WO2005022640A1 - 半導体量子ドット素子及びその製造方法 - Google Patents

半導体量子ドット素子及びその製造方法 Download PDF

Info

Publication number
WO2005022640A1
WO2005022640A1 PCT/JP2004/012355 JP2004012355W WO2005022640A1 WO 2005022640 A1 WO2005022640 A1 WO 2005022640A1 JP 2004012355 W JP2004012355 W JP 2004012355W WO 2005022640 A1 WO2005022640 A1 WO 2005022640A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
buffer layer
quantum dot
layer
semiconductor buffer
Prior art date
Application number
PCT/JP2004/012355
Other languages
English (en)
French (fr)
Inventor
Tao Yang
Jun Tatebayashi
Shiro Tsukamoto
Yasuhiko Arakawa
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2005022640A1 publication Critical patent/WO2005022640A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Definitions

  • the present invention relates to a semiconductor quantum dot device and a method for manufacturing the same, and in particular, has high uniformity.
  • the present invention relates to a semiconductor quantum dot device having quantum dots formed at high density and a method of manufacturing the same.
  • quantum dot lasers and the like have been actively developed with the development of self-assembly forming technology of semiconductor nanostructures such as quantum dots.
  • a quantum dot has a structure that confines electrons and holes in a very narrow three-dimensional energy potential. In such a structure, the energy levels of electrons and holes are completely discretized, and the state density function becomes a sharp pulse.
  • the basic characteristics of a laser are greatly improved.
  • Typical characteristics that can be improved include three characteristics: (1) threshold current, (2) modulation characteristics, and (3) spectral characteristics.
  • the threshold current is a basic characteristic of the semiconductor laser.
  • the dynamic characteristics of the laser such as the modulation characteristics and the spectral characteristics, show that the rate of increase of the gain with increasing carrier density, that is, the differential gain, increases because the spread of the state density function is suppressed and the gain spectrum narrows. Become. Since the relaxation oscillation frequency is proportional to the square root of the differential gain, a large increase in the modulation bandwidth can be expected by using quantum dots for the active layer.
  • InAsZGaAs quantum dots can oscillate in the 1.3 m band required for optical communication in the optical communication field, and in recent years, the wavelength range has been expanded to the 1.52 m band. It is also approaching another important wavelength band, the 1.55 m band.
  • quantum dots In order to realize the above-described quantum dot laser, it is necessary to form quantum dots with high uniformity and high density without causing deterioration in crystallinity.
  • relatively simple quantum Dot fabrication methods include self-assembly or Stranski-Krastanow growth mode.
  • MBE molecular beam epitaxy
  • MOCVD organic metal vapor deposition
  • a semiconductor quantum dot device has a semiconductor buffer layer 110 laminated by crystal growth on a semiconductor substrate (not shown), and has a lattice constant different from that of the semiconductor buffer layer 110.
  • the quantum dot layer 120 includes a quantum dot layer 120 having a dot structure and a buried layer 130 formed so as to embed the dot structure.
  • the semiconductor buffer layer 110 and the buried layer 130 are formed of GaAs
  • the quantum dot layer 120 is formed of InAs.
  • Non-Patent Document 1 "Optronitus” Optronitus Publishing Co., Ltd., Vol. 222, No. 8, p. 91-99 "Special Issue on Light and Nanotechnology"
  • forming quantum dots using the MBE apparatus and MOCVD apparatus is a relatively simple method, but has the problem that the two-dimensional uniformity of the dot structure formed in the quantum dot layer 120 is low. is there. This problem has a direct effect on the optical properties.
  • the photoluminescence half width outputted from one quantum dot is the limit, and the photoluminescence half width of the entire semiconductor quantum dot element approaches the limit.
  • the semiconductor quantum dot device having the structure shown in FIG. 11 has a photoluminescence half-value width as large as 50 to 80 meV and is difficult to be put to practical use.
  • the photoluminescence half-width has been improved to 25-30 meV by adjusting the conditions of low growth rate and low As pressure in the manufacturing method to appropriate values. Further improvement is necessary for practical use.
  • the present invention has been made in view of the above problems, and an object of the present invention is to find a manufacturing condition of a quantum dot with high uniformity, so that a photoluminescence half width can be reduced to the limit.
  • An object of the present invention is to provide a quantum dot device and a method for manufacturing the same.
  • a semiconductor quantum dot device of the present invention is provided on a semiconductor substrate.
  • a first semiconductor buffer layer formed by crystal growth, and a critical film thickness formed by crystal growth on the first semiconductor buffer layer, having a different lattice constant from the first semiconductor buffer layer, and not causing three-dimensional growth.
  • a second semiconductor buffer layer formed by laminating the following film thicknesses; a third semiconductor buffer layer formed on the second semiconductor buffer layer and having a thickness at which monoatomic layer flattening occurs; It is essential to have a quantum dot layer formed on the third semiconductor buffer layer, having a different lattice constant from that of the third semiconductor buffer layer, and having a thickness greater than a critical thickness at which three-dimensional growth occurs. .
  • the method for manufacturing a semiconductor quantum dot device of the present invention includes a step of forming a first semiconductor buffer layer by stacking on a semiconductor substrate by crystal growth, and a step of forming a first semiconductor buffer layer by crystal growth.
  • After annealing the surface of the buffer layer forming a third semiconductor buffer layer so as to have a monoatomic layer flat on the second semiconductor buffer layer by crystal growth, Forming a quantum dot layer by laminating on the third semiconductor buffer layer a film thickness equal to or more than a critical film thickness at which three-dimensional growth due to lattice mismatch occurs with the second semiconductor buffer layer.
  • a monoatomic layer is flattened by providing a coupling strain buffer layer including a second semiconductor buffer layer and a third semiconductor buffer layer below the quantum dot layer. Therefore, steps that spread in various directions in the two-dimensional in-plane direction on the third semiconductor buffer layer can be formed densely.
  • quantum dots can be grown in a two-dimensional plane uniformly and with high density.
  • the quantum dots can be grown uniformly, the probability that adjacent quantum dots are polymerized is reduced, and the dot can be prevented from being enlarged.
  • the quality of the environment in which the quantum dots are grown is the same in any region, the size of the quantum dots can be made uniform.
  • FIG. 1 is a cross-sectional view of a semiconductor quantum dot device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view of a semiconductor quantum dot device according to an embodiment of the present invention. Explain the manufacturing process FIG.
  • FIG. 3 is an AFM image of the surface of the first semiconductor buffer layer shown in FIG. 2 (a).
  • FIG. 4 is an AFM image of the surface of the second semiconductor buffer layer shown in FIG. 2 (b).
  • FIG. 5 is an AFM image of the surface of the second semiconductor buffer layer when annealing the second semiconductor buffer layer shown in FIG. 2 (b).
  • FIG. 6 is an AFM image of the surface of the third semiconductor buffer layer shown in FIG. 2 (c).
  • FIG. 7 is an AFM image showing a quantum dot distribution state when quantum dots are grown on the first semiconductor buffer layer shown in FIG. 2 (a).
  • FIG. 8 is a graph of the quantum dot distribution shown in FIG. 7.
  • FIG. 9 is an AFM image showing a quantum dot distribution state when quantum dots are grown on the first semiconductor buffer layer shown in FIG. 2 (c).
  • FIG. 10 is a graph of the quantum dot distribution shown in FIG. 9.
  • FIG. 11 is a cross-sectional view of a configuration of a conventional semiconductor quantum dot device.
  • FIG. 1 is a cross-sectional configuration diagram of a semiconductor quantum dot device according to an embodiment of the present invention.
  • the second semiconductor buffer layer 20 and the third semiconductor buffer layer 30 are formed on the first semiconductor buffer layer 10.
  • a coupling strain buffer layer 60 formed by continuous lamination is formed, and a quantum dot layer 40 is formed on the coupling strain buffer layer 60.
  • An embedding layer 50 is provided so as to embed the quantum dot layer 40.
  • the first semiconductor buffer layer 10 formed on the semiconductor substrate has a larger lattice constant than the first semiconductor buffer layer 10.
  • Forming a second semiconductor buffer layer 20 by crystal-growing a compound semiconductor having the following formula, forming a strain on the second semiconductor buffer layer 20, and adjusting the film thickness of the second semiconductor buffer layer 20.
  • a surface layer in which only a defect-free strain is formed on the surface of the second semiconductor buffer layer 20 is formed.
  • a third semiconductor buffer layer 30 is formed by crystal-growing a compound semiconductor on the strained second semiconductor buffer layer 20, and the strain on the second semiconductor buffer layer 20 is reduced to a third level.
  • a step of a monoatomic layer is formed in the two-dimensional plane of the third semiconductor buffer layer 30 while inheriting the surface of the third semiconductor buffer layer 30.
  • the first semiconductor buffer layer 10 is a layer formed by crystal growth on a semiconductor substrate (not shown).
  • the crystal growth material is preferably GaAs, which is preferably an mV group compound semiconductor. Not limited to GaAs, it may be InAlAs or InAlGaAs in which a small amount of In or A1 is bonded to GaAs.
  • the second semiconductor buffer layer 20 of the coupling strain buffer layer 60 is a layer formed on the first semiconductor buffer layer 10 by crystal growth.
  • a crystal growth material a group III-V compound semiconductor containing an In element is preferable, and specifically, InxGal-xAs is preferable.
  • InGaAs it is not limited to InGaAs but may be a quaternary mixed crystal semiconductor such as InGaAlAs!
  • the second semiconductor buffer layer 20 needs to be crystal-grown at a critical thickness or less that does not cause distortion due to lattice mismatch, does not impair crystal quality, and does not cause three-dimensional growth.
  • the degree of lattice mismatch between GaAs and InAs is at least smaller than about 7%, preferably larger than 0 and less than 2.1%.
  • the crystal quality is not impaired when the composition x is within the range of 0 and x ⁇ 0.3.
  • this composition range is converted to the degree of lattice mismatch, the degree of lattice mismatch between GaAs and InAs is approximately 7% .Therefore, multiplying this value by the composition X does not impair the crystal quality.
  • the degree is expected to be about 2.1%.
  • the relationship between the composition X and the film thickness changes according to the change in the composition X.
  • the film thickness dl is 0 and dl ⁇ 10 nm.
  • the crystal quality can be grown within a range that does not impair the crystal quality and does not cause three-dimensional growth.
  • three-dimensional growth is a phenomenon caused by a lattice constant difference between crystals, and means that three-dimensional island growth occurs after two-dimensional layer growth. . Therefore, “below the critical film thickness at which three-dimensional growth does not occur” means a film thickness below which the defect is not introduced and which includes the critical film thickness just before island-like three-dimensional growth occurs.
  • the third semiconductor buffer layer 30 of the coupling strain buffer layer is a layer formed on the second semiconductor buffer layer 20 by crystal growth.
  • III-V compound semiconductor is preferred, and specifically, GaAs is desirable.
  • the thickness d2 of the GaAs layer is from several atomic layers (several monolayers: ML) to several nm. Specifically, 0 ⁇ d2 ⁇ lOnm is desirable!
  • the third semiconductor buffer layer 30 has an effect of reducing the uneven surface segregation distribution of In which is generated when the second semiconductor buffer layer 20 is annealed. As a result, a flat surface can be obtained in which the steps of the single atomic layer are almost uniformly present. This also makes the uniformity and density change within the range of zero power nm of the thickness d2 of the third semiconductor buffer layer 30 as compared with the case where the quantum dot layer is grown directly on the first semiconductor buffer layer 10. . However, when the thickness d2 of the third semiconductor buffer layer 30 exceeds a few nm, the state is the same as when dots are directly grown on the first semiconductor buffer layer 10.
  • the thickness d2 of the third semiconductor buffer is equal to zero even with uniformity and density when dots are directly formed on the first semiconductor buffer layer 10. It must be within the range. That is, d2 ⁇ 10 nm.
  • “flattening of a monoatomic layer” means flattening at an atomic level, in other words, that the height difference of a monoatomic layer step is 1 atom and that it is a substantially flat surface.
  • the quantum dot layer 40 is a layer formed on the third semiconductor buffer layer 30 by crystal growth.
  • a crystal growth material a group III compound semiconductor is preferred, and specifically, InAs is mentioned.
  • the crystal growth material is not limited to this, and may be a ternary mixed crystal semiconductor containing a small amount of Ga.
  • the crystal growth material desirably has a large degree of lattice mismatch with the third semiconductor buffer layer so that three-dimensional growth occurs on the third semiconductor buffer layer. Accordingly, the quantum dot layer 40 is formed by three-dimensionally growing dots by continuing the crystal growth of a certain film thickness or more by utilizing the effect of lattice mismatch.
  • the buried layer 50 is a layer formed on the quantum dot layer 40 by crystal growth.
  • Crystal growth The material is preferably III-V compound semiconductor, more preferably GaAs.
  • GaAs there is no particular limitation on the InGaAs in which a small amount of In is combined with GaAs, or the laminated form in which GaAs may be laminated after laminating InGaAs.
  • TAG triethylgallium
  • the coupling strain buffer layer including the second semiconductor buffer layer and the third semiconductor buffer layer is provided below the quantum dot layer, so that the monoatomic layer is formed. Since the flattening can be performed, steps can be densely formed in various directions in the two-dimensional plane of the third semiconductor buffer layer. As a result, quantum dots can be grown uniformly and at high density in a two-dimensional plane. In addition, since the quantum dots can be grown uniformly, the probability that adjacent quantum dots are polymerized is reduced, and the dot can be prevented from being enlarged. Further, since the quality of the environment in which the quantum dots are grown is equalized in any region, the size of the quantum dots can be made uniform.
  • the number of quantum dot layers is one, but the number of layers is not limited to this, and for example, the quantum dot layer may have a multilayer structure.
  • a coupling strain buffer layer (second and third semiconductor buffer layers) may be formed on the buried layer 50, and a quantum dot layer may be grown thereon by self-organization. .
  • GaAs is used for the first semiconductor buffer layer 10
  • InGaAs is used for the second semiconductor buffer layer 20
  • GaAs is used for the third semiconductor buffer layer 30.
  • MOCVD metal organic chemical vapor deposition
  • a GaAs (001) substrate is prepared as a semiconductor substrate, the substrate temperature is set to 700 ° C., and GaAs is grown to a thickness of 250 nm.
  • the semiconductor buffer layer 11 is formed.
  • trimethylgallium (TMG) is used as a raw material for group III elements V
  • tert-butylarsine (TBA) is used as a raw material for group V elements.
  • TMI trimethylindium
  • the fa layer 21 is formed.
  • Ga As has approximately 1% lattice mismatch with GaAs
  • the supply of TMI was stopped and the substrate temperature was raised to 600 ° C. (At this time, it took 450 seconds to raise the temperature to 600 ° C. During this time, the sample was annealed. State). Then, GaAs is grown to a thickness of 2 nm on the second semiconductor buffer layer 21 to form a third semiconductor buffer layer 31.
  • the supply of TMG is stopped and the TMI is supplied again, as shown in FIG. 2D.
  • the substrate temperature is lowered to 500 ° C., and InAs is grown on the third semiconductor buffer layer 31 to form the quantum dot layer 41. Since InAs has a lattice mismatch with GaAs of about 7%, three-dimensional growth occurs near the growth thickness exceeding 0.57 nm, and InAs quantum dots are formed by self-organization.
  • the raw material of the group III element is switched to triethyl gallium (TEG), and the substrate temperature is maintained at 500 ° C. Then, GaAs is grown to a thickness of 100 nm to form a buried layer 51.
  • TAG triethyl gallium
  • the coupling strain buffer layer composed of the second semiconductor buffer layer 21 and the third semiconductor buffer layer 31 is provided under the quantum dot layer 41, A single atomic layer can be flattened while the third semiconductor buffer layer 31 inherits the strain formed on the surface of the semiconductor buffer layer 21 of the third semiconductor buffer layer 21. Steps extending in various directions can be formed. As a result, the quantum dots can be made highly uniform in the two-dimensional direction, and at the same time, the density can be made high.
  • the crystal growth is improved as compared with the related art, and the emission wavelength of 1.3 m can be controlled.
  • the steps formed on the second semiconductor buffer layer 21 can be more two-dimensionally flattened. Can be done.
  • the third semiconductor buffer layer (GaAs) 31 can reduce the uneven surface segregation distribution of In which is generated when the second semiconductor buffer layer (InGaAs) 21 is annealed. As a result, the surface of the third semiconductor buffer layer, which also has a monoatomic layer force, becomes a more atomically uniform flat surface.
  • the thickness dl of the second semiconductor buffer layer 21 has a correlation with the composition X of InxGal-xAs. Therefore, when the composition is within the range of 0 ⁇ x ⁇ 0.3, Even if the thickness is changed within the range of dl ⁇ 10 nm, dl can be grown without impairing crystallinity.
  • the thickness d2 of the third semiconductor buffer layer 31 is not limited to 2 nm, but can be converted into atoms without losing the strain of the second semiconductor buffer layer 21 within the range of 0 ⁇ d2 ⁇ lOnm. A uniform flat surface can be formed.
  • the annealing temperature is not limited to 600 ° C. If it is between 500 ° C and 700 ° C, the uneven surface segregation distribution of In can be reduced.
  • the surface of each layer is composed of an atomic force microscope (AFM,
  • Nanoscope Ilia an image taken by an atomic force microscope is called an AFM image.
  • FIG. 3 is an AFM image of the layer surface 11a of the first semiconductor buffer layer 11 produced in the step of FIG. 2 (a).
  • This first semiconductor buffer layer is formed of GaAs. As described above, when GaAs is crystal-grown, step bunching having a waveform in a one-dimensional direction occurs on 1 la of the layer surface.
  • FIG. 4 is an AFM image of the layer surface 21a of the second semiconductor buffer layer 21 produced in the step of FIG. 2B.
  • the second semiconductor buffer layer 21 is formed of InGaAs having a different lattice constant from that of the first semiconductor buffer layer 11. Therefore, spot-like islands caused by In are formed on the surface 21a of the second semiconductor buffer layer.
  • FIG. 5 is an AFM image when the second semiconductor buffer layer surface 21a is annealed at 600 ° C.
  • annealing the second semiconductor buffer layer 21 In is biased toward the surface and the surface is relaxed. (In this state, dots are still formed due to the large island boundaries.)
  • FIG. 6 is an AFM image of the layer surface 31a of the third semiconductor buffer layer 31 produced in the step of FIG. 2 (c).
  • This third semiconductor buffer layer 31 is formed of GaAs.
  • the step changes to a monoatomic flat surface that exists uniformly in various directions in the two-dimensional plane. The distance between these steps is several tens of nanometers and hundreds of nanometers, and the size of the islands (near a spot or disk) formed on a flat step is about 150 nm to 500 nm.
  • FIG. 7 is an AFM image when quantum dots are grown directly on the layer surface 11a shown in FIG.
  • the layer surface 11a of the first semiconductor buffer layer 11 is formed with a wavy step bunching in the one-dimensional direction, so that the quantum dots also depend on the step bunching in the one-dimensional direction. Is formed.
  • the size of the formed quantum dots is uneven.
  • FIG. 8 is a distribution diagram where the horizontal axis represents the height of quantum dots and the vertical axis represents the number of quantum dots.
  • the number of dots was counted by performing image processing on the AFM image.
  • several to several tens of quantum dots having a height of 2 nm to 13 nm were formed, respectively.
  • the density was 1.49 ⁇ 10 1 Q cm— 2
  • the average height h of the quantum dots was 9.3 nm
  • the average width d was 31.9 nm.
  • FIG. 9 shows an AFM image of the quantum dots formed on the layer surface 31a shown in FIG.
  • the quantum dots are also formed to spread uniformly in the two-dimensional in-plane direction depending on these steps. . From the same image, it can be observed that the size of the formed quantum dots is substantially uniform.
  • Figure 10 shows the dot distribution diagram.
  • quantum dots having a height of about lOnm accounted for 80% of the whole.
  • the density at this time was 1.74 ⁇ 10 1 Q cm 2
  • the average height h of the quantum dots was 9.7 nm
  • the average width d was 39. Onm.
  • the quantum dot density of the InAs quantum dot manufactured by inserting the coupling strain buffer layer 60 is 16.8% higher than the conventional 1.49 ⁇ 10 1 Q cm ⁇ 2 . Increased to 74 X 10 1Q cm- 2 .
  • the half-width of photoluminescence of the semiconductor quantum dot device according to the present embodiment and the half-width of photoluminescence manufactured by the conventional technique (FIG. 11) were measured.
  • the InAs quantum dots according to the present embodiment have 20. It decreased to 5 meV, and the effect of high uniformity appeared.
  • a second semiconductor buffer layer eg, InGaAs 21 which causes distortion due to lattice mismatch with the first semiconductor buffer layer (eg, GaAs) 21.
  • the strain of the second semiconductor buffer layer 21 is relaxed and a monoatomic layer flat surface is formed.
  • Crystal growth of the third semiconductor buffer layer (GaAs) 31 within the range of 0 ⁇ d2 ⁇ 10 nm reduces the steps of the single atomic layer that spreads uniformly in the two-dimensional in-plane direction of the third semiconductor buffer layer 31. Since it can be formed, quantum dots (InAs) can be grown with high uniformity and high density. As a result, the growth environment of the quantum dots can be made uniform, so that the photoluminescence half width can be reduced to the limit.
  • the present invention by providing a coupling strain buffer layer composed of the second semiconductor buffer layer and the third semiconductor buffer layer below the quantum dot layer, the third semiconductor buffer Since the steps can be formed densely in the two-dimensional in-plane direction of the layer, quantum dots can be formed with high uniformity and high density. As a result, it is possible to provide a semiconductor quantum dot device in which the photoluminescence half-value width of the quantum dot is reduced to the limit and a method of manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 均一性の高い量子ドットの作製条件を見つけることにより、フォトルミネッセンス半値幅を極限まで狭めることができる半導体量子ドット素子及びその製造方法を提供する。  半導体基板上に結晶成長により形成された第1の半導体バッファ層と、第1の半導体バッファ層上に結晶成長により形成され、第1の半導体バッファ層と格子定数が異なり、且つ、3次元成長が生じない膜厚を積層してなる第2の半導体バッファ層と、第2の半導体バッファ層上に形成され、単原子層平坦化が生じる膜厚を有する第3の半導体バッファ層 と、第3の半導体バッファ層上に形成され、第3の半導体バッファ層と格子定数が異なり、且つ3次元成長が生じる臨界膜厚以上の膜厚を積層してなる量子ドット層を有すること第3の半導体バッファ層の表面に2次元方向の様々な方向にステップを密に形成することができる。これにより量子ドットを2次元面内に均一且つ密に結晶成長させることができる。

Description

明 細 書
半導体量子ドット素子及びその製造方法
技術分野
[0001] 本発明は、半導体量子ドット素子及びその製造方法に関し、特に、高均一性を有し
、且つ高密度に形成された量子ドットを有する半導体量子ドット素子及びその製造方 法に関する。
背景技術
[0002] 近年、量子ドットなどの半導体ナノ構造の自己組織化形成技術の発展により、量子 ドットレーザ等の開発が盛んに行われている。量子ドットとは、電子と正孔を 3次元的 に非常に狭いエネルギーポテンシャル中に閉じ込める構造を有したものである。この ような構造にぉ 、て電子と正孔のエネルギー準位は完全に離散化し、状態密度関数 は先鋭ィ匕したパルス状となる。
[0003] このような特性を有する量子ドットを半導体レーザ活性層に導入すると、レーザの基 本特性が大きく改善される。改善される代表的な特性として(1)閾値電流、(2)変調 特性、(3)スペクトル特性の 3つの特性が挙げられる。ここで閾値電流は半導体レー ザの基本特性であるが、量子ドットを活性層に導入することにより、状態密度の先鋭 化によって温度依存性の抑圧に加え閾値電流の低減を期待できる。また変調特性、 スペクトル特性のようなレーザのダイナミック特性は、状態密度関数の広がりが抑制さ れて利得スペクトルが狭くなることによって、キャリア密度の増加に伴う利得の増加の 割合、つまり微分利得が大きくなる。緩和振動周波数は、微分利得の平方根に比例 するので、量子ドットを活性層に用いることにより、変調帯域幅の大幅な増大が期待 できる。
[0004] 現在、光通信分野において InAsZGaAs量子ドットは、光通信に必要な 1. 3 m 帯での発振が可能となり、近年では 1. 52 m帯までその波長範囲が拡大している。 また、もう 1つの重要な波長帯である 1. 55 m帯にも近づきつつある。
[0005] 上述のような量子ドットレーザを実現させるためには、結晶性の劣化を生じさせず、 且つ高均一で高密度な量子ドットを形成する必要がある。現在、比較的簡便な量子 ドットの製造方法には、自己組織化、又は Stranski-Krastanow成長モードを利用する 方法がある。
[0006] 成長装置としては、分子線エピタキシー(Molecular Beam Epitaxy : MBE)装置や有 機金属気相成長法(Metal organic chemical vapor deposition : MOCVD)装置が用 いられている。
[0007] ここで図 11を参照して、上記方法で作製された従来の半導体量子ドット素子の構 造を説明する。同図に示すように半導体量子ドット素子は、半導体基板 (図示せず) 上に結晶成長により積層された半導体バッファ層 110と、この半導体バッファ層 110 と異なる格子定数を有し半導体バッファ層 110上に形成されたドット構造を有する量 子ドット層 120と、このドット構造を埋め込むように積層形成された埋込層 130とで構 成されて!/、る。ここで半導体バッファ層 110及び埋込層 130は GaAsによって形成さ れ、量子ドット層 120は InAsによって形成されて!、る。
[0008] 非特許文献 1 :「ォプトロ二タス」ォプトロ二タス社出版、第 222卷第 8号、 p91— 99「 特集光とナノテクノロジー」
ところで、上記 MBE装置及び MOCVD装置を用いて量子ドットを形成することは、 比較的簡便な方法である反面、量子ドット層 120内に形成されるドット構造の 2次元 的均一性が低いという問題がある。この問題は光学特性に直接的に影響を与える。
[0009] つまり、理想的には 1個の量子ドットから出力されるフォトルミネッセンス半値幅を極 限として、半導体量子ドット素子全体のフォトルミネッセンス半値幅がこの極限に近づ くことが望ましい。しかし、図 11に示した構造を有する半導体量子ドット素子は、フォト ルミネッセンス半値幅が 50— 80meVと大きく広がり実用化は困難である。現在、製造 方法の低成長速度、低 As圧の条件を適切値にすることでフォトルミネッセンス半値幅 は 25— 30meVまで改善されている力 実用化には更なる改善が必要である。
[0010] 本発明は上記課題を鑑みてなされたものであり、その目的は、均一性の高い量子ド ットの作製条件を見つけることにより、フォトルミネッセンス半値幅を極限まで狭めるこ とができる半導体量子ドット素子及びその製造方法を提供することにある。
発明の開示
[0011] 上記目的を達成するために、本発明の半導体量子ドット素子は、半導体基板上に 結晶成長により形成された第 1の半導体バッファ層と、第 1の半導体バッファ層上に 結晶成長により形成され、第 1の半導体バッファ層と格子定数が異なり、且つ 3次元 成長が生じない臨界膜厚以下の膜厚を積層してなる第 2の半導体バッファ層と、第 2 の半導体バッファ層上に形成され単原子層平坦ィ匕が生じる膜厚を有する第 3の半導 体バッファ層と、第 3の半導体バッファ層上に形成され、第 3の半導体バッファ層と格 子定数が異なり、且つ 3次元成長が生じる臨界膜厚以上の膜厚を積層してなる量子 ドット層を有することを要旨する。
[0012] また、本発明の半導体量子ドット素子の製造方法は、結晶成長により、半導体基板 上に積層して第 1の半導体バッファ層を形成する工程と、結晶成長により、第 1の半 導体バッファ層との間に格子不整合による 3次元成長が生じない臨界膜厚以下の膜 厚で第 1の半導体バッファ層上に積層して第 2の半導体バッファ層を形成する工程と 、第 2の半導体バッファ層の表面をァニールした後に、結晶成長により、第 2の半導 体バッファ層上に単原子層平坦ィ匕を有するように第 3の半導体バッファ層を形成する 工程と、結晶成長により、第 2の半導体バッファ層との間に格子不整合による 3次元 成長が生じる臨界膜厚以上の膜厚で前記第 3の半導体バッファ層上に積層して量子 ドット層を形成する工程とを有することを要旨する。
[0013] 本発明によれば、量子ドット層の下に、第 2の半導体バッファ層と第 3の半導体バッ ファ層で構成される結合歪バッファ層を設けることで単原子層平坦ィ匕させることがで きるので、第 3の半導体バッファ層上の 2次元面内方向の様々な方向に広がるステツ プを密に形成することができる。これにより量子ドットを 2次元面内に均一、且つ高密 度に結晶成長させることができる。また、量子ドットを均一に成長させることが可能とな るから隣接する量子ドットが重合する確率が低下し、ドットの巨大化を抑制できる。更 に、量子ドットを成長させる環境がどの領域でも同品質化されるので量子ドットの大き さを均一化させることができる。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の実施の形態に係る半導体量子ドット素子の断面構成図である [図 2]図 2は、本発明の実施の形態に係る半導体量子ドット素子の製造工程を説明す る工程断面図である。
[図 3]図 3は、図 2 (a)に示した第 1の半導体バッファ層表面の AFM像である。
[図 4]図 4は、図 2 (b)に示した第 2の半導体バッファ層表面の AFM像である。
[図 5]図 5は、図 2 (b)に示す第 2の半導体バッファ層をァニールした場合の、第 2の半 導体バッファ層表面の AFM像である。
[図 6]図 6は、図 2 (c)に示す第 3の半導体バッファ層表面の AFM像である。
[図 7]図 7は、図 2 (a)に示す第 1の半導体バッファ層の上に量子ドットを成長させたと きの量子ドット分布状態を示す AFM像である。
[図 8]図 8は、図 7に示す量子ドット分布をグラフ化した図である。
[図 9]図 9は、図 2 (c)に示す第 1の半導体バッファ層の上に量子ドットを成長させたと きの量子ドット分布状態を示す AFM像である。
[図 10]図 10は、図 9に示す量子ドット分布をグラフ化した図である。
[図 11]図 11は、従来の半導体量子ドット素子の構成断面図である。
発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について図面を参照して説明する。
[0016] 図 1は、本発明の実施の形態に係る半導体量子ドット素子の断面構成図である。
[0017] 図 1に示すように、本実施の形態に係る半導体量子ドット素子は、第 1の半導体バッ ファ層 10上に、第 2の半導体バッファ層 20と第 3の半導体バッファ層 30とが連続積 層されてなる結合歪バッファ層 60が形成されており、この結合歪バッファ層 60上に 量子ドット層 40が形成されている。そして量子ドット層 40を埋め込むように埋込層 50 が設けられている。
[0018] ここで、本実施の形態の半導体量子ドット素子の特徴のひとつは、半導体基板上に 形成された第 1の半導体バッファ層 10上に、第 1の半導体バッファ層 10より大きい格 子定数を有する化合物半導体を結晶成長させて第 2の半導体バッファ層 20を形成し 、第 2の半導体バッファ層 20上に歪を形成させると共に、第 2の半導体バッファ層 20 の膜厚をィ匕合物半導体が 3次元成長を生じない臨界膜厚以下で成長させることで、 第 2の半導体バッファ層 20の表面上に欠陥が無ぐ歪のみが形成された表面層を形 成する。 [0019] また、歪みが形成された第 2の半導体バッファ層 20上に化合物半導体を結晶成長 させて第 3の半導体バッファ層 30を形成し、第 2の半導体バッファ層 20上の歪を第 3 の半導体バッファ層 30の表面に継承させつつ、第 3の半導体バッファ層 30の 2次元 面内に単原子層のステップを形成する。
[0020] ここで第 1の半導体バッファ層 10は、半導体基板(図示せず)上に結晶成長により 形成される層である。結晶成長材料は、 m— V族化合物半導体が好ましぐ具体的に は GaAsが望ましい。尚、 GaAsに限らず、 GaAsに微量の Inや A1をィ匕合した InAlAs 、 InAlGaAsでもよい。
[0021] 一方、結合歪バッファ層 60のうち第 2の半導体バッファ層 20は、第 1の半導体バッ ファ層 10の上に結晶成長により形成される層である。結晶成長材料は、 In元素を含 む III V族化合物半導体が好ましぐ具体的には InxGal-xAsが望ましい。しかし In GaAsに限らず、 InGaAlAs等の 4元混晶半導体であってもよ!/、。
[0022] ここで第 2の半導体バッファ層 20は、格子不整合により歪を生じ、結晶品質を損な わず、且つ 3次元成長を生じない臨界膜厚以下で結晶成長される必要がある。 In元 素を含む III V族化合物半導体を結晶成長させるためには、少なくとも GaAsと InAs の格子不整合度 (約 7%)より小さぐ望ましくは 0より大きく 2. 1%以下である。
[0023] 例えば InxGal-xAsで第 2の半導体バッファ層 20を形成した場合、組成 xが 0く x ≤0. 3の範囲内にあるとき結晶品質は損なわれない。そこで、この組成範囲を格子 不整合度に換算すると、 GaAsと InAsの格子不整合度が約 7%であることから、この 値に組成 Xを乗算することで結晶品質が損なわれない程度の格子不整合度が得られ る。つまり具体的には、組成 x=0. 12 (In Ga As)のとき格子不整合度は約 1%
0.12 0.88
となり(7% X 0. 12 = 0. 84%)、同様に糸且成 x=0. 3 (In Ga As)のとき格子不整
0.3 0.7
合度は約 2. 1%となることから求められる。
[0024] また、このような第 2の半導体バッファ層 20は、格子不整合の作用から、ある膜厚以 上の結晶成長を続けると表面に 3次元成長が生じる(又は欠陥が導入される)。組成 Xと膜厚の関係は、組成 Xの変化に応じて変化するものであるが、上記組成範囲(0く x≤0. 3)内においては、膜厚 dlが 0く dl≤10nmの範囲内にあるとき結晶品質を 損なわず、且つ 3次元成長を生じな 、範囲で結晶成長させることができる。 [0025] 尚ここで、「3次元成長」とは、結晶間の格子定数差により生じる現象であり、 2次元 的な層成長が起きた後、 3次元的な島状成長が起きることをいう。従って「3次元成長 が生じない臨界膜厚以下」とは、欠陥が導入されず、且つ島状の 3次元成長が生じる 手前の臨界膜厚を含むそれ以下の膜厚を意味している。
[0026] 結合歪バッファ層のうち第 3の半導体バッファ層 30は、第 2の半導体バッファ層 20 上に結晶成長により形成される層である。結晶成長材料は、 III V族化合物半導体 が好ましぐ具体的には GaAsが望ましい。また、 GaAsの積層膜厚 d2は、数原子層( 数モノレイヤー: ML)から数 nmであり、具体的には 0 < d2≤ lOnmが望まし!/、。
[0027] また、この第 3の半導体バッファ層 30は、第 2の半導体バッファ層 20をァニールした 場合にできる Inの不均一な表面偏析分布を軽減する効果を有する。これにより単原 子層のステップがほぼ均一に存在する平坦表面とすることができる。またこれにより、 第 1の半導体バッファ層 10に直接量子ドット層を成長する場合よりも均一性と密度が 、第 3の半導体バッファ層 30の膜厚 d2のゼロ力 数 nmの範囲内で変化する。しかし 第 3の半導体バッファ層 30の膜厚 d2が、数 nmを越えると直接第 1の半導体バッファ 層 10上にドットを成長した時と同じ状態となる。つまり結合歪バッファ層 60の効果が 消失するため、第 3の半導体バッファの膜厚 d2は、ゼロ力も直接第 1の半導体バッフ ァ層 10上にドットを形成した際の均一性及び密度が同等になるまでの範囲である必 要がある。すなわち 0く d2≤10nmとなる。尚、ここで「単原子層平坦化」とは、原子レ ベルで平坦ィ匕することをいい、換言すれば、単原子層ステップの高低差が 1原子で、 ほぼ平坦面であることを 、う。
[0028] 量子ドット層 40は、第 3の半導体バッファ層 30上に結晶成長により形成される層で ある。結晶成長材料は、 III V族化合物半導体が好ましぐ具体的には InAsが挙げ られる。結晶成長材料はこれに限らず、微量の Gaを含む 3元混晶半導体であっても よい。このとき結晶成長材料は、第 3の半導体バッファ層上で 3次元成長を生じるよう に、第 3の半導体バッファ層との格子不整合度が大きいことが望ましい。これにより量 子ドット層 40は、格子不整合の作用を利用して、ある膜厚以上の結晶成長を続ける ことによりドットを 3次元成長させて形成される。
[0029] 埋込層 50は、量子ドット層 40の上に結晶成長により形成される層である。結晶成長 材料は、 III V族化合物半導体が好ましぐ具体的には GaAsが望ましい。尚、 GaAs に限らず、 GaAsに微量の Inを化合した InGaAsや、 InGaAsを積層した後に GaAs を積層しても良ぐその積層形態は特に限定しない。尚、ここでトリェチルガリウム( triethylgallium:TEG)を適用することで低温成長が可能となるので、量子ドットを変形 させず高品質のドットを形成することができる。
[0030] 上記構成の半導体量子ドット素子によれば、量子ドット層の下に、第 2の半導体バッ ファ層と第 3の半導体バッファ層で構成される結合歪バッファ層を設けることで単原子 層平坦ィ匕させることができるので、第 3の半導体バッファ層の 2次元面内の様々な方 向にステップを密に形成することができる。これにより量子ドットを 2次元面内に均一 且つ高密度に結晶成長させることができる。また、量子ドットを均一に成長させること が可能となるから隣接する量子ドットが重合する確率が低下し、ドットの巨大化を抑制 できる。更に、量子ドットを成長させる環境がどの領域でも同品質化されるので量子ド ットの大きさを均一化させることができる。
[0031] 尚、本実施の形態においては、量子ドット層は 1層としたが、層数はこれに限らず、 例えば量子ドット層は多層構造としてもよい。この場合、埋込層 50の上に、結合歪バ ッファ層(第 2及び第 3の半導体バッファ層)を形成し、その上に量子ドット層を自己組 織ィ匕により結晶成長させればよい。
[0032] (製造方法)
次に、図 2を参照して、本発明の実施形態に係る半導体量子ドット素子の製造方法 を説明する。本実施の形態では、第 1の半導体バッファ層 10には GaAs、第 2の半導 体バッファ層 20には In Ga As、第 3の半導体バッファ層 30には GaAsを用いた。
0.12 0.88
また、結晶成長法に、有機金属気相成長法 (MOCVD法)を用いた。
[0033] 先ず、図 2 (a)に示すように、半導体基板として GaAs (001)基板を用意し、この基 板温度を 700°Cに設定して GaAsを 250nmの厚さまで成長させ、第 1の半導体バッ ファ層 11を形成する。ここで III族の元素の原料としてトリメチルガリウム (TMG)を用 V、、 V族の元素の原料としてターシャルブチルアルシン (TBA)を用いる。
[0034] 続、て、図 2 (b)に示すように、 V族の原料は変えずに III族の元素の原料にトリメチ ルインジウム (TMI)を更に加える。そして基板温度を 500°Cまで下げて、第 1の半導 体バッファ層 11の上に In Ga Asを 5nmの厚さまで成長させ、第 2の半導体バッ
0.12 0.88
ファ層 21を形成する。 In Ga Asは、 GaAsとの間の格子不整合度が約 1%である
0.12 0.88
ため、成長膜厚が 5nmを越す付近で表面に歪みが生じる。
[0035] そして図 2 (c)に示すように、 TMIの供給を停止し、基板温度を 600°Cまで上げて( このとき 600°Cに上げるのに 450秒間を有し、この間試料はァニール状態となる)。そ して第 2の半導体バッファ層 21の上に GaAsを 2nmの厚さまで成長させて第 3の半導 体バッファ層 31を形成する。
[0036] 次!ヽで図 2 (d)に示すように、 TMGの供給を停止し再び TMIを供給する。そして基 板温度を 500°Cに下げて、第 3の半導体バッファ層 31の上に InAsを成長させ、量子 ドット層 41を形成する。 InAsは、 GaAsとの間の格子不整合度が約 7%であるため、 成長膜厚が 0. 57nmを越す付近で 3次元成長を生じ、 InAs量子ドットが自己組織化 により形成される。
[0037] そして最後に図 2 (e)に示すように、 III族の元素の原料をトリェチルガリウム (TEG) に切り替えて、基板温度を 500°Cに維持した状態で量子ドット層 41の上に GaAsを 1 OOnmの厚さまで成長させ、埋込層 51を形成する。
[0038] 以上の製造方法によれば、量子ドット層 41の下に、第 2の半導体バッファ層 21と、 第 3の半導体バッファ層 31で構成される結合歪バッファ層を設けることで、第 2の半 導体バッファ層 21の表面に形成された歪みを第 3の半導体バッファ層 31に継承させ つつ単一原子層平坦化することができるので、第 3の半導体バッファ層 31の 2次元 面内の様々な方向に広がるステップを形成することができる。その結果、量子ドットを 2次元方向に高均一化させることができると同時に、高密度化させることができる。
[0039] また、埋込層 51に TEGを用いることで、従来と比較して結晶成長が良くなると共に 、波長 1. 3 mの発光波長の制御が可能になる。
[0040] また更に、基板温度を 500°C力も 600°Cまで 450秒かけて上昇させることで、第 2の 半導体バッファ層 21上に形成されたステップをより 2次元的に平坦ィ匕することができ る。
[0041] また、第 3の半導体バッファ層(GaAs) 31は、第 2の半導体バッファ層(InGaAs) 2 1をァニールした場合にできる Inの不均一な表面偏析分布を軽減することができる。 その結果、単原子層力もなる第 3の半導体バッファ層の表面がより原子的に均一な 平坦表面となる。
[0042] 尚、第 2の半導体バッファ層 21の膜厚 dlは、 InxGal-xAsの組成 Xと相関関係があ ることから、組成が 0<x≤0. 3の範囲内にあるとき膜厚 dlを 0く dl≤10nmの範囲 内で膜厚変化させても結晶性を損なわな 、結晶成長が可能である。また第 3の半導 体バッファ層 31の膜厚 d2も、膜厚 2nmに限らず、 0< d2≤ lOnmの範囲内であれば 第 2の半導体バッファ層 21の歪みを消失させることなく原子に均一な平坦表面を形 成することができる。またァニール温度は 600°Cに限らず、 500°Cから 700°Cの間で あれば Inの不均一な表面偏析分布を軽減させることができる。
[0043] 次に、図 3—図 6を参照して、図 2で示した製造工程で形成された各層表面の状態 を説明する。各層表面は、原子間力顕微鏡(atomic force microscope : AFM、
Nanoscope Ilia)を用いて測定した。以下、原子間力顕微鏡で撮影した像を AFM像 と呼ぶ。
[0044] 図 3は、図 2 (a)の工程で作製した第 1の半導体バッファ層 11の層表面 11aを撮影 した AFM像である。この第 1の半導体バッファ層は、 GaAsによって形成されている。 このように GaAsを結晶成長させると層表面 1 laに 1次元方向に波形を有するステツ プバンチングが発生する。
[0045] 図 4は、図 2 (b)の工程で作製した第 2の半導体バッファ層 21の層表面 21aを撮影 した AFM像である。この第 2の半導体バッファ層 21は、第 1の半導体バッファ層 11と 異なる格子定数を有する InGaAsによって形成されている。そのため第 2の半導体バ ッファ層表面 21aの上に Inに起因した斑点状の島ができる。
[0046] 図 5は、第 2の半導体バッファ層表面 21aを 600°Cでァニールした場合の AFM像 である。第 2の半導体バッファ層 21をァニールすることにより、 Inが表面に偏祈して表 面が緩和される。(し力しこのままでは、まだ大きな島の境界線に起因した形でドット が形成される)。
[0047] 図 6は、図 2 (c)の工程で作製した第 3の半導体バッファ層 31の層表面 31aを撮影 した AFM像である。この第 3の半導体バッファ層 31は GaAsによって形成されている 。このとき結晶成長させる膜厚を 0く d2≤10nmとすることで、歪が緩和され、結果と してステップが 2次元面内の様々な方向に均一に存在する単原子平坦表面へと変化 する。このステップとステップの間隔は数十 nm力も数百 nmであり、平坦なステップ上 に形成される島(斑若しくは円盤に近 ヽ)の大きさは、 150nm— 500nm程度である。
[0048] 次に、図 7, 8を参照して、図 3に示した層表面 11a上に形成された量子ドットのサイ ズ分布を示す。
[0049] 図 7は、図 3に示した層表面 11a上に直接量子ドットを成長させた場合の AFM像で ある。同図に示すように第 1の半導体バッファ層 11の層表面 11aは、 1次元方向に波 状のステップバンチングが形成されて 、るので、量子ドットもこのステップバンチング に依存して 1次元方向に形成されている。また、形成された量子ドットのサイズに不均 一性がみられる。
[0050] 図 8は、横軸を量子ドットの高さ、縦軸を量子ドットの数とした場合の分布図である。
ここでドット数は AFM像を画像処理して計数した。分布図から読み取れるように、高 さ 2nm— 13nmを有する量子ドットが、数個から数十個、それぞれ形成されていた。 このときの密度は 1. 49 X 101Qcm— 2であり、量子ドットの平均の高さ hは 9. 3nm、平均 の幅 dは 31. 9nmであった。
[0051] 一方、図 9は、図 6に示した層表面 31a上に形成された量子ドットの AFM像である。
同図に示すように層表面 3 laは、 2次元面内方向にステップが形成されて 、るので、 量子ドットもこのステップに依存して 2次元面内方向に均一に広がって形成されてい る。また同像より、形成された量子ドットのサイズがほぼ均一であることが観察できる。
[0052] ここで上記と同様に、図 9の AFM像を画像処理してドット数を計数した。ドットの分 布図を図 10に示す。この分布図カゝら読み取れるように、高さ lOnm程度を有する量 子ドットが全体の 80%を占めていた。尚、このときの密度は 1. 74 X 101Qcm 2であり、 量子ドットの平均の高さ hは 9. 7nm、平均の幅 dは 39. Onmであった。
[0053] 以上のように、結合歪バッファ層 60を挿入して作製した InAs量子ドットは、量子ドッ ト密度が、従来の 1. 49 X 101Qcm— 2より 16. 8%高い、 1. 74 X 101Qcm— 2に増加した。
[0054] また、本実施の形態に係る半導体量子ドット素子のフォトルミネッセンス半値幅と、 従来技術(図 11)で作製したフォトルミネッセンス半値幅を測定した結果、従来の InA s量子ドットが、 26meVであったのに比べ、本実施の形態の InAs量子ドットは、 20. 5meVと減少して、高均一化の効果が現れた。
[0055] 従って、第 1の半導体バッファ層(例えば GaAs) 11上に、第 1の半導体バッファ層( 例えば GaAs) 11と格子不整合により歪を生じる第 2の半導体バッファ層(例えば InG aAs) 21を 0く dl≤10nmの範囲内で結晶成長させ、第 2の半導体バッファ層 21を 所定時間ァニール後、第 2の半導体バッファ層 21の歪を緩和し、且つ単原子層平坦 面を形成する第 3の半導体バッファ層(GaAs) 31を 0< d2≤ 10nmの範囲内で結晶 成長させることで、第 3の半導体バッファ層 31の 2次元面内方向に一様に広がる単原 子層のステップを形成することができるので、量子ドット (InAs)を高均一、且つ高密 度に結晶成長させることができる。その結果、量子ドットの成長環境を均一化すること ができるのでフォトルミネッセンス半値幅を極限まで狭めることができる。
産業上の利用の可能性
[0056] 従って本発明によれば、量子ドット層の下に、第 2の半導体バッファ層と第 3の半導 体バッファ層で構成される結合歪バッファ層を設けることで、第 3の半導体バッファ層 の 2次元面内方向にステップを密に形成することができるので、量子ドットを高均一、 且つ高密度に形成することができる。その結果、量子ドットのフォトルミネッセンス半値 幅を極限まで狭めた半導体量子ドット素子及びその製造方法を提供することができる

Claims

請求の範囲
[1] 半導体基板上に結晶成長により形成された第 1の半導体バッファ層と、
前記第 1の半導体バッファ層上に結晶成長により形成され、前記第 1の半導体バッ ファ層と格子定数が異なり、且つ、 3次元成長が生じない膜厚を積層してなる第 2の 半導体バッファ層と、
前記第 2の半導体バッファ層上に形成され、単原子層平坦化が生じる膜厚を有す る第 3の半導体バッファ層と、
前記第 3の半導体バッファ層上に形成され、前記第 3の半導体バッファ層と格子定 数が異なり、且つ、 3次元成長が生じる臨界膜厚以上の膜厚を積層してなる量子ドッ ト層とを有することを特徴する半導体量子ドット素子。
[2] 前記量子ドット層上に、結晶成長により、該量子ドット層を埋め込むように形成され た埋込層を有することを特徴とする請求項 1記載の半導体量子ドット素子。
[3] 前記第 1乃至第 3の半導体バッファ層は、
III - V族化合物半導体によって形成されることを特徴とする請求項 1又は 2記載の半 導体量子ドット素子。
[4] 前記量子ドット層は、
III - V族化合物半導体によって形成されることを特徴とする請求項 1乃至 3のいずれ 力 1項に記載の半導体量子ドット素子。
[5] 前記第 2の半導体バッファ層は、
前記第 1の半導体バッファ層との間の格子不整合度が 0より大きく 2. 1%以下であ ることを特徴とする請求項 1乃至 4のいずれか 1項に記載の半導体量子ドット素子。
[6] 前記第 2の半導体バッファ層は、
少なくとも In元素を含有することを特徴とする請求項 1乃至 5のいずれか 1項に記載 の半導体量子ドット素子。
[7] 前記第 2の半導体バッファ層は、
InxGal-xAsの化合物半導体によって形成され、組成 xは、 0<x≤0. 3であること を特徴とする請求項 1乃至 6のいずれか 1項に記載の半導体量子ドット素子。
[8] 前記第 1及び第 3の半導体バッファ層は、 GaAsによって形成されることを特徴とする請求項 1乃至 7のいずれか 1項に記載の 半導体量子ドット素子。
[9] 前記量子ドット層は、
InAsによって形成されることを特徴とする請求項 1乃至 8のいずれか 1項に記載の 半導体量子ドット素子。
[10] 前記第 2の半導体バッファ層の膜厚 dlは、
0く dl≤ lOnmであることを特徴とする請求項 1乃至 9のいずれ力 1項に記載の半 導体量子ドット素子。
[11] 前記第 3のバッファ層の膜厚 d2は、
0く d2≤10nmであることを特徴とする請求項 1乃至 10のいずれ力 1項に記載の半 導体量子ドット素子。
[12] 結晶成長により、半導体基板上に積層して第 1の半導体バッファ層を形成する工程 と、
結晶成長により、前記第 1の半導体バッファ層との間に格子不整合による 3次元成 長が生じない臨界膜厚以下の膜厚で前記第 1の半導体バッファ層上に積層して第 2 の半導体バッファ層を形成する工程と、
前記第 2の半導体バッファ層の表面をァニールした後に、結晶成長により、前記第 2の半導体バッファ層上に単原子層平坦ィ匕を有するように第 3の半導体バッファ層を 形成する工程と、
結晶成長により、前記第 3の半導体バッファ層との間に格子不整合による 3次元成 長が生じる臨界膜厚以上の膜厚で前記第 3の半導体バッファ層上に積層して量子ド ット層を形成する工程とを有することを特徴する半導体量子ドット素子の製造方法。
[13] 結晶成長により、前記量子ドット層上に、該量子ドット層を埋め込むように埋込層を 形成する工程を有することを特徴とする請求項 12に記載の半導体量子ドット素子の 製造方法。
[14] 前記第 2の半導体バッファ層は、基板温度 500°Cから 700°Cの範囲内でァニール することを特徴とする請求項 12又は 13に記載の半導体量子ドット素子の製造方法。
[15] 前記第 1の半導体バッファ層、前記第 3の半導体バッファ層、前記量子ドット層及び 埋込層は、
III - V族化合物半導体によって形成されることを特徴とする請求項 12乃至 14のい ずれか 1項に記載の半導体量子ドット素子の製造方法。
[16] 前記第 2の半導体バッファ層は、前記第 1の半導体バッファ層との間の格子不整合 度力 0より大きく 2. 1%以下であることを特徴とする請求項 12乃至 15のいずれか 1 項に記載の半導体量子ドット素子の製造方法。
[17] 前記第 2の半導体バッファ層は、
InxGal-xAsの化合物半導体によって形成され、組成 xは、 0<x≤0. 3であること を特徴とする請求項 12乃至 16のいずれ力 1項に記載の半導体量子ドット素子の製 造方法。
[18] 前記埋込層は、
トリェチルガリウムをガリウムの原料として形成されることを特徴とする請求項 12乃至 17のいずれか 1項に記載の半導体量子ドット素子の製造方法。
[19] 前記第 1及び第 3の半導体バッファ層は、
GaAsによって形成されることを特徴とする請求項 12乃至 18のいずれか 1項に記 載の半導体量子ドット素子の製造方法。
[20] 前記量子ドット層は、
InAsによって形成されることを特徴とする請求項 12乃至 19のいずれか 1項に記載 の半導体量子ドット素子の製造方法。
PCT/JP2004/012355 2003-08-28 2004-08-27 半導体量子ドット素子及びその製造方法 WO2005022640A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-304978 2003-08-28
JP2003304978A JP3692407B2 (ja) 2003-08-28 2003-08-28 半導体量子ドット素子の製造方法

Publications (1)

Publication Number Publication Date
WO2005022640A1 true WO2005022640A1 (ja) 2005-03-10

Family

ID=34269285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012355 WO2005022640A1 (ja) 2003-08-28 2004-08-27 半導体量子ドット素子及びその製造方法

Country Status (2)

Country Link
JP (1) JP3692407B2 (ja)
WO (1) WO2005022640A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972995B2 (ja) * 2006-05-17 2012-07-11 富士通株式会社 量子ドット半導体装置
US20120119188A1 (en) * 2009-07-24 2012-05-17 Pioneer Corporation Semiconductor apparatus manufacturing method and semiconductor apparatus
TWI442455B (zh) 2010-03-29 2014-06-21 Soitec Silicon On Insulator Iii-v族半導體結構及其形成方法
GB2480265B (en) 2010-05-10 2013-10-02 Toshiba Res Europ Ltd A semiconductor device and a method of fabricating a semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058200A2 (en) * 2000-10-06 2002-07-25 Science & Technology Corporation @ Unm Quantum dot lasers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058200A2 (en) * 2000-10-06 2002-07-25 Science & Technology Corporation @ Unm Quantum dot lasers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, H.Y. ET AL.: "Tuning the structural and optical properties of 1.3-um InGaAs quantum dots by a combined InAlAs and GaAs strained buffer layer", APPLIED PHYSICS LETTERS, vol. 82, no. 21, 26 May 2003 (2003-05-26), pages 3644 - 3646, XP012034183 *
NEN ET AL.: "Shuki Dai 64 Kai Extended abstracts", THE JAPAN SOCIETY OF APPLIED PHYSICS, 30 August 2003 (2003-08-30), pages 268, XP002985769 *
YAMAGUCHI, K. ET AL.: "One-Dimensional InAs Quantum-Dot Chains Grown on Strain-Controlled GaAs/InGaAs Buffer Layer by Molecular Beam Epitaxy", JAPANESE JOURNAL OF APPLIED PHYSICS, PART 2, vol. 41, no. 9A/B, 15 September 2002 (2002-09-15), pages L996 - L998, XP001162432 *

Also Published As

Publication number Publication date
JP3692407B2 (ja) 2005-09-07
JP2005079182A (ja) 2005-03-24

Similar Documents

Publication Publication Date Title
Arakawa Progress in GaN-based quantum dots for optoelectronics applications
JP4696285B2 (ja) R面サファイア基板とそれを用いたエピタキシャル基板及び半導体装置、並びにその製造方法
JP3987898B2 (ja) 量子ドット形成方法及び量子ドット構造体
JP2007042840A (ja) 量子ドット光半導体素子の製造方法
US6696372B2 (en) Method of fabricating a semiconductor structure having quantum wires and a semiconductor device including such structure
WO2012114074A1 (en) Semiconductor device and fabrication method
JP4651759B2 (ja) 量子ドットを備えた素子
JP2000196193A (ja) 半導体装置及びその製造方法
JP4041877B2 (ja) 半導体装置
JP2005534164A (ja) 拡張された波長で作動する量子ドットを形成する方法
JP3692407B2 (ja) 半導体量子ドット素子の製造方法
KR101697824B1 (ko) 광자 다이오드 및 이의 제조방법
JP3768790B2 (ja) 量子ドット構造体及びそれを有する半導体デバイス装置
JP4575173B2 (ja) 量子井戸構造の製造方法
JP4284633B2 (ja) 半導体発光装置の製造方法
JP2980175B2 (ja) 量子ドット構造の製造方法及びそれを用いた半導体発光素子の製造方法
JP4440876B2 (ja) 半導体量子ドット構造の製造方法
JP2006005256A (ja) 半導体素子
WO2005022641A1 (ja) 半導体量子ドット素子及びその製造方法
JP3169064B2 (ja) 半導体立体量子構造の作製方法
JP6635462B2 (ja) 半導体量子ドット素子の製造方法
Kovalenkov et al. MOVPE self-assembling growth of nanoscaie InP and InAsP islands
JP4041887B2 (ja) アンチモン系量子ドットの形成方法
Akahane et al. Highly-ordered and highly-stacked (150-layers) quantum dots
JPH1131811A (ja) 歪多重量子井戸構造の成長方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase