ成形用パウダーの製造方法により達成される。特に熱可塑性エラストマー組成物として、特定のアクリル系ブロック共重合体、及びその組成物が好適に使用される。

Description

明細書 .
スラッシュ成形用パゥダ一の製造方法 技術分野
本発明は、 パウダースラッシュ成形に好適な熱可塑性エラストマ一組成物バウ ダ一の製造方法に関するものである。 更に詳しくは、 アクリル系ブロック共重合 体を含む組成物パウダーの製造方法に関するものである。 背景技術
メタアクリル酸メチルなどをハードセグメント、 アクリル酸プチルなどをソフ トセグメントに有するァクリル系ブロック共重合体は、 熱可塑性エラストマ一と しての特性を有することが知られている。 たとえば、 特許第 2 5 5 3 1 3 4号公 報には、 ィニファーター法で製造したメタァクリルブロックとァクリルブロック を有するァクリル系プロック共重合体の機械特性が開示されている。
ァク リル系ブロック共重合体は、 耐候性、 耐熱性、 耐久性および耐油性に優れ るという特徴を有している。 また、 ブロック体を構成する成分を適宜選択するこ とで、 スチレン系ブロック体などの他の熱可塑性エラストマ一に比べて極めて柔 軟なエラストマ一を与えることが可能である。
このようなァクリル系ブロック共重合体の特性を活かした用途として、 自動車 の内装部品の表皮材としての展開が期待されている。これら表皮材の成形方法は、 原料となる樹脂パウダーを成形金型に流し込み、 ある一定時間経過後に溶融成形 され fこ表皮を取り出すパウダースラッシュ成形が主流である。 この様な成形方法 で得られる表皮材は、 原料樹脂パウダーの流動性、 粒子径、 粒子径分布などの条 件によってはピンホールの発生や気泡の混入を認めることがある。
パクダースラッシュ成形に好適なパウダーを製造する技術として、 水中カット 方式により、 球換算平均粒子径 7 0 0 μ m以下の熱可塑性エラストマ一組成物パ ウダ一を製造する方法が開示されている(例えば特開 2 0 0 2 - 1 6 6 4 1 7 ) o 微細なダイスからの押出しを可能にするため、 ダイス温度は 2 3 0〜3 5 0 °Cが 規定されているが、 本温度範囲ではメタアクリル系重合体ブロックの熱分解が発 生しやすい。
パウダースラッシュ成形に好適なパウダーを製造する技術として、 夜体窒素を 用いた冷凍粉砕によりパウダーを製造する方法が開示されている (例えば特開平 5— 0 0 5 0 5 0 ) 。 軟質な熱可塑性エラス トマ一を一般的な衝擊式盼砕機で粉 砕する場合、極低温において粉砕を行うことは有効な方法である。しかしながら、 工業的な規模での生産を考えた場合、 コス ト的には不利な面が多い。 また、 機械 的な衝撃作用による粉碎により得られたパゥダ一は一般的に不定形で り、 流動 性を重視するパウダースラッシュ成形用途へ適用するためには、 粒子径を極めて 微細なものにする必要性が生じる。
粉碎パウダーの粒子形状を改善する方法として、 パウダーを貧溶媒、 もしくは 乳化剤水溶液中で樹脂の溶融温度以上に加熱し、 球状化する方法が開 されてい る (例えば特開平 8— 2 2 5 6 5 4 ) 。 しかしながら、 乳化剤水溶液 O排水処理 設備、 パウダーの脱水 ·乾燥処理設備など、 設備的には複雑となり、 案用化には 課題が多い。
その他、 樹脂の有機溶媒溶液と乳化剤水溶液の混合溶液を加熱し、 容媒成分と 水の共沸現象を利用して樹脂パウダーを製造する方法が開示されている (例えば 特開平 1 1— 2 5 6 0 3 2 ) 。 しかしながら設備的には複雑な方法でおり、 上記 同様にコスト的な課題を抱えている。
粉砕機は目標とする粉砕物粒子径、 原料の性状に応じ、 種々の形式 Oものが知 られている (例えば化学工学便覧の粉砕の項、 平成 1 1年発行、 丸善根式会社、 8 4 2〜 8 5 2頁、)。粉碎機の形式としては一般的にはターボミル、 ピンミル、 ハンマーミル等種々の形式の衝撃式粉碎機が用いられている。 しかし がら熱可 塑性エラストマ一は軟質で弾性を有するため、 衝撃式粉砕機では粉碎カ S極めて困 難である。 衝撃式粉碌機を熱可塑性エラストマ一に適用するためには、 先に記載 したように脆性を増すために液体窒素等を用いた冷凍粉砕の手段を採らなければ ならない等の課題がある。 発明の開示
本発明はパウダースラッシュ成形に好適な熱可塑性エラストマ一組成物、 特に アクリル系プロック共重合体組成物からなるパウダーの簡便な製造方法を提供す ることにある。
本発明者らは熱可塑性エラス トマ一組成物からなるパウダーの製造方法につい て鋭意検討した結果、 固定刃と回転刃による剪断作用により粉砕する方式が有用 であり、 更にアクリル系ブロック共重合体組成物を使用する場合、 パウダー表面 への添加剤種、 重合体を構成する単量体組成を選定することにより安定した生産 が可能であることを見出し、 本発明を完成するに至った。
すなわち本発明は、 熱可塑性エラストマ一組成物を粉砕して得られるスラッシ ュ成形用パウダ一の製造方法であって、 固定刃と回転刃による剪断作用により粉 砕することを特徴とするスラッシュ成形用パゥダ一の製造方法に関する。
好適な実施態様としては、 熱可塑性エラストマ一組成物がァクリル系プロック 共重合体 (A) を含む組成物であることを特徴とするスラッシュ成形用パウダー の製造方法に関する。
好適な実施態様としては、 アクリル系ブロック共重合体 (A) を含む組成物 1 0 0重量部に、炭酸カルシウム、 タルク、カオリン、二酸化珪素、脂肪酸アミ ド、 脂肪酸エステル、 金属石鹼からなる群から選ばれる少なくとも 1種を、 2〜 2 0 重量部外添して粉砕することを特徴とするスラッシュ成形用ノ ウダ一の製造方法 に関する。
好適な実施態様としては、 アクリル系プロック共重合体 (A) が 5 0〜 9 0重 量0 /0のアクリル系重合体ブロック (a ) および 5 0〜 1 0重量%のメタアクリル 系重合体ブロック (b ) からなるブロック共重合体であることを特徴とするスラ ッシュ成形用パウダ一の製造方法に関する。
好適な実施態様としては、 アクリル系重合体ブロック (a ) がアクリル酸一 n —プチル、 アクリル酸ェチル、 アクリル酸一 2—メ トキシェチル及ぴアクリル酸 — 2—ェチルへキシルからなる群から選ばれる少なくとも 1種を主成分とする単 量体を重合してなるプロックであり、 メタアクリル系重合体ブロック (b ) がメ タァクリル酸メチルを主成分とする単量体を重合してなるプロックであることを 特徴とするスラッシュ成形用パウダーの製造方法に関する。
好適な実施態様としては、アタリル系プロック共重合体(A)を含む組成物が、 アクリル系ブロック共重合体 (A) 1 0 0重量部に対して、 炭酸カルシウム粉末 が 1 0〜1 0 0重量部配合されてなることを特徴とするスラッシュ成形用ノ ウダ 一の製造方法に関する。
好適な実施態様としては、アクリル系プロック共重合体(A)を含む組成物が、 アクリル系ブロック共重合体 (A) 1 0 0重量部に対して、 シリコーンオイルを 0 . 1〜1 0重量部配合されてなることを特徴とするスラッシュ成形用パウダ一 の製造方法に関する。
好適な実施態様としては、 アクリル系ブロック共重合体 (A) を含む組成物 10 0重量部に対し、 2〜 2 0重量部の水を供給しながら粉砕することを特徴とす るスラッシュ成形用パウダーの製造方法に関する。
本発.明を用いることにより、 パウダースラッシュ成形に好適な熱可塑性エラス トマ一組成物からなるパウダーを簡便に製造することが可能になる。 図面の簡単な説明
第 1図は、 本発明に用いた粉砕機の概略図である。 第 2図は、 本発明に用いた 粉砕機の概略図である。 図中、 符号 1は、 電磁フィーダ一を、 符号 2は、 粉碎機 を、 符号 3は、 サイクロンを、 符号 4は、 ブロア一を、 符号 5は、 パグフ ィルタ 一を、 符号 6は、 定量ポンプを、 それぞれ示す。 発明を実施するための最良の形態
以下、 本発明につき、 さらに詳細に説明する。
本発明は、 熱可塑性エラストマ一組成物を粉碎して得られるスラッシュ成形用 パウダ一の製造方法であって、 固定刃と回転刃による剪断作用により粉 するこ とを特徴とする。 本発明に使用される熱可塑性エラストマ一組成物として、 ァク リル系ブロック共重合体 (A) 単独、 及びアクリル系ブロック共重合体 (A) を 含む組成物が好適に使用されるが、 ポリエステル系、 ポリウレタン系、 ポリオレ フィン系、 ポリスチレン系、 ポリアミ ド系、 シリコーン系、 及びフッ素ポリマー系の熱可 塑性エラスマー、 及びそれらの組成物も使用できる。
<アクリル系プロック共重合体 (A) >
ブロック共重合体 (A) の構造は、 線状ブロック共重合体であってもよく、 分 岐状(星状)プロック共重合体であってもよく、これらの混合物であってもよい。 ブロック共重合体 (A) の構造は、 必要とされるブロック共重合体 (A) の物性 に応じて使いわければよいが、 コス ト面や重合容易性の点から、 線状ブロック共 重合体であるのが好ましい。
前記線状ブロック共重合体は、 いずれの線状ブロック構造のものであってもか まわないが、 その物性または組成物にした場合の物性の点から、 アクリル系ブロ ック共重合体 (A) を構成するアクリル系重合体ブロック (a) (以下、 いずれ も重合体ブロック (a) またはブロック (a) ともいう) およびメタアクリル系 重合体ブロック (b) (以下、 重合体プロック (b) またはブロック (b) とも いう) 力 S、 一般式: (a— b) n、 一般式: b— (a— b) n、 一般式 : (a— b ) n- a (nは 1〜3の整数) で表わされるブロック共重合体よりなる群から選 ばれる少なくとも 1種のブロック共重合体であることが好ましい。 これらの中で も、 加工時の取扱い容易性や、 組成物にした場合の物性の点から、 a— b型のジ ブロック共重合体、 b— a— b型のトリプロック共重合体またはこれらの混合物 が好ましい。
プロック共重合体 (A) のゲルパーミエーシヨンクロマトグラフィーで測定し た数平均分子量は特に限定されないが、 好ましくは 30000〜 50 0000、 さらに好ましくは 50000〜 400000である。 数平均分子量が J、さいと粘 度が低く、 また、 数平均分子量が大きいと粘度が高くなる傾向があるので、 必要 とする加工特性に応じて設定される。
プロック共重合体のゲルパーミエーションクロマトグラフィ一で測定した重量 平均分子量 (Mw) と数平均分子量 (Mn) の比 (Mw/Mn) も特に限定され ないが、 好ましくは 1. 8以下、 さらに好ましくは 1. 5以下である。 MwZM nが 1 . 8を超えるとプロック共重合体の均一性が低下する傾向がある。
ブロック共重合体 (A) のメタアクリル系重合体ブロック (b ) とアクリル系 重合体ブロック (a ) の組成比は、 ブロック (b ) が 5 ~ 9 0重量%、 ブロック ( a ) が 9 5 1 0重量%である。 成型時の形状の保持おょぴエラストマ一とし ての弾性の観点から、 組成比の好ましい範囲は、 (b ) が 1 0 8 0重量%、 ( a )が 9 0 2 0重量0 /0であり、 さらに好ましくは、 ( b )が 1 0 5 0重量%、 ( a ) が 9 0 5 0重量%である。 (b ) の割合が 5重量%より少ないと成形時 に形状が保持されにくい傾向があり、 (a ) の割合が 1 0重量%より少ないとェ ラストマーとしての弾性および成形時の溶融性が低下する傾向がある。
エラストマ一組成物の硬度の観点からは、 (b ) の割合が少ないと硬度が低く なり、 また、 (b ) の割合が多いと硬度が高くなる傾向があるため、 エラストマ 一組成物の必要とされる硬度に応じて設定することができる。 また加工の観点か らは、 (b ) の割合が少ないと粘度が低く、 また、 (b ) の割合が多いと粘度が 高くなる傾向があるので、 必要とする加工特性に応じて設定することができる。
<アクリル系重合体ブロック (a ) >
アクリル系重合体ブロック (a ) は、 アクリル酸エステルを主成分とする単量 体を重合してなるブロックであり、 ァクリル酸エステル 5 0 1 0 0重量0 /0およ ぴこれと共重合可能なビエル系単量体 0 5 0重量%とからなることが好ましい。 アクリル系重合体ブロック (a ) を構成するアクリル酸エステルとしては、 た とえば、 アクリル酸メチル、 アクリル酸ェチル、 アクリル酸一 n—プロピル、 ァ クリル酸イソプロピル、 アクリル酸 _ n—ブチル、 アクリル酸イソプチゾレ、 ァク リル酸— t一プチル、 アクリル酸— n—ペンチル、 アクリル酸一 n キシル、 アクリル酸シクロへキシル、 アクリル酸— n プチル、 アクリル酸一 n—ォク チル、アタリル酸ー 2—ェチルへキシル、アタリル酸ノニル、アタリル酸デシル、 アタリル酸ドデシル、 アタリル酸フエニル、 アタリル酸トルイル、 ァクリル酸べ ンジル、 アクリル酸イソポルニル、 アクリル酸一 2—メ トキシェチル、 アクリル 酸一 3—メ トキシブチル、 アクリル酸一 2—ヒ ドロキシェチル、 アタリ/レ酸ー 2 —ヒ ドロキシプロピル、 アクリル酸ステアリル、 アクリル酸グリシジル、 アタリ ル酸ー 2—アミノエチル -、 アクリル酸のエチレンオキサイド付加物、 アクリル酸 トリフルォロメチルメチル、 アクリル酸 _ 2—トリフルォロメチルェチル、 ァク リル酸ー 2—パーフルォロェチルェチル、 アタリノレ酸一 2一パーフルォロェチル 一 2一パーフルォロプチ/レエチノレ、 アクリル酸 2—パーフルォロェチル、 アタリ ル酸パーフルォロメチル、 アクリル酸ジパーフルォロメチルメチル、 アクリル酸 ― 2一パーフルォロメチル一 2—パーフルォロェチルメチル、 ァクリル酸ー 2 - ノ ーフルォ口へキシルェチル、 ァクリル酸一 2—パーフルォロデシルェチ zレ、 了 クリル酸 _ 2—パーフルォ口へキサデシルェチルなどをあげることができる。 これらは単独でまたはこれらの 2種以上を組み合わせて用いることができる。 これらの中でも、 ゴム弾性、 低温特性およびコストのパランスの点で、 アクリル 酸一 n—プチルが好ましい。 さらに低温特性と機械特性と圧縮永久歪が必要な場 合は、 アクリル酸一 2—ェチルへキシルを共重合させればよい。 耐油性と機械特 性が必要な場合は、 アクリル酸ェチルが好ましい。 また、 低温特性と耐油 f生の付 与、 及び樹脂の表面タック性の改善が必要な場合は、 アクリル酸 _ 2—メ トキシ ェチルが好ましい。 また、 耐油性おょぴ低温特性のバランスが必要な場合ま、 了 クリル酸ェチル、 アクリル酸一 n _ブチルおよびアクリル酸一 2—メ トキシェチ ルの組み合わせが好ましい。 そして、 耐熱性を上げる為に、 酸無水物基を導入す る際の前駆体として、 ァクリル酸一 t一プチルが好ましい。
アクリル系重合体ブロック (a ) を構成するアクリル酸エステルと共重合可能 なビュル系単量体としては、 たとえば、 メタアクリル酸エステル、 芳香族アルケ ニル化合物、 シアン化ビュル化合物、 共役ジェン系化合物、 ハロゲン含有不飽和 化合物、 ケィ素含有不飽和化合物、 不飽和ジカルボン酸化合物、 ビニルエステル 化合物、 マレイミ ド系化合物などをあげることができる。
メタアクリル酸エステルとしては、 たとえば、 メタアクリル酸メチル、 メタァ クリル酸ェチル、メタァクリル酸一 n—プロピル、メタアクリル酸ィソプロピル、 メタアクリル酸一 n—ブチル、 メタアクリル酸イソブチル、 メタアクリル酸一、 メタアクリル酸一 n—ペンチル、 メタアクリル酸一 n—へキシル、 メタアクリル 酸シクロへキシル、 メタアクリル酸 _ n—ヘプチル、 メタアクリル酸 _ n—オタ チル、 メタアクリル酸一 2—ェチルへキシル、 メタアクリル酸ノニル、 メタァク リル酸デシル、 メタアクリル酸ドデシル、 メタアクリル酸フヱニル、 メタアタリ ル酸トルィル、 メタアクリル酸ベンジル、 メタアクリル酸イソポル二ノレ、 メタァ クリル酸一 2—メ トキシェチル、 メタアクリル酸 _ 3—メ トキシプチ/レ、 メタァ クリル酸一 2—ヒ ドロキシェチル、 メタアクリル酸一 2—ヒ ドロキシプロピル、 メタアクリル酸ステアリル、 メタアクリル酸グリシジル、 メタアタリゾレ酸一 2— アミノエチノレ、 y― (メタタリロイルォキシプロピル) トリメ トキシシラン、 一 (メタクリロイルォキシプロピル) ジメ トキシメチルシラン、 メタアクリル酸 のエチレンォキサイ ド付加物、 メタアクリル酸トリフルォロメチルメチル、 メタ アクリル酸一 2—トリフルォロメチルェチル、 メタアクリル酸 _ 2— 、°一フルォ ロェチルェチル、 メタァクリノレ酸 2—パーフルォロェチノレ一 2—パーフノレオロブ チルェチル、 メタアクリル酸一 2—パーフルォロェチル、 メタアタリゾレ酸パーフ ルォロメチル、 メタアクリル酸ジパーフルォロメチルメチル、 メタアクリル酸一 2—パーフルォロメチル一 2—パーフルォロェチルメチル、 メタアタリル酸ー 2 一パーフルォ口へキシルェチル、 メタアクリル酸一 2—パーフルォロデシルェチ ル、 メタアタリル酸一 2—パーフルォ口へキサデシルェチルなどをあけることが できる。
芳香族アルケニル化合物としては、たとえば、スチレン、 CKーメチルスチレン、 p—メチルスチレン、 p—メ トキシスチレンなどをあげることができる。 シアン 化ビュル化合物としては、 たとえば、 アクリロニトリル、 メタタリロニトリルな どをあげることができる。共役ジェン系化合物としては、たとえば、ブタジエン、 イソプレンなどをあげることができる。 ハロゲン含有不飽和化合物としては、 た とえば、 塩化ビュル、 塩化ビニリデン、 パーフルォロエチレン、 パーフノレォロプ ロピレン、 フッ化ビニリデンなどをあげることができる。 ケィ素含有不飽和化合 物としては、 たとえば、 ビュルトリメ トキシシラン、 ビュルトリエトキシシラン などをあげることができる。 不飽和ジカルボン酸化合物としては、 たとえば、 無 水マレイン酸、 マレイン酸、 マレイン酸のモノア/レキノレエステノレおよびジァ /レキ ルエステル、 フマル酸、 フマル酸のモノアルキルエステルおよぴジァ /レキルエス テルなどをあげることができる。 ビエルエステル化合物としては、 たとえ ίま、、 酢 酸ビュル、 プロピオン酸ビニル、 ピパリン酸ビュル、 安息香酸ビュル、 桂 酸ビ -ルなどをあげることができる。 マレイミ ド系化合物としては、 たとえば、 マレ イミ ド、 メチルマレイミ ド、 ェチルマレイミ ド、 プロピルマレイミ ド、 ブ ノレマ レイミ ド、 へキシルマレイミ ド、 ォクチルマレイミ ド、 ドデシルマレイミ ド、、 ス テアリルマレイミ ド、 フエニルマレイミ ド、 シク口へキシルマレイミ ドなどをあ げることができる。
これらは単独でまたは 2種以上を組み合わせて用いることができる。 こ らの ビュル系単量体は、 アクリル系重合体ブロック (a ) に要求されるガラス 移温 度および耐油性、 メタアクリル系重合体ブロック (b ) との相溶性などのノ ラン スの観点から、 好ましいものを選択することができる。
アクリル系重合体プロック (a ) のガラス転移温度は、 エラストマ一組^;物の ゴム弾性の観点から、 好ましくは 2 5 °C以下、 より好ましくは 0 °C以下、 さ らに 好ましくは一 2 0で以下である。 アクリル系重合体ブロック (a ) のガラス転移 温度が、 エラストマ一組成物の使用される環境の温度より高いとゴム弾性 発現 されにくいので不利である。
<メタアクリル系重合体ブロック (b ) >
メタアクリル系重合体ブロック (b ) は、 メタアクリル酸エステルを主虎分と する単量体を重合してなるプロックであり、 メタァクリル酸エステル 5 0— 1 0 0重量%ぉよびこれと共重合可能なビュル系単量体 0 ~ 5 0重量%とから るこ とが好ましい。
メタアクリル系重合体ブロック (b ) を構成するメタアクリル酸エステノレとし ては、 たとえば、 アクリル系重合体ブロック (a ) を構成するアクリル酸エステ ルと共重合可能なビュル系単量体として例示されたメタアクリル酸エステノレと同 様の単量体が挙げられる。
これらは単独でまたは 2種以上を組み合わせて用いることができる。 これらの 中でも、 加工性、 コストおよび入手しやすさの点で、 メタアクリル酸メチノレが好 ましい。 また、 メタアクリル酸イソボルニル、 メタアクリル酸シクロへキ、ンノレな どを共重合させることによって、ガラス転移点を高くすることができる。更には、 耐熱性を上げる為に、 酸無水物を導入する際の前駆体としてメタァグリル酸一 t 一ブチルが好ましい。
メタアクリル系重合体ブロック (b ) を構成するメタアクリル酸 ステルと共 重合可能なビュル系単量体としては、 たとえば、 アクリル酸エステノレ、 芳香族ァ ルケニル化合物、 共役ジェン系化合物、 ハロゲン含有不飽和化合物、 ケィ素含有 不飽和化合物、 不飽和ジカルボン酸化合物、 ビュルエステル化合物、 マレイミ ド 化合物などをあげることができる。
アクリル酸エステルとしては、 たとえば、 アクリル系重合体ブロンク (a ) を 構成するァクリル酸エステルとして例示されたァクリル酸エステルと同様の単量 体が挙げられる。
芳香族アルケニル化合物、 シアン化ビュル化合物、 共役ジェン系 ί匕合物、 ハロ ゲン含有不飽和化合物、 ケィ素含有不飽和化合物、 不飽和ジカルボン酸化合物、 ビュルエステル化合物、 マレイミ ド系化合物としては、 ァクリル系重合体ブロッ ク (a ) を構成する単量体として例示したものと同様の単量体をあげることがで さる。
これらは単独でまたは 2種以上を組み合わせて用いることができる。 これらの ビュル系単量体は、 メタアクリル系重合体ブロック (b ) に要求されるガラス転 移温度の調整、 アクリル系重合体ブロック (a ) との相溶性などの観点から好ま しいものを選択することができる。
( b ) のガラス転移温度は、 エラストマ一組成物の熱変形の観点から、 好まし くは 2 5 °C以上、 より好ましくは 4 0 °C以上、 さらに好ましくは 5 0 °C以上であ る。 (b ) のガラス転移温度がエラストマ一組成物の使用される環境の温度より 低いと、 凝集力の低下により、 熱変形しやすくなる場合がある。
<ブロック共重合体 (A) の製造方法 >
アクリル系プロック共重合体(A)の製造方法としては、特に限定されないが、 制御重合を用いることが好ましい。 制御重合としては、 リビングァニオン重合、 連鎖移動剤を用レ、るラジカル重合および近年開発されたリビングラジカル重合を あげることができる。 リビングラジカル重合がブロック共重合体の分子量おょぴ 構造制御の点ならびに架橋性官能基を有する単量体を共重合できる点から好まし い。
リビング重合とは、 狭義においては、 末端が常に活性を持ち続ける重合のこと を示すが、 一般には、 末端が不活性化されたものと活性化されたものが平衡状態 にある擬リビング重合も含まれ、 本発明におけるリビングラジカル重合は、 重合 末端が活性化されたものと不活性化されたものが平衡状態で維持されるラジカル 重合であり、 近年様々なグループで積極的に研究がなされている。
その例としては、 ポリスルフイドなどの連鎖移動剤を用いるもの、 コノ ルトポ ノレフィ リン錯体 (J o u r n a l o f Am e r i c a n Ch em i c a l S o c i e t y, 1 994, 1 1 6, 7943 ) やニトロキシド化合物などのラ ジカル捕捉剤を用いるもの (Ma c r omo l e c u l e s, 1 994, 27, 7228) 、 有機ハロゲン化物などを開始剤とし遷移金属錯体を触媒とする原子 移動ラジカノレ重合 (A t om T r a n s f e r R a d i c a l P o l ym e r i z a t i o n : ATRP) などをあげることができる。 本発明において、 これらのうちどの方法を使用するかは特に制約はないが、 制御の容易さなどから 原子移動ラジカル重合が好ましい。
原子移動ラジカル重合は、 有機ハロゲン化物、 またはハロゲン化スルホニル化 合物を開始剤、 周期律表第 8族、 9族、 10族、 または 1 1族元素を中' L、金属と する金属錯体を触媒として重合される(例えば、 Ma t y j a s z ew s k i ら, J o u r n a l o f Ame r i c a n Ch em i c a l S o c i e t y 1995, 1 1 7, 56 14、 Ma c r pmo l e c u l e s, 1 995, 28, 7901、 S c i e n c e, 1 996, 272, 866、 または S aw amo t oら, Ma c r omo l e c u l e s , 1 995, 28, 1 72 1) 。
これらの方法によると一般的に非常に重合速度が高く、 ラジカル同士のカップ リングなどの停止反応が起こりやすいラジカル重合でありながら、 重合力 Sリビン グ的に進行し、 分子量分布の狭い Mw/Mn= 1. 1〜1. 5程度の重合体が得 られ、 分子量はモノマーと開始剤の仕込み時の比率によって自由にコン トロール することができる。
原子移動ラジカル重合法において、 開始剤として用いられる有機ハロゲン化物 またはハロゲン化スルホニル化合物としては、 一官能性、 二官能性、 または、 多 官能性の化合物を使用できる。 これらは目的に応じて使い分けること できる。 ジブロック共重合体を製造する場合は、 一官能性化合物が好ましい。 a — b— a 型のトリブロック共重合体、 b— a _ b型のトリプロック共重合体を製造する場 合は二官能性化合物を使用することが好ましい。 分岐状プロック共重合体を製造 する場合は多官能性化合物を使用することが好ましい。
前記原子移動ラジカル重合の触媒として用いられる遷移金属錯体としてはとく に限定はない力 好ましいものとして、 1価および 0価の銅、 2価のルテニウム、 2価の鉄または 2価のニッケルの錯体をあげることができる。 これらの中でも、 コストゃ反応制御の点から銅の錯体が好ましい。
前記原子移動ラジカル重合は、 無溶媒 (塊状重合) または各種溶媒中で行なう ことができる。 また、 溶媒を使用する場合、 その使用量は、 系全体の粘度と必要 とする攪拌効率の関係から適宜決定することができる。
また、 前記原子移動ラジカル重合は、 好ましくは室温〜 2 0 0 °C、 よ り好まし くは 5 0〜1 5 0 °Cの範囲で行なわせることができる。 前記原子移動ラジカル重 合温度が室温より低いと粘度が高くなり過ぎて反応速度が遅くなる場合があるし、 2 0 0 °Cを超えると安価な重合溶媒を使用できない場合がある。
重合によって得られた反応液は重合体と金属錯体の混合物を含んでおり、 例え ば有機酸を添加して金属錯体を除去することができる。 引き続き、 吸着処理によ り不純物を除去することで、 ァクリル系ブロック共重合体を含んでなるァクリル 系プロック共重合体溶液を得ることができる。 本発明で使用することができる有 機酸は、 特に限定されないが、 カルボン酸基、 もしくは、 スルホン酸基を含有す る有機物であることが好ましい。
アクリル系プロック共重合体溶液から有機溶剤成分を蒸発分離するに際しては、 重合体溶液の液膜を加熱することにより揮発分を除去、 すなわち蒸発、 脱揮等さ せる種々の形式の薄膜蒸発機が適用可能である。 その他、 単軸もしくは 2軸スク リユーと脱揮口を有する押出機による蒸発も可能である。
樹脂中の残存溶剤量としては、 1 0 0 0 0 p p m以下であることが望ましい。 残存溶剤量が 1 0 0 0 0 p p mを超えると、 溶剤の臭気の問題により作業環境が 悪化するとともに環境への負荷がかかるため望ましくない。
このように有機溶媒を蒸発分離したアクリル系ブロック共重合体 (A) は、 引 き続きペレット化等により、 パウダー化行程に適した形状にする。 ペレット化方 式としては所望の孔径を有するダイスより樹脂をストランド状の溶融状態で押出 し、 冷却後カツトしてペレツト形状に加工する方法がとられる。 その他、 ダイス 直近で高速回転する回転刃により重合体をカツトするホットカツト方式、 前述同 様の方法を冷却水中で行う水中カツト方式などが適用可能である。
これまで述べてきた重合体溶液の蒸発、 押出機での溶融時の熱履歴による品質 低下抑制手段として、 樹脂溶液から脱揮操作を行う際に酸化防止剤を存在させる こともできる。 これらの酸化防止剤は、 ラジカル連鎖禁止剤としての機能を有す るものであることが好ましい。このようなものとしては特に限定されず、例えば、 フエノール系酸化防止剤ゃァミン系酸化防止剤等を挙げることができる。
<パウダーの製造〉
熱可塑性エラストマ一組成物は、 固定刃と回転刃による剪断作用により粉砕す る。 上記のようにしてペレット等にしたアクリル系ブロック共重合体 (A) 、 及 びその組成物は、固定刃と回転刃による剪断作用を用いた粉碎機により粉碎する。 以下、 この方式による粉碎機について詳細に述べる。
本粉砕機では剪断作用により樹脂を粉砕していくわけであるが、 剪断作用を発 生させるために固定刃、 回転刃の 2枚のディスクを使用する。 固定刃と回転刃は ある間隙 (クリアランス) を有した状態で設置されており、 固定刃と回転刃の速 度差おょぴクリァランスのサイズにより剪断力が発生する。 粉碎原料はディスク 中心部より供給され、 剪断作用により粉砕されながら遠心力を受けて外周方向へ 移動し、 ディスク外周部より取り出される。
粉砕においては剪断力が大きいほど、 またクリアランスが小さいほど粉砕能力 が向上し、微小なサイズの粉砕物を得ることができる。従って、回転刃の回転数、 およぴクリアランス、 特に最終粉碎物の最大径を決定する外周部のクリ了ランス を調整することにより、 様々なサイズの粉砕物を得ることができる。
粉砕物の形状をコントロールする方法として、 ディスク表面の刃の形状、 配置 も重要である。 特に刃断面はディスク中心から外周方向に対して平行に酉 3置する よりも、 ある程度傾斜をつけることが好ましい。 刃断面をディスク中心から外周 方向に配置した場合、 刃の進行方向と刃断面が垂直になるため粉砕能力 低くな る。
この他、 重要な要素として粉砕時に発生する摩擦熱の除去が挙げられる。 摩擦 熱が蓄積した場合、 ディスク表面で粉砕物の温度を上げるため樹脂の軟ィ匕が起こ る。 樹脂の軟化が発生した場合、 剪断作用を受けた場合粉砕物が長い糸状に変化 するためパウダースラッシュ用途としては流動性の低いパウダーとなる恐れがあ る。 また、 さらに温度が上がるとデイス表面で樹脂が溶融、 滞留することにより 粉碎が不可能となる。 従って、 粉碎時の温度管理はパウダーの品質面、 運転の安 定性において非常に重要な要素となる。
摩擦熱の除去としては空冷が有効な手段となる。 本方式では原料ペレットの粉 碎機への供給方式としては、 円筒管内の気流に乗せ移送する空気移送方式、 その 他コンベア方式、スクリューフィーダ一などが適用可能であり特に制限 ίまないが、 空気を冷却媒体として使用可能な空気移送方式が最も好ましい。 この場合、 冷却 能力は空気の流量、 温度により決定される。 空気流量は原料の供給安定'性、 粉砕 物の移送の安定性より決定されるため、 実運転での管理は空気温度となる。 本発 明では空気温度としては 1 0〜 5 0 °Cが好ましい。 1 0 °C未満では冷却倉 力に全 く問題はないものの、 高価な冷却システムを必要とする。 一方、 5 0 °Cを超える 温度領域では樹脂の溶融を防止できず、 摩擦熱の発生を抑えるため大幅に処理量 を低下させる必要が発生する。
この他、 原料ペレットに少量の水分を添加し、 水の蒸発潜熱により温度上昇を 防止することもできる。 水の供給方法としては、 粉砕原料にあらかじめ冰を付与 しておく方法、 あるいは粉碎原料とは別に粉碎機に供給する方法など特 こ制約は ない。 あらかじめ水を付与しておく場合、 原料ペレットを製造する時に付着残存 する水をそのまま使用することができる。 粉枠機に供給する場合は、 汎用の定量 ポンプを用いることができる。 供給口の形態は特に制約はないが、 均一に水分を 付与することと、 効率的に静電気の発生を防止することを考慮した場合、 ノズル を経由して霧状に供給することが好ましい。
水の添加量は粉砕原料に対する重量部数で規定することができる。 水の添加量 は粉砕原料 1 0 0重量部に対し 2 ~ 2 0重量部が好ましい。 2重量部未満では水 による冷却効果が低く、 また静電気抑制効果も低い。 一方、 2 0重量部を超える とパウダーに未蒸発の水分が残ることになり製品品質に悪影響する。 また、 粉砕 パウダーのハンドリングにも悪影響を及ぼす。
添加する水は純水、 巿水、 工業用水などいずれも使用可能である。
なお、 水を用いた冷却を実施する場合、 残存水分による製品への影響を避ける ため水分管理が必要になる。
熱可塑性エラストマ一の粉砕物は、 粉砕時の発熱による軟質化に伴い互着が発 生しやすい傾向がある。 また、 熱可塑性エラストマ一に限らず粉碎物は比表面積 が大きいため、 一般に互着を招きやすい。 互着が発生すると粉砕パウダーとして 要求する特性である流動性が大幅に低下するばかりでなく、 装置内での樹脂の付 着等、 安定運転上にも支障を来たすことが予想される。
互着防止対策としては粉碎前のペレツト等の表面に各種互着防止用の粉末を添 加する方法が考えられる。 アクリル系プロック共重合体 (A) を含む組成物 1 0 0重量部に、 炭酸カルシウム、 タノレク、 カオリン、 二酸化珪素、 脂肪酸アミ ド、 脂肪酸エステル、 金属石瞼からなる群から選ばれる少なく とも 1種を、 2〜2 0 重量部外添することができる。 ここでいう外添とは、 組成物に練り込むのではな く、 ペレッ ト等の表面にまぶすように添加することをいう。 2重量部未満では、 効果が十分ではなく、 また 2 0重量部より多いと、 得られるパウダーの機械特性 に悪影響を与えてしまう。
また添加方法も特に制約はなく、 プレンダ一で混合する方式、 移送における気 流中で添加する方式などが挙げられる
さらに、 粉砕パウダ一のハンドリング性の改良、 耐ブロッキング性を付与する 観点から、粉砕物に上記粉末を添加することも可能である。この場合もペレッ ト表 面への外添と同様に、 粉砕物とプレンダ一で混合する方式、 移送における気流中 で添加する方式、 振動篩内部で添加する方式などが挙げられる。 また、 前述した 粉碎機へ供給する冷却水中に分散、 または溶解して使用するこ とも有効である。 炭酸カルシウムの例としては、 平均粒子径 0 . 5〜 1 5 μ の軽質炭酸カルシ ゥム、 重質炭酸カルシウムのような単体の他、 これに飽和脂肪酸あるいは界面活 性剤により処理を加えたもの、 あるいはマグネシウム、 シリゲート等を配合した もの 挙げることができる。
脂肪酸アミ ドの例としては、 ステアリン酸アミ ド、 エチレンビスステアリン酸 アミ ド、 エル力酸アミ ド、 エチレンビスエル力酸アミ ド、 ォレイン酸アミ ド、 ェ チレンビスォレイン酸アミ ド、 ベへニン酸アミ ド、 エチレンヒ スラウリン酸アミ ドなどを挙げることができる。
脂肪酸エステルの例としては、 ラウリン酸メチル、 ミリスチン酸メチル、 パル ミチン酸メチル、 ステアリン酸メチル、 ォレイン酸メチル、 エノレカ酸メチル、 ベ へニン酸メチル、 ラウリン酸プチル、 ステアリン酸ブチル、 ミ リスチン酸イソプ 口ピル、 パルミチン酸イソプロピル、 パルミチン酸ォクチル、 ステアリン酸オタ チルなどを挙げることができる。
金属石鹼の例としてはカリウム、 ナトリウム、 アルミニウム、 カルシウム、 亜 鉛、 マグネシウム、 バリウム等を用いた各金属石鹼を挙げることができる。
さらに互着防止だけではなく、 組成物の軟化点を上昇させることにより粉碎を 容易にする観点から、 粉砕前のアクリル系ブロック共重合体 (A) に無機充填材 を配合し、 あらかじめ組成物としておく方法も挙げられる。 無機充填材としては 酸化チタン、 硫化亜鉛、 酸化亜鉛、 カーボンブラック、 炭酸^ノレシゥム、 ケィ酸 カルシウム、 クレー、 カオリン、 シリカ、 雲母粉、 アルミナ、 ガラス繊維、 金属 繊維、 チタン酸力リウイスカー、 アスペスト、 ウォラストナイ ト、 マイ力、 タル ク、 ガラスフレーク、 ミルドファイバー、 金属粉末などがあデられるが、 これら に限定されるものではない。 これらは単独で用いてもよく、 複数を組合せて用い てもよい。 これらの中では、 特に炭酸カルシウムが好ましく俊用される。 これら無機充填材の添加量としては、 アクリル系ブロック共重合体 (A) 1 0 0重量部に対して 1 0〜 1 0 0重量部が好ましい。 1 0重量部未満では互着防止 の為の効果が不十分となる。 1 0 0重量部を超えた場合は、 組成物の機械物性を 損なう可能性がある。
この他、 シリコーンオイル、 牛脂極度硬化油、 各種ワックス、 カーボンプラッ ク等をあらかじめァクリル系ブロック共重合体にコンパウンドしておくのも有効 な手段である。 これら添加剤は単独で用いても良く、 また複数を混合して用いて も良い。 これらの中では、 特にシリコーンオイルが好ましく使用される。 添加量 は成形体の物性パランスから選定することができるが、 ァクリル系プロック共重 合体 (A) 1 0 0重量部に対して 0 . 1〜1 0重量部が好ましい。 0 . 1重量部 未満では互着防止の為の効果が不十分となる。 1 o重量部を超えた場合は、 上記 無機充填材同様に組成物の機械物性を損なう可能性がある。
粉砕前の原料形状としては前述のペレツトが代表的であるが、 多くは円柱状、 サイズは直径 φ 1〜 1 O mm、 高さ 1〜 1 0 mmのものを好適に使用できる。 こ れより大きなサイズでは、 目標粒子径にもよるが多段粉碎を実施することで対応 が可能となる。
以上の方法で得られたパウダーは嵩密度が 0 . 4〜0 . 8 g /m L、 安息角が 2 5 - 4 5度であることが好ましい。 パウダースラッシュ成形では嵩密度が小さ いと成形体内部に気泡の残存が多くなる。 また、 安息角が大きいと金型内部での パウダー厚み、 及ぴそれにより発生する加熱面における樹脂圧が変動し、 均一な 厚みの成形体を得ることが困難になる。 パウダーの粒子径としては、 粒子が概ね 球状である場合、 5 0 0 μ πι以下であることが好ましい。 また、 多角形、 糸状な どの不定形の場合は、 粒子の最大長が 1 0 0 0 /z m以下であることが好ましい。 (実施例)
本発明を実施例に基づいてさらに詳細に説明するが、 本発明はこれらの実施例 のみに限定されるものではない。
ぐ分子量測定法 > 本実施例に示す分子量は以下に示す G P C分析装置で測定し、 クロロホルムを 移動相として、 ポリスチレン換算の分子量を求めた。 システムとして、 ウォータ ーズ (Wa t e r s) 社製 G P Cシステムを用い、 カラムに、 昭和電工 (株) 製 S h o d e X K一 804 (ポリスチレンゲル) を用いた。
<重合反応の転化率測定法 >
本実施例に示す重合反応の転化率は以下に示す分析装置、 条件で測定した。 使用機器:島津製作所 (株) 製ガスクロマトグラフィー GC— 14Β
分離カラム : J &W SC I ENT I F I C I N C製、 キヤビラリ一力ラム S u p e 1 c owa x— 10, 0. 3 5 mm φ X 30 m
分離条件:初期温度 60 °C、 3. 5分間保持
昇温速度 40°C/m i n
最終温度 140 °C、 1. 5分間保持
インジヱクション温度 2 5 0 °C
ディテクター温度 250°C
試料調整:サンプルを酢酸ェチルにより約 3倍に希釈し、 酢酸ブチルを内部標準 物質とした。
くパゥダーの粉体特性評価 >
本実施例に示すパゥダ一の各粉体特性値は以下に示す分析装置で測定した。 使用機器:ホソカワミクロン (株) 製パウダテスタ PT— R
<パウダーの表面電位測定 >
本実施例に示すパウダーの表面電位は以下に示す測定装置で計測した。
使用機器:春日電機株式会社製表面電位計 K SD-0103
<パゥダ一の溶融特性評価 >
本実施例に示すパウダーの溶融特性は以下に示す方法で評価した。
使用機器:皮シポ付金属板 (板厚 4. 5 mm、 シボ深さ 80 %)
加熱条件: 250 °C
加熱時間: 1分
冷却時間: 5分 (空気中で空冷) 評価指標:シボ転写性 (目視) 〇 (良好) 、 X (シボ形成不良個所あり) 表皮厚み均一性 (目視) 〇 (均一) 、 X (不均一、 パウダー残存あ )
ピンホール/気泡の有無 (目視) 〇 (無し) 、 X (有り) (製造例 1 )
窒素置換した 500 L反応機にアクリル酸ブチル 53. 7 k g, アクリル酸— 2—メトキシェチル 27. 2 k g、 及ぴ臭化第一銅 0. 649 k gを仕込み、 攪 拌を開始した。 引き続きジャケットに温水を通水し、 内溶液を 70°Cに昇温して
30分間保持した。 その後、 2、 5—ジブロモアジピン酸ジェチル 0. 905 k gをァセトニトリル 6. 82 k gに溶解させた溶液を仕込み、 75 °Cに昇温を開 始した。内温が 75 °Cに到達した時点でペンタメチルジェチレントリアミン 94. 5mLを加えて、 第一プロックの重合を開始した。
転化率が 95%に到達したところで、 トルエン 79. 1 k g、 塩化第一銅 0.
448 k g、 メタアクリル酸メチノレ 43. 5 k g、 及びペンタメチルジェチレン トリアミン 94. 5mLを加えて、 第二ブロックの重合を開始した。 転化率が 9
0%に到達したところで、 トルエン 104 k gを加えて反応溶液を希釈すると共 に反応機を冷却して重合を停止させた。 得られたプロック共重合体の GPC分析 を行ったところ、 数平均分子量 Mnが 671 52、 分子量分布 Mw/Mnが 1.
37であった。
得られたブロック共重合体溶液に対しトルエン 160 k gを加えて重合体濃度 を 25重量0 /0とした。 この溶液 ίこ p— トルエンスルホン酸を 1. 29 k g加え、 反応機内を窒素置換し、 30°Cで 3時間撹拌した。 反応液をサンプリングし、 溶 液が無色透明になっていることを確認して、 昭和化学工業製ラヂォライト # 30 00を 2. 39 k g添加した。 の後反応機を窒素により 0. 1〜0. 4MP a Gに加圧し、濾材としてポリエステルフェルトを備えた加圧濾過機 (濾過面積 0.
45m2) を用いて固体分を分離した。
濾過後のブロック共重合体溶夜約 478 k gに対し、 キヨーヮード 500 SH 1. 79 k gを加え反応機内を窒素置換し、 30°Cで 1時間撹拌した。 反応液を サンプリングし、 溶液が中性になっていることを確認して反応終了とした。 その 後反応機を窒素により 0. 1〜0. 4MP a Gに加圧し、 濾材としてポリエステ ルフ ルトを備えた加圧濾過機 (濾過面積 0. 45m2) を用いて固体分を分離 し、 重合体溶液を得た。
引き続き重合体溶液から溶媒成分を蒸発した。 蒸発機は株式会社栗本鐡ェ所製 SCP 100 (伝熱面積 1 m2) を用いた。蒸発機入口の熱媒オイルを 180°C、 蒸発機の真空度を 90T o r r、 スクリユー回転数を 60 r p m、 重合体溶液の 供給速度を 32 k g/hに設定し重合体溶液の蒸発 実施した。 重合体は φ 4m mのダイスを通してストランドとし、 水槽で冷却後ペレタイザ一により円柱状の ペレットを得た (重合体ペレット 1) 。 本ペレットをカーボンブラック (旭カー ボン (株) 製、 旭 # 15) によりコンパウンド処理した。 押出機として日本製鋼 所製 LABOT EXを使用した。 ペレット 100重量部に対し、 カーボンブラッ ク 0. 3重量部の比率で原料を供給し、 シリンダー温度 80〜100°C、 スクリ ユー回転数 10 0 r pmでストランドとして排出し、 引き続きペレタイザ一によ り円柱状のペレッ トとした (重合体ペレッ ト 2) 。
(製造例 2 )
製造例 1で得られた重合体ペレツト 1を重炭酸カルシウム (備北粉化工業製、 ソフトン 320 0) 、 カーボンブラック (旭カーボン (株) 製、 旭 # 15) によ りコンパウンド処理した。押出機として日本製鋼所製 LAB OTEXを使用した。 ペレツト 100重量部に対し、炭酸カルシウム 43重量部、カーボンブラック 0. 3重量部の比率で原料を供給し、 シリンダー温度 80〜100°C、 スクリュー回 転数 100 r p mでストランドとして排出し、 引き続きペレタイザ一により円柱 状のペレットと した。 得られたペレッ トにはシリカ粉末 (株式会社龍森製、 マイ クロ結晶性ソフ トシリカ A_ 10) を 0. 3重量部ドライブレンドした。
(製造例 3 )
製造例 1で得られた重合体ペレツト 1を重炭酸カルシウム (備北粉化工業製、 ソフ トン 320 0) 、 カーボンブラック (旭カーボン (株) 製、 旭 # 15) 、 シ リコーンオイル (東芝シリコーン (株) 製、 TSF 451— 1000) 、 牛脂極 W
21
度硬化油 (日本油脂 (株) 製) によりコンパウンド処理した。 押出機として日本 製鋼所製 LAB OTEXを使用した。 ペレッ ト 100重量部に対し、 炭酸カルシ ゥム 43重量部、 カーボンブラック 0. 3重量部、 シリコーンオイル 0. 43重 量部、 牛 J!旨極度硬化油 2. 86重量部の比率で原料を供給し、 シリンダー温度 8 0〜10 O°C、 スクリュー回転数 100 r pmでス トランドとして排出し、 引き 続きペレタイザ一により円柱状のペレツトとした。 得られたペレツト表面にシリ 力粉末 (株式会社龍森製、 マイクロ結晶性ソフトシリカ A— 10) を 0. 3重量 部添加しだ。
(製造例 4)
窒素置換した 500 L反応機にアクリル酸ブチル 79. 6 k g、 アクリル酸 t 一プチル 1. 75 k g、 及ぴ臭化第一銅 0. 692 k gを仕込み、 攪拌を開始し た。 引き続きジャケットに温水を通水し、 内溶液を 70°Cに昇温して 30分間保 持した。 その後、 2、 5—ジブロモアジピン酸ジェチル 1. 21 k gをァセトニ トリル 7. 14 k gに溶解させた溶液を仕込み、 75 °Cに昇温を開始した。 内温 が 75°Cに到達した時点でペンタメチルジェチレントリアミン 0. 1 O I Lをカロ えて、 第一ブロックの重合を開始した。
転化率が 98%に到達したところで、 トルエン 106 k g、 塩化第一銅 0. 4 78 k g、メタアタリル酸メチル 49. 1 k g、アタリル酸ェチル 7. 98 k g, 及びペンタメチルジェチレントリアミン 0. 101 Lを加えて、 第二プロックの 重合を開始した。 転化率が 95 %に到達したところで、 トルエン 250 k gを加 えて反応溶液を希釈すると共に反応機を冷却して重合を停止させた。 得られたブ ロック共重合体の GP C分析を行ったところ、 数平均分子量 Mnが 59500、 分子量分布 Mw Mnが 1. 50であった。
得られたプロック共重合体溶液に対しトルエン 30 k gを加えて重合体濃度を 25重量%とした。 この溶液に p—トルエンスルホン酸を 2. 20 k g加え、 反 応機内を窒素置換し、 30°Cで 3時間撹拌した。 反応液をサンプリングし、 溶液 が無色透明になっていることを確認して、 昭和化学工業製ラヂォライト # 300 0を 2. 6 5 k g添加した。 その後反応機を窒素により 0. 1〜0. 4MP aG に加圧し、 濾材としてポリエステルフェルトを備えた加圧濾過機 (濾過面積 0.
45m2) を用いて固体分を分離した。
濾過後のプロック共重合体溶液約 530 k gに対し、 キヨーヮード 500 SH 1. 98 k gを加え反応機内を窒素置換し、 30°Cで 1時間撹拌した。 反応液を サンプリングし、 溶液が中性になっていることを確認して、 昭和化学工業製ラヂ オライ ト # 3000を 1. 98 k g添加した。 その後反応機を窒素により 0. 1 〜0. 4 MP a Gに加圧し、 濾材としてポリエステルフェルトを備えた加圧濾過 機 (濾過面積 0. 45m2) を用いて固体分を分離し、 重合体溶液を得た。
引き続き重合体溶液から溶媒成分を蒸発した。 蒸発機は株式会社栗本鐡ェ所製 SCP 100 (伝熱面積 lm2) を用いた。蒸発機入口の熱媒オイルを 180°C、 蒸発機の真空度を 90To r r、 スクリユー回転数を 60 r p m、 重合体溶液の 供給速度を 32 k gZhJこ設定し重合体溶液の蒸発を実施した。 重合体は φ 4 m mのダイスを通してストランドとし、 水槽で冷却後ペレタイザ一により円柱状の ペレッ ト ¾r得た。
引き続き得られたペレッ トを 2軸押出機に供給し、 250°C、 滞留時間 3分の 条件で再押出処理を実施した。 溶融樹脂は水中カットでペレット化した (重合体 ペレッ ト 3 ) 。
(製造例 5 )
窒素置換した 2000 L反応機にァクリル酸ブチル 228 k g、 ァクリル酸 t 一ブチル 12. 9 k g、及び臭化第一銅 2. 15 k gを仕込み、攪拌を開始した。 引き続きジャケットに温水を通水し、 内溶液を 70°Cに昇温して 30分間保持し た。 その後、 2、 5—ジブロモアジピン酸ジェチル 3. 60 k gをァセトニトリ ノレ 20. 5 k gに溶解させた溶液を仕込み、 75 °Cに昇温を開始した。 内温が 7
5 ¾に到達した時点でペンタメチルジェチレントリアミン 0.313 Lを加えて、 第一ブロックの重合を開始した。
転化率が 98 %に到達したところで、 トルエン 313 k g、 塩化第一銅 1. 4 8 k g、 メタアタリル酸メチル 145 k g、 ァクリル酸ェチル 23. 6 k g、 及 ぴペンタメチルジェチレントリアミン 0. 313 Lを加えて、 第ニブロックの重 W 200
23
合を開始した。 転化率が 95%に到達したところで、 トルエン 400 k gを加え て反応溶液を希釈すると共に反応機を冷却して重合を停止させた。 得られたプロ ック共重合体の GP C分析を行ったところ、 数平均分子量 Mnが 61400、 分 子量分布 Mw/Mnが 1. 48であった。
得られたプロック共重合体溶液に対しトルエン 487 k gを加えて重合体濃度 を 25重量%とした。 この溶液に p— トルエンスルホン酸を 7. 7 O k g加え、 反応機内を窒素置換し、 30°Cで 3時間撹拌した。 反応液をサンプリングし、 溶 液が無色透明になっていることを確認して、 昭和化学工業製ラヂォライト # 30 00を 8. 00 k g添加した。 その後反応機を窒素により 0. 1〜0. 4MP a Gに加圧し、濾材としてポリエステルフヱルトを備えた加圧濾過機(濾過面積 0. 45m2) を用いて固体分を分離した。
濾過後のブロック共重合体溶液約 1600 k gに対し、 キヨ一ワード 500 S H 6. 00 k gを加え反応機内を窒素置換し、 30°Cで 1時間撐拌した。 反応液 をサンプリングし、 溶液が中性になっていることを確認して、 昭和化学工業製ラ ヂォライト # 3000を 6. 00 k g添加した。 その後反応機を窒素により 0. 1〜0. 4 MP a Gに加圧し、 濾材としてポリエステルフェルトを備えた加圧濾 過機 (濾過面積 0. 45m2) を用いて固体分を分離し、 重合体溶液を得た。 引き続き重合体溶液から溶媒成分を蒸発した。 蒸発機は株式会社栗本鐡ェ所製 SCP 100 (伝熱面積 lm2) を用いた。蒸発機入口の熱媒オイルを 180°C、 蒸発機の真空度を 90 T o r r、 スクリユー回転数を 60 r p m、 重合体溶液の 供給速度を 32 k g/hに設定し重合体溶液の蒸発を実施した。 重合体は φ 4m mのダイスを通してストランドとし、 水槽で冷却後ペレタイザ一により円柱状の ペレットを得た。
引き続き得られたペレッ トを 2軸押出機に供給し、 250°C、 滞留時間 3分の 条件で再押出処理を実施した。 溶融樹脂は水中カットでペレッ ト化した (重合体 ペレツ 卜 4 ) 。
(製造例 6 )
製造例 4、 5で得られた重合体ペレッ ト 3、 4を重炭酸カルシウム (備北粉化 W
24
工業製、 ソフトン 3200) 、 カーボンブラック (旭カーボン (株) 製、 旭 # 1 5) 、 牛脂極度硬化油 (日本油脂 (株) 製) 、 カネエース FM40 ( (株) カネ 力製) 、 ARUFONUG4010 (東亞合成 (株) 製) によりコンパウンド処理した。 コンパウンド処理には 2軸押出機を使用した。 重合体ペレッ ト 3を 61. 6重量 部、 重合体ペレット 4を 1 3. 4重量部、 重炭酸カルシウムを 15重量部、 カー ボンブラックを 1重量部、 牛脂極度硬化油を 0. 1重量部、 カネエース FM40 を 10重量部、 ARUFONUG4010を 7. 5重量部の比率で原料を供給し、 コ ンパウンド処理した。 コンパウンド処理された組成物は、 引き続きペレタイザ一 により円柱状のペレツトとした。
(実施例 1 )
製造例 1で得られた重合体ペレツト 2を用い粉砕処理を実施した。 試験設備の 概略を第 1図に示す。 粉砕機は三井鉱山株式会社製 UCM150 (ディスク径 3 00mm、 モーター出力 3. 7 kW) である。 原料ペレッ トは電磁フィーダ一 1 を経由して、 粉砕機 2へ供給される。 原料ペレッ ト及び粉碎物はブロア一 4によ り発生する気流により移送される。粉砕物はサイクロン 3で捕捉され回収される。 サイクロンを通過した微粒子はバグフィルター 5により回収される。
粉砕機のディスク回転数を 10000 r に設定し回転数が安定した後、 所 定量のシリカ粉末を表面に付与した原料ペレツトの供給を開始する。 粉砕中はサ イクロン入口の気流温度を測定した。 所定時間経過後に原料ペレツトの供給を停 止し、 サイクロンにより捕捉された粉砕パウダーを回収した。 得られたパウダー を用いて粒子径測定及び粉体特性評価を実施した。 また、 パウダーの溶融特性を 評価するためにシポ付金属板を用い 250°Cで表皮を作成し、 表皮の欠肉、 気泡 の有無を観察した。 結果を表 1にまとめる。
(比較例 1 )
製造例 1で得られた重合体べレット 2を用い凍結粉砕処理を実施した。 ペレッ トを液体窒素で充分に冷却後、 粉砕機により粉碎物を得た。 粉砕物は室温では若 干凝集が発生していた。 この粉碎物を実施例 1と同様の方法でシボ付金属板を用 い 250°Cで表皮を作成し、 表皮の欠肉、 気泡の有無を観察した。 結果を表 1に 併記する。
(表 1 )
Figure imgf000026_0001
(実施例 2 4 )
製造例 2で得られたペレッ トを用い、 実施例 1と同様に実験を実施した。 結果 を表 2に記載する。
(表 2 )
Figure imgf000026_0002
(実施例 5 7 )
製造例 3で得られたペレッ トを用い、 実施例 1と同様に実験を実施した。 結果 を表 3に記載する。 (表 3 )
Figure imgf000027_0001
(実施例 8〜 1 3 )
製造例 6で得られたペレツトを用い粉砕処理を実施した。 試験設備の概略を第 2図に示す。粉砕機は三井鉱山株式会社製 U CM 1 5 0 (ディスク径 3 0 O mm、 モーター出力 3 . 7 k W)である。原料ペレツトは電磁フィーダ一 1を経由して、 粉碎機 2へ供給される。 冷却水は定量ポンプ 6を経由して、 粉砕機 2へ供給され る。原料べレッ ト及び粉砕物はブロア一 4により発生する気流により移送される。 粉碎物はサイクロン 3で捕捉され回収される。 サイクロンを通過した微粒子はバ グフィルター 5により回収される。
粉砕機のディスク回転数を 1 0 0 0 0 r p mに設定し回転数が安定した後、 所 定量のシリカ粉末を表面に付与した原料ペレツト、及び冷却水の供給を開始する。 粉枠中はサイク口ン入口の気流温度を測定した。 所定時間経過後に原料ペレツ ト の供給を停止し、 サイクロンにより捕捉された粉砕パウダーを回収し、 パウダー 温度及び表面電位の測定を行った。また、 粉砕ディスク表面温度も測定した。得ら れたパウダーを用いて粒子径測定及び粉体特性評価を実施した。 また、 パウダー の溶融特性を評価するためにシポ付金属板を用い 2 5 0 °Cで表皮を作成し、 表皮 の欠肉、 気泡の有無を観察した。 結果を表 4に記載する。 (表 4 )
Figure imgf000028_0001
産業上の利用可能性
本発明の製造方法によるパゥダーはスラッシュ成形による自動車内装部品以外 に、 家電 O A機器の表皮や粉体塗料、 ペース ト、 シーラント等に使用できる。

Claims

請求の範囲
1 . 熱可塑性エラストマ一組成物を粉碎して得られるスラッシュ成形用パウダー の製造方法であって、 固定刃と回転刃による剪断作用により粉碎することを特徴 とするスラッシュ成形用パウダ一の製造方法。
2 . 熱可塑性エラス トマ一組成物がアクリル系ブロック共重合体 (A) を含む組 成物であることを特徴とする請求項 1に記載のスラッシュ成形用パウダーの製造 方法。
3 . アクリル系ブロック共重合体 (A) を含む組成物 1 0 0重量部に、 炭酸カル シゥム、 タルク、 カオリン、 二酸化珪素、 脂肪酸アミ ド、 脂肪酸エステル、 金属 石鹼からなる群から選ばれる少なくとも 1種を、 2〜 2 0重量部外添して粉砕す ることを特徴とする請求項 2に記載のスラッシュ成形用パゥダ一の製造方法。
4 . アクリル系ブロック共重合体 (A) が 5 0〜9 0重量。 /0のアクリル系重合体 ブロック (a ) および 5 0〜1 0重量。 /0のメタアクリル系重合体ブロック (b ) からなるプロック共重合体であることを特徴とする請求項 2または 3に記載のス ラッシュ成形用パゥダ一の製造方法。
5 . アクリル系重合体ブロック (a ) がアクリル酸一 n—ブチル、 アクリル酸ェ チル、 アクリル酸一 2—メ トキシェチル及ぴアクリル酸一 2—ェチルへキシルか らなる群から選ばれる少なくとも 1種を主成分とする単量体を重合してなるプロ ックであり、 メタアクリル系重合体ブロック (b ) がメタアクリル酸メチルを主 成分とする単量体を重合してなるプロックであることを特徴とする請求項 2から 4の何れかに記載のスラッシュ成形用パウダーの製造方法。
6 . アクリル系ブロック共重合体 (A) を含む組成物が、 アクリル系ブロック共 重合体 (A) 1 0 0重量部に対して、 炭酸カルシウム粉末が 1 0 ~ 1 0 0重量部 配合されてなることを特徴とする請求項 2から 5の何れかに記載のスラッシュ成 形用パウダーの製造方法。
7 . アクリル系ブロック共重合体 (A) を含む組成物が、 アクリル系ブロック共 重合体 (A) 1 0 0重量部に対して、 シリコーンオイルを 0 . 1〜1 0重量部配 合されてなることを特徴とする請求項 2から 6の何れかに記載のスラッシュ成形 用パウダーの製造方法。
8 . アクリル系ブロック共重合体 (A) を含む組成物 1 0 0重量部に対し、 2〜 2 0重量部の水を供給しながら粉碎することを特徴とする請求項 2から 7の何れ かに記載のスラッシュ成形用パゥダ一の製造方法。
PCT/JP2004/015326 2003-10-22 2004-10-08 スラッシュ成形用パウダーの製造方法 WO2005040252A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04773777A EP1676872A4 (en) 2003-10-22 2004-10-08 METHOD FOR PRODUCING POWDER FOR HOLLOW BODY CASTING
US10/576,895 US20070191589A1 (en) 2003-10-22 2004-10-08 Method for producing powder for slush molding
JP2005514940A JPWO2005040252A1 (ja) 2003-10-22 2004-10-08 スラッシュ成形用パウダーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003361910 2003-10-22
JP2003-361910 2003-10-22

Publications (1)

Publication Number Publication Date
WO2005040252A1 true WO2005040252A1 (ja) 2005-05-06

Family

ID=34509967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015326 WO2005040252A1 (ja) 2003-10-22 2004-10-08 スラッシュ成形用パウダーの製造方法

Country Status (4)

Country Link
US (1) US20070191589A1 (ja)
EP (1) EP1676872A4 (ja)
JP (1) JPWO2005040252A1 (ja)
WO (1) WO2005040252A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348082A (ja) * 2005-06-13 2006-12-28 Kaneka Corp 熱可塑性エラストマー組成物
JP2011207232A (ja) * 2011-07-21 2011-10-20 Techno Polymer Co Ltd 熱可塑性樹脂粒子
JP2017185710A (ja) * 2016-04-07 2017-10-12 日立金属株式会社 ポリマ顆粒物の製造方法
JP2020166194A (ja) * 2019-03-29 2020-10-08 コニカミノルタ株式会社 光学フィルムの製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138919A2 (en) * 2009-05-28 2010-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
WO2012051433A2 (en) 2010-10-13 2012-04-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
FR2978766B1 (fr) * 2011-08-02 2013-08-02 Arkema France Copolymeres a blocs souples sous forme de granules a ecoulement libre
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
US12114911B2 (en) 2014-08-28 2024-10-15 Angiodynamics, Inc. System and method for ablating a tissue site by electroporation with real-time pulse monitoring
CN104927046B (zh) * 2015-06-25 2017-06-06 安庆市虹泰新材料有限责任公司 一种聚酰胺的生产系统及其生产方法
KR101714216B1 (ko) * 2015-09-10 2017-03-08 현대자동차주식회사 고강성 및 고강도 발포형 충전제 조성물
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
GB201701817D0 (en) * 2017-02-03 2017-03-22 Lucite Int Speciality Polymers And Resins Ltd Polymer composition
US11460410B2 (en) * 2019-04-08 2022-10-04 Puma SE Bioindicator component applied to an article
CN112479128A (zh) * 2020-11-24 2021-03-12 杨文学 基于智能制造的化妆品生产系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181402A (ja) * 1999-12-24 2001-07-03 Kurashiki Kako Co Ltd 未加硫ゴム組成粒状物、該未加硫ゴム組成粒状物の製造装置及び製造方法
JP2004292694A (ja) * 2003-03-27 2004-10-21 Asahi Kasei Chemicals Corp 粒状ゴム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213224A (ja) * 1985-03-20 1986-09-22 Mitsubishi Rayon Co Ltd カチオン性重合体粉末の製造方法
JP3763376B2 (ja) * 1997-12-25 2006-04-05 株式会社日本触媒 親水性樹脂の製造方法
DE19958007A1 (de) * 1999-12-02 2001-06-07 Roehm Gmbh Spritzgußverfahren für (Meth)acrylat-Copolymere mit teritiären Ammoniumgruppen
TWI240672B (en) * 2000-06-20 2005-10-01 Sumitomo Chemical Co Elastomer molded product
CN1234756C (zh) * 2000-10-18 2006-01-04 三井化学株式会社 热塑性聚氨酯弹性体组合物的泡沫体及其制备方法
KR20040069949A (ko) * 2003-01-29 2004-08-06 스미또모 가가꾸 고오교오 가부시끼가이샤 분말 성형용 재료 및 이의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181402A (ja) * 1999-12-24 2001-07-03 Kurashiki Kako Co Ltd 未加硫ゴム組成粒状物、該未加硫ゴム組成粒状物の製造装置及び製造方法
JP2004292694A (ja) * 2003-03-27 2004-10-21 Asahi Kasei Chemicals Corp 粒状ゴム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1676872A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348082A (ja) * 2005-06-13 2006-12-28 Kaneka Corp 熱可塑性エラストマー組成物
JP2011207232A (ja) * 2011-07-21 2011-10-20 Techno Polymer Co Ltd 熱可塑性樹脂粒子
JP2017185710A (ja) * 2016-04-07 2017-10-12 日立金属株式会社 ポリマ顆粒物の製造方法
JP2020166194A (ja) * 2019-03-29 2020-10-08 コニカミノルタ株式会社 光学フィルムの製造方法
JP7120126B2 (ja) 2019-03-29 2022-08-17 コニカミノルタ株式会社 光学フィルムの製造方法

Also Published As

Publication number Publication date
US20070191589A1 (en) 2007-08-16
EP1676872A1 (en) 2006-07-05
EP1676872A4 (en) 2007-01-24
JPWO2005040252A1 (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
WO2005040252A1 (ja) スラッシュ成形用パウダーの製造方法
EP1847560A1 (en) Process for producing spherical polymer powder and spherical powder comprising (meth)acrylic block copolymer
WO2005073270A1 (ja) 熱可塑性エラストマー組成物および成形品
WO2005073269A1 (ja) 熱可塑性エラストマー組成物および成形品
JP2007246616A (ja) 粉末成形用樹脂組成物及び成形体
JP2006225563A (ja) 自動車内装用表皮成形用粉体及び自動車内装用表皮
JP2005200556A (ja) スラッシュ成形用パウダーの製造方法
JP5446105B2 (ja) 軟質塩化ビニル系樹脂組成物及び成形品の製造方法
JP2008007639A (ja) 熱可塑性エラストマー組成物
JP2006274079A (ja) スラッシュ成形用粉体組成物
JP2007070460A (ja) 熱可塑性樹脂粉体組成物の製造法
JP2007039562A (ja) アクリル系ブロック共重合体の製造方法
JP2010254849A (ja) アクリル系重合体粉体の製造方法
WO2007148636A1 (ja) 熱可塑性エラストマー組成物
JP2010209164A (ja) 自動車内装用表皮成形用に用いられるスラッシュ成形用粉体の製造方法
JPH01201369A (ja) 造粒カーボンブラック
JPS6139323B2 (ja)
JP2006274080A (ja) スラッシュ成形用粉体組成物
JP2004155804A (ja) (メタ)アクリル系ブロック共重合体の成型体
JP4485317B2 (ja) 熱可塑性エラストマー組成物およびそれを用いた成形品
JP2009249462A (ja) 重合体球状粒子の製造方法
JP2009221260A (ja) 真球状粒子の製造方法
JP2008088250A (ja) 熱可塑性樹脂粉体組成物の製造法
JP4763272B2 (ja) 金属塩を含有する熱可塑性エラストマー組成物および成形品
JP2006274081A (ja) スラッシュ成形用粉体組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514940

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004773777

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004773777

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10576895

Country of ref document: US

Ref document number: 2007191589

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10576895

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004773777

Country of ref document: EP