WO2005024145A1 - 建設機械の運転システム - Google Patents

建設機械の運転システム Download PDF

Info

Publication number
WO2005024145A1
WO2005024145A1 PCT/JP2004/012644 JP2004012644W WO2005024145A1 WO 2005024145 A1 WO2005024145 A1 WO 2005024145A1 JP 2004012644 W JP2004012644 W JP 2004012644W WO 2005024145 A1 WO2005024145 A1 WO 2005024145A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction machine
set target
target value
message
frequency
Prior art date
Application number
PCT/JP2004/012644
Other languages
English (en)
French (fr)
Inventor
Mitsunori Matsuda
Kouji Hoshi
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to KR1020067003653A priority Critical patent/KR101166054B1/ko
Priority to GB0602837A priority patent/GB2422210B/en
Priority to DE112004001565T priority patent/DE112004001565B4/de
Priority to US10/570,153 priority patent/US7751954B2/en
Priority to CN2004800239587A priority patent/CN1839233B/zh
Publication of WO2005024145A1 publication Critical patent/WO2005024145A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D7/00Indicating measured values
    • G01D7/002Indicating measured values giving both analog and numerical indication

Definitions

  • the present invention relates to an operation system for a construction machine such as a hydraulic shovel.
  • the construction machine described in Patent Document 1 detects the amount of work by a detection device including an engine speed sensor, a fuel sensor, a load detection sensor, and the like, so that the work amount and the fuel consumption during the cycle time are obtained. Is calculated to calculate the amount of work per hour and the amount of work per mileage. The calculated amount of work per hour and the amount of work per mileage are printed out.
  • a construction machine (self-propelled vehicle) described in Patent Document 2 includes a means for detecting an engine rotation speed, a means for detecting a fuel injection amount per one rotation of an engine, a means for detecting a weight of a load, and a method for detecting a vehicle speed. And a means for oscillating a trigger signal every predetermined time, and calculates a fuel injection amount per unit time, a transport amount per unit fuel injection amount, and the like.
  • Patent Document 1 Japanese Patent No. 2534880 (Pages 3-4, Fig. 1)
  • Patent Document 2 JP-A-9-329051 (pages 3-4, FIG. 2)
  • the present invention has been made to solve the above-mentioned conventional drawbacks, and an object of the present invention is to allow an operator to receive advice to perform an efficient driving operation according to the work content. It is another object of the present invention to provide a driving system for construction machinery capable of performing driving and operation for improving fuel efficiency. Means for solving the problem
  • the construction machine operation system includes: a setting unit that sets a set target value for a frequency distribution of a predetermined state value related to an operation state of the construction machine; a detection unit that detects a predetermined state value; Calculating the frequency distribution of the predetermined state value detected by the means, comparing the calculated frequency distribution with the set target value set by the setting means, and preparing a message prepared in advance according to the comparison result. And control means for outputting
  • a plurality of regions are set within a variable range of the predetermined state value
  • the setting unit sets a set target value for each region
  • the control unit sets a frequency distribution and a frequency distribution for each region. It can be configured to compare with a fixed target value and output a message according to the comparison result for each area.
  • the driving system includes setting means for setting a set target value of a plurality of predetermined state values, and detection means for detecting a plurality of predetermined state values, and the control means includes a plurality of predetermined state values.
  • a plurality of frequency distributions of values are calculated, a frequency distribution is compared with a set target value for each predetermined state value, and a message prepared in advance is prepared according to a combination of the comparison results of the plurality of predetermined state values. It can also be configured to output.
  • predetermined state value of the operation system of the construction machine for example, hydraulic pressure, engine speed, or work operation frequency can be adopted.
  • the work operation frequency includes a boom swing operation, an arm swing operation, a packet swing operation, an upper swing body swing operation, and traveling.
  • the frequency of work or the like can be adopted. For this reason, if the turning frequency is high (high), a message to reduce the turning angle can be displayed. Also, If the traveling frequency is high (the frequency of traveling time is high), there is a lot of useless site movement, so a message that avoids such useless site movement can be displayed.
  • the predetermined state value for example, a fuel consumption amount or a fuel consumption rate can be adopted.
  • the operation system of the construction machine can be configured to display a message on a monitor screen of a cab.
  • the message can be output as an audio display, so that the operator in the driver's cab can easily detect the message without looking at the monitor screen or the like.
  • the construction machine operation system described above can be configured to be entirely mounted on the construction machine. As a result, it is possible to quickly perform processing such as detecting the frequency distribution of the predetermined state value and outputting a message based on the comparison between the calculated frequency and the set target value. Further, there is no need to provide communication means between the machine side and the outside of the machine.
  • the driving system includes components on the driving system side and components on the outside of the driving system, and is configured to be able to transmit a message from outside the driving system to the driving system side. You can also. As a result, the amount of equipment constituting the system mounted on the driving system can be reduced, and the driving system can be reduced in weight and compact. Further, since the message is transmitted from the outside of the driving system to the driving system, the timing of transmitting the message to the driving system can be arbitrarily set, and the content of the transmitted information can be arbitrarily changed.
  • the message may be displayed outside the construction machine. Then, an external work manager or the like can detect this message.
  • An operation system includes a setting means for setting a set target value for the frequency of a non-working state of a construction machine, and a detecting means for detecting a no-working state while the engine is operating. Means for comparing the frequency detected by the detecting means with the set target value set by the setting means, and outputting a prepared message in accordance with the comparison result.
  • An operation control method includes a step of setting a set target value for a frequency distribution of a predetermined state value related to an operation state of a construction machine; a step of detecting the predetermined state value; Calculates the frequency distribution of the predetermined state value detected by the above, compares the calculated frequency distribution with the set target value set by the setting means, and outputs a prepared message according to the comparison result With the steps of:
  • the operator operates the message corresponding to the comparison result between the frequency of the state value generated by the operation to date and the preset target value. Can be received. For this reason, if the operator improves future operations based on this message, efficient operation can be performed according to the set target values.
  • FIG. 1 is a perspective view of a main part showing an embodiment of a construction machine equipped with an operation system of the present invention.
  • FIG. 2 is an overall simplified view of the construction machine.
  • FIG. 3 is a simplified block diagram showing a control circuit of the operation system.
  • FIG. 4 is a diagram showing a hydraulic pressure distribution per hour.
  • FIG. 5 is a flowchart of a control example in which a predetermined state value is a hydraulic pressure.
  • FIG. 6 is a diagram showing an engine speed distribution per hour.
  • FIG. 7 is a flowchart of a control example in which a predetermined state value is an engine speed.
  • FIG. 8 is a diagram showing a composite state value distribution per unit time.
  • FIG. 9 is a flowchart of a control example of a plurality of state values.
  • FIG. 10 is a diagram showing a determination rule for a combination of a plurality of state values and an example of a display message.
  • FIG. 11 is a diagram showing a frequency of an auto-deceleration state.
  • FIG. 12 is a flowchart of a control example using the auto deceleration state.
  • FIG. 13 is a diagram showing an engine rotation frequency in a lever locked state.
  • FIG. 14 is a flowchart of a control example using a lever locked state.
  • FIG. 15 is a diagram showing work operation frequency.
  • FIG. 16 is a simplified block diagram showing another embodiment of the operation system of the present invention.
  • FIG. 2 is a simplified diagram of a construction machine equipped with this operation system.
  • This construction machine is a hydraulic excavator and includes a lower traveling structure 1 and an upper revolving structure 3 which is rotatably mounted on the upper portion of the lower traveling structure 1 via a revolving mechanism 2.
  • Work equipment 4 is connected.
  • the work machine 4 has a boom 5 whose base is swingably connected to the upper swing body 3, an arm 6 that is swingably connected to the tip of the boom 5, and a tip of the arm 6. And a packet 7 that is swingably connected.
  • the upper swing body 3 includes a driver's cab 11 and the like.
  • the driver's cab 11 of the upper revolving unit 3 is provided with a driver's seat 13 in the center thereof, and a traveling operation means 14 is provided in front of the driver's seat 13.
  • the traveling operation means 14 includes traveling levers 15 and 16 and traveling pedals 17 and 18 that swing together with the traveling levers 15 and 16. In this case, when the traveling levers 15 and 16 are pushed forward, the lower traveling body 1 moves forward, and when the traveling levers 15 and 16 are pulled backward, the lower traveling body 1 moves backward.
  • An attachment pedal 8 is provided in the vicinity of the traveling operation means 14, and an instrument panel 10 is provided on one side window 9 side.
  • Work implement operation levers 19 and 20 are provided on the side of the driver's seat 13, respectively.
  • the work machine operation levers 19 and 20 are used to move the boom 5 up and down, rotate the arm 6 and the bucket 7, and rotate the upper swing body 3 itself.
  • a lock lever 21 is provided in the vicinity of one work implement operation lever 19.
  • the lock lever 21 is for stopping functions such as operation of the work implement 4, turning of the upper revolving unit 3, and traveling of the lower traveling unit 1. That is, the operation of the work implement 4 and the like can be locked by performing the lifting operation of the lock lever 21. In this state, even if the work implement operation levers 19 and 20 are operated, the work implement 4 and the like can be operated. Can be disabled.
  • a monitor device 22 for displaying an engine state and the like is provided in the operator's cab 11 of the construction machine.
  • the engine state is, for example, the temperature of the engine cooling water, the engine oil temperature, the remaining fuel amount, and the like.
  • the monitor device 22 is provided below a vertical frame 25 that separates a front window 23 of the operator's cab 11 from one side window 9, and has a monitor screen 26 and operation push buttons 27 on the front of an outer case 24.
  • the monitor screen 26 is formed of, for example, a liquid crystal panel.
  • the construction machine is provided with a control circuit that constitutes an operation system as shown in FIG. Then, in this circuit, a frequency distribution of a predetermined state value relating to an operation state of the construction machine within a predetermined time is obtained, and this frequency distribution and a set target value at which the frequency of the predetermined state value is an efficient operation are obtained. In comparison, if the frequency distribution is outside the set target value, it is determined that the operation is inefficient, and the operator can be given an operation advice so that the frequency distribution falls within the set target value. Then, this control circuit includes an engine speed detector 31, a hydraulic pressure detector 32, a fuel injection amount detector 33, a work amount detector 34, and a control signal from each of the detectors 31, 32, 33, and 34.
  • Control means 35 to which the detection value (data) is input, setting means 36 to set a set target value, and the like are provided. Further, the operation advice is displayed on the monitor screen 26 of the monitor device 22 on the monitor.
  • the fuel consumption of this construction machine can be calculated based on the fuel injection amount calculated by the fuel injection amount detector 33.
  • the work load detector 34 includes, for example, a sensor that detects the load amount of the packet. For example, the work load at the time of loading is determined by detecting the load amount of the packet with a monitoring camera or the like. Quantity x times / hour), etc., and the amount of work during transportation can be obtained from (loading weight x distance).
  • the work amount is detected by the work amount detector 34, and the work amount is input to the control means (calculation means) 35, where the fuel consumption per work amount and the like are calculated.
  • the load amount of the packet may be detected visually by an operator (operator) or the like who does not use the sensor. Also, the number of times of loading may be counted with a switch at hand.
  • the part for performing information processing such as the control means 35 and the setting means 36 can be realized by using a computer having a computer program for the information processing, or a wired hardware circuit or a wired hardware. It can also be realized using a combination of a circuit and a computer.
  • State values relating to the operation state of the construction machine include a hydraulic pressure and an engine speed.
  • an example of control for displaying a message for each type of state value will be described.
  • Figure 4 is a graph of the hydraulic pressure distribution per hour.
  • the control means 35 sets the range I, the range II, the range III, the range IV, and the range V within the variable range of the hydraulic pressure.
  • Region I is a region where it is assumed that no-load operation is performed. No-load operation is a state in which the engine is running, but is not performing any substantial work as a construction machine, as in an idling state.
  • Area ⁇ is an area that is presumed to be useless work.
  • the area m is an area where it is estimated that appropriate work as a construction machine is performed.
  • Area IV is the area where high load work is presumed.
  • Region V is a region where the hydraulic pressure is too high and the hydraulic relief is presumed to operate.
  • the setting means 36 sets a different set target value E1 for each of the area I and the area V according to a user's instruction, and the set target value E1 is stored in the control means 35.
  • the oil pressure within a predetermined time is detected by the oil pressure detector 32, and the frequency distribution E2 of the detected oil pressure is calculated by the control means 35 and stored in the control means 35.
  • the control means 35 compares the preset set target value E1 with the detected and calculated hydraulic pressure frequency distribution E2 for each region, and if the frequency distribution E2 exceeds the set target value E1, the construction machine As a result of the inefficient operation, a message for prompting the operator to perform an operation such that the frequency distribution E2 falls within the set target value E1 is displayed on the monitor screen 26.
  • the set target value E1 is the upper limit of the range in which the operation is estimated to be efficient.
  • the range equal to or less than the set target value E1 is the set target range in which the efficient operation is assumed to be performed.
  • the displayed message is set in advance by the setting unit 36, and different message contents for each area are stored in the control unit 35 in advance.
  • FIG. 5 shows a control flow for displaying a message based on a comparison result between the frequency distribution E2 and the set target value E1, and will be described with reference to a flowchart.
  • the control means 35 samples the oil pressure value detected by the oil pressure detector 32 over a predetermined time specified by the user (S101).
  • the control means 35 creates a hydraulic frequency distribution E2 based on the sampled hydraulic pressure values (S102).
  • the frequency distribution E2 and the setting by the setting means 36 are set for each hydraulic range set by the setting means 36.
  • the set target value El is compared with the set target value El (S103). As a result, if the frequency distribution E2 exceeds the set target value E1 in any of the hydraulic range I, region II, region III, region IV, and region V, the construction machine is considered to be inefficiently operated.
  • the control means 35 displays an operation-advising message prepared in advance in the hydraulic range (S104-S113).
  • step 104 the degree of the frequency of the no-load operation is determined by performing the above comparison in the region I.
  • step 104 if the frequency distribution E2 exceeds the set target value E1 as shown in Fig. 4, the frequency of no load is high and the operation is inefficient. A message is displayed (S105). On the other hand, if it is less than the set target value, no message is displayed (S114).
  • Step 106 the degree of the frequency of useless work is determined by performing the above comparison in the area II. As shown in Fig. 4, when the frequency distribution E2 exceeds the set target value E1, since there are many useless operations and inefficient operation, a message prepared in advance to warn the user is displayed ( S107).
  • step 108 the degree of the frequency of the light load work is determined by performing the above comparison in the area III. If the frequency distribution E2 exceeds the set target value E1 as shown in Fig. 4 in step 108, the frequency of light load work is high and it is inefficient operation. A message is displayed (S109). As shown in FIG. 4, if the value is equal to or less than the set target value, no message is displayed because the operation is efficient (S114). In step 110, the degree of the frequency of the high-load work is determined by performing the above comparison in the region IV. As shown in FIG.
  • step 112 the degree of the frequency of the hydraulic pressure relief is determined by performing the above comparison in the region V. If the frequency distribution E2 exceeds the set target value E1, the hydraulic relief will be activated frequently, and a message will be displayed that indicates that the operation is inefficient and that it is prepared in advance to warn that it is inefficient. (S113). On the other hand, if it is less than the set target value, no message is displayed (S114).
  • FIG. 3 is a graph showing an engine speed distribution of FIG.
  • the control means 35 sets a region I and a region II within a variable range of the engine speed.
  • Region I is a region assumed to be in an auto-decel state or an idling state.
  • Area ⁇ is an area suitable for operation of construction machinery.
  • the setting means 36 sets a different set target value E3 for each of the areas I and II according to a user's instruction.
  • the set target value E3 is stored in the control means 35.
  • the engine speed within a predetermined time is detected by the engine speed detector 31, and the frequency distribution E4 of the detected engine speed is calculated by the control means 35 and stored in the control means 35.
  • the control means 35 compares the set target value E3 set in advance with the detected and calculated frequency distribution E4 of the engine speed for each region, and if the frequency distribution E4 exceeds the set target value E3.
  • a message is displayed on the monitor screen 26 to urge the operator to perform an operation such that the frequency distribution E4 falls within the set target value E3, assuming that the construction machine is an inefficient operation.
  • the message to be displayed is set by the setting unit 36, and different message contents for each area are prepared in the control unit 35 in advance.
  • FIG. 7 shows a control flow for displaying a message based on a comparison result between the frequency distribution E4 and the set target value E3, which will be described with reference to a flowchart.
  • the control means 35 samples the engine speed detected by the engine speed detector 31 over a predetermined time designated by the user (S201).
  • the control means 35 creates a frequency distribution E4 of the engine speed based on the sampled engine speed values (S202).
  • the frequency distribution E4 is compared with the set target value E3 set by the setting means 36 for each area of the engine speed set by the setting means 36 (S203).
  • S204-S206 An operation advice message prepared in advance in the rotation speed region is displayed (S204-S206).
  • step 204 the degree of the frequency of the auto-decel or idling state is determined by performing the above comparison in the region I. As shown in Fig. 6, when the frequency distribution E4 exceeds the set target value E3, it is inefficient operation, so it is prepared in advance to pay attention to it. A message is displayed (S205). On the other hand, if it is less than the set target value, no message is displayed (S207). Auto deceleration is a control that automatically lowers the engine speed when it is estimated that no work is performed during engine rotation.For example, the driving levers 15 and 16 and the work equipment operation levers 19 and 20 are used. When all the control levers are in the neutral state, the engine speed is instantaneously reduced by the specified speed range (first decel).
  • step 206 the above comparison is performed in region II. In this area, no message is displayed even if the frequency distribution E4 exceeds the set target value E3 (S207). This is because area II is suitable for the operation of construction machinery.
  • the determination is based on a single state value distribution, but a composite determination based on a plurality of state value frequency distributions may be performed.
  • FIG. 8 shows a variable range including the state value distribution of the hydraulic pressure and the state value distribution of the engine speed.
  • the control means 35 sets the region I and the region II within the variable range of the hydraulic pressure, and sets the region I, the region II, and the region III within the variable range of the engine speed.
  • the setting means 36 sets different set target values E5 in the hydraulic pressure areas I and II in accordance with a user's instruction, and the set target values E5 are stored in the control means 35.
  • the setting means 36 sets a different set target value E7 for each of the areas I, II, and III of the engine speed according to a user's instruction, and sets the set target value E7 to the control means 35.
  • the hydraulic pressure within a predetermined time is detected by the hydraulic pressure detector 32, and the frequency distribution E6 of the detected hydraulic pressure is calculated by the control means 35 and stored in the control means 35.
  • the engine speed detector 31 detects the engine speed within a predetermined time
  • the control means 35 calculates the frequency distribution E8 of the detected engine speed and stores it in the control means 35.
  • the control means 35 compares the preset hydraulic pressure set target value E5 with the detected and calculated hydraulic pressure frequency distribution E6 for each region, and stores the comparison result in the control means 35.
  • the control means 35 compares, for each region, the preset target value E7 of the engine speed and the frequency distribution E8 of the detected and calculated engine speed, and controls the comparison result. It is stored in the control means 35.
  • control means sums the comparison result of the hydraulic pressure and the comparison result of the engine speed, and when the sum result indicates that the construction machine is inefficiently operated, the operator performs an efficient operation operation.
  • a message prompting the user is displayed on the monitor screen 26.
  • the displayed message is set in advance by the setting unit 36, and different message contents depending on the combination of the comparison result of the oil pressure and the comparison result of the engine speed are stored in the control unit 35 in advance.
  • FIG. 9 shows the sum of the result of comparing the frequency distribution E6 of the hydraulic pressure with the set target value E5 of the hydraulic pressure, and the result of comparing the frequency distribution E8 of the engine speed with the set target value E7 of the engine speed.
  • the control unit 35 samples the oil pressure detected by the oil pressure detector 32 over a predetermined time specified by the user (S301).
  • the control means 35 also samples the engine speed detected by the engine speed detector 31 over a predetermined time specified by the user (S302).
  • the control means 35 creates a frequency distribution E6 of the hydraulic pressure based on the sampled hydraulic pressure (S303).
  • the control means 35 also creates an engine speed distribution E8 based on the sampled engine speed (S304).
  • the frequency distribution E6 is compared with the set target value E5 set by the user for each hydraulic pressure region, and the comparison result is stored in the control means 35 (S305).
  • the frequency distribution E8 is compared with the set target value E7 set by the user for each engine speed range, and the comparison result is stored in the control means 35 (S306). If the frequency distribution exceeds the set target value in both variable ranges, the control device determines that the construction machine is operated inefficiently. Next, the control means 35 adds up the comparison result of the hydraulic pressure and the comparison result of the engine speed (S307), and displays a different message prepared in advance as an operation advice according to the combination of the summation result. (S308).
  • FIG. 10 is an example of display of different messages depending on the combination of the respective comparison results when there are a plurality of predetermined state values of the oil pressure and the engine speed. If the frequency distribution E6 exceeds the set target value E5 in the hydraulic pressure range and the frequency distribution E8 exceeds the set target value E7 in the engine speed range III, the light load It is presumed that there are a lot of unnecessary movements.Therefore, messages that are prepared in advance to pay attention to inefficient operation and messages that encourage operators to work in energy saving mode Are displayed (T101).
  • the load is high. Since it is estimated that there is much useless work, a message prepared in advance is displayed to warn that the operation is inefficient (# 107). If the frequency distribution ⁇ 6 exceeds the set target value ⁇ 5 by the above comparison in the hydraulic pressure area ⁇ and the frequency distribution ⁇ 8 exceeds the set target value ⁇ 7 in the engine speed Since it is presumed that there are many operations with high rotation speed, a message prepared in advance is displayed to warn that the operation is inefficient (T111).
  • the frequency distribution of detected hydraulic pressure ⁇ 6 exceeds the set target value ⁇ 5, as in table 102, table 104, table 106, table 108, table 109, table 110, and table 112. However, if the engine speed frequency distribution ⁇ 8 is less than or equal to the set target value ⁇ 7, efficient operation is presumed, and no message is displayed without special attention to the operator.
  • the single state value related to the operation state of the construction machine may be a case where the frequency of the auto deceleration state or the frequency of the lever lock state is determined in addition to the hydraulic pressure and the engine speed as described above.
  • FIG. 11 is a diagram for determining the frequency of the auto deceleration state.
  • the setting means 36 sets a set target value ⁇ 9 of the auto decel frequency, and the set target value ⁇ 9 is stored in the control means 35. Is done.
  • the frequency of the auto-decel state is detected by the control means, and the detected frequency of the auto-decel state is compared with a preset target value E9. As a result of the comparison, if the frequency of the auto deceleration state exceeds the set target value E9, the construction machine is considered to be inefficient, and the operator performs an operation operation such that the frequency of the auto deceleration state falls within the set target value E9.
  • FIG. 12 shows a control flow for displaying a message based on a comparison result between the frequency of the auto deceleration state and the set target value E9, which will be described with reference to a flowchart.
  • the control means determines whether the construction machine is in an auto deceleration state (S401). If the construction machine is not in the auto deceleration state, return to the start again and repeat this detection. In step 402, the time during which the auto-decel state is working within the predetermined time is integrated, and the frequency of the auto-decel state is calculated (S403). If the ratio of the auto-deceleration state within the predetermined time is equal to or higher than the set target value E9 (30%) as shown in FIG. 11, it is estimated that the idle state has continued for a long time, and the operation is inefficient. A message prepared in advance is displayed to the operator so that the frequency of the auto deceleration state falls within the set target value E9 (S404).
  • FIG. 13 is a diagram for determining the frequency of the lever lock state.
  • the setting means 36 sets a set target value E10 of the lever lock frequency, and the set target value E10 is stored in the control means 35.
  • the frequency of the lever lock state is detected by the control means, and the detected frequency of the lever lock state is compared with a preset target value E10. As a result of the comparison, if the frequency of the lever lock state exceeds the set target value E10, the construction machine is considered to be inefficient, and an operation operation such that the frequency of the lever lock state falls within the set target value E10 is performed.
  • a message prompting the operator is displayed on the monitor screen 26. The displayed message is set in advance by the setting means 36 and stored in the control means 35.
  • the control means determines whether the construction machine is in a lever locked state (S501). If the construction machine is not in the lever locked state, return to the start again and repeat this detection. In step 502, the time during which the lever lock state is working within the predetermined time is integrated, and the frequency of the lever lock state is calculated (S503). Then, the lever lock within a predetermined time As shown in Fig. 14, when the ratio of the lever lock state is equal to or higher than the set target value E10 (18%), it is estimated that the idle state has continued for a long time. A message prepared in advance is displayed to the operator so that the value falls within the set target value E10 (S504).
  • the set target value E9 (30%) in FIG. 11 and the set target value E10 (18%) in FIG. 13 can be set using the setting means 36.
  • the ability to freely set the set target value can be achieved.
  • the operations of the rocking operation of the boom 5, the rocking operation of the arm 6, the rocking operation of the packet 7, the turning operation of the upper swing body 3, and the traveling operation are performed.
  • the range of M exceeds the set target value (target set value), and the frequency of the turn is increased. Therefore, on the monitor screen 26, for example, "If the turning angle is reduced, fuel efficiency can be reduced” is displayed.
  • the range of N exceeds the set target value (target set value), and the traveling time frequency is increasing.
  • the monitor screen 26 displays, for example, "The frequency of driving is high, try to avoid wasting on-site, and try to drive efficiently.” Lowering the fuel consumption by about 200 (rpm) will reduce fuel consumption. " In this case, of course, if the operation frequency of the boom 5, the arm 6, the packet 7, etc. exceeds the set value, the advice for reducing the frequency is displayed.
  • the frequency of the boom 5 and the like can be calculated based on the expansion and contraction of the piston rod of each cylinder mechanism that swings the boom 5 and the like.
  • the frequency distribution of the predetermined state value regarding the operation state of the construction machine within the predetermined time is obtained, and the frequency distribution and the frequency of the predetermined state value become efficient operation.
  • the frequency distribution is out of the set target value, it is determined that the operation is inefficient and operation advice is given to the operator so that the frequency distribution falls within the set target value.
  • the operator can receive operation advice for avoiding the inefficient driving and performing the efficient driving. This allows the operator to perform operations in accordance with this advice. If this is the case, efficient operation according to the work content can be performed.
  • the frequency distribution of the predetermined state value is an oil pressure distribution
  • the frequency of work with high load is high, there are many works with too much load, so it is possible to provide operational advice to avoid such work and to perform efficient work. it can.
  • the engine speed distribution is a predetermined state value, it is possible to detect that the frequency of the low idling state or the auto deceleration state in which the engine speed is reduced is high. Therefore, when there are many low idling states or the like in which the engine speed is reduced, operation advice such as stopping idling can be provided, and improvement in fuel efficiency and the like can be achieved.
  • the work operation distribution is a predetermined state value, for example, when the construction machine is a hydraulic excavator, the boom swing operation, the arm swing operation, the packet swing operation, and the upper swing structure swing. It is possible to detect the frequency of work, running work, and the like.
  • the turning frequency is high (high)
  • the driving frequency is high (the frequency of the driving time is high)
  • there is a lot of useless site movement and operation advice can be provided to avoid such useless site movement.
  • the operator can visually recognize the operation advice during the traveling operation and various operations from the monitor screen 26.
  • the time of work for example, at the time of excavation using a work machine
  • the entire operation system is mounted on a construction machine.
  • the operation system is divided into a component 40 on the construction machine side and an external side on the construction machine side.
  • the component 40 on the construction machine side includes an engine speed detector 31, a hydraulic pressure detector 32, a fuel injection amount detector 33, A work amount detector 34, a control means 35, a display means 30, a communication device 38 and the like are provided.
  • the component 41 outside the construction machine includes a setting unit 36, a calculation unit (control unit) 37, a communication device 39, and the like.
  • data of a predetermined state value is detected by the engine speed detector 31, the hydraulic pressure detector 32, and the like, and these data are collected by the control means 35, and the communication device 38 has a configuration outside the construction machine.
  • these data are sent from the communication device 39 to the calculation means 37.
  • the calculating means 37 receives the set target value set by the setting means 36.
  • the calculating means 37 compares the actual distribution with the set target value, and the frequency distribution is out of the set target value. If this is the case, it is determined that the operation is inefficient, and the operation advice that the frequency distribution falls within the set target value is transmitted from the communication device 39 to the communication device 38 on the machine side and displayed via the control means 35.
  • Means 30 can be displayed.
  • the calculating means 37 determines whether the operation is inefficient or efficient at each predetermined state value, and transmits the result of the determination from the communication device 39 to the communication device 38.
  • the display content based on this determination may be determined, and the determined display content may be displayed.
  • the operation system when the operation system is configured by the component 40 on the construction machine side and the component 41 on the outside of the construction machine, the amount of equipment constituting the system on the construction machine side is reduced.
  • the construction machine can be made lightweight and compact.
  • the timing of transmitting the operation advice to the construction machine side to which the operation advice is transmitted can be arbitrarily set, and the content of the transmitted information can be arbitrarily changed. Can be. For this reason, the operator in the operator's cab 11 can be notified of advice that matches the work performed by the operator with good timing, and the operator can easily perform efficient work.
  • the display means 30 may be provided outside the machine, either as shown in Fig. 3 or as shown in Fig. 16. In this case, leave the display means 30 on the machine side as it is. Alternatively, the display means 30 on the machine side may be omitted. Thus, if the display means 30 is provided outside the machine, an external work manager or the like can detect this operation advice. For this reason, the work manager can grasp whether the construction machine is operating inefficiently or efficiently, and can easily perform subsequent management work.
  • a voice generator (not shown) is provided in the cab 11, and the above advice is notified to an operator in the cab 11 by voice display from the voice generator.
  • the sound display of the sound generator may be used alone or in combination with the monitor display.
  • the operator can grasp the above advice while keeping the front confirmation state through the front window 23 or the like, and can prevent the driving operation or the like from being neglected.
  • the monitor display allows the user to know the advice. For this reason, if the voice display and the monitor display are used together, the operator can be surely notified of the advice.
  • the predetermined state value related to the operation state of the construction machine may be fuel consumption per hour, fuel consumption per work volume, or the like.
  • the frequency distribution of the predetermined state values is defined as fuel consumption or fuel consumption rate, etc., to avoid such operation during inefficient operation where the fuel consumption or fuel consumption rate is larger than the set target value. If operation advice is given to the operator, the operator can immediately perform operation such that the fuel consumption or the fuel consumption rate reaches the set target value, and efficient operation can be performed. it can.
  • the no-load frequency is high or a case where the load is a high work frequency. Therefore, when the no-load frequency is high, the idling state is long, etc., and a message such as stopping the idling or decreasing the engine speed during idling can be issued, and the fuel consumption ( Fuel consumption rate) can be reduced.
  • the frequency of work with high load is high, there are many works with too much load, so messages that avoid such work can be output, and efficient work can be performed. Can be.
  • the engine speed It is possible to detect that the frequency of the low idling state and the auto deceleration state, etc. in which the frequency is reduced is high. Therefore, when there are many such low idling states in which the engine speed is reduced, a message such as to stop idling can be output, and improvement in fuel efficiency and the like can be achieved.
  • the construction machine is a hydraulic excavator
  • the rocking operation of the boom, the rocking operation of the arm, the rocking operation of the packet, and the turning operation of the upper rotating body are performed.
  • the frequency of traveling work and the like can be detected.
  • the turning frequency is high (high)
  • the driving frequency is high (the frequency of the driving time is high)
  • there is a lot of unnecessary site movement so a message that avoids such unnecessary site movement can be output, and the efficiency can be improved. Work can be done.
  • the operator or the like can receive a message for avoiding such operation. As a result, the operator can immediately perform the operation such that the fuel consumption or the fuel consumption rate becomes the set target value, and can carry out the efficient operation.
  • the operator in the operator's cab 11 can easily detect a message by hearing using audio output means that can only detect a message using the monitor screen. it can.
  • the process of detecting the frequency distribution of the predetermined state value and performing the message based on the comparison between the frequency and the set target value can be performed quickly. Efficient operation can be avoided quickly, and stable and efficient work can be performed.
  • the construction machine can be made compact. Since the message is transmitted from the outside of the construction machine to the construction machine side, the timing of transmission to the construction machine side sending this message can be arbitrarily set, and the content of the information to be transmitted can be arbitrarily changed. For this reason, a message that matches the work performed by the operator in the operator's cab can be notified to this operator with good timing, which is efficient for the operator. Easy to work.
  • the work manager or the like can determine whether the construction machine is performing inefficient operation or not. It is possible to grasp whether the operation is performed, and it is easy to perform subsequent management work and the like.
  • the present invention is not limited to the above-described embodiments, and can be implemented with various modifications within the scope of the present invention.
  • the monitor screen 26 can be observed. It is preferable to be at a certain position, but it is not limited to the position shown in FIG.
  • the wording of the monitor display of the operation advice is not limited to textual ones as in the above embodiment, and may be a short sentence such as “improve fuel efficiency”.
  • the operator can judge that the current operation or operation is inefficient even if only "fuel efficiency" is displayed, and make an effort to perform the operation or operation to improve fuel efficiency. Because you can.
  • the operation advice is displayed on the monitor, only the characters may be displayed as in the above-described embodiment. Such a diagram may be omitted and omitted.
  • a monitor device for advice different from such an existing monitor device is separately provided, The advice may be displayed on the advice monitor device.
  • a graph diagram such as FIG. 4 may be displayed on the monitor screen 26. In this case, even if the graph diagram disappears when the operation advice is displayed on the monitor, it is displayed together with the operation advice. It may be shown.
  • the construction machines are not limited to hydraulic excavators, but include various cranes and crushers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

 建設機械の運転システムが運転者に効率的な運転操作を行うようにアドバイスを提供する。建設機械の運転状況に関する所定状態値、例えば油圧又はエンジン回転数等が検出され(S101)、その状態値の所定時間区間ごとの頻度分布が計算される(S102)。状態値の可変範囲は予め複数の領域に分けられており、領域ごとに異なる設定目標値が予め設定されている。領域ごとに、頻度分布と設定目標値とが比較され(S104,106,108,110,112)、領域ごとの比較結果に応じて、所定のメッセージの中から該当のメッセージが選ばれ出力される(S105,107,109,111,113)。油圧とエンジン回転数のような複数の状態値の上記比較結果の組合せに応じて出力メッセージが選択されても良い。

Description

明 細 書
建設機械の運転システム
技術分野
[0001] この発明は、油圧ショベル等の建設機械の運転システムに関するものである。
背景技術
[0002] 油圧ショベル等の建設機械では、走行したり各種の作業をしたりする際には省エネ 化を図るのが好ましい。そこで、従来には、作業量と燃費とを算出して、作業効率が 良い状態か悪い状態かの分析が可能なものがある (例えば、特許文献 1参照)。また 、エンジン状態及び仕事量を検出することによって、 自走車両全体の修理計画ゃ更 新計画等の立案が可能なものもある(例えば、特許文献 2参照)。
[0003] すなわち、上記特許文献 1に記載の建設機械は、エンジン用回転数センサ、燃料 センサ、及び荷重検出用センサ等からなる検出装置により作業量を検出して、サイク ルタイムにおける作業量及び燃費を算出し、時間当りの作業量および燃費当りの作 業量を算出するものであり、この算出した時間当りの作業量および燃費当りの作業量 をプリントアウトするものである。また、特許文献 2に記載の建設機械(自走車両)は、 エンジン回転速度の検出手段と、エンジン 1回転当りの燃料噴射量の検出手段と、 積載量の重量の検出手段と、車速の検出手段と、所定時間ごとのトリガ信号の発振 手段等を備え、単位時間当りの燃料噴射量や単位燃料噴射量当りの輸送量等を算 出するものである。
[0004] 特許文献 1 :特許第 2534880号明細書 (第 3 - 4頁、第 1図)
特許文献 2 :特開平 9 - 329051号公報 (第 3 - 4頁、図 2)
発明の開示
発明が解決しょうとする課題
[0005] このように、上記特許文献 1に記載の建設機械では、時間当りの作業量および燃費 当りの作業量等が報告書に記載 (表示)されるのみである。このため、オペレータはこ の報告書を見ても燃費向上に繋がる運転を行うことにならず、運転中や作業中にお いて効率の良い運転や作業を行うようにするものではない。また、上記特許文献 2に 記載の建設機械(自走車両)では、単位時間当りの燃料噴射量や単位燃料噴射量 当りの輸送量等を基づいて修理計画や更新計画等の立案するものであって、この場 合も、運転中等において効率の良い運転を行うようにするものではない。
[0006] この発明は、上記従来の欠点を解決するためになされたものであって、その目的は 、オペレータは、作業内容に応じて効率的な運転操作を行うようにアドバイスを受ける ことができて、燃費向上等のための運転や操作を行うようにすることが可能な建設機 械の運転システムを提供することにある。 課題を解決するための手段
[0007] 本発明に従う上記建設機械の運転システムは、建設機械の運転状況に関する所 定状態値の頻度分布に対する設定目標値を設定する設定手段と、所定状態値を検 出する検出手段と、検出手段により検出された所定状態値の頻度分布を計算し、計 算された頻度分布と設定手段により設定された設定目標値とを比較し、その比較結 果に応じて、予め用意してあるメッセージを出力する制御手段とを備えている。
[0008] また、この運転システムは、所定状態値の可変範囲内に複数の領域が設定され、 設定手段は、領域毎に設定目標値を設定し、制御手段は、領域毎に頻度分布と設 定目標値とを比較し、領域毎の比較結果に応じてメッセージを出力するように構成さ れることができる。
[0009] また、この運転システムは、複数の所定状態値の設定目標値を設定する設定手段 と、複数の所定状態値を検出する検出手段と、を備え、制御手段は、複数の所定状 態値の複数の頻度分布を計算し、それぞれの所定状態値について、頻度分布と設 定目標値とを比較し、複数の所定状態値の比較結果の組み合わせに応じて、予め 用意してあるメッセージを出力するように構成されることもできる。
[0010] 上記建設機械の運転システムの所定状態値としては、例えば油圧、エンジン回転 数、又は作業動作頻度を採用することができる。
[0011] 作業動作頻度としては、例えば、この建設機械が油圧ショベルである場合に、ブー ムの揺動作業、アームの揺動作業、パケットの揺動作業、上部旋回体の旋回作業、 及び走行作業等の頻度を採用することができる。このため、仮に旋回頻度が多けれ ば(高ければ)、旋回角度を小さくするようなメッセージを表示することができる。また、 走行頻度が多ければ(走行の時間の頻度が高ければ)、無駄な現場移動が多いので 、このような無駄な現場移動を避けるようなメッセージを表示することができる。
[0012] また、所定状態値としては、例えば燃料消費量、又は燃料消費率を採用することも できる。
[0013] 上記建設機械の運転システムは、運転室のモニタ画面上にメッセージを表示するよ うに構成されることができる。また、そのメッセージは、音声表示にて出力されることに より、運転室にいるオペレータは、モニタ画面等を見ることなぐメッセージを簡単に 検知するように構成することもできる。
[0014] 上記建設機械の運転システムは、この全体を建設機械に搭載されるように構成され ること力 Sできる。その事により、所定状態値の頻度分布の検出や、計算された頻度と 設定目標値との比較に基づいてメッセージを出力する等の処理を迅速に行うことが できる。また、機械側と機械外部側との通信手段を設ける必要がない。
[0015] また、この運転システムは、運転システム側の構成要素と、運転システム外部側の 構成要素とを備え、メッセージを運転システム外部から運転システム側に送信するこ とを可能なように構成されることもできる。これにより、このシステムを構成する機器の 運転システム側への搭載量を減少させることができ、運転システムの軽量化及びコン パクトイ匕を図ることができる。また、メッセージを運転システム外部から運転システム側 に送信するので、このメッセージを送る運転システム側に送信するタイミングを任意に 設定できると共に、その送信する情報の内容の変更も任意に行うことができる。
[0016] また、メッセージを建設機械外部において表示するようにすることもできる。そうする と、外部の作業管理者等がこのメッセージを検知することができる。
[0017] 本発明の別の側面に従う運転システムは、建設機械の無作業状態の頻度に対する 設定目標値を設定する設定手段と、エンジンが作動している間において、無作業状 態を検出する検出手段と、検出手段により検出された頻度と設定手段により設定され た設定目標値とを比較し、その比較結果に応じて、予め用意してあるメッセージを出 力する制御手段とを備えている。
[0018] また、無作業状態としては、例えばオートデセル機能、あるいはレバーロック機能が 働いている状態を利用することができる。 [0019] 本発明のまた別の側面に従う運転制御方法は、建設機械の運転状況に関する所 定状態値の頻度分布に対する設定目標値を設定するステップと、所定状態値を検出 するステップと、検出手段により検出された所定状態値の頻度分布を計算し、計算さ れた頻度分布と設定手段により設定された設定目標値とを比較し、その比較結果に 応じて、予め用意してあるメッセージを出力するステップとを備えてレ、る。
発明の効果
[0020] 上記建設機械の運転システムによれば、オペレータは、現在までの運転操作によ つて生じた上記状態値の頻度と、予め設定されている設定目標値との比較結果に応 じたメッセージを受けることができる。このため、オペレータがこのメッセージに基づい て今後の操作を改善すれば、設定目標値に沿うような効率的運転を行うことができる 図面の簡単な説明
[0021] [図 1]この発明の運転システムが搭載された建設機械の実施形態を示す要部斜視図 である。
[図 2]上記建設機械の全体簡略図である。
[図 3]上記運転システムの制御回路を示す簡略ブロック図である。
[図 4]時間当たりの油圧分布を示す図である。
[図 5]所定状態値が油圧である制御例の流れ図である。
[図 6]時間当たりのエンジン回転数分布を示す図である。
[図 7]所定状態値がエンジン回転数である制御例の流れ図である。
[図 8]時間当たりの複合状態値分布を示す図である。
[図 9]複数の状態値である制御例の流れ図である。
[図 10]複数の状態値の組合せの判定規則と表示メッセージ例を示す図である。
[図 11]オートデセル状態の頻度を示す図である。
[図 12]オートデセル状態を用いた制御例の流れ図である。
[図 13]レバーロック状態でのエンジン回転頻度を示す図である。
[図 14]レバーロック状態を用いた制御例の流れ図である。
[図 15]作業動作頻度を示す図である。 [図 16]この発明の運転システムの他の実施形態を示す簡略ブロック図である。
符号の説明
[0022] 11 · ·室、 26 · ·モニタ画面、 40、 41 "構成要素
発明を実施するための最良の形態
[0023] 次に、この発明の建設機械の運転システムの具体的な実施の形態について、図面 を参照しつつ詳細に説明する。図 2はこの運転システムを搭載した建設機械の簡略 図である。この建設機械は油圧ショべノレであって、下部走行体 1と、下部走行体 1の 上部に旋回機構 2を介して旋回可能に装着される上部旋回体 3とを備え、上部旋回 体 3に作業機 4が連設されている。この作業機 4は、その基部が上部旋回体 3に揺動 可能に連結されているブーム 5と、ブーム 5の先端に揺動可能に連結されているァー ム 6と、アーム 6の先端に揺動可能に連結されているパケット 7とを備える。また、上部 旋回体 3は運転室 11等を備える。
[0024] 上部旋回体 3の運転室 11は、図 1に示すように、その中央部には運転席 13が設け られ、この運転席 13の前方に走行操作手段 14が設けられている。この走行操作手 段 14は、走行レバー 15、 16と、各走行レバー 15、 16と一体に揺動する走行ペダル 17、 18とを備える。この場合、走行レバー 15、 16を前方に押すと下部走行体 1が前 進し、走行レバー 15、 16を後方に引くと下部走行体 1が後進するようになっている。 なお、走行操作手段 14の近傍には、アタッチメント用ペダル 8が設けられ、さらに一 方の側方窓 9側に計器盤 10が設けられている。
[0025] また、運転席 13の側部側に作業機操作レバー 19、 20がそれぞれ設置されている 。上記作業機操作レバー 19、 20はブーム 5の上下動、アーム 6及びバケツト 7の回動 、及び上部旋回体 3自体の旋回操作等を行うものである。さらに、一方の作業機操作 レバー 19の近傍にはロックレバー 21が設けられている。ここで、ロックレバー 21とは、 作業機 4の操作、上部旋回体 3の旋回、及び下部走行体 1の走行等の機能を停止さ せるためのものである。すなわち、ロックレバー 21の引き上げ操作を行うことによって 、作業機 4等の動きをロックすることができ、この状態では、作業機操作レバー 19、 2 0等を操作しても、作業機 4等が動作しないようにすることができる。
[0026] また、この建設機械の運転室 11には、エンジン状態等を表示するモニタ装置 22が 設けられている。ここで、エンジン状態とは、例えば、エンジン冷却水の温度、ェンジ ンオイル温度、燃料残量等である。なお、このモニタ装置 22は、運転室 11の前方窓 23と一方の側方窓 9とを仕切る縦枠 25の下部に配設され、外装ケース 24の前面に モニタ画面 26と操作用押しボタン 27 · ·が設けられている。なお、このモニタ画面 26 は、例えば、液晶パネルにて構成される。
[0027] ところで、建設機械は、図 3に示すような運転システムを構成する制御回路を備えて いる。そして、この回路にて、所定時間内での建設機械の運転状況に関する所定状 態値の頻度分布を求め、この頻度分布と、上記所定状態値の頻度が効率的運転と なる設定目標値とを比較して、上記頻度分布が設定目標値外であれば、非効率的 運転であるとして、上記頻度分布が設定目標値内に入るような操作アドバイスをオペ レータに対して行うことができる。そして、この制御回路は、エンジン回転数検出器 31 と、油圧検出器 32と、燃料噴射量検出器 33と、作業量検出器 34と、これらに各検出 器 31、 32、 33、 34からの検出値 (データ)が入力される制御手段 35と、設定目標値 を設定する設定手段 36等を備える。また、操作アドバイスは、上記モニタ装置 22の モニタ画面 26にモニタ表示する。なお、燃料噴射量検出器 33にて算出した燃料噴 射量に基づいて、この建設機械の燃料消費量を算出することができる。また、作業量 検出器 34は、例えば、パケットの積込量を検出するセンサ等からなり、例えば、積込 時の作業量は、監視カメラ等でパケットの積込量を検知し、(積込量 X回数/時間) 等で求めることができ、また、運搬時の作業量は、(積載重量 X距離)等で求めること ができる。このため、作業量検出器 34にて検出し、作業量が制御手段 (演算手段) 3 5に入力され、ここで、作業量当りの燃料消費等が演算される。なお、作業量を検出 する場合、センサを使用することなぐ作業者 (オペレータ)等の目視によってパケット の積込量を検出するようにしてもよい。また、積込回数は手元スィッチ等でカウントす るようにしてもよレ、。制御手段 35や設定手段 36等の情報処理を行なう部分は、その 情報処理のためのコンピュータプログラムを搭載したコンピュータを用いて実現するこ とができるし、或いは、ワイヤードハードウェア回路、又はワイヤードハードウェア回路 とコンピュータとの組合せを用いて実現することもできる。
[0028] 上記建設機械の運転状況に関する状態値には、油圧やエンジン回転数等がある。 以下では、状態値の種類ごとに、メッセージを表示するための制御の例を示す。
[0029] まず、状態値が油圧についての制御例を紹介する。図 4は、時間当たりの油圧分布 のグラフ図である。
[0030] 制御手段 35は、図 4に示すように、油圧の可変範囲内に領域 I、領域 II、領域 III、領 域 IV、領域 Vを設定する。領域 Iは、無負荷な運転と推測される領域である。無負荷運 転とは、アイドリング状態の様に、エンジンは作動しているが、建設機械としての実質 的な作業を全くしていない状態である。領域 Πは、無駄な作業と推測される領域であ る。領域 mは、建設機械としての適切な作業が行われると推測される領域である。領 域 IVは、高負荷作業が行われていると推測される領域である。領域 Vは、油圧が高す ぎるため、油圧リリーフが作動すると推測される領域である。
[0031] 上記設定手段 36は、ユーザの指示により領域 I一領域 Vの領域毎に異なった設定 目標値 E1を設定し、その設定目標値 E1は制御手段 35に記憶される。油圧検出器 3 2により所定時間内の油圧が検出され、制御手段 35により、検出された油圧の頻度 分布 E2が計算され、制御手段 35に記憶される。制御手段 35は、予め設定している 設定目標値 E1と、検出し計算された油圧の頻度分布 E2とを領域毎に比較し、頻度 分布 E2が設定目標値 E1を超えるならば、建設機械は非効率的運転であるとして、頻 度分布 E2が設定目標値 E1内に入る様な運転操作をオペレータに促すためのメッセ ージを、モニタ画面 26へ表示する。設定目標値 E1は、効率的運転であると推測され る範囲の上限値であり、設定目標値 E1以下の範囲は、一応効率的な運転が行われ ると推測される設定目標範囲である。また、表示されるメッセージは、設定手段 36に より予め設定され、領域毎に異なったメッセージ内容が制御手段 35に予め記憶され ている。
[0032] 図 5は、頻度分布 E2と設定目標値 E1との比較結果によりメッセージを表示するため の制御の流れであり、フローチャート図を用いて説明する。
[0033] 制御手段 35は、図 5に示すように、油圧検出器 32で検出される油圧値を、ユーザ により指定された所定時間にわたりサンプリングする(S101)。制御手段 35は、サン プリングされた油圧値を元に油圧頻度分布 E2を作成する(S102)。そして、設定手 段 36により設定された油圧領域毎に、頻度分布 E2と設定手段 36によって設定され た設定目標値 Elとを比較する(S103)。その結果、油圧領域 I、領域 II、領域 III、領 域 IV、領域 Vのいずれかにて、頻度分布 E2が、設定目標値 E1を超えるならば、建設 機械は非効率的運転であるとして、制御手段 35は、その油圧領域において予め用 意されている操作アドバイス的なメッセージを表示する(S104—S 113)。
[0034] ステップ 104では、領域 Iにて上記比較を行うことにより、無負荷運転の頻度の程度 が判断される。ステップ 104で、図 4の様に頻度分布 E2が設定目標値 E1を超えた場 合は、無負荷の頻度が多く非効率的運転であるため、それを注意するような予め用 意されているメッセージが表示される(S 105)。他方、設定目標値以下の場合は、何 のメッセージも表示されない(S114)。ステップ 106では、領域 IIにて上記比較を行う ことにより、無駄な作業の頻度の程度が判断される。図 4の様に、頻度分布 E2が設定 目標値 E1を超えた場合は、無駄な操作が多く非効率的運転であるため、それを注意 するような予め用意されているメッセージが表示される(S107)。他方、設定目標値 以下の場合は、何のメッセージも表示されない(S114)。ステップ 108では、領域 III にて上記比較を行うことにより、軽負荷作業の頻度の程度が判断される。ステップ 10 8で、図 4の様に頻度分布 E2が設定目標値 E1を超えた場合は、軽負荷作業の頻度 が多く非効率的運転であるため、それを注意するような予め用意されているメッセ一 ジが表示される(S109)。図 4の様に、設定目標値以下の場合は、効率的運転であ るため、何のメッセージも表示されない(S114)。ステップ 110では、領域 IVにて上記 比較を行うことにより、高負荷作業の頻度の程度が判断される。図 4の様に、頻度分 布 E2が設定目標値 E1を超えた場合は、非効率的運転であるとして、それを注意する ような予め用意されているメッセージが表示される(S111)。他方、設定目標値以下 の場合は、何のメッセージも表示されない(S114)。ステップ 112では、領域 Vにて上 記比較を行うことにより、油圧のリリーフの頻度の程度が判断される。頻度分布 E2が 設定目標値 E1を超えた場合は、油圧リリーフが作動する頻度が多いため、非効率的 運転であるとして、それを注意するような予め用意されてレ、るメッセージが表示される (S113)。他方、設定目標値以下の場合は、何のメッセージも表示されない(S114)
[0035] 次に、状態値がエンジン回転数についての制御例を紹介する。図 6は、時間当たり のエンジン回転数分布のグラフ図である。
[0036] 制御手段 35は、図 6に示すように、エンジン回転数の可変範囲内に領域 Iと領域 II を設定する。領域 Iは、オートデセル状態、又はアイドリング状態と推測される領域で ある。領域 Πは、建設機械の作動に適した領域である。
[0037] 上記設定手段 36は、ユーザの指示により、領域 Iと領域 IIの領域毎に異なった設定 目標値 E3を設定し、その設定目標値 E3は制御手段 35に記憶される。エンジン回転 数検出器 31により所定時間内のエンジン回転数が検出され、制御手段 35により、検 出されたエンジン回転数の頻度分布 E4が計算され、制御手段 35に記憶される。制 御手段 35は、予め設定している設定目標値 E3と、検出し、計算されたエンジン回転 数の頻度分布 E4とを領域毎に比較し、頻度分布 E4が設定目標値 E3を超えるならば 、建設機械は非効率的運転であるとして、頻度分布 E4が設定目標値 E3内に入るよう な運転操作をオペレータに促すためのメッセージを、モニタ画面 26へ表示する。表 示されるメッセージは、設定手段 36により設定され、領域毎に異なったメッセージ内 容が制御手段 35に、予め用意されている。
[0038] 図 7は、頻度分布 E4と設定目標値 E3との比較結果によりメッセージを表示するため の制御の流れであり、フローチャート図を用いて説明する。
[0039] 制御手段 35は、図 7に示すように、エンジン回転数検出器 31で検出されるェンジ ン回転数値を、ユーザにより指定された所定時間にわたりサンプリングする(S201)。 制御手段 35は、サンプリングされたエンジン回転数値を元にエンジン回転数の頻度 分布 E4を作成する(S202)。そして、設定手段 36により設定されたエンジン回転数の 領域毎に、頻度分布 E4と設定手段 36によって設定された設定目標値 E3とを比較す る(S203)。その結果、エンジン回転数領域 I、又は領域 IIのいずれかにて、頻度分布 E4が、設定目標値 E3を超えるならば、建設機械は非効率的運転であるとして、制御 手段 35は、そのエンジン回転数領域において予め用意されている操作アドバイス的 なメッセージを表示する(S204—S206)。
[0040] ステップ 204では、領域 Iにて上記比較を行うことにより、オートデセル、又はアイドリ ング状態の頻度の程度が判断される。図 6の様に、頻度分布 E4が設定目標値 E3を 超えた場合は、非効率的運転であるため、それを注意するような予め用意されている メッセージが表示される(S205)。他方、設定目標値以下の場合は、何のメッセージ も表示されない(S207)。オートデセルとは、エンジン回転中に何の作業も行わない と推定された時、エンジン回転数を自動的に低下させる制御であり、例えば走行レバ 一 15、 16や作業機操作レバー 19、 20等の全操作レバーを中立状態となった際に、 エンジン回転数を瞬時に所定の回転数幅だけ低下する(第 1デセル)。さらに所定時 間(例えば、 4秒程度)経過すると、所定の回転数まで低下する(第 2デセル)。以後、 レバーを操作するまでこの回転数を維持 (保持)するものである。ステップ 206では、 領域 IIにて上記比較を行う。この領域では、頻度分布 E4が設定目標値 E3を超えた 場合であっても、何のメッセージも表示されない(S207)。領域 IIは、建設機械の運転 に適した領域であるからである。
[0041] ところで、上記図 4と図 6では、単独の状態値分布に基づく判定であつたが、複数の 状態値頻度分布に基づく複合的な判定を行ってもよい。
[0042] 図 8は、油圧の状態値分布とエンジン回転数の状態値分布とを含む可変範囲であ る。
[0043] 制御手段 35は、図 8に示すように、油圧の可変範囲内に領域 Iと領域 IIとを設定し、 エンジン回転数の可変範囲内に領域 I、領域 II、領域 IIIを設定する。設定手段 36は、 ユーザの指示により、油圧の領域 Iと領域 IIとに、それぞれ異なった設定目標値 E5を 設定し、その設定目標値 E5は制御手段 35に記憶される。同じように、上記設定手段 36は、ユーザの指示により、エンジン回転数の領域 I、領域 II,領域 IIIの領域毎に異な つた設定目標値 E7も設定し、その設定目標値 E7も制御手段 35に記憶される。油圧 検出器 32により所定時間内の油圧が検出され、制御手段 35により、検出された油圧 の頻度分布 E6が計算され、制御手段 35に記憶される。同じように、エンジン回転数 検出器 31により所定時間内のエンジン回転数が検出され、制御手段 35により、検出 されたエンジン回転数の頻度分布 E8が計算され、制御手段 35に記憶される。次に、 制御手段 35は、予め設定している油圧の設定目標値 E5と、検出し計算された油圧 の頻度分布 E6とを領域毎に比較し、その比較結果を制御手段 35に記憶する。同じ ように、制御手段 35は、予め設定しているエンジン回転数の設定目標値 E7と、検出 し計算されたエンジン回転数の頻度分布 E8とを領域毎に比較し、その比較結果を制 御手段 35に記憶する。そして、制御手段は、油圧の比較結果とエンジン回転数の比 較結果とを合算し、合算結果により、建設機械が非効率的運転であると判断された時 に、効率的な運転操作をオペレータに促すためのメッセージを、モニタ画面 26へ表 示する。また、表示されるメッセージは、設定手段 36により予め設定され、油圧の比 較結果とエンジン回転数の比較結果との組み合わせによる異なったメッセージ内容 が制御手段 35に予め記憶されている。
[0044] 図 9は、油圧の頻度分布 E6と油圧の設定目標値 E5とを比較した結果と、エンジン 回転数の頻度分布 E8とエンジン回転数の設定目標値 E7とを比較した結果とを合算 し、その合算結果の組み合わせによりメッセージを表示するための制御の流れであり 、フローチャートを用いて説明する。
[0045] 制御手段 35は、図 9に示すように、油圧検出器 32で検出される油圧を、ユーザに より指定された所定時間にわたりサンプリングする(S301)。また、制御手段 35は、ェ ンジン回転数検出器 31で検出されるエンジン回転数も、ユーザにより指定された所 定時間にわたりサンプリングする(S302)。次に、制御手段 35は、サンプリングされた 油圧を元に油圧の頻度分布 E6を作成する(S303)。また、制御手段 35は、サンプリ ングされたエンジン回転数を元にエンジン回転数分布 E8も作成する(S304)。そし て、油圧領域毎に、頻度分布 E6と、ユーザによって設定されている設定目標値 E5と を比較し、比較結果を制御手段 35に記憶する(S305)。また、エンジン回転数領域 毎に、頻度分布 E8と、ユーザによって設定されている設定目標値 E7とを比較し、比 較結果を制御手段 35に記憶する(S306)。両方の可変範囲において、頻度分布が 設定目標値を超えるならば、制御手段により、建設機械は非効率的運転と判断され る。次に、制御手段 35は、油圧の比較結果とエンジン回転数の比較結果とを合算し( S307)、その合算結果の組み合わせによる異なった、予め用意されている操作アド バイス的なメッセージを表示する(S308)。
[0046] 図 10は、所定状態値が油圧とエンジン回転数との複数の場合で、それぞれの比較 結果を合算し、合算結果の組み合わせによる異なったメッセージの表示例である。油 圧領域での上記比較により、頻度分布 E6が設定目標値 E5を超え、エンジン回転数 領域 IIIでの上記比較により、頻度分布 E8が設定目標値 E7を超える場合は、軽負荷 が多ぐ無駄な動きが多いと推測されるので、非効率的運転であるとして、それを注 意するような予め用意されてレ、るメッセージや、省エネモードでの作業をオペレータ に奨励するメッセージ等が表示される(T101)。油圧領域 Iでの上記比較により、頻度 分布 Ε6が設定目標値 Ε5を超え、エンジン回転数領域 IVでの上記比較により、頻度 分布 Ε8が設定目標値 Ε7を超える場合は、建設機械としての適切な作業が行われて レ、ると推測されるので、それを賞賛するような予め用意しているメッセージが表示され る(Τ103)。同じぐ油圧領域 Iでの上記比較により、頻度分布 Ε6が設定目標値 Ε5を 超え、エンジン回転数領域 Vでの上記比較により、頻度分布 Ε8が設定目標値 Ε7を 超える場合は、軽負荷で、 E/G回転数が高いと推測されるので、非効率的運転であ るとして、それを注意するような予め用意されているメッセージが表示される (T105) 。油圧領域 IIでの上記比較により、頻度分布 Ε6が設定目標値 Ε5を超え、エンジン回 転数領域 ΙΠでの上記比較により、頻度分布 Ε8が設定目標値 Ε7を超える場合は、高 負荷であり、無駄な作業が多いと推測されるので、非効率的運転であるとして、それ を注意するような予め用意してあるメッセージが表示される (Τ107)。そして、油圧領 域 Πでの上記比較により、頻度分布 Ε6が設定目標値 Ε5を超え、エンジン回転数領 域 Vでの上記比較により、頻度分布 Ε8が設定目標値 Ε7を超える場合は、高負荷で あり、高回転数の作業が多いと推測されるので、非効率的運転であるとして、それを 注意するような予め用意してあるメッセージが表示される(T111)。
[0047] 図 10に示すように、テーブル 102や、テーブル 104、テーブル 106、テーブル 108 、テーブル 109、テーブル 110,テーブル 112のように、検出された油圧の頻度分布 Ε6は設定目標値 Ε5を超えるが、エンジン回転数の頻度分布 Ε8が設定目標値 Ε7以 下の場合は、効率的運転と推測されるので、オペレータに対して特に注意することが なぐメッセージは表示されない。
[0048] 建設機械の運転状況に関する単独の状態値には、上述したように油圧やエンジン 回転数の他に、オートデセル状態の頻度やレバーロック状態の頻度を判定する場合 であってもよい。
[0049] 図 11は、オートデセル状態の頻度を判定する図である。上記設定手段 36は、ォー トデセル頻度の設定目標値 Ε9を設定し、その設定目標値 Ε9は制御手段 35に記憶 される。制御手段によりオートデセル状態の頻度が検出され、検出されたオートデセ ル状態の頻度と予め設定している設定目標値 E9とが比較される。比較の結果、ォー トデセル状態の頻度が設定目標値 E9を超えるならば、建設機械は非効率的運転で あるとして、オートデセル状態の頻度が設定目標値 E9内に入るような運転操作をォ ペレータに促すためのメッセージが、モニタ画面 26へ表示される。表示されるメッセ ージは、設定手段 36により予め設定され、制御手段 35に記憶されている。
[0050] 図 12は、オートデセル状態の頻度と設定目標値 E9との比較結果によりメッセージ を表示するための制御の流れであり、フローチャート図を用いて説明する。
[0051] 図 12に示すように、制御手段は建設機械がオートデセル状態かを判断する(S401 )。もし、建設機械がオートデセル状態でないなら、再びスタートに戻り、この検出を繰 り返す。ステップ 402では、所定時間内にオートデセル状態が働いている時間を積算 し、オートデセル状態の頻度を計算する(S403)。そして、所定時間内でのオートデ セル状態の割合が図 11に示すように設定目標値 E9 (30%)以上の場合は、アイドル 状態が長く続いていると推測するので、非効率的運転であるとして、オートデセル状 態の頻度が設定目標値 E9内に入るように、予め用意されてレ、るメッセージがォペレ ータに対して表示される(S404)。
[0052] 図 13は、レバーロック状態の頻度を判定する図である。上記設定手段 36は、レバ 一ロック頻度の設定目標値 E10を設定し、その設定目標値 E10は制御手段 35に記 憶される。制御手段によりレバーロック状態の頻度が検出され、検出されたレバーロッ ク状態の頻度と予め設定している設定目標値 E10とが比較される。比較の結果、レバ 一ロック状態の頻度が設定目標値 E10を超えるならば、建設機械は非効率的運転で あるとして、レバーロック状態の頻度が設定目標値 E10内に入るような運転操作をォ ペレータに促すためのメッセージが、モニタ画面 26へ表示される。表示されるメッセ ージは、設定手段 36により予め設定され、制御手段 35に記憶されている。
[0053] 図 14に示すように、制御手段は建設機械がレバーロック状態かを判断する(S501 )。もし、建設機械がレバーロック状態でないなら、再びスタートに戻り、この検出を繰 り返す。ステップ 502では、所定時間内にレバーロック状態が働いている時間を積算 し、レバーロック状態の頻度を計算する(S503)。そして、所定時間内でのレバーロッ ク状態の割合が図 14に示すように設定目標値 E10 (18%)以上の場合は、アイドノレ 状態が長く続いていると推測するので、非効率的運転であるとして、レバーロック状 態の頻度が設定目標値 E10内に入るように、予め用意されているメッセージがォペレ ータに対して表示される(S504)。
[0054] 尚、図 11内にある設定目標値 E9 (30%)と、図 13内にある設定目標値 E10 (18% )は、設定手段 36を用いて設定することができ、ユーザは、設定目標値を自由に設 定すること力 Sできる。
[0055] さらに、図 15に示すように、ブーム 5の揺動作業と、アーム 6の揺動作業と、パケット 7の揺動作業、上部旋回体 3の旋回作業、及び走行作業等の動作の頻度に基づく判 定を行ってもよレ、。すなわち、各動作に設定目標値(目標設定値)を設定し、この設 定値と実際の動作分布とを比較する。この図 15においては、 Mの範囲は設定目標 値(目標設定値)を越えており、旋回の時間頻度が高くなつている。このため、モニタ 画面 26には、例えば、「旋回角度を小さくするようにすると、燃費低減を図れます」等 が表示される。また、 Nの範囲は設定目標値(目標設定値)を越えており、走行の時 間頻度が高くなつている。このため、モニタ画面 26には、例えば、「走行頻度が高い です、無駄な現場移動を避けて、効率の良い運転を行うよう心がけましょう」や「走行 頻度が高いです、走行時にエンジン回転数を 200 (r. p. m. )程度下げると燃費低 減が図れます」等が表示される。この場合、もちろん、ブーム 5、アーム 6、パケット 7等 においてもそれらの動作頻度が設定値を超えていれば、これらの頻度を少なくするた めのアドバイスが表示される。ところで、ブーム 5等の頻度は、ブーム 5等を揺動させ る各シリンダ機構のピストンロッドの伸縮に基づいて算出することができる。
[0056] 上記建設機械の運転システムでは、所定時間内での建設機械の運転状況に関す る所定状態値の頻度分布を求め、この頻度分布と、所定状態値の頻度が効率的運 転となる設定目標値とを比較して、頻度分布が設定目標値外であれば、非効率的運 転であるとして、頻度分布が設定目標値内に入るような操作アドバイスをオペレータ に対して行うので、現在の運転操作がこの車両にとって非効率的運転状態であれば 、オペレータは非効率的運転を回避して効率的運転を行うための操作アドバイスを 受けることができる。このため、オペレータがこのアドバイスにしたがった操作を行え ば、作業内容に応じた効率的運転を行うことができる。
[0057] 特に、所定状態値の頻度分布が油圧分布であれば、例えば、無負荷頻度が多レヽ 場合や、逆に負荷が高い作業頻度が多い場合等を検出することができる。このため、 無負荷頻度が多い場合においては、アイドリング状態が長い等であるので、アイドリ ングを停止したり、アイドリング時のエンジン回転数を低下したりするような操作アドバ イスを行うことができ、燃費 (燃料消費率)低減等を達成できる。また、負荷が高い作 業頻度が多い場合においては、負荷をかけすぎている作業が多いので、このような 作業を回避するような操作アドバイスを行うことができ、効率の良い作業を行うことが できる。また、所定状態値のエンジン回転数分布であれば、エンジン回転数を低下さ せたローアイドリング状態やオートデセル状態等の頻度が多いこと等を検出できる。 このため、このようなエンジン回転数を低下させたローアイドリング状態等が多い場合 には、アイドリングを停止したりするような操作アドバイスを行うことができ、燃費向上 等を達成できる。さらに、所定状態値の作業動作分布であれば、例えば、この建設機 械が油圧ショベルである場合に、ブームの揺動作業、アームの揺動作業、パケットの 揺動作業、上部旋回体の旋回作業、及び走行作業等の頻度を検出することができる 。このため、仮に旋回頻度が多ければ(高ければ)、旋回角度を小さくするような操作 アドバイスを行うことができる。また、走行頻度が多ければ(走行の時間の頻度が高け れば)、無駄な現場移動が多いので、このような無駄な現場移動を避けるような操作 アドバイスを行うことができる。
[0058] さらに、上記のように構成された建設機械の運転システムでは、モニタ画面 26から の視覚にて、操作アドバイスを走行運転中や各種作業中にオペレータは知ることが できるので、走行時や作業時 (例えば、作業機を使用した掘削時等)において、直ち に燃費向上を図る運転や操作を行うように努力でき、省エネ化の達成に寄与すること ができる。
[0059] ところで、上記実施の形態においては、上記運転システム全体が建設機械に搭載 されている力 図 16に示すように、運転システムを、建設機械側の構成要素 40と、建 設機械外部側の構成要素 41とで構成してもよい。この場合、建設機械側の構成要 素 40は、エンジン回転数検出器 31と、油圧検出器 32と、燃料噴射量検出器 33と、 作業量検出器 34と、制御手段 35と、表示手段 30と、通信機 38等を備える。また、建 設機械外部側の構成要素 41は、設定手段 36と演算手段 (制御手段) 37と、通信機 39等を備える。
[0060] すなわち、エンジン回転数検出器 31や油圧検出器 32等で所定状態値のデータを 検出して、これらのデータを制御手段 35に集めて、通信機 38にて建設機械外部側 の構成要素 41へ送信する。構成要素 41では、通信機 39からこれらのデータを演算 手段 37に送る。この演算手段 37には、設定手段 36にて設定された設定目標値が入 力され、この演算手段 37では、実際の分布と、設定目標値とが比較され、上記頻度 分布が設定目標値外であれば、非効率的運転であるとして、上記頻度分布が設定 目標値内に入るような操作アドバイスを、通信機 39から機械側の通信機 38へ送信し て、制御手段 35を介して表示手段 30に表示するようにすることができる。この場合、 演算手段 37においては、各所定状態値での非効率的運転か効率運転かを判断し て、その判断結果を通信機 39から通信機 38へ送信して、機械側の制御手段 35にて この判断に基づく表示内容を決定して、この決定した表示内容を表示するようにして あよい。
[0061] このように、運転システムを、建設機械側の構成要素 40と、建設機械外部側の構成 要素 41とで構成すれば、このシステムを構成する機器の建設機械側への搭載量を 減少させることができ、建設機械の軽量ィ匕及びコンパクト化を図ることができる。また、 操作アドバイスを建設機械外部から建設機械側に送信するので、この操作アドバイス を送る建設機械側に送信するタイミングを任意に設定できると共に、その送信する情 報の内容の変更も任意に行うことができる。このため、運転室 11内のオペレータが行 つている作業等に合致したアドバイスをこのオペレータにタイミング良く知らせることが でき、オペレータとしては効率の良い作業を図り易い。これに対して、運転システム全 体を建設機械側に搭載するようにすれば、建設機械に搭載する機器が多くなるが、 操作アドバイスを行う処理を迅速に行うことができるので、非効率的運転状態をいち 早く回避することができ、安定して効率の良い作業を行うことができる。
[0062] また、上記図 3に示すものであっても、図 16に示すものであっても、表示手段 30を 機械外部に設けてもよい。この場合、機械側の表示手段 30をそのまま配置しておい ても、機械側の表示手段 30を省略してもよい。このように、機械外部に表示手段 30 を設ければ、外部の作業管理者等がこの操作アドバイスを検知することができる。こ のため、作業管理者等は、この建設機械が非効率的運転を行っているか効率的運 転を行っているかを把握でき、その後の管理業務等を行い易い。
[0063] さらに、他の実施の形態として、運転室 11に音声発生器(図示省略)を設け、この 音声発生器からの音声表示にて上記アドバイスを運転室 11内のオペレータに知ら せるようにしてもよレ、。すなわち、運転室 11内のオペレータに聞こえる音声にて、上 記アドバイスを発生させる。この際、この音声発生器の音声表示単独であっても、上 記モニタ表示との併用であってもよい。音声表示であれば、オペレータは前方窓 23 等からの前方確認状態のまま上記アドバイスを把握することができ、運転操作等がお ろそかになるのを防止できる。し力、しながら、音声表示では、作業現場の騒音等によ り、アドバイスを聞き取り難い場合があり、このような場合にも、上記モニタ表示ではァ ドバイスを知ることができる。このため、音声表示とモニタ表示とを併用すれば、オペ レータにアドバイスを確実に知らせることができる。
[0064] また、建設機械の運転状況に関する所定状態値として、時間当りの燃料消費や作 業量当りの燃料消費等であってもよい。すなわち、所定状態値の頻度分布を、燃料 消費量、又は燃料消費率等として、燃料消費量、又は燃料消費率が設定目標値より も多い非効率的運転時にこのような運転を回避するような操作アドバイスをオペレー タ等に行うようにすれば、オペレータは直ちに燃料消費量、又は燃料消費率が設定 目標値となるような運転を行うようにすることができ、効率的運転を実施することができ る。
[0065] 上述の実施形態によれば、例えば、無負荷頻度が多い場合や、逆に負荷が高い 作業頻度が多い場合等を検出することができる。そのため、無負荷頻度が多い場合 においては、アイドリング状態が長い等であるので、アイドリングを停止したり、アイドリ ング時のエンジン回転数を低下したりするようなメッセージを行うことができて、燃費( 燃料消費率)低減等を達成できる。また、負荷が高い作業頻度が多い場合において は、負荷をかけすぎている作業が多いので、このような作業を回避するようなメッセ一 ジを出力することができ、効率の良い作業を行うことができる。また、エンジン回転数 を低下させたローアイドリング状態やオートデセル状態等の頻度が多いこと等を検出 できる。このため、このようなエンジン回転数を低下させたローアイドリング状態等が 多い場合には、アイドリングを停止したりするようなメッセージを出力することができ、 燃費向上等を達成することができる。
[0066] 上述の実施形態によれば、例えば、この建設機械が油圧ショベルである場合に、ブ ームの揺動作業、アームの揺動作業、パケットの揺動作業、上部旋回体の旋回作業 、及び走行作業等の頻度を検出することができる。このため、仮に旋回頻度が多けれ ば(高ければ)、旋回角度を小さくするようなメッセージを出力することができ、燃費低 減を達成できる。また、走行頻度が多ければ (走行の時間の頻度が高ければ)、無駄 な現場移動が多レ、ので、このような無駄な現場移動を避けるようなメッセージを出力 することができ、効率の良い作業を行うことができる。
[0067] また、燃料消費量、又は燃料消費率が設定目標値よりも多い非効率的運転時に、 このような運転を回避するためのメッセージをオペレータ等は受けることができる。こ れにより、オペレータは直ちに燃料消費量、又は燃料消費率が設定目標値となるよう な運転を行うようにすることができ、効率的運転を実施することができる。
[0068] 上述の実施形態によれば、運転室 11にいるオペレータは、モニタ画面を利用して メッセージを検知できるだけでなぐ音声出力手段を利用して、聴覚にてメッセージを 簡単に検知することができる。
[0069] 上述の実施形態によれば、所定状態値の頻度分布の検出を行って、その頻度と設 定目標値との比較に基づいてメッセージを行う処理を迅速に行うことができるので、 非効率的運転状態をいち早く回避することができ、安定して効率の良い作業を行うこ とができる。
[0070] また、この運転制御システムを構成する機器の建設機械側への搭載量を減少させ ること力 Sでき、建設機械のコンパクトィ匕を図ることができる。メッセージを建設機械外部 から建設機械側に送信するので、このメッセージを送る建設機械側に送信するタイミ ングを任意に設定できると共に、その送信する情報の内容の変更も任意に行うことが できる。このため、運転室内のオペレータが行っている作業等に合致したメッセージ をこのオペレータにタイミング良く知らせることができ、オペレータとしては効率の良い 作業を図り易い。
[0071] 上述の実施形態によれば、外部の作業管理者等がこのメッセージを検知することが できるので、作業管理者等は、この建設機械が非効率的運転を行っているか効率的 運転を行っているかを把握でき、その後の管理業務等を行い易い。
[0072] 以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態 に限定されるものではなぐこの発明の範囲内で種々変更して実施することができる。 例えば、モニタ装置 22の位置としては、オペレータが運転席 13に座ってこの建設機 械を走行させたり、作業機 4を使用して作業したりした場合に、そのモニタ画面 26の 観察が可能である位置にあるのが好ましいが、図 1の位置に限るものではない。さら に、操作アドバイスのモニタ表示の文言としては、上記実施の形態のような文章的な ものに限らず、「燃費向上」等の短文であってもよい。これは、単に「燃費」等が表示さ れるものであっても、オペレータは現在の運転や操作が非効率的であると判断でき、 燃費向上を図る運転や操作を行うように努力することができるからである。また、操作 アドバイスをモニタ表示する場合、上記実施の形態のように文字のみの表示であって もよいが、この文字と同時に、上記アドバイスを把握できるような図を表示してもよぐ 文字を省略してこのような図のみであってもよい。さらに、上記実施形態では、ェンジ ン状態等を表示する既存のモニタ装置 22において、アドバイスを表示するようにした 力、このような既存のモニタ装置とは相違するアドバイス用のモニタ装置を別途設け、 このアドバイス用のモニタ装置にてアドバイスを表示するようにしてもよい。ところで、 図 4等のグラフ図をモニタ画面 26に表示してもよレ、が、この場合、操作アドバイスをモ ニタ表示する際にこのグラフ図が消えるものであっても、この操作アドバイスと共に表 示されるものであってもよい。なお、建設機械としては、油圧ショベルに限るものでは なぐクレーン、破砕機等の種々のものが対象となる。

Claims

請求の範囲
[1] 建設機械の運転状況に関する所定状態値の頻度分布に対する設定目標値を設定 する設定手段(36)と、
前記所定状態値を検出する検出手段と、
前記検出手段により検出された前記所定状態値の頻度分布を計算し、計算された 前記頻度分布と前記設定手段(36)により設定された前記設定目標値とを比較し、そ の比較結果に応じて、予め用意してあるメッセージを出力する制御手段(35)と、 を備えていることを特徴とする建設機械の運転システム。
[2] 前記所定状態値の可変範囲内に複数の領域が設定され、
前記設定手段(36)は、前記領域毎に前記設定目標値を設定し、
前記制御手段(35)は、前記領域毎に前記頻度分布と前記設定目標値とを比較し 、前記領域毎の比較結果に応じて前記メッセージを出力することを特徴とする請求項 1記載の建設機械の運転システム。
[3] 複数の前記所定状態値の前記設定目標値を設定する前記設定手段 (36)と、 複数の前記所定状態値を検出する前記検出手段と、
を備え、
前記制御手段は、複数の前記所定状態値の複数の前記頻度分布を計算し、それ ぞれの前記所定状態値について、前記頻度分布と前記設定目標値とを比較し、前 記複数の所定状態値の比較結果の組み合わせに応じて、予め用意してあるメッセ一 ジを出力することを特徴とする請求項 1記載の建設機械の運転システム。
[4] 前記所定状態値は、油圧であることを特徴とする請求項 1記載の建設機械の運転 システム。
[5] 前記所定状態値は、エンジン回転数であることを特徴とする請求項 1記載の建設機 械の運転システム。
[6] 前記所定状態値は、作業動作頻度であることを特徴とする請求項 1記載の建設機 械の運転システム。
[7] 前記所定状態値は、燃料消費量、又は燃料消費率であることを特徴とする請求項 1記載の建設機械の運転システム。
[8] 上記メッセージを、運転室(11)のモニタ画面(26)上に表示することを特徴とする 請求項 1一請求項 7のいずれかの建設機械の運転システム。
[9] 上記メッセージを、音声発生器からの音声表示にて行うことを特徴とする請求項 1 一請求項 7のレ、ずれかの建設機械の運転システム。
[10] システム全体を建設機械に搭載したことを特徴とする請求項 1一請求項 9のいずれ かの建設機械の運転システム。
[11] 建設機械側の構成要素 (40)と、建設機械外部側の構成要素 (41)とを備え、上記 メッセージを建設機械外部から建設機械側に送信することを特徴とする請求項 1一 請求項 9のレ、ずれかの建設機械の運転システム。
[12] 上記メッセージを建設機械外部において表示することを特徴とする請求項 1一請求 項 11のレ、ずれかの建設機械の運転システム。
[13] 建設機械の無作業状態の頻度に対する設定目標値を設定する設定手段(36)と、 前記建設のエンジンが作動している間において、前記無作業状態を検出する検出 手段と、
前記検出手段により検出された前記無作業状態の頻度を計算し、計算された前記 無作業状態の頻度と前記設定手段により設定された前記設定目標値とを比較し、そ の比較結果に応じて、予め用意してあるメッセージを出力する制御手段(35)と、 を備えていることを特徴とする建設機械の運転システム。
[14] 前記無作業状態は、オートデセル機能が働いている状態である請求項 13記載の 建設機械の運転システム。
[15] 前記無作業状態は、レバーロック機能が働いている状態である請求項 13記載の建 設機械の運転システム。
[16] 建設機械の運転状況に関する所定状態値の頻度分布に対する設定目標値を設定 するステップと、
前記所定状態値を検出するステップと、
検出手段により検出された前記所定状態値の頻度分布を計算し、計算された前記 頻度分布と前記設定手段(36)により設定された前記設定目標値とを比較し、その比 較結果に応じて、予め用意してあるメッセージを出力するステップと、 を備えてレヽることを特徴とする運転制御方法。
PCT/JP2004/012644 2003-09-02 2004-09-01 建設機械の運転システム WO2005024145A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020067003653A KR101166054B1 (ko) 2003-09-02 2004-09-01 건설 기계의 운전 시스템
GB0602837A GB2422210B (en) 2003-09-02 2004-09-01 Operating system of construction machinery
DE112004001565T DE112004001565B4 (de) 2003-09-02 2004-09-01 Betriebssystem für eine Baumaschine
US10/570,153 US7751954B2 (en) 2003-09-02 2004-09-01 Operating system of construction machinery
CN2004800239587A CN1839233B (zh) 2003-09-02 2004-09-01 建筑机械的操作系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003310366 2003-09-02
JP2003-310366 2003-09-02
JP2004196907A JP4173121B2 (ja) 2003-09-02 2004-07-02 建設機械の運転システム
JP2004-196907 2004-07-02

Publications (1)

Publication Number Publication Date
WO2005024145A1 true WO2005024145A1 (ja) 2005-03-17

Family

ID=34277689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012644 WO2005024145A1 (ja) 2003-09-02 2004-09-01 建設機械の運転システム

Country Status (7)

Country Link
US (1) US7751954B2 (ja)
JP (1) JP4173121B2 (ja)
KR (2) KR101166054B1 (ja)
CN (1) CN1839233B (ja)
DE (1) DE112004001565B4 (ja)
GB (1) GB2422210B (ja)
WO (1) WO2005024145A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433061B2 (ja) * 2008-02-27 2010-03-17 株式会社デンソー 運転支援システム
JP5233043B2 (ja) * 2008-03-26 2013-07-10 株式会社小松製作所 建設機械の送受信システムにおける運転操作ガイダンス装置
JP5133755B2 (ja) * 2008-03-28 2013-01-30 株式会社小松製作所 建設機械の運転評価システム及び運転評価方法
JP5381106B2 (ja) * 2009-01-07 2014-01-08 コベルコクレーン株式会社 クレーンの運転評価装置
US8838324B2 (en) * 2010-01-28 2014-09-16 Hitachi Construction Machinery Co., Ltd. Monitoring and diagnosing device for working machine
JP5350348B2 (ja) * 2010-09-30 2013-11-27 株式会社小松製作所 ガイダンス出力装置及びガイダンス出力方法
JP5646267B2 (ja) * 2010-09-30 2014-12-24 株式会社小松製作所 ガイダンス出力装置及びガイダンス出力方法
KR101685206B1 (ko) * 2010-12-21 2016-12-12 두산인프라코어 주식회사 건설장비의 로우아이들 제어 시스템 및 그 자동 제어방법
US9067501B2 (en) 2011-04-01 2015-06-30 Caterpillar Inc. System and method for adjusting balance of operation of hydraulic and electric actuators
US8909434B2 (en) 2011-06-29 2014-12-09 Caterpillar, Inc. System and method for controlling power in machine having electric and/or hydraulic devices
US8606448B2 (en) 2011-06-29 2013-12-10 Caterpillar Inc. System and method for managing power in machine having electric and/or hydraulic devices
US9097344B2 (en) * 2012-09-28 2015-08-04 Caterpillar Inc. Automatic shift control system for a powertrain and method
US9551284B2 (en) * 2013-04-04 2017-01-24 Doosan Infracore Co., Ltd. Apparatus for controlling construction equipment engine and control method therefor
DE102015006992B4 (de) * 2014-06-10 2021-04-15 Liebherr-Werk Ehingen Gmbh Verfahren und System zur Berechnung von Daten für den Betrieb eines Krans
JP5937173B2 (ja) * 2014-11-05 2016-06-22 株式会社小松製作所 建設機械の管理システム及び管理センタ装置
JP6430272B2 (ja) * 2015-01-29 2018-11-28 日立建機株式会社 作業機械の操作支援装置
JP6343573B2 (ja) 2015-02-25 2018-06-13 株式会社日立製作所 操作支援システムおよび操作支援システムを備えた作業機械
CN107251093A (zh) * 2015-03-30 2017-10-13 沃尔沃建筑设备公司 用于确定材料移动机械的铲斗的材料装载状况的系统和方法
JP6425618B2 (ja) * 2015-06-01 2018-11-21 日立建機株式会社 作業機械の操作支援装置
DE102016104358B4 (de) * 2016-03-10 2019-11-07 Manitowoc Crane Group France Sas Verfahren zum Ermitteln der Tragfähigkeit eines Krans sowie Kran
JP6776343B2 (ja) 2016-04-21 2020-10-28 住友建機株式会社 ショベルの表示装置
JP6831191B2 (ja) * 2016-08-24 2021-02-17 Ihi運搬機械株式会社 操作制御装置と操作制御方法
KR102063184B1 (ko) * 2017-12-29 2020-01-07 부산대학교산학협력단 건설장비 가이던스를 위한 토공작업 음성정보 제공 시스템 및 그 방법
JP7083315B2 (ja) 2019-02-22 2022-06-10 日立建機株式会社 施工管理システム
JP7316816B2 (ja) * 2019-03-26 2023-07-28 株式会社日本総合研究所 情報処理装置及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531669A (en) * 1978-08-30 1980-03-06 Toyota Motor Corp Speed change timing instructor for vehicle speed change gear
JPH0976850A (ja) * 1995-09-12 1997-03-25 Yanmar Agricult Equip Co Ltd 作業用走行車両における危険防止装置
JP2001011901A (ja) * 1999-06-30 2001-01-16 Kobe Steel Ltd ハイブリッド建設機械の作業情報処理装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534880B2 (ja) 1987-11-17 1996-09-18 東洋運搬機株式会社 ホイルロ―ダの作業分析方法
JP2670815B2 (ja) * 1988-07-29 1997-10-29 株式会社小松製作所 建設機械の制御装置
US5155996A (en) * 1989-01-18 1992-10-20 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for construction machine
JP2992434B2 (ja) * 1993-12-02 1999-12-20 日立建機株式会社 建設機械の油圧制御装置
US5745159A (en) * 1995-05-11 1998-04-28 The Boeing Company Passenger aircraft entertainment distribution system having in-line signal conditioning
JPH0937410A (ja) * 1995-07-24 1997-02-07 Toyota Motor Corp 車両用駆動制御装置
JPH09329051A (ja) * 1996-06-12 1997-12-22 Komatsu Ltd 自走車両
KR100378727B1 (ko) * 1996-12-12 2003-06-19 신카타피라 미쓰비시 가부시키가이샤 건설기계의제어장치
KR100271280B1 (ko) * 1997-09-30 2000-11-01 토니헬샴 건설기계 진단장치
JP2000027236A (ja) * 1998-07-07 2000-01-25 Komatsu Ltd 建設機械のデータ記憶装置およびデータ処理装置
EP0989525A3 (en) * 1998-08-31 2001-09-19 Kabushiki Kaisha Kobe Seiko Sho Management system for construction machines
JP3745189B2 (ja) * 1999-07-21 2006-02-15 本田技研工業株式会社 アイドル運転停止車両における発進クラッチの制御装置
WO2001025549A1 (fr) * 1999-10-01 2001-04-12 Hitachi Construction Machinery Co., Ltd. Dispositif de delimitation de la surface d'excavation cible pour engin excavateur, support d'enregistrement prevu a cet effet et unite d'affichage
JP3676204B2 (ja) * 2000-07-18 2005-07-27 新キャタピラー三菱株式会社 建設機械における音声アタッチメント制御方法
IT1320554B1 (it) * 2000-07-25 2003-12-10 Magneti Marelli Spa Dispositivo di controllo di una frizione per autoveicoli.
JP4477207B2 (ja) * 2000-08-31 2010-06-09 株式会社小松製作所 建設機械の機能ロック解除装置
JP4193496B2 (ja) * 2001-04-20 2008-12-10 セイコーエプソン株式会社 制御対象の駆動制御装置
JP4029006B2 (ja) * 2002-05-28 2008-01-09 株式会社小松製作所 作業車両
US6892124B2 (en) * 2003-07-31 2005-05-10 Deere & Company Adjustable axle control
JP4506286B2 (ja) * 2003-08-19 2010-07-21 株式会社小松製作所 建設機械
JP4318170B2 (ja) * 2003-08-25 2009-08-19 株式会社小松製作所 建設機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531669A (en) * 1978-08-30 1980-03-06 Toyota Motor Corp Speed change timing instructor for vehicle speed change gear
JPH0976850A (ja) * 1995-09-12 1997-03-25 Yanmar Agricult Equip Co Ltd 作業用走行車両における危険防止装置
JP2001011901A (ja) * 1999-06-30 2001-01-16 Kobe Steel Ltd ハイブリッド建設機械の作業情報処理装置

Also Published As

Publication number Publication date
JP2005098076A (ja) 2005-04-14
CN1839233B (zh) 2010-12-22
KR20100005722A (ko) 2010-01-15
GB2422210B (en) 2007-11-07
US7751954B2 (en) 2010-07-06
KR20060118415A (ko) 2006-11-23
CN1839233A (zh) 2006-09-27
GB2422210A (en) 2006-07-19
DE112004001565B4 (de) 2012-04-12
US20080249679A1 (en) 2008-10-09
DE112004001565T5 (de) 2006-07-20
KR101166054B1 (ko) 2012-07-19
GB0602837D0 (en) 2006-03-22
JP4173121B2 (ja) 2008-10-29
KR101033629B1 (ko) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2005024145A1 (ja) 建設機械の運転システム
JP4506286B2 (ja) 建設機械
JP6633052B2 (ja) ショベル
JP4629377B2 (ja) 建設機械
KR101698287B1 (ko) 작업 차량
US8959893B2 (en) Guidance output device, guidance output method, and construction machine equipped with guidance output device
KR102137299B1 (ko) 쇼벨
JP6965160B2 (ja) ショベル
KR101457286B1 (ko) 가이던스 출력 장치 및 가이던스 출력 방법
EP3521522A1 (en) Shovel
JP2000027236A (ja) 建設機械のデータ記憶装置およびデータ処理装置
JP5937173B2 (ja) 建設機械の管理システム及び管理センタ装置
EP3666979A1 (en) Shovel, display device of shovel, and method for displaying shovel
JP7003107B2 (ja) ショベル
JP6214976B2 (ja) 建設機械
JP2582279B2 (ja) 油圧式掘削機械の寿命選択装置
JP5646267B2 (ja) ガイダンス出力装置及びガイダンス出力方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023958.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 0602837.7

Country of ref document: GB

Ref document number: 0602837

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1020067003653

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10570153

Country of ref document: US

Ref document number: 1120040015650

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 1020097024653

Country of ref document: KR