WO2005021894A1 - Krafteinleitungselement, verlängerungselement sowie verfahren zur erhöhung der zuglast eines bandförmigen werkstoffes - Google Patents
Krafteinleitungselement, verlängerungselement sowie verfahren zur erhöhung der zuglast eines bandförmigen werkstoffes Download PDFInfo
- Publication number
- WO2005021894A1 WO2005021894A1 PCT/EP2004/051792 EP2004051792W WO2005021894A1 WO 2005021894 A1 WO2005021894 A1 WO 2005021894A1 EP 2004051792 W EP2004051792 W EP 2004051792W WO 2005021894 A1 WO2005021894 A1 WO 2005021894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- extension element
- composite material
- tension anchor
- band
- shaped
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0218—Increasing or restoring the load-bearing capacity of building construction elements
Definitions
- the invention is based on a force introduction element comprising a tension anchor for anchoring a band-shaped material to a support structure according to the preamble of the first claim.
- the invention also relates to an extension element for a tension anchor, a method for increasing the tensile load of a band-shaped material and the use of a force introduction element to reinforce a supporting structure.
- lamellae made of composite materials have also been used for the subsequent reinforcement of supporting structures. These composite materials are glued to the supporting structure either slackly without longitudinal prestressing or prestressed via end anchorages. End anchorages of this type are known and various fastening methods for transmitting power from a force introduction element to the composite material have already been introduced on the market. With most of the force introductions available today, the transferable forces are smaller than the tensile strength of the composite material, which has the disadvantage that the tensile potential of the b and material can only be used to a limited extent, which leads to uneconomical solutions.
- the maximum transferable tensile load only reaches about 70 to 75% of the maximum tensile load of the composite material. For this reason, such force transmissions can only be used up to about 50% of the maximum tensile load of the composite material if a safety factor of 1.5 is observed.
- an extension element is used in a second step to prevent additional tension build-up at the transition to the tension anchor.
- the band-shaped material is tensioned to the prestressing load via the tension anchor. Stress peaks occur at the transition from the band-shaped material to the tension anchor.
- an extension element is connected to the band-shaped material in a tensioned state with an adhesive or mechanically.
- the tension anchor can also be referred to as a clamping head and can be configured essentially as desired.
- this tension anchor consists of two pressure plates and at least one tension element, for example bolts, which is guided through the composite material.
- the composite material is held against a bow-shaped yoke with two pressure plates with the help of evenly distributed pressure elements or by means of a hydraulic pressure chamber acting on the entire pressure surface.
- clamping wedges are used, which are pressed against the composite material via elliptical ring brackets.
- the advantages of the invention lie in the fact that the inventive solution can be used for any tension anchor available on the market.
- This means for reducing stress peaks at the transition to the tension anchor can be an extension element which is mechanically anchored and / or glued to the composite material and to the tension anchor or the cross-member in a tensile manner.
- the cross-beam is connected in the second process step by injecting an adhesive onto the composite material.
- This tensioning method increases the maximum transferable operational tensile forces while maintaining a safety factor of 1.5 by at least 20-50% in a range from 300 to 400 kN.
- Fig. 1 is a schematic side view of a first embodiment
- 3A shows a schematic side view of a further embodiment
- FIG. 3B A schematic top view of the further embodiment according to FIG. 3A;
- 3C shows a schematic side view of the further embodiment according to FIG. 3A in a slightly modified embodiment
- 4A shows a side view of a further embodiment
- 4B shows a top view of the further embodiment according to FIG. 4A
- 5A shows a side view of a further embodiment
- 5B shows a top view of the further embodiment according to FIG. 5A
- 6A shows a side view of a further embodiment with a wedge-shaped adhesive of the extension element to the composite material
- FIG. 6B shows a top view of the further embodiment according to FIG. 6A;
- 6C shows a side view of the further embodiment with a zigzag-shaped gluing of the extension element to the composite material
- 6D shows a side view of the further embodiment with a wave-shaped gluing of the extension element to the composite material
- 7 shows a side view of a particularly preferred embodiment of an extension element with a hyperbolic configuration.
- FIG. 1 shows a force introduction element 1 comprising a conventionally known tension anchor 20 and an extension element 4 according to the invention after a tensioning process.
- the tensioning anchor 20 is fastened to a band-shaped material 5, in particular composite material, hereinafter also referred to simply as lamella, be it by gluing, clamping, etc. the tension press being temporarily arranged on the tension anchor 20.
- the tensioning anchor 20 is held, for example, by means of threaded rods in an anchoring tube or shear pin, not shown, which is fastened in a borehole in a support structure 10.
- adhesive 6 is applied in a second step to the band-shaped composite material 5 and to the adjacent area of the tension anchor 20.
- the adhesive is particularly pasty to make processing easier.
- the extension element 4 is placed on the adhesive mass 6 lying on the band-shaped composite material 5 and glued to the tension anchor 20.
- the extension element 4 must be connected to the tension anchor 20 in a tensile manner.
- the shape of the extension element 4 depends on the choice of material for the extension element 4 and the thickness of the composite material 5 and is chosen, among other things, such that the extension element 4 tapers away from the tension anchor toward the composite material 5.
- the extension element 4 can have any shape, but preferably has a tongue-like or wedge-shaped configuration in order to optimally reduce the voltage peaks. Ribs and folds a few centimeters long can also be introduced into the extension element 4 in the pulling direction 11, in order to ensure optimum gluing and optimal stress relief.
- the extension element 4 preferably has a length, in each case on the top and bottom of the band-shaped composite material 5, of 100 mm, in particular 50 mm. In the middle of the extension element, this preferably has a maximum thickness of 10 mm, in particular a maximum of 5 mm.
- the extension element 4 and the tension anchor 20 are preferably made of metallic, ductile materials, in particular aluminum, steel or titanium.
- the adhesive 6, for example a two-component adhesive based on epoxy resins, must have good adhesion not only to the composite material 5 but also to the extension element 4 and should have a high strength. The stresses occurring during this clamping process are shown schematically in FIG. 1, where X represents the path along the force introduction element 1 and Y represents the force at location X.
- the second diagram X2 to Y2 shows the stresses acting on the force introduction element 1 during the operating load of the support structure. The stresses occurring due to the operating load are mostly absorbed by the extension element 4, so that stresses also occur here.
- the stresses to be absorbed by the tension anchor remain essentially the same as for the prestressing as shown in diagram X1 Y1.
- additional stress peaks at the location of the tension anchor 20 are largely prevented.
- This increases the transferable force while maintaining the safety factor of 1.5 to 20 - 50% compared to conventionally known tension anchors.
- the available tensile load of the composite material 5 can be utilized to a greater extent and an expected tensile force of 300 to 400 kN can be achieved.
- the composite material 5 can be designed in the form of a lamella, which consists of fibers and a synthetic resin.
- the fibers can be designed in one direction, ie unidirectionally, or additional fibers can be constructed in other directions, in particular an angle plus 45 ° and minus 45 °, to the unidirectional main fiber direction.
- the fibers can preferably be made of aramid, carbon, glass, etc., which are embedded in a synthetic resin.
- the synthetic resin can be a thermoset such as epoxy, acrylate or a thermoplastic material such as polyamide, epoxy, acrylate.
- the surface of the composite material 5 is preferably specially embossed, for example roughened by means of grinding or pretreated with an adhesive or treated with a pretreatment system such as primer, plasma etc.
- FIG. 2 shows another embodiment of a force introduction element 1.
- the force introduction element 1 consists of plates 12 which form the tension anchor 20 and of tongue-shaped extensions 15 with recesses 14 which form the extension element 4.
- the plates 12 are connected to the lamella 5 as is known from the prior art.
- adhesive 6 is applied in a second step to the band-shaped composite material 5 in the area of the tongue-shaped extensions 15.
- the adhesive should have a consistency such that it can be introduced into the recesses 14 formed by the tongue-shaped extensions. It can be seen from the diagrams X1 Y1 and X2 Y2 that such a force introduction element 1 can perform the same function as that from FIG. 1, the extensions 15 forming the extension element 4.
- a force introduction element 1 is shown in a further embodiment in FIGS. 3A and 3B.
- the tensioning process can also take place here first with a tension press, which is temporarily arranged on the tension anchor 20.
- the tensile load of the composite material 5 is then taken over by a cross-member 2.
- Threaded rods 9 are attached laterally to the tension anchor 20, these threaded rods 9 leading through the cross-member 2 of the tension anchor 20.
- the tension anchor 20 is held via the cross-beam 2 and the threaded rod 9 in an anchoring tube or shear pin, not shown, which is fastened in a borehole in a support structure 10.
- the tension of the composite material 5 can be increased by turning a threaded screw 8 of the threaded rod 9.
- Adhesive 6 is applied to the band-shaped composite material 5 after the tensioning process of the force introduction element 1 in the pulling direction 11 in a second step and in front of the cross-beam 2 opposite the tension anchor 20.
- the adhesive is particularly pasty to make processing easier.
- An extension element 4 is placed on the adhesive mass 6 lying on the band-shaped composite material 5 and glued to the cross-member 2 of the tension anchor 20 and preferably mechanically lateral sliding of the extension element 4 anchored in the cross-beam 2.
- the cross traverse has clip-like extensions. The extension element 4 is thereby connected to the cross-member 2 in a tensile manner.
- the shape of the extension element 4 also depends here, as in all examples, on the choice of material for the extension element 4 and the thickness of the composite material 5 and is chosen, among other things, in such a way that the extension element 4 tapers away from the cross-member towards the composite material 5.
- the extension element 4 can have any shape, but preferably has a tongue-like or wedge-shaped configuration in order to optimally reduce the voltage peaks. Also, a few centimeters long ribs and folds 13 can be introduced into the extension element 4 in the pulling direction 11, in order to ensure optimal gluing and optimal stress relief. From the diagrams X1 Y1 and X2 Y2 it can be seen that such
- FIG. 3C shows the force introduction system 1, in which, after the tensioning process, an adhesive bond 6 is carried out between the cross-member 2 and the composite material 5 and the extension element 4 is attached. This results in a different voltage profile 12 in the area of the cross-beam 2 than that shown in FIG.
- FIGS. 4A and 4B show that after the tensioning process of a force introduction element 1 in the pulling direction 11, the cross-member 2 is connected to the composite material 5 by injecting an adhesive 6, the cross-member 2 thus takes over the function of the extension element 4 Since the crossbeam 2 is glued to the composite material 5 in a second step, the voltage peaks when an operating load occurs are both at the location of the crossbeam 2 and the composite material 5 and also at the location of the crossbeam 2 and the force introduction element 1 highest and decrease in the direction of pull 11.
- the extension element 4 is placed on the adhesive mass 6 on the band-shaped composite material 5 and glued to the cross-member 2 of the force introduction element 1 and fixed with at least one screw 7.
- the extension element 4 has an extension with holes through which the screws can be guided and connected to the cross-member.
- the extension element 4 is specially shaped on the lower side towards the composite material 5 in order to guarantee good adhesion and thus a high stress load in the pulling direction 11.
- the extension element 4 is also placed here on the adhesive 6, which has been applied to the band-shaped composite material 5, and is also glued to the cross-member 2 of the force introduction element 1.
- the lower side of the extension element 4 towards the composite material 5 is, for example, wedge-shaped according to FIG. 6A, zigzag-shaped according to FIG. 6C or undulated according to FIG. 6D. In the area of the taper, due to the small thickness of the extension element, it may be necessary to dispense with a special shape.
- FIG. 7 shows a particularly preferred embodiment of the extension element.
- the extension element 4 can have any shape per se, but preferred are configurations such as tongue-shaped, wedge-shaped or hyperbolic, which optimally reduce the voltage peaks. It has been shown that in particular extension elements which have a wedge-shaped or hyperbolic taper fulfill this function optimally.
- the hyperbolic taper should preferably be carried out in such a way that the extension element has a maximum thickness of 10 mm, preferably less than 5 mm, at half the distance / length of the extension element.
- the hyperbolic form can of course also be carried out differently and must be adapted to the expected tension.
- extension elements 4 are arbitrary per se and combinations or other embodiments of the embodiments shown in FIG. 6 are also possible.
- the extension element can of course also be used with the extension element to provide other band-shaped materials and lamellae which are used to reinforce support structures and thus increase the load-bearing capacity.
- the extension element 4 can of course also already be connected to the tension anchor 20, or be connected to the tension anchor 20 and / or the band-shaped material by means of adhesive or mechanical means. LIST OF REFERENCE NUMBERS
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
- Piles And Underground Anchors (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/568,188 US8881493B2 (en) | 2003-08-13 | 2004-08-13 | Force application element, extension element, and a method for increasing the tensile load of a strip-shaped material |
EP04801930.1A EP1656485B1 (de) | 2003-08-13 | 2004-08-13 | Krafteinleitungselement, verlängerungselement sowie verfahren zur erhöhung der zuglast eines bandförmigen werkstoffes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03018364A EP1507050A1 (de) | 2003-08-13 | 2003-08-13 | Krafteinleitungselement |
EP03018364.4 | 2003-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005021894A1 true WO2005021894A1 (de) | 2005-03-10 |
Family
ID=33560786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/051792 WO2005021894A1 (de) | 2003-08-13 | 2004-08-13 | Krafteinleitungselement, verlängerungselement sowie verfahren zur erhöhung der zuglast eines bandförmigen werkstoffes |
Country Status (4)
Country | Link |
---|---|
US (1) | US8881493B2 (de) |
EP (2) | EP1507050A1 (de) |
CN (1) | CN1836079A (de) |
WO (1) | WO2005021894A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2420622A1 (de) * | 2010-08-18 | 2012-02-22 | Sika Technology AG | Vorrichtung zur Krafteinleitung in Zugglieder aus faserverstärkten Kunststoff-Flachbandlamellen |
EP2631392A1 (de) * | 2012-02-21 | 2013-08-28 | Sika Technology AG | Vorrichtung zur Krafteinleitung in Zugglieder aus faserverstärkten Kunststoff-Flachbandlamellen |
TWI560533B (en) * | 2015-03-31 | 2016-12-01 | Aeon Matrix Inc | Controlling system, controlling device, setting method and non-transitory computer readable storage medium |
EP3690167A1 (de) * | 2019-02-01 | 2020-08-05 | S & P Clever Reinforcement Company AG | Verfahren zum verstärken von beton- oder holzkonstruktionen unter verwendung von cfk-bändern und durch dieses verfahren verstärkte beton- oder holzkonstruktionen |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996021785A1 (de) | 1995-01-09 | 1996-07-18 | Eidgenössische Materialprüfungs- und Forschungsanstalt Empa | Befestigung von verstärkungslamellen |
WO1999010613A1 (de) | 1997-08-26 | 1999-03-04 | Stresshead Ag | Verstärkungsvorrichtung für tragstrukturen |
WO2001020097A1 (de) * | 1999-09-15 | 2001-03-22 | Eidgenössische Materialprüfungs- und Forschungsanstalt Empa | Verankerungssystem zur aufnahme der zugkräfte von kohlefaserverstärkten zugbändern (cfk-bändern) |
WO2002103137A1 (de) * | 2001-06-19 | 2002-12-27 | Leonhardt, Andrä und Partner Beratende Ingenieure VBI GmbH | Spannanker für bandförmige zugglieder im bauwesen |
WO2002103131A1 (en) | 2001-06-20 | 2002-12-27 | Vetroarredo Sediver S.P.A. | Glass brick |
EP1331327A1 (de) * | 2002-01-29 | 2003-07-30 | Sika Schweiz AG | Verstärkungsvorrichtung |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2737802A (en) * | 1949-10-25 | 1956-03-13 | Bakker Johannes | Composite prestressing reinforcement |
CH521002A (de) * | 1968-11-25 | 1972-03-31 | Holzmann Philipp Ag | Druckbehälter aus Spannbeton und Verfahren zum Herstellen eines solchen Behälters |
CH618491A5 (de) * | 1977-02-11 | 1980-07-31 | Losinger Ag | |
AT390100B (de) * | 1985-03-05 | 1990-03-12 | Vorspann Technik Gmbh | Verankerung fuer spannglieder |
FR2590608B1 (fr) * | 1985-11-26 | 1989-05-05 | Freyssinet Int Stup | Perfectionnements aux dispositifs de precontrainte ou analogues comportant des tirants. |
FR2628777B1 (fr) * | 1988-03-18 | 1990-08-17 | Vsl France | Dispositif d'ancrage de cables precontraints pour ouvrages du type maconnerie |
JP2759217B2 (ja) * | 1989-04-04 | 1998-05-28 | 東急建設式会社 | 炭素繊維強化プラスチック材の引張力の導入方法 |
JP2824911B2 (ja) * | 1989-04-13 | 1998-11-18 | 東急建設株式会社 | 炭素繊維強化プラスチック平面板の定着方法 |
JPH04285247A (ja) * | 1991-03-15 | 1992-10-09 | Shimizu Corp | プレストレス導入部材およびプレストレス導入方法 |
JP3038665B2 (ja) * | 1991-10-15 | 2000-05-08 | 清水建設株式会社 | 緊張材用定着具およびプレストレス導入方法 |
MX9200051A (es) * | 1992-01-07 | 1993-07-01 | Jose Luis Siller Franco | Concector por friccion mejorado para anclar acero de refuerzo a tension en elementos de concreto preesforzado o reforzado. |
DE19702246A1 (de) * | 1997-01-23 | 1998-07-30 | Sika Ag | Flachband-Lamelle und deren Verwendung zur Verstärkung von Bauwerkteilen |
DE19742210A1 (de) * | 1997-09-24 | 1999-03-25 | Goehler Bernhard Dipl Ing | Verfahren und bandförmiges Zugglied zur Ertüchtigung und/oder Sanierung von Stahlbeton- oder Spannbeton-Tragwerken sowie Vorrichtung zur Durchführung des Vefahrens |
DE19753318A1 (de) * | 1997-12-02 | 1999-06-10 | Sika Ag | Verstärkungselement für lastaufnehmende oder lastübertragende Bauteile sowie Verfahren zu dessen Befestigung an einer Bauteiloberfläche |
DE19849605A1 (de) * | 1998-10-28 | 2000-05-04 | Goehler Andrae Und Partner Ber | Spannvorrichtung für ein bandförmiges Zugglied |
DE10249266B3 (de) * | 2002-10-23 | 2004-04-08 | Leonhardt, Andrä und Partner Beratende Ingenieure VBI GmbH | Spannvorrichtung für bandförmige Zugglieder |
-
2003
- 2003-08-13 EP EP03018364A patent/EP1507050A1/de not_active Withdrawn
-
2004
- 2004-08-13 WO PCT/EP2004/051792 patent/WO2005021894A1/de active Application Filing
- 2004-08-13 EP EP04801930.1A patent/EP1656485B1/de not_active Expired - Lifetime
- 2004-08-13 US US10/568,188 patent/US8881493B2/en active Active
- 2004-08-13 CN CN 200480023097 patent/CN1836079A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996021785A1 (de) | 1995-01-09 | 1996-07-18 | Eidgenössische Materialprüfungs- und Forschungsanstalt Empa | Befestigung von verstärkungslamellen |
WO1999010613A1 (de) | 1997-08-26 | 1999-03-04 | Stresshead Ag | Verstärkungsvorrichtung für tragstrukturen |
WO2001020097A1 (de) * | 1999-09-15 | 2001-03-22 | Eidgenössische Materialprüfungs- und Forschungsanstalt Empa | Verankerungssystem zur aufnahme der zugkräfte von kohlefaserverstärkten zugbändern (cfk-bändern) |
WO2002103137A1 (de) * | 2001-06-19 | 2002-12-27 | Leonhardt, Andrä und Partner Beratende Ingenieure VBI GmbH | Spannanker für bandförmige zugglieder im bauwesen |
WO2002103131A1 (en) | 2001-06-20 | 2002-12-27 | Vetroarredo Sediver S.P.A. | Glass brick |
EP1331327A1 (de) * | 2002-01-29 | 2003-07-30 | Sika Schweiz AG | Verstärkungsvorrichtung |
Also Published As
Publication number | Publication date |
---|---|
EP1656485A1 (de) | 2006-05-17 |
US20090031667A1 (en) | 2009-02-05 |
US8881493B2 (en) | 2014-11-11 |
EP1507050A1 (de) | 2005-02-16 |
CN1836079A (zh) | 2006-09-20 |
EP1656485B1 (de) | 2017-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1007809B1 (de) | Verstärkungsvorrichtung für tragstrukturen | |
WO1993020296A1 (de) | Verfahren und vorrichtung zur schubverstärkung an einem bauwerkteil | |
EP1025323B1 (de) | Verfahren zur ertüchtigung und/oder sanierung von stahlbeton- oder spannbeton-tragwerken sowie vorrichtung zur durchführung des verfahrens | |
EP0363779B1 (de) | Vorrichtung zur Verankerung eines stabförmigen Zugglieds aus Faserverbundwerkstoff | |
WO1996021785A1 (de) | Befestigung von verstärkungslamellen | |
DE10129216C1 (de) | Spannanker für bandförmige Zugglieder im Bauwesen | |
WO2005061813A1 (de) | Verankerung für vorgespannte und/oder belastete zugelemente | |
EP2817465B1 (de) | Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen | |
EP0548832B1 (de) | Vorrichtung zur Verankerung eines stabförmigen Zugglieds aus Faserverbundwerkstoff | |
EP2606185B1 (de) | Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen | |
EP1525360A1 (de) | Vorrichtung und verfahren zur verst rkung von tragstrukturen | |
EP0949389B1 (de) | Verankerungsvorrichtung für Zugglieder | |
EP0469337B1 (de) | Stahl-Beton-Verbundbauteil | |
DE102009013241A1 (de) | Aus einem gewalzten einstückigen Stahlbauprofil bestehender Träger | |
EP1656485B1 (de) | Krafteinleitungselement, verlängerungselement sowie verfahren zur erhöhung der zuglast eines bandförmigen werkstoffes | |
DE102018102317A1 (de) | Endverankerung von Bewehrungsfasern | |
DE2932809C2 (de) | Vorrichtung zur Endverankerung mindestens eines Spannbeton-Spannstabes aus Faserverbundwerkstoff | |
EP0344214B1 (de) | Vorrichtung zur verankerung von kunststoff-spanngliedern | |
EP0947640A2 (de) | Bewehrung mit hochfestem Verbund | |
DE3833202C2 (de) | Balkenartiges Tragglied aus Spannbeton | |
EP2096220B1 (de) | Vorgespanntes Hohlplattenelement | |
EP0693600A1 (de) | Schwingungsarmer Verbundträger | |
DE202022105156U1 (de) | Verbindungsanordnung zur kraftübertragenden Anbindung eines ersten kraftaufnehmenden Bauwerkteils an ein zweites kraftaufnehmendes Bauwerkteil und Bauwerk | |
EP1507052A1 (de) | Krafteinleitungselement | |
WO2001086089A1 (de) | Konstruktionselemente mit vorgespannter stabilisierung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480023097.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REEP | Request for entry into the european phase |
Ref document number: 2004801930 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004801930 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004801930 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10568188 Country of ref document: US |