WO2005040246A1 - アシロキシ酢酸重合体およびその製造方法 - Google Patents

アシロキシ酢酸重合体およびその製造方法 Download PDF

Info

Publication number
WO2005040246A1
WO2005040246A1 PCT/JP2004/015852 JP2004015852W WO2005040246A1 WO 2005040246 A1 WO2005040246 A1 WO 2005040246A1 JP 2004015852 W JP2004015852 W JP 2004015852W WO 2005040246 A1 WO2005040246 A1 WO 2005040246A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
acyloxyacetic
acetic acid
acid polymer
polymer
Prior art date
Application number
PCT/JP2004/015852
Other languages
English (en)
French (fr)
Inventor
Atsushi Wada
Tomonori Ohashi
Original Assignee
Nippon Kasei Chemical Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Company Limited filed Critical Nippon Kasei Chemical Company Limited
Priority to EP04817302A priority Critical patent/EP1679331A4/en
Priority to US10/577,062 priority patent/US20070110701A1/en
Priority to JP2005515004A priority patent/JPWO2005040246A1/ja
Publication of WO2005040246A1 publication Critical patent/WO2005040246A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids

Definitions

  • the present invention relates to a novel acyloxyacetic acid polymer and a method for producing the same.
  • Acetoxyacetic acid which has a high utility value among acyloxyacetic acids, is used as a raw material for synthesis when producing various chemical products such as agricultural chemicals and surface treatment agents, and is an important compound in the chemical industry.
  • Glycolic acid is an important compound as an industrial intermediate, as a raw material for polymers and as an additive, in addition to direct uses such as chemical detergents. The following methods are known as methods for synthesizing these compounds!
  • Acetoxyacetic acid is synthesized by heating ethyl ethyl glycolate and acetic acid together with a small amount of sulfuric acid in benzene to remove the generated water and ethyl acetate (for example, see Non-Patent Document 1).
  • the starting material ethyl glycolate is an irritating and flammable substance, and is easy to handle and expensive.
  • the catalytic activity is not exhibited unless the three components coexist! ⁇ Since the separation operation between the catalyst and the product is complicated, the cost is high, and the yield of the product acetoxyacetic acid is high. Is low (the yield of acetoacetic acid in the examples: 1% by weight).
  • glycolic acid and its ester a mineral acid such as sulfuric acid, phosphoric acid or hydrochloric acid is used as a catalyst, and formaldehyde, water and carbon monoxide are reacted under high pressure to convert glycolic acid in one step.
  • a method of producing glycolic acid by reacting formaldehyde, water and carbon monoxide in hydrogen fluoride under normal pressure in hydrogen fluoride for example, see Patent Document 5 and the like (for example, see Patent Document 5) .
  • These methods have problems such as the necessity of complicated operations for separating glycolic acid from the reaction solution, and thus cannot be said to be industrially excellent.
  • Non-Patent Document 1 Beilstein, 3, 233
  • Patent Document 1 JP-A-56-63941
  • Patent Document 2 JP-A-11-147042
  • Patent Document 3 JP 2001-335538 A
  • Patent Document 4 Japanese Patent Publication No. 53-44454
  • Patent Document 5 JP-A-51-13719
  • Patent Document 6 JP-A-56-122321
  • the present invention has been made in view of the above-mentioned circumstances, and has as its object a simpler and more mild process under the conditions of acyloxyacetic acid-glycolic acid and its esters and Dali.
  • An object of the present invention is to provide an acyloxy acetic acid polymer which can be economically synthesized and can be used as a biodegradable polymer, and a method for producing the same.
  • the present inventors have conducted intensive studies, and as a result of hydrolysis, synthesized acyloxyacetic acid and glycolic acid by hydrolysis, acyloxyacetic acid ester glycolide ester by alcoholysis, and glycolide by thermal decomposition. A novel acyloxyacetic acid polymer and a method for producing the same have been found and the present invention has been completed.
  • a first gist of the present invention resides in an acyloxyacetic acid polymer represented by the following general formula (1).
  • each and R 2 each independently represent a hydrogen atom or a lower alkyl group which may be branched, and n represents an integer of 5 or more.
  • the second gist of the present invention is that a formaldehyde conjugate is reacted with carbon monoxide and an organic carboxylic acid or a derivative thereof in the presence of an acid catalyst to obtain an acyloxyacetic acid derivative.
  • the acyloxyacetic acid polymer of the present invention can produce acyloxyacetic acid / glycolic acid by hydrolysis, alcoholyl acetate / glycolic acid by alcoholysis, and glycolide by thermal decomposition. It can be used as a biodegradable polymer.
  • each of R 1 and R 2 is preferably a hydrogen atom or a C1-C6 lower alkyl group, more preferably a hydrogen atom or a C1-C4 atom.
  • a hydrogen atom, and particularly preferably a hydrogen atom in this case, the compound is an acetoacetic acid polymer.
  • the degree of polymerization n is preferably 5 or more, more preferably 10 or more, and particularly preferably 25 or more. When n is 5 or more, the reaction system can be easily isolated, and when n is 10 or more, the solidification and isolation can be further facilitated, so that the handling becomes easy.
  • the upper limit of the degree of polymerization n is usually 10,000.
  • the acyloxyacetic acid polymer of the present invention for example, an acetoacetic acid polymer, has a glycolic acid content of usually 110 to 130% by weight and an acetoxy content of usually quantified by high performance liquid chromatography after hydrolysis with an alkali. 0.1-15% by weight. Its melting point is usually 120 ° C or higher. The weight average molecular weight is usually 500-580,000.
  • the amount of diglycolic acid contained as an impurity in the polymer is preferably 1% by weight or less, more preferably 0.1% by weight or less.
  • the acyloxyacetic acid polymer of the present invention is preferably obtained by condensing an acyloxyacetic acid derivative.
  • the acyloxyacetic acid derivatives mentioned here include acyloxyacetic acid, glycolic acid, oligomers of acyloxyacetic acid, oligomers of glycolic acid, and esters thereof.
  • the acyloxyacetic acid polymer of the present invention is obtained by reacting a formaldehyde compound, carbon monoxide, and an organic carboxylic acid or a derivative thereof in the presence of an acid catalyst.
  • an acyloxyacetic acid derivative obtained by reacting an organic carboxylic acid, an aldehyde compound and monocarboxylic acid in the presence of an acid catalyst is directly condensed without isolation, and is isolated as an acyloxyacetic acid polymer of the present invention. I prefer that.
  • the following chemical formula is an example of the above series of reactions.
  • Examples of the above acid catalyst include mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, hydrofluoric acid, perchloric acid, nitric acid, sulfuric acid, hexafluorophosphoric acid, fluorosulfonic acid, and chlorosulfonic acid; Organic acids such as trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid; heteropolyacids such as keitungstic acid, phosphotungstic acid, and phosphomolybdic acid; boron trifluoride; Solid acids such as Lewis acids such as phosphorus fluoride and antimony pentafluoride, strongly acidic cation exchange resins, clay minerals, zeolites, solidified acids, inorganic oxides, inorganic salts, and composite oxides.
  • mineral acids such as hydrochloric acid, hydrobromic acid,
  • Strongly acidic cation exchange resins include styrene-divinylbenzene copolymers such as Amberlyst 15 (manufactured by Rohm and Nose Co.) and Diaion PK228 (manufactured by Mitsubishi Chemical), whose functional groups are sulfone groups. And a tetrafluoroethylene-based polymer such as Nafion (manufactured by DuPont).
  • clay minerals and zeolites include montmorillonite, kaolinite, bentonite, halloysite, smectite, illite, permikulite, chlorite, sebiolite, attapulgite, polygoskeite, mordenite, etc., and especially acids such as hydrogen fluoride. It is preferable that the metal ion is exchanged with a hydrogen ion for exchangeable metal ions such as H-type zeolite.
  • the solidified acid include those obtained by supporting an acid such as a heteropoly acid on a carrier such as activated carbon or silica.
  • a strongly acidic cation exchange resin sulfonic acid type cation exchange resin
  • the above-mentioned sulfonic acid type cation exchange resin is preferably used after being washed with an acid in advance.
  • As an impurity in sulfonic acid type cation exchange resin by acid washing The sulfate groups contained therein can be easily removed, and an acyloxyacetic acid polymer having a reduced amount of sulfate groups can be obtained.
  • the above-mentioned acid washing is performed, for example, using an organic carboxylic acid described later as a raw material.
  • the amount of the acid to be used is generally 11 to 10 times, preferably 2 to 5 times, as a weight ratio to the sulfonic acid type cation exchange resin.
  • the temperature of the acid washing is usually 10-150 ° C, and the time is 0.5-10 hours.
  • the acid washing is usually performed in a suitable container with stirring. By such acid washing, free sulfate groups present in the sulfonic acid type cation exchange resin can be removed, and an acyloxyacetic acid polymer having a reduced amount of sulfate groups can be produced.
  • the raw material aldehyde compound is not particularly limited as long as it is a compound that produces formaldehyde under the reaction conditions, such as paraformaldehyde, trioxane, and methylal, in addition to aqueous formaldehyde (formalin) and gaseous formaldehyde. Dear,. Two or more of these compounds may be used in combination.
  • the organic carboxylic acid may be acetic acid, propanoic acid, butanoic acid, or a carboxylic acid having an unsaturated bond such as propiolic acid.
  • the derivative of the organic carboxylic acid may be an ester or an anhydride.
  • the acyloxyacetic acid derivative of the present invention which is the aforementioned acyloxyacetic acid derivative or a condensate thereof, can be used as an organic carboxylic acid derivative.
  • the above organic carboxylic acids participate in the reaction and also have an effect as a reaction solvent.
  • the amount used is usually from equimolar to 100-fold, preferably 115-fold, relative to the number of moles of formaldehyde used as a raw material (in the case of a compound that produces formaldehyde under the reaction conditions, the number of moles converted to formaldehyde). Is a mole. The same applies to the amount of the organic carboxylic acid derivative used.
  • a reaction solvent other than the above organic carboxylic acids may be added.
  • the solvent used at this time can be used irrespective of polarity or non-polarity, but by using a solvent having a certain polarity, the acyloxyacetic acid conjugate can be obtained in high yield.
  • the reaction medium include halogenated aliphatic hydrocarbons such as chloroform and dichloromethane, halogenated aromatic hydrocarbons such as benzene, aliphatic hydrocarbons such as hexane, cyclohexane, and methylcyclohexane, and benzene. And the like.
  • the carbon monoxide is not only high-purity carbon monoxide, but also carbon monoxide mixed with an inert gas such as nitrogen or argon, hydrogen, Z or carbon dioxide. It can be used.
  • the reaction pressure is usually 10 to 200 kgZcm 2 , preferably 50 to 100 kgZcm 2 .
  • the reaction temperature is generally 80-200 ° C, preferably 100-150 ° C.
  • the solid acid catalyst removed from the reaction system by filtration or the like can be recycled as a catalyst for the next batch. As a result, it is possible to reduce the catalyst cost.
  • the condensation of the acyloxyacetic acid derivative is preferably heat condensation, since a high degree of condensation can be achieved.
  • the reaction temperature is usually 100-250 ° C, preferably 140-200 ° C.
  • the reaction pressure may be normal pressure, but is usually 650-10 torr, preferably 200-lOtorr. The condensation reaction is performed while removing by-produced acetic acid and water under reduced pressure.
  • the desired acyloxyacetic acid polymer can be isolated as a solid by removing volatile components after the condensation reaction, and a solvent in which a polymer such as water is hardly soluble in the condensation reaction solution is used. After the addition, the mixture is precipitated by cooling, and can be separated by a usual method, for example, centrifugation.
  • the above-mentioned series of reactions using a solid acid catalyst employs a production facility including, for example, a formalin concentrator, a reactor containing a solid acid catalyst, an acetic acid concentrator, and a condensation reactor. Can be performed semi-continuously.
  • the formaldehyde conjugate concentrated in a formalin concentrator is dissolved in an organic carboxylic acid and continuously supplied to a reactor, where carbon monoxide is continuously supplied to carry out a reaction. .
  • the reaction solution containing the acyloxyacetic acid derivative is taken out and supplied to the acetic acid concentrator, where the decompressed carbon monoxide generated and the organic carboxylic acid recovered by the concentration are circulated to the reactor, respectively.
  • the concentrated solution of the acyloxyacetic acid derivative taken out of the acetic acid concentrator is supplied to a condensation reactor, and is heated and condensed under reduced pressure to obtain an acyloxyacetic acid polymer.
  • the condensation reaction solution is taken out and dehydrated under reduced pressure to recover an acyloxyacetic acid polymer.
  • the water concentration in the reactor is determined by the concentration in the formalin concentrator. Although it varies depending on the degree of shrinkage, the concentration of water in the recovered organic carboxylic acid, the amount of circulating water used, and the like, it is preferable to control these conditions and maintain them in a certain range.
  • the water concentration in the reactor is usually 0 to 20% by weight, preferably 115% by weight.
  • an acid anhydride such as acetic anhydride can be used as the organic carboxylic acid in order to easily control the water concentration in the reactor.
  • the sulfate group content of the acyloxyacetic acid polymer is generally 300 ppm or less, preferably 500 ppm or less. If the sulfate group content of the acyloxyacetic acid polymer is high, the sulfate group should be contained as an impurity in useful compounds such as acyloxyacetic acid, glycolic acid, and glycolide obtained by hydrolysis, alcoholysis, and thermal decomposition. And there is a disadvantage that its use is limited.
  • the acyloxyacetic acid polymer of the present invention can synthesize acyloxyacetic acid / glycolic acid by hydrolysis, acyloxyacetic acid / glycolic acid ester by alcoholysis, and glycolide by thermal decomposition.
  • a glycolic acid ester a methyl ester of glycolic acid can be easily obtained by reacting an acetoacetic acid polymer with, for example, a 10-fold amount of methanol in the presence of an acid catalyst as described above.
  • the method for analyzing the acyloxyacetic acid polymer obtained in the present invention is as follows.
  • the melting point was measured using a differential scanning calorimeter "DSC6200” manufactured by Seiko Instruments Inc.
  • the temperature is raised at a rate of ° CZmin, and the temperature of the endothermic peak is determined as the melting point.
  • the weight average molecular weight is measured by a GPC analyzer using hexafluoroisopropanol as a solvent.
  • the measurement conditions are as follows: the column temperature is 40 ° C, the flow rate is lmlZmin, and a standard curve is prepared using standard PMMA (polymethyl methacrylate).
  • reaction solution and the catalyst were separated by filtration, and the filtered catalyst was washed with acetic acid.
  • the reaction filtrate and the catalyst washing solution were each sampled, hydrolyzed with an alkali, and analyzed using high performance liquid chromatography (LC-10A manufactured by Shimadzu Corporation). As a result, the glycolic acid yield based on the charged formaldehyde was 95 mol%. %.
  • the above filtrate was placed in a three-necked flask equipped with a stirrer, and heated in an oil bath to 140 ° C. under a reduced pressure of 100 torr to conduct a condensation reaction while distilling off acetic acid and water as by-products. After reacting at an internal temperature of 140 ° C for 4 hours, the reaction mixture was gradually cooled. When the internal temperature reached 90 ° C, 50 g of pure water was added, and the mixture was further cooled to room temperature. After filtering the produced acetoacetic acid polymer, it was dried with hot air at 60 ° C. for 24 hours to obtain 34.2 g of acetic acid acetic acid polymer.
  • the obtained acetoxyacetic acid polymer had a glycolic acid content of 111% by weight and an acetoxy content of 9.8% by weight (after being hydrolyzed with an alkali and quantified by high performance liquid chromatography). The content was less than 0.1% by weight.
  • the yield based on the charged formaldehyde was 83.2 mol%.
  • the melting point of the above-mentioned acetooxyacetic acid polymer was 125 ° C. as measured by DSC, and the weight average molecular weight was 4,000 (as a result of GPC measurement using hexafluoroisopropanol as a solvent.
  • the degree of polymerization n calculated from this value was 68.
  • the filtrate after filtering the Asetokishi acetate polymer was analyzed in the same manner as charged formaldehyde base, it contains glycolic acid of 10.5 mol 0/0, Other impurities such as diglycolic acid Was observed.
  • Example 1 the ion-exchange resin used after filtering in Example 1 was used as a catalyst in a wet state, and acetic acid was used as a catalyst in the acetic acid solution collected by distillation in the condensation reaction in Example 1.
  • the reaction was carried out in the same manner as in Example 1 except that the product purified by distillation was used. Steaming The water content of the fermented product was 0.1% by weight (Karl Fischer method), and peaks of impurities other than acetic acid were not particularly noticeable by analysis by gas chromatography.
  • the catalyst was filtered and analyzed in the same manner as in Example 1. As a result, the yield of glycolic acid based on the charged formaldehyde was 92 mol%, and it was confirmed that the catalyst could be used multiple times.
  • Example 1 "Nafion” manufactured by DuPont was used as the ion exchange resin, the reaction pressure (partial pressure of carbon dioxide) was changed to 100 kgZcm 2 , and the reaction temperature was changed to 130 ° C. The reaction was carried out as in 1. After the reaction was completed, the reaction mixture and the catalyst were separated by filtration, and the same analysis as in Example 1 was carried out. As a result, the yield of glycolic acid based on the charged formaldehyde was 95 mol%.
  • the above filtrate was charged into a three-necked flask equipped with a stirrer, heated to 200 ° C. under a reduced pressure of 50 torr in an oil bath, and subjected to a condensation reaction for 4 hours. After the reaction, the reaction solution was cooled and solidified as it was. This solid was pulverized with a pulverizer to obtain a powdered product of an acetoacetic acid polymer. As a result of analysis of this product, the glycolic acid content was 129% by weight and the acetoxium content was 1.0% by weight (determined by high performance liquid chromatography after hydrolysis with alkali), and the content of diglycolic acid as an impurity was 0%.
  • the melting point was 205 ° C as measured by DSC, and the weight-average molecular weight was 11,0000 (PMMA equivalent) as a result of GPC measurement using hexafluoroisopropanol as a solvent.
  • the calculated degree of polymerization n was 189.
  • a methyl esterification reaction was carried out using the acetylethoxyacetic acid polymer obtained above. That is, a Hastelloy autoclave (capacity: 80 ml) was charged with the acetoacetic acetic acid polymer lg obtained in Example 3, 10 g of methanol, and 0.26 g of 96% by weight sulfuric acid as a catalyst, a magnetic stir bar was added, and the atmosphere was replaced with nitrogen. did. The autoclave was sealed and reacted at 100 ° C for 3 hours. After cooling, the reaction solution was analyzed by high performance liquid chromatography. As a result, it was found that 92 mol% was obtained based on the glycolic acid in the used acetoxyacetic acid polymer. Dalicolic acid methyl ester was produced at a rate.
  • Example 4 150 g of a cation exchange resin ("Amberlyst 36wet" manufactured by Rohm and Nose Co.) was placed in a glass container, 750 g of acetic acid was further added as a washing solvent, and the mixture was purged with nitrogen, followed by stirring at 100 ° C for 5 hours. After cooling to room temperature, the cation exchange resin and the washing solvent were separated by filtration, and the cation exchange resin was washed again using 750 g of acetic acid under the same conditions as described above.
  • a cation exchange resin (“Amberlyst 36wet" manufactured by Rohm and Nose Co.) was placed in a glass container, 750 g of acetic acid was further added as a washing solvent, and the mixture was purged with nitrogen, followed by stirring at 100 ° C for 5 hours. After cooling to room temperature, the cation exchange resin and the washing solvent were separated by filtration, and the cation exchange resin was washed again using 750 g of ace
  • the acetic acid solvent used in the heat washing was sampled, decomposed by microwave, evaporated to dryness with a carrier for ion chromatography, diluted, and the sulfate concentration in the solvent was measured by ion chromatography.
  • the sulfate concentration in the first washing solvent was 170 ppm
  • the sulfate concentration in the second washing solvent was 55 ppm.
  • Example 1 the reaction was carried out in the same manner as in Example 1 except that the cation exchange resin after the acid washing was used as a catalyst. That is, in Example 1, 19.6 g of 92% by weight paraformaldehyde and 30.8 g of a cation exchange resin catalyst (about 15 g on a dry basis) were used as the formaldehyde, and the reaction pressure (carbon monoxide partial pressure) was increased. The reaction was carried out in the same manner as in Example 1 except that the amount was changed to 70 kgZcm 2 . After completion of the reaction, the catalyst was filtered and analyzed in the same manner as in Example 1. As a result, the yield of glycolic acid based on the charged formaldehyde was 92 mol%.
  • the reaction solution (filtrate) from which the catalyst was filtered off was measured for the sulfate group concentration in the same manner as described above, and it was 140 ppm.
  • glycolic acid 6 mol 0/0, Asetokishi acetic acid 60 molar 0/0, Asetokishi acetate oligomer was 26 mol% .
  • the obtained acetoxyacetic acid polymer had a glycolic acid content of 118% by weight and an acetoxy content of 9.8% by weight (after being hydrolyzed with an alkali and quantified by high performance liquid chromatography). The content was less than 0.1% by weight.
  • the yield based on the charged formaldehyde was 85.4 mol%.
  • the sulfate group content of the acetoacetic acid polymer was 470 ppm.
  • the melting point of the above-mentioned acetooxyacetic acid polymer was 170 ° C. as measured by DSC, The average molecular weight was 6,500 (in PMMA conversion) as a result of GPC measurement using hexafluoroisopropanol as a solvent, and the calculated polymerization degree n was 111. Further, the filtrate after filtering the Asetokishi acetate polymer, results were analyzed in the same manner as charged formaldehyde base, 6. contains glycolic acid of 5 mol 0/0, such as Other diglycolic acid An impurity peak was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

明 細 書
ァシロキシ酢酸重合体およびその製造方法
技術分野
[0001] 本発明は新規なァシロキシ酢酸重合体およびその製造方法に関する。
背景技術
[0002] ァシロキシ酢酸の中でも利用価値の高い、ァセトキシ酢酸は、農薬や表面処理剤 など様々な化学製品を製造する際に合成原料として使用されており、化学工業にお いて重要な化合物である。また、グリコール酸は、化学洗浄剤などの直接的用途の 他に、工業用中間体として、また、ポリマー原料および添加剤として重要な化合物で ある。これらの化合物の合成法としては次の方法が知られて!/、る。
[0003] ァセトキシ酢酸については、ベンゼン中でグリコール酸ェチルと酢酸とを少量の硫 酸と共に加熱し、生じた水と酢酸ェチルを除去して合成する方法 (例えば非特許文 献 1参照)、アルカリ金属ヨウ化物、金属酸化物(又は金属酢酸塩)、ヨウ素の三成分 共存下、酢酸と酸素ガスとを高温高圧下で反応させる方法 (例えば特許文献 1参照) 等がある。
[0004] 前者の方法は、原料のグリコール酸ェチルは刺激性で引火性のある物質であり、 取り扱いが容易でなぐまた、高価である。後者の方法では、三成分を共存させない と触媒能を発揮しな!ヽことから、触媒と生成物との分離操作が繁雑となることやコスト が高いこと、生成物であるァセトキシ酢酸の収率が低いこと(実施例におけるァセトキ シ酢酸の収率: 1重量%)等の問題がある。
[0005] 脂肪族アルデヒドと一酸ィ匕炭素とを触媒として SiO ZA1 Oモル比が少なくとも 10
2 2 3
0以上のモルデナイトを使用し、反応媒体中で反応させて、ヒドロキシカルボン酸誘 導体を得る方法が提案されており(例えば特許文献 2参照)、併せて、ヒドロキシカル ボン酸としてァセトキシ酢酸が合成できることが報告されている。ところが、この方法で ァセトキシ酢酸の高 、収率を得るには 170— 200°Cと!、う高 、温度が必要である。一 酸化炭素の様な毒性の高!ヽ気体を使用する場合、反応条件は穏和であることが好ま しい。更に、 SiO ZA1 Oのモル比の高いハイシリカタイプのモルデナイトは、通常 のモルデナイトと比べて非常に高価である。
[0006] また、反応媒体中にお!ヽて、硫酸根担持金属酸化物 (硫酸根担持ジルコニァ、硫 酸根担持チタ-ァ及び硫酸根担持酸化スズ)の存在下、ホルムアルデヒドに一酸ィ匕 炭素と酢酸および Zまたは無水酢酸を反応させ、ァセトキシ酢酸を合成する方法が 提案されているが、目的物を具体的に単離したことについは報告されていない(例え ば特許文献 3参照)。
[0007] グリコール酸およびそのエステル体にっ 、ては、触媒として、硫酸、燐酸、塩酸など の鉱酸を使用し、高圧下、ホルムアルデヒド、水および一酸化炭素を反応させて一段 でグリコール酸を製造する方法 (例えば特許文献 4参照)、ふつ化水素中、常圧下、 ホルムアルデヒド、水および一酸ィヒ炭素を反応させて一段でグリコール酸を製造する 方法 (例えば特許文献 5参照)等がある。これらの方法では反応液力 グリコール酸 を分離するために繁雑な操作を必要とすること等の問題点があり、工業的に優れた 方法であるとは言えなかった。
[0008] また、酸触媒存在下、蟻酸エステルとホルムアルデヒドと一酸化炭素との反応により 、反応系内に縮合 2量体が僅かに生成することが報告されている(例えば特許文献 6 ) oこの報告では、生成した 2量体はそのまま加水分解または加アルコール分解され ており、 2量体での単離はなされていない。
[0009] 非特許文献 1: Beilstein、 3、 233
特許文献 1:特開昭 56-63941号公報
特許文献 2:特開平 11—147042号公報
特許文献 3:特開 2001— 335538号公報
特許文献 4:特公昭 53— 44454号公報
特許文献 5 :特開昭 51— 13719号公報
特許文献 6:特開昭 56— 122321号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記実情に鑑みなされたものであり、その目的は、より簡易に、より穏和 な条件下にお 、て、ァシロキシ酢酸ゃグリコール酸およびそのエステル類およびダリ コリドを経済的に合成でき、かつ、生分解性ポリマーとしても使用可能なァシロキシ酢 酸重合体およびその製造方法を提供することにある。
課題を解決するための手段
[0011] 本発明者らは、鋭意研究を重ねた結果、加水分解することによりァシロキシ酢酸や グリコール酸を、加アルコール分解によりァシロキシ酢酸エステルゃグリコール酸エス テルを、また、加熱分解によりグリコリドを合成することが出来る新規なァシロキシ酢酸 重合体およびその製造方法を見出し本発明を完成するに至った。
[0012] すなわち、本発明の第 1の要旨は、以下の一般式(1)で表されることを特徴とする ァシロキシ酢酸重合体に存する。
[0013] [化 1]
R1 3CCO——、0CH2C0- /)——n OR2 (丄)
(一般式 (1 ) 中、 各 及び R 2は、 それぞれ独立に、 水素原子または分岐していても よい低級アルキル基、 nは 5以上の整数を表す。 )
[0014] そして、本発明の第 2の要旨は、酸触媒の存在下、ホルムアルデヒドィ匕合物と一酸 化炭素と有機カルボン酸またはその誘導体とを反応させてァシロキシ酢酸誘導体を 得、次いで、得られたァシロキシ酢酸誘導体を縮合することを特徴とする、前記の一 般式(1)で表されるァシロキシ酢酸重合体の製造方法に存する。
発明の効果
[0015] 本発明のァシロキシ酢酸重合体は、加水分解によりァシロキシ酢酸ゃグリコール酸 を、加アルコール分解によりァシロキシ酢酸エステルゃグリコール酸エステルを、また 、加熱分解によりグリコリドを生成することが出来、また、生分解性ポリマーとして使用 することも可會である。
発明を実施するための最良の形態
[0016] 以下、本発明を詳細に説明する。本発明のァシロキシ酢酸重合体は前記一般式( 1)によって表される。前記一般式(1)中、各 R1及び R2は、好ましくは水素原子または C1一 C6までの低級アルキル基、更に好ましくは、水素原子または C1一 C4までのァ ルキル基であり、特に好ましくは水素原子 (この場合の化合物はァセトキシ酢酸重合 体)である。また、重合度 nは、好ましくは 5以上、更に好ましくは 10以上、特に好まし くは 25以上である。 nが 5以上であれば反応系力もの単離がし易 、と 、う利点があり、 10以上であれば、更に、固化単離し易いため、ハンドリングが容易となる。重合度 n の上限は通常 10, 000である。
[0017] 本発明のァシロキシ酢酸重合体、例えばァセトキシ酢酸重合体は、アルカリで加水 分解後、高速液体クロマトグラフィーにて定量した値として、グリコール酸含量が通常 110— 130重量%、ァセトキシ含量が通常 0. 1— 15重量%である。また、その融点 は通常 120°C以上である。重量平均分子量は通常 500— 580, 000である。この重 合体中には、不純物としてジグリコール酸を含有している力 その量は、好ましくは 1 重量%以下、更に好ましくは 0. 1重量%以下である。
[0018] 本発明のァシロキシ酢酸重合体は、ァシロキシ酢酸誘導体を縮合して得られること が好ましい。ここで言うァシロキシ酢酸誘導体としては、ァシロキシ酢酸、グリコール酸 、ァシロキシ酢酸オリゴマー、グリコール酸オリゴマー、それらのエステル等が挙げら れる。
[0019] また、本発明のァシロキシ酢酸重合体は、酸触媒の存在下、ホルムアルデヒド化合 物と一酸化炭素と有機カルボン酸またはその誘導体とを反応させて得られた、上記 の様なァシロキシ酢酸誘導体を縮合して得られることが好ましい。特に、酸触媒存在 下、有機カルボン酸とアルデヒド化合物と一酸ィ匕炭素とを反応させ得られたァシロキ シ酢酸誘導体を単離することなぐそのまま縮合させ本発明のァシロキシ酢酸重合体 として単離することが好ま 、。以下の化学式は上記の一連の反応の一例である。
[0020] [化 2] 固体酸触媒
CH20 + CO + CH3COOH + H20
Figure imgf000007_0001
[0021] 上記の酸触媒としては、塩酸、臭化水素酸、ヨウ化水素酸、フッ化水素酸、過塩素 酸、硝酸、硫酸、へキサフルォロ燐酸、フルォロスルホン酸、クロロスルホン酸などの 鉱酸、トリフルォロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、 p—トルエンスルホン 酸、トリフルォロメタンスルホン酸などの有機酸、ケィタングステン酸、リンタングステン 酸、リンモリブデン酸などのへテロポリ酸、三フッ化硼素、五フッ化燐、五フッ化アンチ モン等のルイス酸、強酸性陽イオン交換榭脂、粘土鉱物、ゼォライト、固形化酸、無 機酸化物、無機塩、複合酸化物などの固体酸が挙げられる。
[0022] 強酸性陽イオン交換榭脂としては、官能基がスルホン基である、アンバーリスト 15 ( ロームアンドノヽース社製)、ダイヤイオン PK228 (三菱化学社製)等のスチレン-ジビ -ルベンゼン共重合体、ナフイオン (デュポン社製)等のテトラフルォロエチレン系重 合体などが挙げられる。また、粘土鉱物およびゼォライトとしては、モンモリロナイト、 カオリナイト、ベントナイト、ハロイサイト、スメクタイト、イライト、パーミキユライト、クロラ イト、セビオライト、ァタパルジャイト、ポリゴスカイト、モルデナイト等が挙げられるが、 特に、フッ化水素などの酸により処理したもの又は H型ゼオライトの様に交換可能な 金属イオンを水素イオンと交換したものが好ましい。固形化酸としては、ヘテロポリ酸 などの酸を活性炭、シリカ等の担体に担持させたものが挙げられる。最終生成物の単 離工程を考慮すれば、反応系で溶解しない、固体酸が好ましぐ特に強酸性陽ィォ ン交換樹脂 (スルホン酸型陽イオン交換榭脂)が好まし 、。
[0023] 本発明にお ヽては、上記のスルホン酸型陽イオン交換榭脂は、予め酸洗浄して使 用するのが好ましい。酸洗浄によりスルホン酸型陽イオン交換榭脂中に不純物として 含有される硫酸根を容易に除去することが出来、硫酸根の混入量を低減したァシロ キシ酢酸重合体を得ることが出来る。
[0024] 上記の酸洗浄は、例えば、原料として後述する有機カルボン酸を使用して行われる 。酸の使用量は、スルホン酸型陽イオン交換榭脂に対する重量比として、通常 1一 1 0倍、好ましくは 2— 5倍である。また、酸洗浄の温度は通常 10— 150°C、時間は 0. 5— 10時間である。酸洗浄は、通常、適当な容器中、攪拌下に行われる。斯かる酸 洗浄により、スルホン酸型陽イオン交換榭脂中に存在するフリーの硫酸根を除去する ことが出来、硫酸根の混入量が低減されたァシロキシ酢酸重合体を製造することが 出来る。
[0025] 原料のアルデヒド化合物としては、ホルムアルデヒド水溶液(ホルマリン)、ガス状ホ ルムアルデヒドの他、パラホルムアルデヒド、トリオキサン、メチラール等の、反応条件 下にお 、てホルムアルデヒドを生成する化合物であれば特に限定されな 、。これらの 化合物は 2種以上を併用してもよい。また、有機カルボン酸としては、酢酸、プロパン 酸、ブタン酸などの他、プロピオール酸などの不飽和結合を有するカルボン酸でもよ い。また、有機カルボン酸の誘導体としては、エステル体でも、無水物でもよい。また 、前述のァシロキシ酢酸誘導体やその縮合物である本発明のァシロキシ酢酸重合体 を製造した後においては、これらを有機カルボン酸の誘導体として使用することも可 能である。上記の有機カルボン酸は、反応に関与する他、反応溶媒としての効果もあ る。その使用量は、原料のホルムアルデヒドのモル数 (反応条件下においてホルムァ ルデヒドを生成する化合物の場合にはホルムアルデヒドに換算したモル数)に対し、 通常等モルから 100倍モル、好ましくは 1一 5倍モルである。有機カルボン酸の誘導 体の使用量も同様である。
[0026] 上記の有機カルボン酸以外に反応溶媒を添加してもよい。この際に使用する溶媒 種としては、極性、非極性に拘わらず使用できるが、一定の極性を持つ溶媒を使用 することにより、ァシロキシ酢酸ィ匕合物が高収率で得られる。反応媒体として、例えば 、クロ口ホルム、ジクロロメタン等のハロゲン化脂肪族炭化水素、クロ口ベンゼン等の ハロゲン化芳香族炭化水素、へキサン、シクロへキサン、メチルシクロへキサン等の 脂肪族炭化水素、ベンゼン等の芳香族炭化水素などが挙げられる。 [0027] 一酸ィ匕炭素は、高純度一酸化炭素のみならず、窒素、アルゴン等の不活性ガス、 水素および Zまたは二酸ィ匕炭素などが混入した一酸ィ匕炭素であっても使用すること が可能である。
[0028] 反応圧力は、通常 10— 200kgZcm2であり、好ましくは 50— lOOkgZcm2である。
反応温度は、通常 80— 200°C、好ましくは 100— 150°Cである。
[0029] 反応終了後、ろ過などにより反応系から除去された固体酸触媒は、次バッチの触媒 としてリサイクル使用することが出来る。これにより、触媒コストを低減することが可能 である。
[0030] また、ァシロキシ酢酸誘導体の縮合は加熱縮合であることが、高度な縮合を達成で きるので好ましい。反応温度は、通常 100— 250°C、好ましくは 140— 200°Cである。 反応圧力は、常圧でもよいが、通常 650— 10torr、好ましくは 200— lOtorrである。 縮合反応は副生する酢酸と水を減圧下に除去しながら行う。
[0031] 目的とするァシロキシ酢酸重合体は、縮合反応後、揮発分を除去することにより、 固体として単離することが出来、また、縮合反応液に水などの重合体が溶け難い溶 媒を添加後、冷却することにより析出させ、通常の方法、例えば、遠心分離などで単 離することが出来る。
[0032] 特に固体酸触媒を使用した前記の一連反応は、例えば、ホルマリン濃縮器、固体 酸触媒が収容された反応器、酢酸濃縮器、縮合反応器を含む製造設備を使用し、 次の様に半連続的に行うことが出来る。
[0033] 先ず、ホルマリン濃縮器にて濃縮されたホルムアルデヒドィ匕合物を有機カルボン酸 に溶解して連続的に反応器に供給し、ここに一酸化炭素を連続的供給して反応を行 う。そして、ァシロキシ酢酸誘導体を含む反応液のみを取り出して酢酸濃縮器に供給 し、ここで解圧して発生する一酸ィ匕炭素と濃縮によって回収される有機カルボン酸と をそれぞれ反応器に循環する。酢酸濃縮器から取り出したァシロキシ酢酸誘導体の 濃縮液を縮合反応器供給し、減圧下に加熱縮合を行ってァシロキシ酢酸重合体を 得る。次いで、縮合反応液を取り出し、減圧脱水して、ァシロキシ酢酸重合体を回収 する。
[0034] 上記の製造方法において、反応器内の水分濃度は、ホルマリン濃縮器における濃 縮程度、回収される有機カルボン酸中の水分濃度、その循環使用量などによって異 なるが、これらの条件を制御して一定の範囲に維持するのが好ましい。反応器内の 水分濃度としては、通常 0— 20重量%、好ましくは 1一 5重量%である。なお、反応器 内の水分濃度の制御を容易にするため、有機カルボン酸として無水酢酸などの酸無 水物を使用することも出来る。
[0035] 本発明の好ましい態様におけるァシロキシ酢酸重合体の硫酸根含量は、通常 300 Oppm以下、好ましくは 500ppm以下である。ァシロキシ酢酸重合体の硫酸根含量が 多い場合は、加水分解、加アルコール分解、加熱分解などにより得られる、ァシロキ シ酢酸、グリコール酸、グリコリド等の有用化合物中に不純物として硫酸根が含有さ れることになり、その用途が制限されるという欠点がある。
[0036] 本発明のァシロキシ酢酸重合体は、加水分解によりァシロキシ酢酸ゃグリコール酸 を、加アルコール分解によりァシロキシ酢酸エステルゃグリコール酸エステルを、また 、加熱分解によりグリコリドを合成することが出来る。例えば、グリコール酸エステルの 場合、上記の様な酸触媒の存在下、ァセトキシ酢酸重合体に例えば 10倍量のメタノ ールをカ卩えて反応させることにより容易にグリコール酸メチルエステルが得られる。
[0037] 本発明で得られたァシロキシ酢酸重合体の分析方法は次の通りである。
[0038] 融点は、セイコーインスツルメント社製「DSC6200型」の示差走査熱量計を使用し
、アルミパンに約 3gの試料を詰め、窒素 50mlZmin雰囲気下、 30— 260°Cまで 10
°CZminの速度で昇温し、吸熱ピークの温度を融点として求める。
[0039] 重量平均分子量は、へキサフルォロイソプロパノールを溶媒とした、 GPC分析装置 により測定する。測定条件は、カラム温度 40°C、流速 lmlZminとし、検量線の作成 には標準 PMMA (ポリメチルメタタリレート)を使用する。
実施例
[0040] 次に、本発明を実施例にて更に詳細に説明するが、本発明は、その要旨を超えな い限り、以下の実施例に限定されるものではない。
[0041] 実施例 1 :
オートクレーブに、酢酸 90. 9g、 80重量0 /0パラホルムアルデヒド 22. 5g、触媒とし て陽イオン交換榭脂 15g (ロームアンドノヽース社製「アンバーリスト 15dry」) 15gを入 れ、一酸化炭素でパージした後、 120°Cまで昇温し、 80kgZcm2まで一酸ィ匕炭素を 導入し、 1200rpmでの攪拌下、 3時間反応させた。
[0042] 反応終了後、一酸化炭素を解圧し、窒素置換後、反応溶液と触媒とを濾別し、濾 過した触媒を酢酸で洗浄した。この反応濾液と触媒洗浄液をそれぞれサンプリングし 、アルカリで加水分解し、高速液体クロマトグラフィー(島津製作所製「LC-10A」)を 使用して分析した結果、仕込みホルムアルデヒドベースのグリコール酸収率は 95モ ル%であった。また、この濾液をそのまま高速液体クロマトグラフィーで分析した結果 、仕込みホルムアルデヒドベースとして、グリコール酸は 8モル0 /0、ァセトキシ酢酸は 6 1モル%、ァセトキシ酢酸オリゴマーは 26モル%であった。
[0043] 攪拌機付三口フラスコに上記の濾液を入れ、 lOOtorrの減圧下、 140°Cまでオイル バスで加熱し、副生する酢酸と水を留去しながら、縮合反応を行った。内温 140°Cで 4時間反応後、徐冷し、内温が 90°Cになった時点で、純水 50gを添加し、更に、室温 まで冷却した。生成したァセトキシ酢酸重合体を濾過後、 60°Cで 24時間熱風乾燥し 、 34. 2gのァセトキシ酢酸重合体を得た。得られたァセトキシ酢酸重合体は、グリコ ール酸含量 111重量%、ァセトキシ含量 9. 8重量%(アルカリで加水分解後、高速 液体クロマトグラフィーにて定量)であり、不純物であるジグリコール酸の含量は 0. 1 重量%以下であった。仕込みホルムアルデヒドベースの収率は 83. 2モル%であつ た。
[0044] 上記のァセトキシ酢酸重合体の融点は、 DSCで測定した結果、 125°Cであり、重量 平均分子量は、へキサフルォロイソプロパノールを溶媒として使用した GPC測定の 結果、 4, 000 (PMMA換算)であり、この値力 計算される重合度 nは 68であった。 また、ァセトキシ酢酸重合体を濾過した後の濾液について、同様にして分析した結果 、仕込みホルムアルデヒドベースとして、 10. 5モル0 /0のグリコール酸が含まれており 、その他にジグリコール酸などの不純物のピークが認められた。
[0045] 実施例 2 :
実施例 1において、触媒として、実施例 1で使用した後に濾別したイオン交換榭脂 をそのまま wetの状態で使用し、酢酸は、実施例 1で縮合反応時に留去し回収した 酢酸溶液を、蒸留精製したものを使用した他は、実施例 1と同様に反応を行った。蒸 留精製品の水分は 0. 1重量% (カールフイシヤー法)であり、ガスクロマトグラフィーに よる分析では、酢酸以外の不純物のピークは特に認められな力つた。反応終了後、 触媒を濾過し、実施例 1と同様に分析した結果、仕込みホルムアルデヒドベースのグ リコール酸収率は 92モル%であり、触媒の複数回使用が可能であることを確認した。
[0046] 実施例 3 :
実施例 1において、イオン交換榭脂としてデュポン社製の「Nafion」を使用し、反応 圧力(一酸ィ匕炭素分圧)を 100kgZcm2、反応温度を 130°Cに変更した他は、実施 例 1と同様に反応を行った。反応終了後、反応混合物と触媒とを濾別した後、実施例 1と同様の分析を行った結果、仕込みホルムアルデヒドベースのグリコール酸収率は 95モル%であった。
[0047] 攪拌機付三口フラスコに上記の濾液を入れ、 50torrの減圧下、 200°Cまでオイル バスで加熱し、 4時間縮合反応を行った。反応後、反応液を冷却すると、そのまま固 化した。この固体を粉砕器で粉砕してァセトキシ酢酸重合体の粉体化製品を得た。こ の製品を分析した結果、グリコール酸含量 129重量%、ァセトキシ含量 1. 0重量%( アルカリで加水分解後、高速液体クロマトグラフィーにて定量)であり、不純物である ジグリコール酸の含量は 0. 6重量%であり、仕込みホルムアルデヒドベースの収率は 89モル%であった。また、融点は DSCで測定した結果 205°Cであり、重量平均分子 量はへキサフルォロイソプロパノールを溶媒として使用した GPC測定の結果、 11, 0 00 (PMMA換算)であり、この値から計算される重合度 nは 189であった。
[0048] 参考例 1 :
上記で得られたァセトキシ酢酸重合体を使用して、メチルエステル化反応を行った 。すなわち、ハステロィ製オートクレープ (容量 80ml)に、実施例 3で得たァセトキシ 酢酸重合体 lg、メタノール 10g、触媒として 96重量%硫酸 0. 26gを仕込み、マグネ ットスターラーバーを入れ、窒素で置換した。このオートクレーブを封缶し、 100°Cで 3 時間反応した後、冷却後、反応液を高速液体クロマトグラフィーで分析した結果、使 用したァセトキシ酢酸重合体中のグリコール酸基準として 92モル%の収率でダリコ一 ル酸メチルエステルが生成して 、た。
[0049] 実施例 4 : ガラス製容器に、陽イオン交換榭脂(ロームアンドノヽース社製「アンバーリスト 36wet 」) 150gを入れ、更に、洗浄溶媒として酢酸 750gを入れ、窒素置換した後、 100°C で 5時間攪拌した。室温まで冷却後、陽イオン交換樹脂と洗浄溶媒とを濾別し、再度 、酢酸 750gを使用し、上記と同一条件で陽イオン交換樹脂の洗浄を行った。加熱洗 浄に使用した酢酸溶媒をサンプリングし、マイクロウエーブで分解した後、イオンクロ マトグラフィー用キャリアと蒸発乾固し、希釈後にイオンクロマトグラフィーで溶媒中の 硫酸根濃度を測定した。 1回目の洗浄溶媒中の硫酸根濃度は 170ppm、 2回目の洗 浄溶媒中の硫酸根濃度は 55ppmであった。
[0050] 次いで、触媒として上記の酸洗浄後の陽イオン交換榭脂を使用し、実施例 1に準じ て反応を行った。すなわち、実施例 1において、ホルムアルデヒドとして 92重量%パ ラホルムアルデヒド 19. 6g、陽イオン交換榭脂触媒 30. 8g (乾燥基準で約 15g)を使 用し、反応圧力(一酸化炭素分圧)を 70KgZcm2に変更した他は、実施例 1と同様 に反応を行った。反応終了後、触媒を濾過し、実施例 1と同様に分析を行った結果、 仕込みホルムアルデヒドベースのグリコール酸収率は 92モル%であった。触媒を濾 別した反応液 (濾液)について、前記と同様に硫酸根濃度を測定した結果、 140ppm であった。また、この濾液をそのまま高速液体クロマトグラフィーで分析した結果、仕 込みホルムアルデヒドベースとして、グリコール酸は 6モル0 /0、ァセトキシ酢酸は 60モ ル0 /0、ァセトキシ酢酸オリゴマーは 26モル%であった。
[0051] 攪拌機付三口フラスコに上記の濾液を入れ、 lOOtorrの減圧下、 160°Cまでオイル バスで加熱し、副生する酢酸と水を留去しながら、縮合反応を行った。内温 160°Cで 4時間反応後、徐冷し、内温が 90°Cになった時点で、純水 50gを添加し、更に、室温 まで冷却した。生成したァセトキシ酢酸重合体を濾過後、 60°Cで 24時間熱風乾燥し 、 33. Ogのァセトキシ酢酸重合体を得た。得られたァセトキシ酢酸重合体は、グリコ ール酸含量 118重量%、ァセトキシ含量 9. 8重量%(アルカリで加水分解後、高速 液体クロマトグラフィーにて定量)であり、不純物であるジグリコール酸の含量は 0. 1 重量%以下であった。仕込みホルムアルデヒドベースの収率は 85. 4モル%であつ た。また、ァセトキシ酢酸重合体の硫酸根含量は 470ppmであった。
[0052] 上記のァセトキシ酢酸重合体の融点は、 DSCで測定した結果、 170°Cであり、重量 平均分子量は、へキサフルォロイソプロパノールを溶媒として使用した GPC測定の 結果、 6, 500 (PMMA換算)であり、この値力 計算される重合度 nは 111であった 。また、ァセトキシ酢酸重合体を濾過した後の濾液について、同様にして分析した結 果、仕込みホルムアルデヒドベースとして、 6. 5モル0 /0のグリコール酸が含まれており 、その他にジグリコール酸などの不純物のピークが認められた。

Claims

請求の範囲 [1] 以下の一般式(1)で表されることを特徴とするァシロキシ酢酸重合体, [化 1] R13CCO—— 、0CH2C0-^ /——n OR2 ( 1 )
(一般式 (1 ) 中、 各 R 1及び R 2は、 それぞれ独立に、 水素原子または分岐していても よい低級アルキル基、 nは 5以上の整数を表す。 )
[2] ァシロキシ酢酸誘導体を縮合して得られる請求項 1に記載のァシロキシ酢酸重合 体。
[3] 縮合が加熱縮合である請求項 2に記載のァシロキシ酢酸重合体。
[4] ァシロキシ酢酸誘導体が、酸触媒の存在下、ホルムアルデヒド化合物と一酸化炭素 と有機カルボン酸またはその誘導体とを反応させて得られるものである、請求項 2— 3 の何れかに記載のァシロキシ酢酸重合体。
[5] 酸触媒の存在下、ホルムアルデヒド化合物と一酸化炭素と有機カルボン酸またはそ の誘導体とを反応させてァシロキシ酢酸誘導体を得、次いで、得られたァシロキシ酢 酸誘導体を縮合することを特徴とする、前記の一般式(1)で表されるァシロキシ酢酸 重合体の製造方法。
[6] 酸酸触媒として予め酸洗浄したスルホン酸型陽イオン交換榭脂を使用する請求項 5に記載の製造方法。
PCT/JP2004/015852 2003-10-29 2004-10-26 アシロキシ酢酸重合体およびその製造方法 WO2005040246A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04817302A EP1679331A4 (en) 2003-10-29 2004-10-26 ACYLOXY ACETIC ACID POLYMER AND MANUFACTURING METHOD THEREFOR
US10/577,062 US20070110701A1 (en) 2003-10-29 2004-10-26 Acyloxyacetic acid polymer and process for producing the same
JP2005515004A JPWO2005040246A1 (ja) 2003-10-29 2004-10-26 アシロキシ酢酸重合体およびその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003369044 2003-10-29
JP2003-369044 2003-10-29
JP2004-064111 2004-03-08
JP2004064111 2004-03-08
JP2004125777 2004-04-21
JP2004-125777 2004-04-21

Publications (1)

Publication Number Publication Date
WO2005040246A1 true WO2005040246A1 (ja) 2005-05-06

Family

ID=34527601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015852 WO2005040246A1 (ja) 2003-10-29 2004-10-26 アシロキシ酢酸重合体およびその製造方法

Country Status (4)

Country Link
US (1) US20070110701A1 (ja)
EP (1) EP1679331A4 (ja)
JP (1) JPWO2005040246A1 (ja)
WO (1) WO2005040246A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829248B2 (en) 2010-08-18 2014-09-09 Eastman Chemical Company Method for recovery and recycle of ruthenium homogeneous catalysts
US8466328B2 (en) 2010-08-18 2013-06-18 Eastman Chemical Company Method for recovery and recycle of ruthenium homogeneous catalysts
US9227896B2 (en) 2010-08-18 2016-01-05 Eastman Chemical Company Process for the separation and purification of a mixed diol stream
US8785686B2 (en) 2010-09-23 2014-07-22 Eastman Chemical Company Process for recovering and recycling an acid catalyst
US8709376B2 (en) 2010-09-23 2014-04-29 Eastman Chemical Company Process for recovering and recycling an acid catalyst
US8765999B2 (en) 2012-03-27 2014-07-01 Eastman Chemical Company Hydrocarboxylation of formaldehyde in the presence of a higher order carboxylic acid and a homogeneous catalyst
US8829234B2 (en) 2012-03-27 2014-09-09 Eastman Chemical Company Hydrocarboxylation of formaldehyde in the presence of a higher order carboxylic acid and heterogeneous catalyst
US8703999B2 (en) 2012-03-27 2014-04-22 Eastman Chemical Company Hydrocarboxylation of methylene dipropionate in the presence of propionic acid and a heterogeneous catalyst
US8927766B2 (en) 2012-03-27 2015-01-06 Eastman Chemical Company Hydrocarboxylation of methylene dipropionate in the presence of a propionic acid and a homogeneous catalyst
US9040748B2 (en) 2012-06-08 2015-05-26 Eastman Chemical Company Hydrocarboxylation of aqueous formaldehyde using a dehydrating recycle stream to decrease water concentration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679638A (en) * 1979-12-05 1981-06-30 Mitsubishi Chem Ind Ltd Preparation of acyloxyacetic acid
JPS56157422A (en) * 1980-05-07 1981-12-04 Mitsui Toatsu Chem Inc Acetylated polyglycolic acid and preparation thereof
JPS6470525A (en) * 1977-07-12 1989-03-16 Ici Plc Block or graft copolymer and surfactant blend and water/fuel oil type emulsion
WO1997031049A1 (fr) * 1996-02-23 1997-08-28 Kyowa Hakko Kogyo Co., Ltd. Procede d'elaboration d'acide polyhydroxycarboxylique
JPH11130847A (ja) * 1997-10-28 1999-05-18 Kureha Chem Ind Co Ltd ポリヒドロキシカルボン酸の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801627A (en) * 1972-08-21 1974-04-02 Chevron Res Alpha-acyloxyacetic acid production
US3751453A (en) * 1972-08-21 1973-08-07 Chevron Res Alpha-acyloxyacetic acid production
US3927078A (en) * 1972-08-21 1975-12-16 Chevron Res Methylene and oxymethylene bis-ester production
JPS5212686B2 (ja) * 1973-05-22 1977-04-08
US3948977A (en) * 1974-12-13 1976-04-06 Chevron Research Company Alkoxy acid or ester preparation
US5233096A (en) * 1990-11-16 1993-08-03 Rohm And Haas Company Acidic catalyst for condensation reactions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470525A (en) * 1977-07-12 1989-03-16 Ici Plc Block or graft copolymer and surfactant blend and water/fuel oil type emulsion
JPS5679638A (en) * 1979-12-05 1981-06-30 Mitsubishi Chem Ind Ltd Preparation of acyloxyacetic acid
JPS56157422A (en) * 1980-05-07 1981-12-04 Mitsui Toatsu Chem Inc Acetylated polyglycolic acid and preparation thereof
WO1997031049A1 (fr) * 1996-02-23 1997-08-28 Kyowa Hakko Kogyo Co., Ltd. Procede d'elaboration d'acide polyhydroxycarboxylique
JPH11130847A (ja) * 1997-10-28 1999-05-18 Kureha Chem Ind Co Ltd ポリヒドロキシカルボン酸の製造方法

Also Published As

Publication number Publication date
EP1679331A1 (en) 2006-07-12
EP1679331A4 (en) 2007-01-17
JPWO2005040246A1 (ja) 2007-03-08
US20070110701A1 (en) 2007-05-17

Similar Documents

Publication Publication Date Title
TW575597B (en) Process for producing polytrimethylene terephthalate
WO2005040246A1 (ja) アシロキシ酢酸重合体およびその製造方法
AU2545800A (en) Purification of recycled 1,3-propanediol during polyester preparation
KR101292329B1 (ko) 알킬락테이트의 제조방법 및 이를 이용한 락타미드의 제조방법
JPH10109983A (ja) 環状エステルの製造方法および精製方法
JPS5929180B2 (ja) グリコ−ル酸の製造方法
US6384241B2 (en) Purified salt of β-hydroxyethoxy acetic acid, purified 2-p-dioxanone, and manufacturing method therefor
KR20080077186A (ko) 중합성 히드록시디아만틸에스테르 화합물의 제조 방법
JP2007231002A (ja) 重合性ジアマンチルエステル化合物の製造方法
JP3953133B2 (ja) α−ヒドロキシアルキルアクリル酸類の安定化方法
JPH0380145B2 (ja)
JP3726315B2 (ja) ケトン酸エステルの精製法
JP4598917B2 (ja) ラクトンの製造方法
US6362346B1 (en) Process for the preparation of α-methylene-γ-butyrolactone and α-acetoxymethyl-γ-butyrolactone
JP2000319227A (ja) 2−ヒドロキシイソ酪酸エステルの製法
JPH0413643A (ja) クロロアセタール類の製造方法
JPH0551350A (ja) エチレングリコール−ジ−p−ヒドロキシ安息香酸エステル類の製造方法
JP3880175B2 (ja) 乳酸の精製方法
JPH0374381A (ja) 1,3―ジオキソランの製造方法
JPH1059958A (ja) テトラメチルグリコリドの製造方法
JPH03275644A (ja) α―ヒドロキシイソ酪酸の製造方法
JP2848709B2 (ja) 酢酸3−エトキシブチルエステル化合物とその製造方法
JPH11255707A (ja) トリメチルハイドロキノン類の製造法
JP2002504919A (ja) カルボン酸の製造方法
JPH10218834A (ja) α−ヒドロキシアルキルアクリル酸類の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031690.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005515004

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004817302

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004817302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007110701

Country of ref document: US

Ref document number: 10577062

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10577062

Country of ref document: US