WO2005061813A1 - Verankerung für vorgespannte und/oder belastete zugelemente - Google Patents

Verankerung für vorgespannte und/oder belastete zugelemente Download PDF

Info

Publication number
WO2005061813A1
WO2005061813A1 PCT/AT2004/000449 AT2004000449W WO2005061813A1 WO 2005061813 A1 WO2005061813 A1 WO 2005061813A1 AT 2004000449 W AT2004000449 W AT 2004000449W WO 2005061813 A1 WO2005061813 A1 WO 2005061813A1
Authority
WO
WIPO (PCT)
Prior art keywords
elasticity
wedge
layer
anchoring
modulus
Prior art date
Application number
PCT/AT2004/000449
Other languages
English (en)
French (fr)
Inventor
Stefan L. Burtscher
Original Assignee
Austria Wirtschaftsservice Gesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austria Wirtschaftsservice Gesellschaft M.B.H. filed Critical Austria Wirtschaftsservice Gesellschaft M.B.H.
Priority to AT04802011T priority Critical patent/ATE405713T1/de
Priority to DE502004007928T priority patent/DE502004007928D1/de
Priority to US10/596,743 priority patent/US7857542B2/en
Priority to EP04802011A priority patent/EP1706555B1/de
Publication of WO2005061813A1 publication Critical patent/WO2005061813A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/085Tensile members made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/122Anchoring devices the tensile members are anchored by wedge-action
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/127The tensile members being made of fiber reinforced plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/39Cord and rope holders
    • Y10T24/3996Sliding wedge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7047Radially interposed shim or bushing
    • Y10T403/7051Wedging or camming
    • Y10T403/7052Engaged by axial movement
    • Y10T403/7054Plural, circumferentially related shims between members

Definitions

  • the invention relates to an anchoring for at least one prestressed or loaded tensile element, in which the tensile force can be transmitted to an anchor body by means of one or more wedges, and a wedge-shaped layer has a lower modulus of elasticity than the other parts of the anchoring, the greatest thickness of the wedge-shaped layer , measured normal to the longitudinal axis of the tension element, lies in the area of the anchorage near the load.
  • Wedge anchors have been used for prestressing high-strength steel prestressing steel for many years. They are based on a simple principle and can be produced with little time and material. Wedge anchoring is the most common type of anchoring in prestressed concrete construction.
  • the force in the tension element is introduced into the wedges via shear stresses and from there into the anchor body. Wedges and anchor bodies are in contact via an inclined plane on which the wedges can slide.
  • the wedge shape creates a pressure force normal to the tensile element when the tensile element is loaded, which presses the wedges against the tensile element.
  • fiber composite materials for prestressed or loaded tensile elements such as lamellae, wires, rods or strands
  • the fiber composite materials have a very high corrosion resistance and a low weight.
  • the main disadvantage of fiber composite materials is their high sensitivity to lateral pressure.
  • the level of the maximum transferable shear stress between the wedge and tension element depends on the contact pressure. The higher the contact pressure, the higher the transferable maximum shear stress.
  • the contact pressure causes a transverse pressure in the tension element. For materials that are sensitive to lateral pressure, such as Fiber composite materials, the maximum transverse pressure that occurs must not exceed a certain size.
  • a minimum amount of slip is required to activate the shear stresses between the wedge and the tension element.
  • a conventional wedge anchoring there is a high contact pressure between the wedge and the tension element in the area near the load, which also creates a high shear stress there, which quickly subsides and is almost constant up to the area away from the load remains.
  • the sum of the shear stresses along the entire contact area between the wedge and the tension element corresponds to the tensile force in the tension element.
  • the greatest shear stress occurs at the point of maximum contact pressure, at which the greatest proportion of the tensile force per surface unit is also transmitted.
  • a disadvantage is that from the point of maximum shear stress to the area away from the load, the shear stress can hardly be activated.
  • Another disadvantage of conventional anchoring is that the greatest maximum contact pressure and the greatest maximum shear stress have to be relatively low, since materials such as fiber composite materials fail at low contact pressures or transverse pressures.
  • WO 95/29308 describes a conical casting anchor for fiber composite materials.
  • the anchor sleeve has a conical cavity.
  • the cavity is filled along the direction of the tension element in sections with potting compound with different modulus of elasticity. Potting compound with the lowest modulus of elasticity is installed in the section near the load.
  • potting material with increasing elasticity modules is used in the following sections up to the area away from the load. A more even power transmission from the tension element to the potting body is thus achieved.
  • the production of these layers is a complex process.
  • EP 0 197 912 A2 discloses an anchor for tendons made of high-strength steel, in which the anchor body consists of two layers with different materials, such as plastic or soft metal.
  • the layer of softer material is made with a constant thickness over the entire wedge length or with a layer that varies over the wedge length, but which has the smallest thickness in the area near the load.
  • Cross-pressure sensitive materials such as fiber composite materials, cannot withstand these high cross-pressures and therefore fail prematurely.
  • EP 0 197 912 also shows a variant according to which two wedges lying one behind the other in the longitudinal direction of the tension element are provided in a one-piece anchor body, of which the wedge closer to the load is formed from a pressed part which is softer than the tension element, the latter wedge-shaped pressed part has its greatest thickness in the area close to the load.
  • the wedge further away from the load is designed as an anchor wedge and has its greatest thickness in the area away from the load, so that stress peaks and thus lateral pressure peaks occur on the tension element.
  • the object of the invention is to provide an anchoring in which the contact pressures and the shear stresses which act on the tension element to be anchored are evenly distributed over the clamping length of the tension element or rise slightly from the area near to the load and away from the load and have lower maximum values for contact pressures and shear stresses than the known embodiments.
  • manufacture and installation on the construction site should be possible in a substantially simplified manner compared to a potting anchoring.
  • the wedge and / or the anchor body is (are) formed by at least two wedge-shaped layers lying against one another, at least one of the layers being formed from a material with a lower modulus of elasticity than the material from which the further ( n) layer (s) of the wedge and / or the anchor body is (are) formed, and the greatest thickness of this layer is provided in the area close to the load.
  • the ratio of the moduli of elasticity of the layers is sufficiently large, the overall stiffness of both layers normal to the longitudinal axis of the tension element is mainly determined by the layer of material with a low modulus of elasticity. The thicker the layer with a low modulus of elasticity, the lower the stiffness normal to the longitudinal axis of the tension element. Therefore, in the area close to the load, where the thickness of the layer with the low modulus of elasticity is greatest, the stiffness normal to the longitudinal axis of the tension element is lower than in the area away from the load.
  • Fig. 1 shows a longitudinal section with anchor body, tension element and two wedges, each with three layers, of which two layers of the wedge have a low modulus of elasticity and one layer has a high modulus of elasticity, a layer with a low modulus of elasticity and variable thickness arranged near the sliding plane between the wedge and anchor body is;
  • FIG. 2 shows in diagram form the idealized shear stress distributions along the contact surface between the wedge and tension element for a conventional anchoring and an anchoring according to the invention
  • FIG. 3 shows a cross section along the section line III-III from FIG. 1, the tension element here having a rectangular cross section and two wedges each having three layers being used;
  • the anchor body consisting of a layer with a high modulus of elasticity and a layer with a low modulus of elasticity and variable thickness, which is arranged near the sliding plane between the wedge and the anchor sleeve;
  • FIG. 5 shows a cross section along the section line V-V of FIG. 4, the tension element here having a circular cross section and two wedges without layers and an anchor body with two layers being used;
  • each wedge shows a longitudinal section through an anchor in which seven wires, rods or strands are anchored and each wedge consists of a layer with a high modulus of elasticity and a layer with a low modulus of elasticity and variable thickness, which is arranged on the side of the tension element;
  • FIG. 7 shows a cross section along the section line VII-VII from FIG. 6, the tension element here having a circular cross section and three wedges of two layers being used for each tension element;
  • Fig. 8 shows a longitudinal section through an anchoring in an asymmetrical design, consisting of anchor body, tension element and a wedge, which is made of one layer with a high modulus of elasticity and two layers with a low modulus of elasticity, of which a layer with a low modulus of elasticity with a variable thickness is arranged near the sliding plane of the wedge and anchor sleeve, and presses the tension element against a plane parallel to the axis of the tension element and thus the forces from the tension element are introduced into the wedge and the parallel plane;
  • FIG. 9 shows a longitudinal section through an anchorage which is designed with three-layer wedges, of which two layers with a low modulus of elasticity and variable thickness in the area near the load have the greatest thickness and only one layer with a low modulus of elasticity is guided to the area away from the load;
  • FIG. 10 shows a longitudinal section through an anchoring, the wedges of which are made with a layer with a low and a layer with a high modulus of elasticity, of which the layer with a low modulus of elasticity and variable thickness is guided further to the area near the load than the layer with a high modulus of elasticity;
  • FIG. 11 shows a longitudinal section through an anchor, the wedges of which are designed with a layer with a low and a layer with a high modulus of elasticity, the layer with a low modulus of elasticity tapering towards the area away from the load according to a curve of higher order.
  • Fig. 12 shows a detail of the anchoring on an enlarged scale.
  • FIG. 1 shows the anchoring 7 in longitudinal section with a wedge 3, which is formed from two layers 32, 33 with a low modulus of elasticity and a layer 31 with a higher modulus of elasticity.
  • the layers 31, 32, 33 run along the longitudinal axis 4 of the tension element 1.
  • the layer with a lower modulus of elasticity and a constant thickness 33 is installed in order to compensate for possible stress peaks which can arise from uneven surfaces or other imperfections.
  • the other layer 32 with a lower modulus of elasticity is arranged near the anchor body 2 and has the greatest thickness in the area 5 close to the load, which decreases towards the area 6 remote from the load. With increasing thickness of the layer 32 with a lower modulus of elasticity, the overall stiffness of the wedge 3 decreases normal to the longitudinal axis 4 of the tension element 1.
  • the contact pressure rises slightly from the area close to the load 5 to the area 6 away from the load, and the entire contact surface between the wedge 3 and the tension element 1 can be used for the transmission of the shear stresses.
  • large contact pressures occur in the area near the load 6 and thus also a shear stress which increases sharply in a short area, see line c in FIG. 2.
  • line b of FIG. 2 illustrates.
  • the maximum contact pressure is lower, which is particularly important when using fiber composite materials.
  • the contact pressure is distributed according to the stiffness of the layers 31 and 32 and can be varied depending on the ratio of the elasticity modules and the layer thicknesses in the area 5 close to the load and in the area 6 remote from the load.
  • Fig. 3 The section III-III in Fig. 1 is shown in Fig. 3 and shows the cross section of Fig. 1 for anchoring a tension element 1 with a rectangular cross section, designed as a lamella. Two wedges 3 with flat surfaces are used in this anchor.
  • the anchor 7 according to FIG. 4 is based on the same principle as the anchor 7 in FIG. 1, but with the difference that the wedge 3 has a higher modulus of elasticity, whereas the anchor body 2 consists of a layer 22 with a lower modulus of elasticity, which is close to the Sliding surface is arranged, and a layer 21 is built up with a higher modulus of elasticity.
  • the section V-V in FIG. 4 is shown in FIG. 5 and shows the cross section of FIG. 4 for the anchoring of a wire, a strand or a rod 1.
  • this anchoring 7 two complementary wedges 3 with rounded surfaces are used.
  • each wedge 3 is divided into a layer 32 with a lower modulus of elasticity and a layer 31 with a higher modulus of elasticity.
  • the layer 32 with a lower modulus of elasticity is arranged in the wedge 3 at the tensioning element 1 and the layer 31 with the higher modulus of elasticity 31 is arranged near the sliding surface with the anchor body 2. 7, the tension element 1 is held with three wedges 3 with rounded surfaces.
  • the wedge 3 can also consist of a plurality of layers 31, 32, 34 with lower and higher elasticity modules 32, 34, as shown in FIG. 9, the layers 32, 34 with a lower elasticity module also having a greater thickness in the region 5 near the load and these are not all led into the area 6 remote from the load.
  • the wedges 3 consist of a layer 32 with a lower modulus of elasticity and a layer 31 with a higher modulus of elasticity.
  • the peculiarity here is that the layer 32 with a lower modulus of elasticity has the greatest thickness in the region of the layer 31 with a higher modulus of elasticity near the load, but is continued in order to be able to better initiate the introduction of force and occurring vibration stresses.
  • an anchoring 7 is carried out with a wedge 3 made of a layer 32 with a lower modulus of elasticity and a layer 31 with a higher modulus of elasticity, the thickness of the layer 32 with a lower modulus of elasticity not being linear for better adaptation of the contact pressure, but instead following a curve higher Order changed their thickness.
  • the layers 32, 33, 34, 22, 23 made of material with a lower modulus of elasticity can also be created by geometrical adaptations, such as pores, holes, cavities or other recesses.
  • the design with a wedge 3 from at least one layer 32 with a lower and a layer 31 with a higher modulus of elasticity or with an anchor body 2 from at least a layer 22 with a lower and a layer 21 with a higher elastic modulus can be used in combination.
  • the layers with a lower modulus of elasticity can be supplemented or replaced by geometric adaptations, such as pores, holes, cavities or other recesses.
  • an anchor 7 of a tension element 1, formed by a CFRP lamella 1, which typically has a modulus of elasticity between 165000 and 300000 N / mm 2 , a strength between 1500 and 3500 N / mm 2 and a thickness of 0, is now exemplified.
  • the layers 32, 33 with a lower modulus of elasticity are made of plastic with a modulus of elasticity of 5800 N / mm 2 and the layer 31 with a higher modulus of elasticity and the anchor body 2 made of steel with an elastic modulus of 210,000 N / mm 2 .
  • the sliding plane forms an angle of 15 ° with the longitudinal axis 4 of the tension element 1 and the wedge length, measured parallel to the tension element 1, is 80 mm.
  • the layer 32 with a lower modulus of elasticity has a thickness of 4 mm in the region 5 close to the load and a thickness of 2 mm in the region 6 remote from the load. The thickness of the layer 32 is always measured normally on the longitudinal axis 4 of the tension element 1.
  • a contact pressure then arises in the contact area between the tension element 1 and the wedge 3, which increases from the area 5 close to the load to the area 6 remote from the load from approximately 80 N / mm 2 to 100 N / mm 2 without local stress peaks.
  • CFRP slats 1 can withstand higher contact pressures and shear stresses, which is why a failure of the tension element can only occur in the free length.
  • Steel can be used for the layer 31 of the wedge 3 with a higher modulus of elasticity and epoxy resin for the layer 32, 33 with a lower modulus of elasticity.
  • the elastic modulus of steel is 210,000 N / mm 2 and that of epoxy resin is approximately 5800 N / mm 2 .
  • a wedge 3, as shown in FIG. 6, can be produced in a formwork. So that the formwork can be easily removed after the epoxy resin has hardened, it is advisable to manufacture it from Teflon.
  • the layer 31 made of steel must be milled in advance and is fastened in the formwork before the casting. So that there are no air pockets during casting, it is advisable to cast the epoxy resin from bottom to top.
  • the epoxy resin can be pressed in with an overpressure through an opening located at the low point of the formwork. After curing and stripping, a two-layer wedge 3 according to the invention is obtained.
  • steel and epoxy resin other materials can be used, the only important thing is that the difference between higher and lower modulus of elasticity is large enough.
  • the higher modulus of elasticity must be at least twice as high as the lower modulus of elasticity; it is advantageous if it is between 20 and 30 times higher.
  • the modulus of elasticity can be increased by more than twice by adding fillers, such as balls made of Al 2 O 3 with diameters between 0.5 and 3 mm. It is therefore possible to use the same epoxy resin for layers 22, 32 with a lower modulus of elasticity made of epoxy resin and for layer 21, 31 with a higher modulus of elasticity, but with Al 2 O 3 balls.
  • Wedges 3 for tension elements 1 designed as lamellae have no curved surfaces. They can be produced in a formwork by casting or by machine with an extrusion press. This works in such a way that the cross section of the wedge 3 with the layers 21, 22, 31, 32, 33, 34 with lower and higher modulus of elasticity is pressed as a strand from a mouthpiece. The wedges are then cut from this strand in the required widths.
  • the non-positive connection of the layers 31, 32, 33, 34, 21, 22 with lower and higher modulus of elasticity of the wedge 3 or anchor body 2 can be produced by toothing and / or gluing.
  • the toothing can, as shown in Fig. 12, be carried out. However, interlocking elevations or depressions other than those shown in FIG. 12 are also possible.
  • the teeth can also be glued.
  • the non-positive connection can already take place during manufacture if the layer 21, 31 with a higher and the layer 22, 32, 33, 34 with a lower modulus of elasticity are cast together in one formwork. If the connection of the layers 31, 32, 33, 34 or 21, 22 is subsequently carried out with an adhesive, the contact surfaces should be roughened and free of grease. Particularly suitable are low-viscosity adhesives that can withstand high loads, such as the five-minute epoxy adhesive Hysol 3430 from Loctite.
  • the thrust transmission between tension element 1 and wedge 3 can take place by friction, gluing and / or toothing. If the transmission takes place by friction, it is advisable to increase it by thawing the contact surfaces or to use a friction material.
  • Friction material is, for example, a carbon fiber plastic, in which the carbon fibers form a right angle with the friction surface.
  • epoxy resin adhesives such as Sikadur 30 from SIKA or the fast-curing five-minute epoxy adhesive Hysol 3422 from Loctite are favorable.
  • the bonding can be improved by profiling, similar to that between the layers 21, 22 or 31, 32 with a lower and higher modulus of elasticity in FIG. 12.
  • a short curing time of the adhesive is advantageous for the execution.
  • the curing of epoxy-based adhesives can be accelerated by the application of heat. The curing time is reduced by half for every 10 ° heating.
  • the heating can take place, for example, by means of a heating wire in the wedge.
  • the tension element 1 can also be used instead of the heating wire.
  • the tension element 1 If a voltage is applied to both sides of the adhesive joint in the area close to the load and in the area away from the load and a current flows, the tension element 1 and thus also the adhesive heat up. The lower the resistance, the higher the current flow and thus the heat generated. If electrically conductive adhesive is used, the electrical contacts can also be installed in the area of the wedge 3 near and away from the load and heat the adhesive by applying a voltage.
  • the connection can also be established by profiling. It is advantageous if the profiling is carried out regularly, for example in cross section, as a result of saw teeth or as a sine wave.
  • the profiling on the wedges 3 must be opposite to the profiling of the tension element 1 so that a toothing is possible.
  • the profiling can be pressed into the soft matrix material on both sides with rollers.
  • the wedge 3 can be profiled during casting by appropriate shaping in the formwork.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Piles And Underground Anchors (AREA)
  • Bridges Or Land Bridges (AREA)
  • Materials For Medical Uses (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Dowels (AREA)
  • Pens And Brushes (AREA)

Abstract

Eine Verankerung (7) für zumindest ein vorgespanntes oder belastetes Zugelement (1), bei der die Zugkraft durch einen oder mehrere Keile (3) auf einen Ankerkörper (2) übertragbar ist, weist eine keilförmige Schicht (32) auf, die einen gegenüber den anderen Teilen der Verankerung (7) niedrigerem Elastizitätsmodul aufweist, wobei die größte Dicke der keilförmigen Schicht (32) gemessen normal zur Längsachse (4) des Zugelementes (1) im lastnahen Bereich (5) der Verankerung (7) liegt. Um Anpressdrücke über die Einspannlänge des Zugelementes (1) gleichmäßig zu verteilen, ist (sind) der Keil (3) und/oder der Ankerkörper (2) mindestens von zwei keilförmigen aneinanderliegenden Schichten (31, 32) gebildet, wobei mindestens eine der Schichten (32) aus einem Material mit einem niedrigeren Elastizitätsmodul gebildet ist als das Material, aus dem die weitere(n) Schicht(en) des Keiles (3) und/oder des Ankerkörpers (2) gebildet ist (sind), und die größte Dicke dieser Schicht (32) im lastnahen Bereich vorgesehen ist.

Description

Verankerung für vorgespannte und/oder belastete Zugelemente
Die Erfindung betrifft eine Verankerung für zumindest ein vorgespanntes oder belastetes Zugelement, bei der die Zugkraft durch einen oder mehrere Keile auf einen Ankerkörper übertragbar ist, und eine keilförmige Schicht einen gegenüber den anderen Teilen der Verankerung niedrigeren Elastizitätsmodul aufweist, wobei die größte Dicke der keilförmigen Schicht, gemessen normal zur Längsachse des Zugelementes, im lastnahen Bereich der Verankerung liegt.
Keilverankerungen werden seit vielen Jahren für das Vorspannen von Spannstählen aus hochfestem Stahl verwendet. Sie beruhen auf einem einfachen Prinzip und sind mit geringem Zeit- und Materialaufwand herstellbar. Im Spannbetonbau ist die Keilverankerung die häufigste Verankerungsart.
Bei Keilverankerungen wird die Kraft im Zugelement über Schubspannungen in die Keile und von dort weiter in den Ankerkörper eingeleitet. Keile und Ankerkörper sind über eine geneigte Ebene, auf der die Keile gleiten können, in Kontakt. Durch die Keilform entsteht beim Belasten des Zugelementes eine Andruckkraft normal zum Zugelement, die die Keile an das Zugelement drückt.
International werden anstelle von Stahl vermehrt neuartige Materialien wie Faserverbundwerkstoffe für vorgespannte oder belastete Zugelemente, wie Lamellen, Drähte, Stäbe oder Litzen, verwendet. Im Vergleich zu den metallischen Zugelementen weisen die Faserverbundwerkstoffe einen sehr hohen Korrosionswiderstand und ein geringes Gewicht auf. Der wesentliche Nachteil der Faserverbundwerkstoffe ist die hohe Querdruckempfindlichkeit.
Die Höhe der maximal übertragbaren Schubspannung zwischen Keil und Zugelement richtet sich nach dem Anpressdruck. Je höher der Anpressdruck um so höher die übertragbare maximale Schubspannung. Der Anpressdruck verursacht einen Querdruck im Zugelement. Bei Materialien, die auf Querdruck empfindlich sind, wie z.B. Faserverbundwerkstoffe, darf der maximal auftretende Querdruck eine bestimmte Größe nicht überschreiten.
Um die Schubspannungen zwischen Keil und Zugelement zu aktivieren, ist ein Mindestmaß an Schlupf notwendig. Bei einer üblichen Keilverankerung entsteht im lastnahen Bereich ein hoher Anpressdruck zwischen Keil und Zugelement, der dort auch eine hohe Schubspannung entstehen läßt, die schnell wieder abklingt und bis zum lastfernen Bereich nahezu konstant bleibt. Die Summe der Schubspannungen entlang der gesamten Kontaktfläche zwischen Keil und Zugelement entspricht der Zugkraft im Zugelement. Die größte Schubspannung tritt an der Stelle des maximalen Anpressdrucks auf, an der auch der größte Anteil der Zugkraft je Oberflächeneinheit übertragen wird. Ein Nachteil ist, dass von der Stelle der maximalen Schubspannung bis zum lastfernen Bereich die Schubspannung kaum aktiviert werden kann. Ein weiterer Nachteil einer konventionellen Verankerung ist, dass der größte maximale Anpressdruck und die größte maximale Schubspannung relativ gering sein müssen, da Materialien, wie Faserverbundwerkstoffe, bei geringen Anpressdrücken oder Querdrücken versagen.
In der WO 95/29308 ist eine konische Vergußverankerung für Faserverbundwerkstoffe beschrieben. Die Ankerbüchse weist einen konischen Hohlraum auf. Der Hohlraum wird entlang der Richtung des Zugelementes in Abschnitten mit Vergußmasse mit unterschiedlichem Elastizitätsmodul ausgefüllt. Im Abschnitt am lastnahen Bereich wird Vergußmasse mit dem niedrigsten Elastizitätsmodul eingebaut. In den folgenden Abschnitten bis zum lastfernen Bereich wird Vergußmaterial mit immer höher werdenden Elastizitätsmodulen verwendet. Man erreicht damit eine gleichmäßigere Kraftübertragung vom Zugelement auf den Vergusskörper. Die Herstellung dieser Schichten ist jedoch ein aufwendiger Prozess.
Die EP 0 197 912 A2 offenbart eine Verankerung für Spannglieder aus hochfestem Stahl, bei der der Ankerkörper aus zwei Schichten mit unterschiedlichen Materialien, wie Kunststoff oder Weichmetall, besteht. Die Schicht aus weicherem Material ist mit konstanter Dicke über die gesamte Keillänge oder mit einer über die Keillänge veränderlichen Schicht, die jedoch im lastnahen Bereich die kleinste Dicke aufweist, ausgeführt. Bei Belastung des Zugelementes kommt es zu hohen Querdruckspitzen im lastnahen Bereich. Querdruckempfindliche Materialien, wie Faserverbundwerkstoffe, können diesen hohen Querdrücken nicht standhalten und versagen dadurch vorzeitig.
In der EP 0 197 912 ist weiters eine Variante gezeigt, gemäß der in einem einteiligen Ankerkörper zwei in Längsrichtung des Zugelementes hintereinander liegende Keile vorgesehen sind, von denen der lastnähere Keil aus einem Pressteil, der weicher ist als das Zugelement, gebildet ist, wobei dieser keilförmige Pressteil seine größte Dicke im lastnahen Bereich aufweist. Der lastfernere Keil ist als Ankerkeil ausgebildet und weist seine größte Dicke im lastfernen Bereich auf, sodass hierdurch Spannungsspitzen und somit Querdruckspitzen am Zugelement auftreten. Aufgabe der Erfindung ist die Schaffung einer Verankerung, bei der die Anpressdrücke und die Schubspannungen, die auf das zu verankernde Zugelement wirken, über die Einspannlänge des Zugelementes gleichmäßig verteilt sind oder vom lastnahen zum lastfernen Bereich leicht ansteigen und geringere maximale Werte für Anpressdrücke und Schubspannungen aufweisen als die bekannten Ausführungsformen. Zudem soll gegenüber einer Vergußverankerung die Herstellung und das Installieren auf der Baustelle wesentlich vereinfacht möglich sein.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Keil und/oder der Ankerkörper mindestens von zwei keilförmigen aneinanderliegenden Schichten gebildet ist (sind), wobei mindestens eine der Schichten aus einem Material mit einem niedrigeren Elastizitätsmodul gebildet ist als das Material, aus dem die weitere(n) Schicht(en) des Keiles und/oder des Ankerkörpers gebildet ist (sind), und die größte Dicke dieser Schicht im lastnahen Bereich vorgesehen ist.
Hierdurch ist es möglich, den Anpressdruck und die Schubspannungen zwischen Keil und Zugelement vom lastnahen zum lastfernen Bereich hin gleichmäßig zu verteilen oder sogar leicht ansteigen zu lassen. Wenn das Verhältnis der Elastizitätsmodule der Schichten ausreichend groß ist, dann wird die Gesamtsteifigkeit beider Schichten normal zur Längsachse des Zugelementes hauptsächlich durch die Schicht aus Material mit niedrigem Elastizitätsmodul bestimmt. Je dicker die Schicht mit niedrigem Elastizitätsmodul ist, desto geringer ist die Steifigkeit normal zur Längsachse des Zugelementes. Daher ist im lastnahen Bereich, wo die Dicke der Schicht mit niedrigem Elastizitätsmodul am größten ist, die Steifigkeit normal zur Längsachse des Zugelementes geringer als im lastfernen Bereich. Diese geringere Steifigkeit im lastnahen Bereich dieses statisch unbestimmten Systems bewirkt einen geringeren maximalen Anpressdruck und somit eine gleichmäßige Verteilung des Anpressdrucks oder einen leichten Anstieg vom lastnahen zum lastfernen Bereich. Dadurch wird es auch möglich, die Schubspannungen im Kontaktbereich zwischen Zugelement und Keil über die gesamte Länge besser zu aktivieren. Der hierbei erreichte geringe maximale Anpressdruck verhindert ein Zerstören des Zugelementes zufolge des Querdrucks.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Verankerung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung wird nun nachfolgend an mehreren Ausführungsbeispielen unter Bezug auf die beigefügte Zeichnung näher erläutert. Dabei zeigen:
Fig. 1 einen Längsschnitt mit Ankerkörper, Zugelement und zwei Keilen mit jeweils drei Schichten, wovon zwei Schichten des Keils einen niedrigen Elastizitätsmodul und eine Schicht einen hohen Elastizitätsmodul aufweisen, wobei eine Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke nahe der Gleitebene zwischen Keil und Ankerkörper angeordnet ist;
Fig. 2 in Diagrammform die idealisierten Schubspannungsverteilungen entlang der Kontaktfläche zwischen Keil und Zugelement für eine herkömmliche Verankerung und eine erfindungsgemäße Verankerung;
Fig. 3 einen Querschnitt entlang der Schnittlinie III-III von Fig. 1 , wobei hier das Zugelement einen rechteckigen Querschnitt aufweist und zwei Keile aus je drei Schichten eingesetzt werden;
Fig. 4 einen Längsschnitt mit Ankerkörper, Zugelement und zwei Keilen, wobei der Ankerkörper aus einer Schicht mit hohem Elastizitätsmodul und einer Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke, die nahe der Gleitebene zwischen Keil und Ankerbüchse angeordnet ist, besteht;
Fig. 5 einen Querschnitt entlang der Schnittlinie V-V von Fig. 4, wobei das Zugelement hier einen kreisförmigen Querschnitt aufweist und zwei Keile ohne Schichten und ein Ankerkörper mit zwei Schichten eingesetzt werden;
Fig. 6 einen Längsschnitt durch eine Verankerung, in der sieben Drähte, Stäbe oder Litzen verankert werden und jeder Keil aus einer Schicht mit hohem Elastizitätsmodul und einer Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke, die auf der Seite des Zugelementes angeordnet ist, besteht;
Fig. 7 einen Querschnitt entlang der Schnittlinie VII-VII von Fig. 6, wobei das Zugelement hier einen kreisförmigen Querschnitt aufweist und je Zugelement drei Keile aus zwei Schichten eingesetzt werden;
Fig. 8 einen Längsschnitt durch eine Verankerung in asymmetrischer Ausführung, bestehend aus Ankerkörper, Zugelement und einem Keil, der aus einer Schicht mit hohem Elastizitätsmodul und zwei Schichten mit niedrigem Elastizitätsmodul gefertigt ist, wovon eine Schicht mit niedrigem Elastizitätsmodul mit veränderlicher Dicke nahe der Gleitebene von Keil und Ankerbüchse angeordnet ist, und das Zugelement gegen eine zur Achse des Zugelementes parallele Ebene drückt und damit die Kräfte aus dem Zugelement in den Keil und die parallele Ebene eingeleitet werden;
Fig. 9 einen Längsschnitt durch eine Verankerung, die mit dreischichtigen Keilen ausgeführt ist, wovon zwei Schichten mit niedrigem Elastizitätsmodul und veränderlicher Dicke im lastnahen Bereich die größte Dicke aufweisen und nur eine Schicht mit niedrigem Elastizitätsmodul bis zum lastfernen Bereich geführt wird;
Fig. 10 einen Längsschnitt durch eine Verankerung, deren Keile mit einer Schicht mit niedrigem und einer Schicht mit hohem Elastizitätsmodul ausgeführt sind, wovon die Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke weiter zum lastnahen Bereich geführt wird als die Schicht mit hohem Elastizitätsmodul;
Fig. 11 einen Längsschnitt durch eine Verankerung, deren Keile mit einer Schicht mit niedrigem und einer Schicht mit hohem Elastizitätsmodul ausgeführt ist, wobei die Schicht mit niedrigem Elastizitätsmodul sich nach einer Kurve höherer Ordnung zum lastfernen Bereich hin verjüngt.
Fig. 12 zeigt ein Detail der Verankerung in vergrößertem Maßstab.
Die Fig. 1 zeigt die Verankerung 7 im Längsschnitt mit einem Keil 3, der aus zwei Schichten 32, 33 mit niedrigem Elastizitätsmodul und einer Schicht 31 mit höherem Elastizitätsmodul gebildet ist. Die Schichten 31, 32, 33 verlaufen entlang der Längsachse 4 des Zugelementes 1. Die Schicht mit niedrigerem Elastizitätsmodul und konstanter Dicke 33 wird zum Ausgleich von eventuellen Spannungsspitzen, die durch unebene Flächen oder sonstige Imperfektionen entstehen können, eingebaut. Die andere Schicht 32 mit niedrigerem Elastizitätsmodul ist nahe dem Ankerkörper 2 angeordnet und weist die größte Dicke im lastnahen Bereich 5 auf, die zum lastfernen Bereich 6 hin abnimmt. Mit zunehmender Dicke der Schicht 32 mit niedrigerem Elastizitätsmodul nimmt die Gesamtsteifigkeit des Keiles 3 normal zur Längsachse 4 des Zugelementes 1 ab. Der Anpressdruck steigt vom lastnahen 5 zum lastfernen Bereich 6 hin leicht an und es kann die gesamte Kontaktfläche zwischen Keil 3 und Zugelement 1 für die Übertragung der Schubspannungen ausgenutzt werden. Bei herkömmlichen Keilverankerungen kommt es im lastnahen Bereich 6 zu großen Anpressdrücken und damit auch zu einer in einem kurzen Bereich stark ansteigenden Schubspannung, siehe Linie c in Fig. 2. Durch den vom lastnahen 5 zum lastfernen Bereich 6 gleichmäßigen oder auch leicht ansteigenden Anpressdruck kommt es zu einer gleichmäßigeren Verteilung der Schubspannung, wie die Linie b von Fig. 2 veranschaulicht. Zusätzlich ist der maximale Anpressdruck geringer, was besonders bei der Anwendung von Faserverbundwerkstoffen von Bedeutung ist. Der Anpressdruck verteilt sich entsprechend den Steifigkeiten der Schichten 31 und 32 und kann in Abhängigkeit des Verhältnisses der Elastizitätsmodule und der Schichtdicken im lastnahen 5 und im lastfernen Bereich 6 variiert werden.
Der Schnitt III-III in Fig. 1 ist in Fig. 3 dargestellt und zeigt den Querschnitt von Fig. 1 für die Verankerung eines Zugelementes 1 mit rechteckigem Querschnitt, ausgeführt als Lamelle. In dieser Verankerung kommen zwei Keile 3 mit ebenen Flächen zum Einsatz.
Die Verankerung 7 gemäß Fig. 4 basiert auf dem gleichen Prinzip wie die Verankerung 7 in Fig. 1 , jedoch mit dem Unterschied, dass der Keil 3 einen höheren Elastizitätsmodul aufweist, der Ankerkörper 2 hingegen aus einer Schicht 22 mit niedrigerem Elastizitätsmodul, die nahe der Gleitfläche angeordnet ist, und einer Schicht 21 mit höherem Elastizitätsmodul aufgebaut ist.
Der Schnitt V-V in Fig. 4 ist in Fig. 5 dargestellt und zeigt den Querschnitt von Fig. 4 für die Verankerung eines Drahtes, einer Litze oder eines Stabes 1. In dieser Verankerung 7 kommen zwei einander ergänzende Keile 3 mit gerundeten Flächen zum Einsatz.
Fig. 6 zeigt eine Verankerung 7 von sieben Zugelementen 1 im Längsschnitt. Der Schnitt nach der Linie VII- VII ist in Fig. 7 dargestellt und zeigt den Querschnitt der Verankerung 7. Hier ist jeder Keil 3 in eine Schicht 32 mit niedrigerem Elastizitätsmodul und eine Schicht 31 mit höherem Elastizitätsmodul geteilt. Die Schicht 32 mit niedrigerem Elastizitätsmodul ist im Keil 3 beim Spannelement 1 angeordnet und die Schicht 31 mit dem höheren Elastizitätsmodul 31 ist nahe der Gleitfläche mit dem Ankerkörper 2 angeordnet. Gemäß Fig. 7 wird das Zugelement 1 mit drei Keilen 3 mit gerundeten Flächen gehalten.
Bei der Verwendung von Lamellen als Zugelement 1 müssen nicht immer mehrere Keile 3 zur Verankerung verwendet werden, siehe Fig. 8. Es kann auch nur ein Keil 3 aus Schichten 31, 32, 33 mit niedrigen und höheren Elastizitätsmodulen, die die Lamelle 1 gegen eine ebene, parallel zur Lamelle 1 liegenden Schicht 23, die Teil des Ankerkörpers 2 ist, drückt, eingesetzt werden. Der Keil 3 ist hier zusätzlich mit einer Schicht 33 mit niedrigerem Elastizitätsmodul und konstanter Dicke ausgeführt, um eventuelle Spannungsspitzen, die durch Imperfektionen entstehen könnten, auszugleichen. Ebenso weist der Ankerkörper 2 eine Schicht 23 mit niedrigerem Elastizitätsmodul und konstanter Dicke nahe der Lamelle 1 auf. Diese Verankerung 7 bietet besondere Vorteile bei einer nachträglichen Verstärkung eines Tragwerks, da die Verankerung 7 in geringem Abstand von der Bauteiloberfläche eingebaut werden kann und das entstehende Moment auf die Verankerung 7 gering gehalten werden kann.
Der Keil 3 kann auch aus mehren Schichten 31, 32, 34 mit niedrigeren und höheren Elastizitätsmodulen 32, 34, wie in Fig. 9 dargestellt, bestehen, wobei auch hier die Schichten 32, 34 mit niedrigerem Elastizitätsmodul eine größere Dicke im lastnahen Bereich 5 aufweisen und diese nicht alle in den lastfernen Bereich 6 geführt werden.
In Fig. 10 ist eine Verankerung 7, bei der die Keile 3 aus einer Schicht 32 mit niedrigerem Elastizitätsmodul und einer Schicht 31 mit höherem Elastizitätsmodul bestehen, dargestellt. Die Besonderheit hier ist, dass die Schicht 32 mit niedrigerem Elastizitätsmodul beim lastnahen Bereich der Schicht 31 mit höherem Elastizitätsmodul die größte Dicke aufweist, jedoch weiter geführt wird, um die Krafteinleitung und auftretende Schwingungsbeanspruchungen besser einleiten zu können.
In Fig. 11 ist eine Verankerung 7 mit einem Keil 3 aus einer Schicht 32 mit niedrigerem Elastizitätsmodul und einer Schicht 31 mit höherem Elastizitätsmodul ausgeführt, wobei die Dicke der Schicht 32 mit niedrigerem Elastizitätsmodul zur besseren Anpassung des Anpressdrucks nicht linear, sondern nach einer Kurve höherer Ordnung ihre Dicke verändert.
Die Schichten 32, 33, 34, 22, 23 aus Material mit niedrigerem Elastizitätsmodul können auch durch geometrische Anpassungen, wie Poren, Löcher, Hohlräume oder sonstige Ausnehmungen, erstellt werden.
Das Erreichen von Schichten 32, 33, 34, 22, 23 mit niedrigeren und höheren Elastizitätsmodulen 21, 31 in einem Ankerkörper 2 oder einem Keil 3 kann durch spezielle Behandlung, wie z.B. durch Erwärmungs- oder Abkühlvorgänge, bei der Herstellung erreicht werden. Dadurch ist es möglich, Schichten mit veränderlichem Elastizitätsmodul, die entlang der Längsachse 4 des Zugelementes 1 den gleichen Elastizitätsmodul und im lastnahen Bereich 5 die größte Dicke aufweisen, herzustellen.
Die Ausführung mit einem Keil 3 aus mindestens einer Schicht 32 mit niedrigerem und einer Schicht 31 mit höherem Elastizitätsmodul oder mit einem Ankerkörper 2 aus mindestens einer Schicht 22 mit niedrigerem und einer Schicht 21 mit höherem Elastizitätsmodul können miteinander kombiniert zur Anwendung kommen. Genauso können die Schichten mit niedrigerem Elastizitätsmodul durch geometrische Anpassungen, wie Poren, Löcher, Hohlräume oder sonstige Ausnehmungen, ergänzt oder ersetzt werden.
Es wird nun beispielhaft die Herstellung einer Verankerung 7 eines Zugelementes 1, gebildet von einer CFK-Lamelle 1, die üblicherweise einen Elastizitätsmodul zwischen 165000 und 300000 N/mm2, eine Festigkeit zwischen 1500 und 3500 N/mm2 und eine Dicke von 0,5 bis 2,0 mm aufweist, wie in Fig. 1 dargestellt, beschrieben. Die Schichten 32, 33 mit niedrigerem Elastizitätsmodul sind aus Kunststoff mit einem Elastizitätsmodul von 5800 N/mm2 und die Schicht 31 mit höherem Elastizitätsmodul und der Ankerkörper 2 aus Stahl mit einem Elastizitätsmodul von 210000 N/mm2 gefertigt. Die Gleitebene schließt mit der Längsachse 4 des Zugelementes 1 einen Winkel von 15° ein und die Keillänge, parallel zum Zugelement 1 gemessen, beträgt 80 mm. Die Schicht 32 mit niedrigerem Elastizitätsmodul weist im lastnahen Bereich 5 eine Dicke von 4 mm und im lastfernen Bereich 6 ein Dicke von 2 mm auf. Die Dicke der Schicht 32 wird dabei immer normal auf die Längsachse 4 des Zugelementes 1 gemessen. Bei Erreichen der Festigkeit im Zugelement 1 entsteht dann in der Kontaktfläche zwischen dem Zugelement 1 und dem Keil 3 ein Anpressdruck, der vom lastnahen 5 zum lastfernen Bereich 6 von ca. 80 N/mm2 auf 100 N/mm2 ohne lokale Spannungsspitzen ansteigt. Die Schubspannungen sind gleichmäßig verteilt, weisen keine lokalen Spitzen auf und ergeben für einen Reibbeiwert von 0,3 einen Maximalwert von ca. 45 N/mm2. CFK-Lamellen 1 können durchaus höheren Anpressdrücken und Schubspannungen standhalten, weshalb ein Versagen des Zugelementes nur mehr in der freien Länge auftreten kann.
Stahl kann für die Schicht 31 des Keils 3 mit höherem Elastizitätsmodul und Epoxidharz für die Schicht 32, 33 mit niedrigerem Elastizitätsmodul verwendet werden. Der Elastizitätsmodul von Stahl beträgt 210000 N/mm2 und der von Epoxidharz zirka 5800 N/mm2. Die Herstellung eines Keiles 3, wie in Fig. 6 dargestellt, kann in einer Schalung erfolgen. Damit die Schalung nach dem Aushärten des Epoxidharzes leicht entfernt werden kann, empfiehlt es sich, diese aus Teflon herzustellen. Die Schicht 31 aus Stahl muss vorab gefräst werden und wird vor dem Vergießen in der Schalung befestigt. Damit keine Lufteinschlüsse beim Vergießen entstehen, ist es zweckmäßig, das Epoxidharz von unten nach oben zu vergießen. Dazu kann das Epoxidharz mit einem Überdruck durch eine Öffnung, die sich am Tiefpunkt der Schalung befindet, eingepresst werden. Nach dem Aushärten und Ausschalen erhält man einen erfindungsgemäßen zweischichtigen Keil 3. Anstelle von Stahl und Epoxidharz können auch andere Materialien eingesetzt werden, wichtig dabei ist nur, daß der Unterschied zwischen höherem und niedrigerem Elastizitätsmodul groß genug ist. Der höhere Elastizitätsmodul muß mindestens zweimal höher sein als der niedrigere Elastizitätsmodul, günstig ist es, wenn er zwischen 20 und 30- mal höher ist.
Bei Epoxidharzen kann der Elastizitätsmodul durch die Zugabe von Füllstoffen, wie Kugeln aus Al2O3 mit Durchmessern zwischen 0,5 und 3 mm, um mehr als das doppelte erhöht werden. Es ist daher möglich, für die Schicht 22, 32 mit geringerem Elastizitätsmodul aus Epoxidharz und für die Schicht 21, 31 mit höherem Elastizitätsmodul das gleiche Epoxidharz jedoch mit Al2O3-Kugeln zu verwenden.
Keile 3 für als Lamellen gestaltete Zugelemente 1 weisen keine gekrümmten Flächen auf. Sie können in einer Schalung durch Gießen oder maschinell mit einer Strangpresse hergestellt werden. Dies funktioniert so, daß der Querschnitt des Keils 3 mit den Schichten 21, 22, 31, 32, 33, 34 mit niedrigerem und höherem Elastizitätsmodul als Strang aus einem Mundstück gepresst wird. Von diesem Strang werden anschließend die Keile in den erforderlichen Breiten geschnitten.
Die kraftschlüssige Verbindung der Schichten 31, 32, 33, 34, 21, 22 mit niedrigerem und höherem Elastizitätsmodul des Keils 3 oder Ankerkörpers 2 kann durch Verzahnung und/oder Klebung hergestellt werden. Die Verzahnung kann, wie in Fig. 12 dargestellt, ausgeführt sein. Es sind aber auch andere als in Fig. 12 dargestellte ineinandergreifende Erhöhungen bzw. Vertiefungen möglich. Um das Hantieren zu erleichtern und die Kraftübertragung zu verbessern, kann die Verzahnung noch zusätzlich verklebt sein. Die kraftschlüssige Verbindung kann schon beim Herstellen erfolgen, wenn die Schicht 21, 31 mit höherem und die Schicht 22, 32, 33, 34 mit niedrigerem Elastizitätsmodul zusammen in einer Schalung vergossen werden. Wird die Verbindung der Schichten 31, 32, 33, 34 bzw. 21, 22 nachträglich mit einer Klebung ausgeführt, sollten die Kontaktflächen aufgeraut und fettfrei sein. Für die Verklebung eignen sich besonders dünnflüssige Kleber, die auch hohen Belastungen widerstehen können, wie beispielsweise der Fünf-Minuten-Epoxid-Klebstoff Hysol 3430 von Loctite.
Werden die Zugelemente 1 mit Keilen 3 verankert, kann die Schubübertragung zwischen Zugelement 1 und Keil 3 durch Reibung, Klebung und/oder Verzahnung erfolgen. Erfolgt die Übertragung durch Reibung, ist es zweckmäßig, diese durch Auftauen der Kontaktflächen zu erhöhen oder einen Friktionswerkstoff einzusetzen. Ein guter Friktionswerkstoff ist zum Beispiel ein Kohlefaserkunststoff, bei dem die Kohlefasern einen rechten Winkel mit der Reibfläche einschließen.
Wird das Zugelement 1 und der Keil 3 durch eine Klebung verbunden, sind Epoxidharzkleber wie Sikadur 30 der Firma SIKA oder der schnellhärtende Fünf-Minuten- Epoxid-Klebstoff Hysol 3422 der Firma Loctite günstig. Die Verklebung kann durch eine Profilierung, ähnlich wie zwischen den Schichten 21, 22 bzw. 31, 32 mit niedrigerem und höherem Elastizitätsmodul in Fig. 12 dargestellt, verbessert werden. Eine kurze Aushärtungszeit des Klebers ist vorteilhaft für die Ausführung. Das Aushärten von Klebstoffen auf Epoxidharzbasis kann durch die Zufuhr von Wärme beschleunigt werden. Annähernd wird je 10° Erwärmung die Aushärtungszeit um die Hälfte reduziert. Die Erwärmung kann beispielsweise durch einen Heizdraht im Keil erfolgen. Alternativ kann auch das Zugelement 1 anstelle des Heizdrahtes verwendet werden. Wird an beiden Seiten der Klebefuge im lastnahen und im lastfernen Bereich eine Stromspannung angelegt und fließt ein Strom, dann erwärmt sich das Zugelement 1 und damit auch der Klebstoff. Je geringer der Widerstand, umso höher ist der Stromfluss und damit auch die erzeugte Wärme. Wird elektrisch leitender Klebstoff verwendet, können die elektrischen Kontakte auch im lastnahen und lastfernen Bereich des Keils 3 eingebaut werden und durch Anlegen einer Spannung den Klebstoff erwärmen.
Die Verbindung kann auch durch eine Profilierung hergestellt werden. Hierbei ist es günstig, wenn die Profilierung regelmäßig, beispielsweise im Querschnitt, als Folge von Sägezähnen oder als Sinuswelle ausgeführt wird. Auf den Keilen 3 muss die Profilierung gegengleich zur Profilierung des Zugelementes 1 sein, damit eine Verzahnung möglich ist. Bei der Herstellung des Zugelementes 1 kann die Profilierung beidseitig mit Rollen in das weiche Matrixmaterial eingedrückt werden. Die Profilierung des Keils 3 kann beim Vergießen durch entsprechende Formgebung in der Schalung erfolgen.

Claims

Patentansprüche:
1. Verankerung (7) für zumindest ein vorgespanntes oder belastetes Zugelement (1), bei der die Zugkraft durch einen oder mehrere Keile (3) auf einen Ankerkörper (2) übertragbar ist, und eine keilförmige Schicht (22, 32, 34) einen gegenüber den anderen Teilen der Verankerung (7) niedrigerem Elastizitätsmodul aufweist, wobei die größte Dicke der keilförmigen Schicht (22, 32, 34) gemessen normal zur Längsachse (4) des Zugelementes (1) im lastnahen Bereich (5) der Verankerung (7) liegt, dadurch gekennzeichnet, dass der Keil (3) und/oder der Ankerkörper (2) mindestens von zwei keilförmigen aneinanderliegenden Schichten (21, 22, 31, 32) gebildet ist (sind), wobei mindestens eine der Schichten (22, 32, 34) aus einem Material mit einem niedrigeren Elastizitätsmodul gebildet ist als das Material, aus dem die weitere(n) Schicht(en) des Keiles (3) und/oder des Ankerkörpers (2) gebildet ist (sind), und die größte Dicke dieser Schicht (22, 32, 34) im lastnahen Bereich vorgesehen ist.
2. Die Verankerung (7) nach Anspruch 1, dadurch gekennzeichnet, dass in der Schicht (22, 32, 34) mit niedrigerem Elastizitätsmodul die Steifigkeit dieser Schicht normal zur Längsachse (4) des Zugelementes (1) verringernde Poren, Löcher, Aussparungen oder Schlitze angeordnet sind.
3. Die Verankerung (7) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die unterschiedlichen Elastizitätsmodule der einzelnen Schichten (21, 22, 23, 31, 32, 33, 34) durch spezielle Behandlungen, wie Erwärmungs- oder Abkühlvorgänge, bei deren Herstellung bewirkt sind.
4. Die Verankerung (7) nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Ankerkörper (2) als Kopplung für zwei Zugelemente (1) mit einander entgegengesetzt gerichteten Aufnahmen für Keile (3) versehen ist.
5. Verankerung (7) nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schicht (22, 32, 34) mit niedrigerem Elastizitätsmodul mit der Schicht (31, 21) mit höherem Elastizitätsmodul durch eine kraft- und/oder formschlüssige Verbindung, wie eine Profilierung mit Gegenprofilierung, z.B. eine Verzahnung, und/oder durch eine Verklebung, miteinander verbunden ist.
6. Verankerung (7) nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Schubkraftübertragung zwischen dem Keil (3) und dem Zugelement (1) durch Kraft- und/oder Formschluss gesichert ist, wie z.B. durch Reibung, Klebung oder eine Profilgestaltung, z.B. durch eine Verzahnung mit Gegenverzahnung.
7. Verankerung (7) nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verhältnis von niedrigerem zu höherem Elastizitätsmodul mindestens 1 :2, vorzugsweise mindestens 1 :10, beträgt, insbesondere zwischen 1 :20 und 1 :30 liegt.
8. Verankerung (7) nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die keilförmige Schicht mit niedrigerem Elastizitätsmodul von zwei ebenfalls keilförmigen Teilschichten (32, 34) mit unterschiedlichen Elastizitätsmodulen gebildet ist.
9. Verankerung (7) nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Keil und/oder der Ankerkörper, soweit aus einem Material mit höherem Elastizitätsmodul gebildet, mit den Elastizitätsmodul-erhöhenden Füllstoffen, wie Körpern aus Al2O3, versehen ist.
PCT/AT2004/000449 2003-12-22 2004-12-21 Verankerung für vorgespannte und/oder belastete zugelemente WO2005061813A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT04802011T ATE405713T1 (de) 2003-12-22 2004-12-21 Verankerung für vorgespannte und/oder belastete zugelemente
DE502004007928T DE502004007928D1 (de) 2003-12-22 2004-12-21 Verankerung für vorgespannte und/oder belastete zugelemente
US10/596,743 US7857542B2 (en) 2003-12-22 2004-12-21 Anchoring for pre-tensioned and/or stressed tensile elements
EP04802011A EP1706555B1 (de) 2003-12-22 2004-12-21 Verankerung für vorgespannte und/oder belastete zugelemente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA2062/2003 2003-12-22
AT0206203A AT412564B (de) 2003-12-22 2003-12-22 Keilverankerung für vorgespannte und/oder belastete zugelemente

Publications (1)

Publication Number Publication Date
WO2005061813A1 true WO2005061813A1 (de) 2005-07-07

Family

ID=32932063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2004/000449 WO2005061813A1 (de) 2003-12-22 2004-12-21 Verankerung für vorgespannte und/oder belastete zugelemente

Country Status (6)

Country Link
US (1) US7857542B2 (de)
EP (1) EP1706555B1 (de)
CN (1) CN1898450A (de)
AT (2) AT412564B (de)
DE (1) DE502004007928D1 (de)
WO (1) WO2005061813A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420622A1 (de) 2010-08-18 2012-02-22 Sika Technology AG Vorrichtung zur Krafteinleitung in Zugglieder aus faserverstärkten Kunststoff-Flachbandlamellen
EP2631392A1 (de) 2012-02-21 2013-08-28 Sika Technology AG Vorrichtung zur Krafteinleitung in Zugglieder aus faserverstärkten Kunststoff-Flachbandlamellen
CN103410095A (zh) * 2013-07-23 2013-11-27 中铁十三局集团第一工程有限公司 钢绞线拉拽器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240647B (zh) * 2008-02-28 2010-10-06 柳州职业技术学院 预应力筋的锚固方法及其所用的内夹片和外夹片
CA2769575C (en) * 2009-08-12 2014-03-25 Tokyo Rope Manufacturing Co., Ltd. End anchoring structure and method for fiber-reinforced plastic filament body
AT509076B1 (de) * 2010-03-22 2011-06-15 Hermann Dipl Ing Thal Verankerung für spannglieder
CN102343578A (zh) * 2010-08-03 2012-02-08 刘于颇 快装破拆器
CN102644242A (zh) * 2011-02-17 2012-08-22 上海方济减震器材有限公司 拉索橡胶减振器齿形锲块
EP2602399A1 (de) 2011-12-05 2013-06-12 Latvijas Universitates agentura "Latvijas Universitates Polimeru mehanikas Instituts" Einspannvorrichtung zur Übertragung von Zugkräften auf einen elastischen Band
EP2689867A1 (de) * 2012-07-27 2014-01-29 GESIPA Blindniettechnik GmbH Verbindungselement und Setzgerät für ein Verbindungselement
CN102839823A (zh) * 2012-09-21 2012-12-26 铁煤集体企业联合发展有限公司 一种预应力锚具
CN104870728B (zh) * 2012-12-18 2018-03-02 乌本产权有限公司 锚、张紧设备、风能设备和用于将拉绳在锚上张紧的方法
CN103009478B (zh) * 2012-12-21 2014-10-01 中铁九局集团有限公司桥梁分公司 一种张拉锁定及无损放张装置
SG11201608865QA (en) * 2014-04-22 2016-11-29 Richard V Campbell Advanced stranded cable termination methods and design
EP3146120A4 (de) 2014-05-19 2017-11-29 Felix L. Sorkin Modifizierte permanente kappe
CN104690665B (zh) * 2015-02-16 2017-04-19 沈阳工业大学 普通钢筋及预应力筋疲劳拉伸试验用双层夹具及安装工艺
US10323427B2 (en) 2015-06-26 2019-06-18 Danmarks Tekniske Universitet Anchorage device
CN108301637A (zh) * 2018-04-12 2018-07-20 贝正河北工程技术有限公司 一种预应力碳纤维板楔形锚具
CN109629462A (zh) * 2019-01-17 2019-04-16 上海悍马建筑科技有限公司 预应力碳纤维张拉锚具
US20200248781A1 (en) * 2019-02-01 2020-08-06 Craig W. Patterson Cinching device
CN112095466B (zh) * 2020-09-17 2022-04-15 东南大学 一种frp拉索锚固方法及锚固端头
CN112942685B (zh) * 2021-02-07 2022-05-31 哈尔滨工业大学 用于纤维增强树脂复合材料杆的新型锚固系统及锚固方法
CN113356589A (zh) * 2021-07-21 2021-09-07 中联西北工程设计研究院有限公司 一种用于建筑外墙的多功能对拉螺栓及其使用方法
CN116659573A (zh) * 2023-05-23 2023-08-29 南通理工学院 一种适用于锚具结构健康监测的cfrp传感器布点方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6601081U (de) * 1966-03-23 1969-04-03 Rehm G Vorrichtung zur verankerung von stahlstaeben bzw. stahldraehten u. dgl. mit profilierter oberflaeche
DE2515423A1 (de) * 1974-04-26 1975-11-13 Felten & Guilleaume Ag Oester Verankerungsvorrichtung fuer verbundstraenge aus einem kunststoffkoerper und in diesen eingebetteten insbesondere parallelen draehten
EP0197912A2 (de) 1985-03-05 1986-10-15 Vorspann-Technik Gesellschaft m.b.H. Verankerung für Spannglieder
EP0554161A1 (de) * 1992-01-31 1993-08-04 Sondages Injections Forages "S.I.F." Entreprise Bachy Verankerungsvorrichtung eines Faser-Drahtbündels
WO1995029308A1 (de) 1994-04-25 1995-11-02 Eidgenössische Materialprüfungs- und Forschungsanstalt Empa Verankerung für hochleistungsfaserverbundwerkstoff-drähte
EP0949389A1 (de) * 1998-04-08 1999-10-13 Bilfinger + Berger Bauaktiengesellschaft Verankerungsvorrichtung für Zugglieder
DE10010564C1 (de) * 2000-03-03 2001-07-05 Johann Kollegger Verankerung für ein Zugelement aus Faserverbundwerkstoff

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393720A (en) * 1967-09-11 1968-07-23 John M. Fenlin Portable impact tools
US5802788A (en) * 1994-02-22 1998-09-08 Kabushiki Kaisha Komatsu Seisakusho Komatsu Plastics Industry Co., Ltd. Fixing device for tensioning member for prestressed concrete
JP2003278314A (ja) * 2002-03-20 2003-10-02 Daisen:Kk ストランド定着具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6601081U (de) * 1966-03-23 1969-04-03 Rehm G Vorrichtung zur verankerung von stahlstaeben bzw. stahldraehten u. dgl. mit profilierter oberflaeche
DE2515423A1 (de) * 1974-04-26 1975-11-13 Felten & Guilleaume Ag Oester Verankerungsvorrichtung fuer verbundstraenge aus einem kunststoffkoerper und in diesen eingebetteten insbesondere parallelen draehten
EP0197912A2 (de) 1985-03-05 1986-10-15 Vorspann-Technik Gesellschaft m.b.H. Verankerung für Spannglieder
EP0554161A1 (de) * 1992-01-31 1993-08-04 Sondages Injections Forages "S.I.F." Entreprise Bachy Verankerungsvorrichtung eines Faser-Drahtbündels
WO1995029308A1 (de) 1994-04-25 1995-11-02 Eidgenössische Materialprüfungs- und Forschungsanstalt Empa Verankerung für hochleistungsfaserverbundwerkstoff-drähte
EP0949389A1 (de) * 1998-04-08 1999-10-13 Bilfinger + Berger Bauaktiengesellschaft Verankerungsvorrichtung für Zugglieder
DE10010564C1 (de) * 2000-03-03 2001-07-05 Johann Kollegger Verankerung für ein Zugelement aus Faserverbundwerkstoff

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420622A1 (de) 2010-08-18 2012-02-22 Sika Technology AG Vorrichtung zur Krafteinleitung in Zugglieder aus faserverstärkten Kunststoff-Flachbandlamellen
WO2012022783A1 (de) 2010-08-18 2012-02-23 Sika Technology Ag Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen
US9663963B2 (en) 2010-08-18 2017-05-30 Sika Technology Ag Device for introducing a force into tension members made of fiber-reinforced plastic flat strip lamellas
EP2631392A1 (de) 2012-02-21 2013-08-28 Sika Technology AG Vorrichtung zur Krafteinleitung in Zugglieder aus faserverstärkten Kunststoff-Flachbandlamellen
WO2013124304A1 (de) 2012-02-21 2013-08-29 Sika Technology Ag Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen
CN103410095A (zh) * 2013-07-23 2013-11-27 中铁十三局集团第一工程有限公司 钢绞线拉拽器

Also Published As

Publication number Publication date
US7857542B2 (en) 2010-12-28
CN1898450A (zh) 2007-01-17
EP1706555A1 (de) 2006-10-04
ATA20622003A (de) 2004-09-15
EP1706555B1 (de) 2008-08-20
ATE405713T1 (de) 2008-09-15
AT412564B (de) 2005-04-25
DE502004007928D1 (de) 2008-10-02
US20070221894A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
EP1706555B1 (de) Verankerung für vorgespannte und/oder belastete zugelemente
EP1186730B1 (de) Verstärkungselement für lastaufnehmende oder lastübertragende Bauteile sowie Verfahren zu dessen Befestigung an einer Bauteiloberfläche
EP0363779B1 (de) Vorrichtung zur Verankerung eines stabförmigen Zugglieds aus Faserverbundwerkstoff
EP0025856B1 (de) Vorrichtung zur Endverankerung mindestens eines als Spannglied im Spannbetonbau eingesetzten Stabes aus Faser-Verbundstoff
EP1505223A1 (de) Korrosionsgeschütztes Zugglied, insbesondere Spannglied für Spannbeton
EP2817465B1 (de) Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen
EP2606185B1 (de) Vorrichtung zur krafteinleitung in zugglieder aus faserverstärkten kunststoff-flachbandlamellen
DE19925953C1 (de) Bolzenverbindung für Faserverbundstrukturen
DE10010564C1 (de) Verankerung für ein Zugelement aus Faserverbundwerkstoff
EP1380705B1 (de) Verwendung einer Verankerungsvorrichtung für Zugglieder
DE2333278A1 (de) Laengliches, auf zug beanspruchtes bauteil
EP3775366B1 (de) Seil, insbesondere zur abspannung von komponenten einer windenergieanlage
DE2425524C3 (de) Klemmverankerung für Spannstähle
EP0947640B1 (de) Bewehrung mit hochfestem Verbund
EP1656485B1 (de) Krafteinleitungselement, verlängerungselement sowie verfahren zur erhöhung der zuglast eines bandförmigen werkstoffes
DE2932809A1 (de) Vorrichtung zur endverankerung mindestens eines als spannglied im spannnbetonbau eingesetzten stabes aus faser-verbundwerkstoff
CH664803A5 (de) Anordnung zur uebertragung einer kraft und verfahren zur herstellung eines ankerstabes.
DE202012010423U1 (de) Verbundbalken
DE3005047A1 (de) Spannbetonbauteil mit einem oder mehreren spanngliedern
WO1988008065A1 (en) Device for anchoring plastic prestressing elements
EP0098927A2 (de) Vorrichtung zur Endverankerung mindestens eines als Spannglied im Spannbetonbau eingesetzten Stabes aus Faser-Verbundwerkstoff
DE3712514C1 (en) Device for anchoring plastic stressing members in concrete
DE2950303A1 (de) Vorrichtung zur endverankerung von als spannglieder im spannbetonbau eingesetzten staeben aus faser-verbundwerkstoff
CH587424A5 (en) Electrically insulating spring washer - has embedded reinforcing fibres to increase resistance to axial spring deformation
DE202012010422U1 (de) Verbundbalken

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038620.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004802011

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2007221894

Country of ref document: US

Ref document number: 10596743

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004802011

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10596743

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004802011

Country of ref document: EP