WO2005034323A1 - 圧電トランス駆動装置および圧電トランス駆動方法 - Google Patents

圧電トランス駆動装置および圧電トランス駆動方法 Download PDF

Info

Publication number
WO2005034323A1
WO2005034323A1 PCT/JP2004/014742 JP2004014742W WO2005034323A1 WO 2005034323 A1 WO2005034323 A1 WO 2005034323A1 JP 2004014742 W JP2004014742 W JP 2004014742W WO 2005034323 A1 WO2005034323 A1 WO 2005034323A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric transformer
electrode
primary
piezoelectric
secondary electrode
Prior art date
Application number
PCT/JP2004/014742
Other languages
English (en)
French (fr)
Inventor
Yasuhide Matsuo
Akira Mizutani
Original Assignee
Tamura Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corporation filed Critical Tamura Corporation
Priority to DE200411001871 priority Critical patent/DE112004001871T9/de
Priority to US10/572,735 priority patent/US7598655B2/en
Publication of WO2005034323A1 publication Critical patent/WO2005034323A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Drive or control circuitry or methods for piezoelectric or electrostrictive devices not otherwise provided for
    • H10N30/804Drive or control circuitry or methods for piezoelectric or electrostrictive devices not otherwise provided for for piezoelectric transformers

Definitions

  • the present invention relates to a piezoelectric transformer driving device and a piezoelectric transformer driving method for lighting a cold-cathode tube used as a backlight light source for illuminating a liquid crystal used in a computer or the like from behind.
  • a so-called Rosen-type piezoelectric transformer of this type is one in which primary and secondary electrodes are provided on a piezoelectric ceramic such as PZT, and each is polarized by a high electric field.
  • a voltage having a natural resonance frequency determined in the length direction is applied to the primary side, the element vibrates due to the inverse piezoelectric effect, and a voltage corresponding to the vibration can be taken out by the piezoelectric effect.
  • a piezoelectric body can be obtained by applying a high electric field in a certain direction of ceramics to align crystal axes.
  • a tension is applied to the piezoelectric body, a positive charge is generated in the positive direction of the coordinate axis with respect to the force (the sign of the piezoelectric is positive), and a negative charge is generated (the sign of the piezoelectric is negative).
  • FIG. 4 is an explanatory diagram relating to the polarization of a secondary Rosen-type piezoelectric transformer.
  • the polarization direction (the arrow indicates the polarization direction) of the secondary or primary side of a piezoelectric transformer made of the same material is reversed, when a voltage at the resonance frequency is applied to the primary side, the potentials of different signs are respectively increased. Occurs on the next side.
  • the polarization directions of the primary electrodes 2a and 2b of the piezoelectric transformer 2 are obtained by reversing the polarization directions of the primary electrodes la and lb of the piezoelectric transformer 1.
  • a voltage having a resonance frequency is applied to the primary electrodes la and lb, and the same voltage is applied to the primary electrodes 2a and 2b, potentials having different signs are generated at the secondary electrodes lc and 2c, respectively.
  • FIG. 5 is an explanatory diagram of a driving method of a piezoelectric transformer in a conventional example (Patent Document 1).
  • the two piezoelectric transformers used are such that the polarization directions of the primary electrodes la and lb of the piezoelectric transformer 1 and the primary electrodes 2a and 2b of the piezoelectric transformer 2 are opposite to each other, and the secondary electrodes 1 and 2 of the piezoelectric transformer 1 are different.
  • the polarization directions of the secondary electrodes 2c of the piezoelectric transformer 2 and c are the same.
  • the cold cathode tube L is connected between the secondary electrode lc of the piezoelectric transformer 1 and the secondary electrode 2c of the piezoelectric transformer 2!
  • One end from the AC power supply E is connected to the primary electrode la of the piezoelectric transformer 1 and the primary electrode 2a of the piezoelectric transformer 2, and the other end of the AC power supply E is connected to the primary electrode lb of the piezoelectric transformer 1 and the primary electrode 2b of the piezoelectric transformer 2. It is connected to the. That is, the piezoelectric transformer 1 and the piezoelectric transformer 2 are connected in parallel to the AC power supply E.
  • FIG. 6 (a) is a wiring diagram when measuring the transmission characteristics of FIG. 6 (a).
  • FIG. 7 (a) shows the transmission characteristics when one piezoelectric transformer is used
  • FIG. 7 (b) shows the wiring diagram for the measurement.
  • the range of use from the resonance point to the high frequency is the use area.
  • the present invention has been proposed in view of the above, and it is an object of the present invention that, even if there is variation in each piezoelectric transformer, there is no unnecessary resonance point near the frequency used, that is, An object of the present invention is to provide a piezoelectric transformer driving device and a piezoelectric transformer driving method whose output is stable with respect to the number.
  • the present invention provides a first piezoelectric transformer that includes a primary electrode and a secondary electrode, and obtains an output from the secondary electrode by applying an AC power to the primary electrode.
  • a piezoelectric transformer that includes a primary electrode and a secondary electrode, and also obtains an output of a secondary electrode by applying an AC power supply to the primary electrode.
  • a second piezoelectric transformer that outputs a voltage having an inverted phase. The primary electrode of the first piezoelectric transformer and the primary electrode of the second piezoelectric transformer are connected in series, and AC power is applied.
  • a piezoelectric transformer driving device characterized in that a load is connected between a secondary electrode of a piezoelectric transformer and a secondary electrode of a second piezoelectric transformer.
  • the present invention provides a first piezoelectric transformer that includes a primary electrode and a secondary electrode, and obtains an output from a secondary electrode by applying an AC power to the primary electrode; and a primary electrode and a secondary electrode.
  • a piezoelectric transformer that obtains an output from a secondary electrode by applying an AC power source to the primary electrode, wherein the polarization direction of the primary electrode is mutually opposite to the polarization direction of the first piezoelectric transformer.
  • a second piezoelectric transformer having the same polarization direction on the secondary electrode side as the polarization direction of the first piezoelectric transformer is provided, and the primary electrode and the second piezoelectric transformer of the first piezoelectric transformer are provided.
  • the primary electrode of the piezoelectric transformer is connected in series to supply AC power, and a load is connected between the secondary electrode of the first piezoelectric transformer and the secondary electrode of the second piezoelectric transformer. This is a piezoelectric transformer driving device.
  • the present invention provides a first piezoelectric transformer that includes a primary electrode and a secondary electrode, and obtains an output from a secondary electrode cap by applying an AC power to the primary electrode; and a primary electrode and a secondary electrode.
  • a piezoelectric transformer that obtains an output from a secondary electrode by applying an AC power source to the primary electrode, wherein the polarization direction of the primary electrode is mutually opposite to the polarization direction of the first piezoelectric transformer.
  • a third piezoelectric transformer whose polarization direction on the secondary electrode side is opposite to the polarization direction of the first piezoelectric transformer, wherein the third piezoelectric transformer has a primary electrode and a third piezoelectric transformer.
  • AC power is applied by connecting the primary electrode in series and a load is connected between the secondary electrode of the first piezoelectric transformer and the secondary electrode of the third piezoelectric transformer. This is a piezoelectric transformer driving device.
  • the primary electrodes of the first piezoelectric transformer and the primary electrodes of the second piezoelectric transformer have opposite polarization directions
  • the secondary electrodes of the first piezoelectric transformer and the second piezoelectric transformer The secondary electrodes have the same polarization direction and connect the primary electrode of the first piezoelectric transformer and the primary electrode of the second piezoelectric transformer to connect the first piezoelectric transformer and the second piezoelectric transformer to the AC power supply.
  • a transformer is connected in series, a load is connected between the secondary electrode of the first piezoelectric transformer and the secondary electrode of the second piezoelectric transformer, and a load is connected between the primary electrodes of the first and second piezoelectric transformers connected in series.
  • a piezoelectric transformer driving method characterized by applying an AC voltage to drive the piezoelectric transformer.
  • the primary electrode of the first piezoelectric transformer and the primary electrode of the third piezoelectric transformer have the same polarization direction, and the secondary electrode of the first piezoelectric transformer and the third piezoelectric transformer The polarization directions of the secondary electrodes are opposite to each other, and the primary electrode of the first piezoelectric transformer and the primary electrode of the third piezoelectric transformer are connected to connect the first piezoelectric transformer and the third piezoelectric transformer to the AC power supply.
  • a transformer is connected in series, a load is connected between the secondary electrode of the first piezoelectric transformer and the secondary electrode of the third piezoelectric transformer, and a load is connected between the primary electrodes of the first and third piezoelectric transformers connected in series.
  • a piezoelectric transformer driving method characterized by applying an AC voltage to drive the piezoelectric transformer.
  • each piezoelectric transformer that generates a voltage having a different sign on the secondary electrode is connected in series to an AC power supply. Since a load is connected to the secondary electrode and an AC voltage is applied between the primary electrodes of each piezoelectric transformer connected in series, it is possible to reduce the number of resonance points to one even if the vibration of each piezoelectric transformer varies. And a large voltage can be generated between the secondary electrodes. Since there is no ground point and the load is balanced to the ground, leakage current can be reduced.
  • the present invention despite obtaining a large output by the paired piezoelectric transformer, it does not have an unnecessary resonance point near the frequency to be used, does not have a ground point, and is balanced with the ground. It is a load and has low leakage current.
  • FIG. 1 is an explanatory diagram of a piezoelectric transformer driving device and a piezoelectric transformer driving method according to a first embodiment of the present invention.
  • 1 is the piezoelectric transformer
  • la and lb are the primary electrodes of the piezoelectric transformer
  • lc is the secondary electrode of the piezoelectric transformer
  • 2 is the piezoelectric transformer
  • 2a and 2b are the primary electrodes of the piezoelectric transformer 2
  • 2c is the piezoelectric transformer.
  • 2 is the secondary electrode
  • E is the AC power supply
  • L is the cold cathode tube of the load.
  • the cold cathode tube L is connected between the secondary electrode lc of the piezoelectric transformer 1 and the secondary electrode 2c of the piezoelectric transformer 2, and the primary electrode lb of the piezoelectric transformer 1 and the primary electrode 2a of the piezoelectric transformer 2 are directly connected.
  • the piezoelectric transformer 1 and the piezoelectric transformer 2 are connected in series to the AC power supply E. One end from the AC power supply E is connected to the primary electrode la of the piezoelectric transformer 1, and the other end is connected to the primary electrode 2b of the piezoelectric transformer 2.
  • the AC voltage of the AC power source E is applied as an input voltage between the primary electrodes la and 2b of the piezoelectric transformers 1 and 2 that connect the primary electrodes lb and 2a. Since voltages with different signs are generated at the secondary electrode lc and the secondary electrode 2c, a large voltage which is the sum of the voltage generated at the secondary electrode lc and the voltage generated at the secondary electrode 2c is applied to the cold cathode fluorescent lamp L. Will be done. Also, it is not necessary to limit the piezoelectric transformer used to a Rosen type piezoelectric transformer or a laminated type / single plate type! / ⁇ .
  • FIG. 2 is an explanatory diagram of a piezoelectric transformer driving device and a piezoelectric transformer driving method according to a second embodiment of the present invention.
  • 3 is a piezoelectric transformer
  • 3a and 3b are primary electrodes of the piezoelectric transformer
  • 3c is a secondary electrode of the piezoelectric transformer 3.
  • the components denoted by the same reference numerals as those in FIG. 1 indicate the same components, and the description thereof will be omitted.
  • the second embodiment is obtained by replacing the piezoelectric transformer 2 in the first embodiment with a piezoelectric transformer 3, and has the same effect as the first embodiment. That is, the AC voltage from the AC power supply E is applied as an input voltage between the primary electrodes la and 3b of the piezoelectric transformers 1 and 3 that connect the primary electrodes lb and 3a. Since voltages having different signs are generated at the secondary electrode lc and the secondary electrode 3c, a large voltage which is the sum of the voltage generated at the secondary electrode lc and the voltage generated at the secondary electrode 3c is applied to the cold cathode fluorescent lamp L. Pressure will be applied.
  • FIG. 3 (a) is a diagram showing transmission characteristics of the piezoelectric transformers connected in series in the embodiment of the present invention.
  • FIG. 3 (b) is a wiring diagram when measuring the transmission characteristics of FIG. 3 (a).
  • the vertical axis in the transmission characteristic graph of the piezoelectric transformer in FIG. 3 (a) is the step-up ratio (output voltage) of the piezoelectric transformer connected in series, and the horizontal axis is the frequency.
  • the transmission characteristics show that the resonance point is one fO, even if the piezoelectric transformers vary.
  • the piezoelectric transformer driving device and the piezoelectric transformer driving method according to the present invention are useful for lighting a cold cathode tube, and particularly for a backlight that illuminates a liquid crystal used in a personal computer or the like from the back side.
  • the lamp is suitable for lighting the cold-cathode tube.
  • FIG. 1 is an explanatory diagram of a piezoelectric transformer driving device and a piezoelectric transformer driving method according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a piezoelectric transformer driving device and a piezoelectric transformer driving method according to a second embodiment of the present invention.
  • FIG. 3 (a) is a diagram illustrating transmission characteristics of a piezoelectric transformer according to one embodiment of the present invention
  • FIG. 3 (b) is a wiring diagram of the piezoelectric transformer according to one embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a piezoelectric transformer.
  • FIG. 5 is a diagram illustrating a driving method of a piezoelectric transformer in a conventional example.
  • FIG. 6 (a) is a diagram showing transmission characteristics of a piezoelectric transformer in a conventional example
  • FIG. 6 (b) is a wiring diagram of the piezoelectric transformer in a conventional example.
  • FIG. 7 (a) is a diagram showing transmission characteristics of a general piezoelectric transformer, and (b) is a wiring diagram of a general piezoelectric transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

 本発明は、各圧電トランスにばらつきがあっても、使用する周波数近傍に不要な共振ポイントがでない、すなわち周波数に対して出力が安定している圧電トランス駆動装置および圧電トランス駆動方法を提供する。このために、本発明は、異符号の電位が二次側に発生する圧電トランスをペアーとする圧電トランス(1)の一次電極(1b)と圧電トランス(2)の一次電極(2a)とを接続して圧電トランス(1)と圧電トランス(2)を交流電源に対して直列接続し、一次電極(1a,2b)間に入力電圧を印加し、各出力を負荷に供給することによって、各圧電トランスの振動にばらつきがあっても共振ポイントが1個になるようにしている。

Description

明 細 書
圧電トランス駆動装置および圧電トランス駆動方法
技術分野
[0001] 本発明は、ノ ソコン等に用いられている液晶を裏側から照らすバックライト用の光源 に使用される冷陰極管点灯用の圧電トランス駆動装置および圧電トランス駆動方法 に関する。
背景技術
[0002] いわゆるこの種のローゼン型圧電トランスは、 PZTなどの圧電セラミックスに一次、 二次の電極を設け、それぞれ高電界で分極したものである。一次側に長さ方向で決 まる固有共振周波数の電圧を印加すると、逆圧電効果により素子が振動し、圧電効 果により振動に見合っただけの電圧が二次側力 取出すことが出来る。
[0003] ところで、圧電体はセラミックスのある方向に高電界をかけて結晶軸を揃えることで 得ることができる。そして、圧電体には、張力を加えたときにその力に対する座標軸の 正の向きに正の電荷を発生させる(圧電の符号が正)ものと負の電荷を発生させる( 圧電の符号が負)ものがある。
[0004] 第 4図は二次ローゼン型圧電トランスの分極に関する説明図である。同じ材料でで きた圧電トランスの二次側あるいは一次側の分極方向(矢印は分極方向を示す)を反 転させた場合、一次側に共振周波数の電圧を印加すると、それぞれ異符号の電位 が二次側に発生する。
[0005] 図において、圧電トランス 2の一次電極 2a, 2bの分極方向は圧電トランス 1の 1次電 極 la, lbの分極方向を反転させたものである。一次電極 la, lbに共振周波数の電 圧を印加し、同じ電圧を一次電極 2a, 2bに印加するとそれぞれ異符号の電位が二 次電極 lcと 2cに発生する。
[0006] 圧電トランス 3の二次電極 3cの分極方向は圧電トランス 1の二次電極 lcの分極方 向を反転させたものである。一次電極 la, lbに共振周波数の電圧を印加し、同じ電 圧を一次電極 3a, 3bに印加すると、それぞれ異符号の電位が二次電極 lcと 3cに発 生する。 [0007] 第 5図は従来例 (特許文献 1)における圧電トランスの駆動方法の説明図である。使 用している 2つの圧電トランスは、圧電トランス 1の一次電極 la, lbと圧電トランス 2の 一次電極 2a, 2bとは分極方向が互いに逆であり、かつ、圧電トランス 1の二次電極 1 cと圧電トランス 2との二次電極 2cは分極方向が互いに同じである。
[0008] 冷陰極管 Lは圧電トランス 1の二次電極 lcと圧電トランス 2の二次電極 2c間に接続 されて!/、る。交流電源 Eからの一端は圧電トランス 1の一次電極 laと圧電トランス 2の 一次電極 2aに接続され、交流電源 E力 の他端は圧電トランス 1の一次電極 lbと圧 電トランス 2の一次電極 2bに接続されている。すなはち、交流電源 Eに対して圧電トラ ンス 1と圧電トランス 2は並列接続である。
[0009] 圧電トランス 1の 1次電極 la, lbの分極方向と圧電トランス 2の一次電極 2a, 2bとの 分極方向は反対であるので、一次電極 la, lbおよび一次電極 2a, 2bに共振周波数 の電圧を印加すると、二次電極 lcと 2c間に接続されている冷陰極管 Lには大きな電 圧が印加される。たとえば、圧電トランス 1の二次電極 lcからプラスの電圧が出力され ると、圧電トランス 2の二次電極 2cからは逆極性のマイナスの電圧が出力される。 特許文献 1:特開 2000— 307165
[0010] し力しながら、先に述べた従来例における並列接続した圧電トランスの駆動方法で は、第 6図 (a)に示す伝送特性 (周波数に対する昇圧比'出力電圧特性)が示す通り 、共振ポイントが複数個(第 6図では、共振周波数 fl, f2)できてしまう。なお、第 6図( b)は、第 6図(a)の伝送特性測定の際の配線図である。共振ポイントが複数発生する のは、主にそれぞれの圧電トランスにばらつきがあるためである。なお、参考のために 、圧電トランスを 1つ用いた場合の、伝送特性を第 7図(a)に示し、その測定の際の配 線図を第 7図 (b)に示す。第 7図では、共振ポイントから高い周波数の範囲が使用領 域である。第 6図(a)に示す複数個の共振ポイントを解消するためには、特性の揃つ た圧電トランスをペア一とする必要がある。しかし、同じ材料を使用し、生産工程を管 理しても、圧電トランスのすべての特性を揃えることは容易なことではない、という課 題があった。
[0011] 本発明は上記のことを鑑み提案されたものであり、その目的は各圧電トランスにばら つきがあっても、使用する周波数近傍に不要な共振ポイントがでない、すなわち周波 数に対して出力が安定している圧電トランス駆動装置および圧電トランス駆動方法を 提供することにある。
発明の開示
[0012] 前記課題を解決するために、本発明は、一次電極と二次電極とを具備し、一次電 極に交流電源を印加することにより二次電極から出力を得る第 1の圧電トランスと、一 次電極と二次電極とを具備し、一次電極に交流電源を印加することにより二次電極 力も出力を得る圧電トランスであって、第 1の圧電トランスが出力する電圧の位相に対 して反転した位相の電圧を出力する第 2の圧電トランスとを備え、第 1の圧電トランス の一次電極と第 2の圧電トランスの一次電極とを直列に接続して交流電源を加え、第 1の圧電トランスの二次電極と第 2の圧電トランスの二次電極との間に負荷を接続す ることを特徴とする圧電トランス駆動装置である。
[0013] 本発明は、一次電極と二次電極とを具備し、一次電極に交流電源を印加すること により二次電極カゝら出力を得る第 1の圧電トランスと、一次電極と二次電極とを具備し 、一次電極に交流電源を印加することにより二次電極から出力を得る圧電トランスで あって、この一次電極側の分極方向が第 1の圧電トランスの一次電極側の分極方向 と互いに逆であり、この二次電極側の分極方向が第 1の圧電トランスの分極方向と互 いに同じである第 2の圧電トランスとを備え、第 1の圧電トランスの一次電極と第 2の圧 電トランスの一次電極とを直列に接続して交流電源をカ卩え、第 1の圧電トランスの二 次電極と第 2の圧電トランスの二次電極との間に負荷を接続することを特徴とする圧 電トランス駆動装置である。
[0014] 本発明は、一次電極と二次電極とを具備し、一次電極に交流電源を印加すること により二次電極カゝら出力を得る第 1の圧電トランスと、一次電極と二次電極とを具備し 、一次電極に交流電源を印加することにより二次電極から出力を得る圧電トランスで あって、この一次電極側の分極方向が第 1の圧電トランスの一次電極側の分極方向 と互いに同じであり、この二次電極側の分極方向が第 1の圧電トランスの分極方向と 互いに逆である第 3の圧電トランスとを備え、第 1の圧電トランスの一次電極と第 3の 圧電トランスの一次電極とを直列に接続して交流電源を加え、第 1の圧電トランスの 二次電極と第 3の圧電トランスの二次電極との間に負荷を接続することを特徴とする 圧電トランス駆動装置である。
[0015] 本発明は、第 1の圧電トランスの一次電極と第 2の圧電トランスの一次電極は分極 方向が互いに逆であり、かつ、第 1の圧電トランスの二次電極と第 2の圧電トランスの 二次電極は分極方向が互いに同じであり、第 1の圧電トランスの一次電極と第 2の圧 電トランスの一次電極を接続して交流電源に対して第 1の圧電トランスと第 2の圧電ト ランスを直列接続とし、第 1の圧電トランスの二次電極と第 2の圧電トランスの二次電 極間に負荷を接続し、直列接続した第 1および第 2の圧電トランスの一次電極間に交 流電圧を印加して圧電トランスを駆動させることを特徴とする圧電トランス駆動方法で める。
[0016] 本発明は、第 1の圧電トランスの一次電極と第 3の圧電トランスの一次電極は分極 方向が互いに同じであり、かつ、第 1の圧電トランスの二次電極と第 3の圧電トランス の二次電極は分極方向が互いに逆であり、第 1の圧電トランスの一次電極と第 3の圧 電トランスの一次電極を接続して交流電源に対して第 1の圧電トランスと第 3の圧電ト ランスを直列接続とし、第 1の圧電トランスの二次電極と第 3の圧電トランスの二次電 極間に負荷を接続し、直列接続した第 1および第 3の圧電トランスの一次電極間に交 流電圧を印加して圧電トランスを駆動させることを特徴とする圧電トランス駆動方法で める。
[0017] 以上のように本発明により、一次電極に共振周波数を印加すると二次電極にそれ ぞれ異符号の電圧が発生する各圧電トランスを交流電源に対して直列接続とし、各 圧電トランスの二次電極に負荷を接続し、直列接続した各圧電トランスの一次電極間 に交流電圧を印加しているので、各圧電トランスの振動にばらつきがあっても共振ポ イントを 1個にすることができ、かつ、二次電極間に大きな電圧を発生させることがで きる。なお、接地点を持たず、大地に対して平衡した負荷のため、漏れ電流を少なく することができる。
[0018] 本発明により、一次電極側の極性と二次電極側の極性を前記の構成に対してそれ ぞれ逆にしたときでも、前記の構成と同じように、各圧電トランスの振動にばらつきが あっても共振ポイントを 1個にすることができ、かつ、二次電極間に大きな電圧を発生 させることがでさる。 発明を実施するための最良の形態
[0019] 本発明は、ペア一の圧電トランスにより大出力を得ているにもかかわらず、使用する 周波数近傍に不要な共振ポイントを持たず、接地点を持たず、大地に対して平衡し た負荷であり、漏れ電流の少な!ヽ圧電トランスの駆動方法である。
[0020] 第 1図は本発明の第 1実施例における圧電トランス駆動装置および圧電トランス駆 動方法の説明図である。図において、 1は圧電トランス、 la, lbは圧電トランス 1の一 次電極、 lcは圧電トランス 1の二次電極、 2は圧電トランス、 2a, 2bは圧電トランス 2の 一次電極、 2cは圧電トランス 2の二次電極、 Eは交流電源、 Lは負荷の冷陰極管であ る。
[0021] 冷陰極管 Lは圧電トランス 1の二次電極 lcと圧電トランス 2の二次電極 2c間に接続 され、圧電トランス 1の一次電極 lbと圧電トランス 2の一次電極 2aは直接接続されて、 圧電トランス 1と圧電トランス 2は交流電源 Eに対して直列接続となっている。交流電 源 Eからの一端は圧電トランス 1の一次電極 laに接続され、他端は圧電トランス 2の 一次電極 2bに接続されて!ヽる。
[0022] 交流電源 E力ゝらの交流電圧は入力電圧として、一次電極 lbと 2aを接続した圧電ト ランス 1, 2の一次電極 laと 2b間に印加される。二次電極 lcと二次電極 2cには符号 の異なる電圧が発生するので、冷陰極管 Lには二次電極 lcの発生電圧と二次電極 2 cの発生電圧の和である大きな電圧が印加されることになる。し力も、使用する圧電ト ランスはローゼン型圧電トランスあるいは積層型 ·単板型に限定する必要はな!/ヽ。
[0023] 第 2図は本発明の第 2実施例における圧電トランス駆動装置および圧電トランス駆 動方法の説明図である。図において、 3は圧電トランス、 3a, 3bは圧電トランス 3の一 次電極、 3cは圧電トランス 3の二次電極である。なお、第 1図と同一符号を付したもの はそれぞれ同一の要素を示しており、説明を省略する。
[0024] 実施例 2は、実施例 1における圧電トランス 2を圧電トランス 3に置き換えたものであ り、実施例 1と同様な効果を有している。すなはち、交流電源 Eからの交流電圧は入 力電圧として、一次電極 lbと 3aを接続した圧電トランス 1, 3の一次電極 laと 3b間に 印加される。二次電極 lcと二次電極 3cには符号の異なる電圧が発生するので、冷 陰極管 Lには二次電極 lcの発生電圧と二次電極 3cの発生電圧の和である大きな電 圧が印加されることになる。
[0025] 第 3図(a)は、本発明の実施例における、直列接続した圧電トランスの伝送特性を 示す図である。なお、第 3図 (b)は、第 3図(a)の伝送特性測定の際の配線図である。 第 3図(a)の場合、二つの圧電トランスの各共振周波数における入力インピーダンス にばらつきがあっても、インピーダンス値に反比例した交流電圧が各圧電トランスに 印加されることになり、出力電圧は補完されることになる。第 3図(a)の圧電トランスの 伝送特性グラフにおける縦軸は、直列接続した圧電トランスの昇圧比(出力電圧)で あり、横軸は周波数である。伝送特性は、それぞれの圧電トランスにばらつきがあつ ても、共振ポイントは fOの 1個であることを示している。
産業上の利用可能性
[0026] 以上のように、本発明による圧電トランス駆動装置および圧電トランス駆動方法は、 冷陰極管点灯用として有用であり、特に、パソコン等に用いられている液晶を裏側か ら照らすバックライト用の光源として冷陰極管が使用されるときに、この冷陰極管点灯 用として適している。
図面の簡単な説明
[0027] [図 1]本発明の第 1実施例における圧電トランス駆動装置および圧電トランス駆動方 法の説明図である。
[図 2]本発明の第 2実施例における圧電トランス駆動装置および圧電トランス駆動方 法の説明図である。
[図 3] (a)は本発明の一実施例における圧電トランスの伝送特性を示す図であり、 (b) は本発明の一実施例における圧電トランスの配線図である。
[図 4]圧電トランスの説明図である。
[図 5]従来例における圧電トランスの駆動方法を説明する図である。
[図 6] (a)は従来例における圧電トランスの伝送特性を示す図であり、 (b)は従来例に おける圧電トランスの配線図である。
[図 7] (a)は一般的な圧電トランスの伝送特性を示す図であり、 (b)は一般的な圧電ト ランスの配線図である。

Claims

請求の範囲
[1] 圧電トランス駆動装置において、
一次電極(la, lb)と二次電極(lc)とを具備し、一次電極(la, lb)に交流電源を 印加することにより二次電極(lc)から出力を得る第 1の圧電トランス(1)と、
一次電極(2a, 2b)と二次電極(2c)とを具備し、一次電極(2a, 2b)に交流電源を 印加することにより二次電極(2c)から出力を得る圧電トランスであって、第 1の圧電ト ランス(1)が出力する電圧の位相に対して反転した位相の電圧を出力する第 2の圧 電トランス (2)とを備え、
第 1の圧電トランス(1)の一次電極(la, lb)と第 2の圧電トランス(2)の一次電極(2 a, 2b)とを直列に接続して交流電源を加え、第 1の圧電トランス(1)の二次電極(lc) と第 2の圧電トランス (2)の二次電極 (2c)との間に負荷 (L)を接続することを特徴と する圧電トランス駆動装置。
[2] 圧電トランス駆動装置において、
一次電極(la, lb)と二次電極(lc)とを具備し、一次電極(la, lb)に交流電源を 印加することにより二次電極(lc)から出力を得る第 1の圧電トランス(1)と、
一次電極(2a, 2b)と二次電極(2c)とを具備し、一次電極(2a, 2b)に交流電源を 印加することにより二次電極(2c)から出力を得る圧電トランスであって、この一次電 極側の分極方向が第 1の圧電トランス(1)の一次電極側の分極方向と互いに逆であ り、この二次電極側の分極方向が第 1の圧電トランス ( 1 )の分極方向と互 ヽに同じで ある第 2の圧電トランス (2)とを備え、
第 1の圧電トランス(1)の一次電極(la, lb)と第 2の圧電トランス(2)の一次電極(2 a, 2b)とを直列に接続して交流電源を加え、第 1の圧電トランス(1)の二次電極(lc) と第 2の圧電トランス (2)の二次電極 (2c)との間に負荷 (L)を接続することを特徴と する圧電トランス駆動装置。
[3] 圧電トランス駆動装置において、
一次電極(la, lb)と二次電極(lc)とを具備し、一次電極(la, lb)に交流電源を 印加することにより二次電極(lc)から出力を得る第 1の圧電トランス(1)と、
一次電極(3a, 3b)と二次電極(3c)とを具備し、一次電極(3a, 3b)に交流電源を 印加することにより二次電極(3c)から出力を得る圧電トランスであって、この一次電 極側の分極方向が第 1の圧電トランス(1)の一次電極側の分極方向と互いに同じで あり、この二次電極側の分極方向が第 1の圧電トランス ( 1 )の分極方向と互 、に逆で ある第 3の圧電トランス (3)とを備え、
第 1の圧電トランス(1)の一次電極(la, lb)と第 3の圧電トランス(3)の一次電極(3 a, 3b)とを直列に接続して交流電源を加え、第 1の圧電トランス(1)の二次電極(lc) と第 3の圧電トランス (3)の二次電極 (3c)との間に負荷 (L)を接続することを特徴と する圧電トランス駆動装置。
[4] 圧電トランス駆動方法にお!、て、
第 1の圧電トランス(1)の一次電極(la, lb)と第 2の圧電トランス(2)の一次電極(2 a, 2b)は分極方向が互いに逆であり、
かつ、第 1の圧電トランス(1)の二次電極(lc)と第 2の圧電トランス (2)の二次電極 (2c)は分極方向が互いに同じであり、
第 1の圧電トランス(1)の一次電極(lb)と第 2の圧電トランス (2)の一次電極 (2a)を 接続して交流電源 (E)に対して第 1の圧電トランス(1)と第 2の圧電トランス (2)を直 列接続とし、
第 1の圧電トランス(1)の二次電極(lc)と第 2の圧電トランス(2)の二次電極(2c) 間に負荷 (L)を接続し、
直列接続した第 1および第 2の圧電トランス(1, 2)の一次電極(la, 2b)間に交流 電圧を印カロして圧電トランスを駆動させることを特徴とする圧電トランス駆動方法。
[5] 圧電トランス駆動方法にお!、て、
第 1の圧電トランス(1)の一次電極(la, lb)と第 3の圧電トランス(3)の一次電極(3 a, 3b)は分極方向が互いに同じであり、
かつ、第 1の圧電トランス(1)の二次電極(lc)と第 3の圧電トランス (3)の二次電極 (3c)は分極方向が互いに逆であり、
第 1の圧電トランス(1)の一次電極(lb)と第 3の圧電トランス (3)の一次電極 (3a)を 接続して交流電源 (E)に対して第 1の圧電トランス(1)と第 3の圧電トランス (3)を直 列接続とし、 第 1の圧電トランス(1)の二次電極(lc)と第 3の圧電トランス(3)の二次電極(3c) 間に負荷 (L)を接続し、
直列接続した第 1および第 3の圧電トランス(1, 3)の一次電極(la, 3b)間に交流 電圧を印カロして圧電トランスを駆動させることを特徴とする圧電トランス駆動方法。
PCT/JP2004/014742 2003-10-06 2004-10-06 圧電トランス駆動装置および圧電トランス駆動方法 WO2005034323A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200411001871 DE112004001871T9 (de) 2003-10-06 2004-10-06 Piezoelektrische Transformatortreibvorrichtung und piezoelektrisches Transformatortreibverfahren
US10/572,735 US7598655B2 (en) 2003-10-06 2004-10-06 Piezoelectric transformer driving apparatus and piezoelectric transformer driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003347272A JP4312021B2 (ja) 2003-10-06 2003-10-06 圧電トランス駆動装置および圧電トランス駆動方法
JP2003-347272 2003-10-06

Publications (1)

Publication Number Publication Date
WO2005034323A1 true WO2005034323A1 (ja) 2005-04-14

Family

ID=34419576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014742 WO2005034323A1 (ja) 2003-10-06 2004-10-06 圧電トランス駆動装置および圧電トランス駆動方法

Country Status (6)

Country Link
US (1) US7598655B2 (ja)
JP (1) JP4312021B2 (ja)
KR (1) KR100742811B1 (ja)
CN (1) CN100495880C (ja)
DE (1) DE112004001871T9 (ja)
WO (1) WO2005034323A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828846B1 (ko) * 2005-12-19 2008-05-09 샤프 가부시키가이샤 압전 트랜스 및 그 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467809B2 (ja) * 2014-08-13 2019-02-13 セイコーエプソン株式会社 圧電駆動装置及びその駆動方法、ロボット及びその駆動方法
DE102015117106A1 (de) * 2015-10-07 2017-04-13 Epcos Ag Piezoelektrischer Transformator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144977A (ja) * 1996-11-12 1998-05-29 Murata Mfg Co Ltd 圧電トランス
JP2000069759A (ja) * 1998-08-18 2000-03-03 Nec Corp 圧電インバータ回路及びそれを用いた時分割駆動光源装置
JP2000307165A (ja) * 1999-04-21 2000-11-02 Tamura Seisakusho Co Ltd 圧電トランスの駆動方法
JP2002164185A (ja) * 2000-11-22 2002-06-07 Matsushita Electric Ind Co Ltd 照明装置、バックライト装置および液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134177Y1 (ja) * 1969-09-30 1976-08-24
US4459505A (en) * 1982-05-28 1984-07-10 Rca Corporation Piezoelectric ultor voltage generator for a television receiver
CH658960A5 (de) 1982-11-30 1986-12-15 Landis & Gyr Ag Transformatorlose stromversorgungsschaltung.
JP3246397B2 (ja) 1997-06-19 2002-01-15 日本電気株式会社 圧電トランスの駆動回路
US6433458B2 (en) 2000-04-27 2002-08-13 Matsushita Electric Industrial Co., Ltd. Method and unit for driving piezoelectric transformer used for controlling luminance of cold-cathode tube
ITVI20030165A1 (it) * 2003-08-11 2005-02-12 Global Display Solutions Spa Sistema di alimentazione elettrica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144977A (ja) * 1996-11-12 1998-05-29 Murata Mfg Co Ltd 圧電トランス
JP2000069759A (ja) * 1998-08-18 2000-03-03 Nec Corp 圧電インバータ回路及びそれを用いた時分割駆動光源装置
JP2000307165A (ja) * 1999-04-21 2000-11-02 Tamura Seisakusho Co Ltd 圧電トランスの駆動方法
JP2002164185A (ja) * 2000-11-22 2002-06-07 Matsushita Electric Ind Co Ltd 照明装置、バックライト装置および液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828846B1 (ko) * 2005-12-19 2008-05-09 샤프 가부시키가이샤 압전 트랜스 및 그 제조 방법
US7504765B2 (en) 2005-12-19 2009-03-17 Sharp Kabushiki Kaisha Piezoelectric transformer and the method for manufacturing the same

Also Published As

Publication number Publication date
CN100495880C (zh) 2009-06-03
JP2005116694A (ja) 2005-04-28
KR20060057642A (ko) 2006-05-26
DE112004001871T5 (de) 2006-08-03
US20070120441A1 (en) 2007-05-31
DE112004001871T9 (de) 2006-11-16
KR100742811B1 (ko) 2007-07-25
US7598655B2 (en) 2009-10-06
JP4312021B2 (ja) 2009-08-12
CN1864317A (zh) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3119154B2 (ja) 圧電トランス及びそれを用いた電力変換装置
KR20030028400A (ko) 압전 트랜스
US6278226B1 (en) Piezo ceramic transformer and circuit using the same
WO2005034323A1 (ja) 圧電トランス駆動装置および圧電トランス駆動方法
JP3734637B2 (ja) 圧電トランスの駆動装置
JPH10200174A (ja) 3次ローゼン型圧電トランスとその駆動回路
JP4422440B2 (ja) 圧電トランス
JP3425716B2 (ja) 放電灯装置
KR100248319B1 (ko) 고승압비 및 고효율 상태로 압전 변압기를 구동하는 방법
US20080074062A1 (en) Multiple discharge lamp lighting apparatus
JP2001196655A (ja) 圧電セラミックトランス回路
JPH10241884A (ja) 冷陰極管点灯駆動装置および液晶バックライト用冷陰極管点灯駆動装置
JPH11354857A (ja) 電源装置
US20030102779A1 (en) Piezoelectric transformer
JP3089491U (ja) 圧電式変換回路のマルチ負荷駆動回路
JP2004241266A (ja) 冷陰極管の点灯駆動装置
JPH09116202A (ja) 圧電トランス
JPH10284279A (ja) 冷陰極管点灯装置
JPH10144977A (ja) 圧電トランス
JPH09219545A (ja) 圧電トランス
JPH0992901A (ja) 圧電トランス
JPH08162690A (ja) 圧電振動子
JPH098375A (ja) 圧電トランス
JP2004055718A (ja) 圧電トランス
JPH0846264A (ja) 圧電トランス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029076.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007120441

Country of ref document: US

Ref document number: 10572735

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067006465

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120040018714

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067006465

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112004001871

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001871

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10572735

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607