WO2005020351A1 - 円筒形電池及びその製造方法 - Google Patents

円筒形電池及びその製造方法 Download PDF

Info

Publication number
WO2005020351A1
WO2005020351A1 PCT/JP2004/012432 JP2004012432W WO2005020351A1 WO 2005020351 A1 WO2005020351 A1 WO 2005020351A1 JP 2004012432 W JP2004012432 W JP 2004012432W WO 2005020351 A1 WO2005020351 A1 WO 2005020351A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal case
current collector
group
welding
electrode
Prior art date
Application number
PCT/JP2004/012432
Other languages
English (en)
French (fr)
Inventor
Seiji Bito
Satoshi Yoneyama
Masahiko Kato
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/569,599 priority Critical patent/US7763378B2/en
Publication of WO2005020351A1 publication Critical patent/WO2005020351A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Definitions

  • the present invention relates to a cylindrical battery provided with a spirally wound electrode plate group and a method for manufacturing the same.
  • cylindrical batteries Although there are various types of cylindrical batteries, nickel-cadmium batteries and nickel-hydrogen batteries are typical. These cylindrical batteries are highly reliable and easy to maintain. Widely used for various purposes such as power supply for Sokon. In recent years, there has been a demand for the development of cylindrical batteries suitable for high-current discharge as power sources for electric assist bicycles, lawnmowers, and electric vehicles.
  • the current collector structure suitable for input / output of large currents includes a positive electrode current collector welded to the edge of the positive electrode plate protruding from the upper end face of the electrode group at a plurality of locations. Negative electrode current collectors are welded to the edge of the negative electrode plate projecting from the lower end surface of the group at a plurality of locations.
  • the positive electrode current collector has a through hole in the center, and the negative electrode current collector 21 has a tongue-shaped connecting piece 22 cut out and formed in the center as shown in FIG.
  • the electrode plate group with the negative electrode current collector welded is housed in a metal case with the negative electrode current collector facing down.
  • the positive electrode current collector is connected to the sealing plate via the connection lead, and the negative electrode current collector and the metal case are inserted with the welding electrode rod through the through hole of the positive electrode current collector and the hollow cylindrical portion of the electrode plate group.
  • the welding electrode and metal Resistance welding is performed with a welding current flowing between the tongue-shaped connecting piece 22 of the negative electrode current collector and the inner bottom surface of the metal case between the welding electrode placed in contact with the bottom surface of the case and the welding current.
  • a contact recess is formed at the center of the negative electrode current collector to project downward, and a welding projection is formed at the bottom of the metal case to project inward. It is also known that spot welding between the two can be performed favorably by bringing them into contact with each other (for example, see Japanese Patent Application Laid-Open No. 2000-106615).
  • the above-described conventional configuration has a problem that the connection resistance between the metal case and the current collector is high because the metal case and the negative electrode current collector are connected at only one welding point.
  • a large current such as 100 A
  • the voltage of the battery is rapidly reduced due to a high resistance of a welded portion between the metal case and the negative electrode current collector.
  • the tongue-shaped connection piece 22 is welded to the metal case as shown in Fig. 12, the tongue-shaped connection piece 22 itself has a large conduction resistance, and when a large current flows, the tongue-shaped connection piece 22 There is also a problem that 22 may be melt-ruptured.
  • the battery when a welding projection at the center of the bottom surface of a metal case and a negative electrode current collector are welded together, the battery may be overcharged.
  • the negative electrode current collector When the internal pressure of the battery rises and the bottom surface of the metal case swells, the negative electrode current collector also deforms accordingly, and the welded part with the negative electrode plate peels off, which may increase the battery resistance. There is.
  • the present invention has a low connection resistance between the metal case and the current collector, can suppress a voltage drop during a large current discharge, and can prevent the current collector from being deformed even when a battery internal pressure increases. It is an object of the present invention to provide a cylindrical battery capable of suppressing the current and securing a stable connection with the current collector, and a method of manufacturing the same. Disclosure of the invention
  • the cylindrical battery of the present invention comprises a strip-shaped positive electrode plate, a negative electrode plate, and a separator, wherein a separator is interposed between the positive electrode plate and the negative electrode plate, and the respective core materials of the positive electrode plate and the negative electrode plate are connected to the electrode plate.
  • the metal case, which is housed in the metal case and the projection of the other current collector is welded to the inner bottom surface, the electrolytic solution injected into the metal case, and the metal case are electrically insulated from the metal case.
  • a shall be arranged at a plurality of positions in the region between the portion and the peripheral portion that faces the hollow cylindrical portion of the electrode plate group.
  • the other current collector welded to the electrode group and the metal case are connected to the other current collector in a region between the portion facing the hollow cylindrical portion of the electrode group and the peripheral portion. Since the connection is made by welding through a projecting projecting part, the connection resistance can be reduced by connecting at multiple places, the internal resistance of the battery can be reduced accordingly, and the connection part during large current discharge There can be eliminated or blown, the risk of causing a voltage drop across, and t is possible to high-efficiency charge and discharge of the battery, integral battery case bottom and the other of the current collector by welding a plurality of locations The rigidity is increased and the deformation of the bottom of the metal case and the current collector can be suppressed even when the internal pressure of the battery rises, a stable connection state can be secured, and the battery performance can be stably maintained. Can be.
  • another cylindrical battery of the present invention comprises a strip-shaped positive electrode plate, a negative electrode plate and a separator, wherein a separator is interposed between the positive electrode plate and the negative electrode plate, and the respective core materials of the positive electrode plate and the negative electrode plate are provided.
  • One current collector welded and joined to the other, the other current collector welded to the other core material projection of the electrode group, and the electrode group joined to both current collectors A plurality of projections projecting inward from the bottom surface, and a metal case welded to a current collector below the electrode group in which the projections are housed, and a metal case injected into the metal case.
  • a separator is interposed between the positive electrode plate and the negative electrode plate, and the positive electrode plate and the negative electrode plate project their respective core members to opposite sides in the electrode plate width direction.
  • the electrode plate group and the metal case are brought into close contact with each other by pressing, so that even if a plurality of projections are located away from the center of the other current collector, they can be securely attached to the bottom surface of the metal case.
  • welding current flows between the welding electrode rod in contact with the center of the other current collector and the welding electrode in contact with the bottom of the metal case. Can be reliably welded to the bottom surface of the metal case, and a cylindrical battery having the above-described effects can be manufactured with high reliability.
  • a separator is interposed between a positive electrode plate and a negative electrode plate, and the positive electrode plate and the negative electrode plate project their respective core members to opposite sides in the electrode plate width direction. Spirally forming an electrode group in a state in which the electrodes are assembled, welding one current collector to one core material protrusion of the electrode group, and the other core in the electrode group.
  • FIG. 1 is a longitudinal sectional view of the cylindrical storage battery according to the first embodiment of the present invention
  • FIG. 2 is a perspective view of the negative electrode current collector of the embodiment
  • FIG. 3 is a cross-sectional view of the negative electrode current collector of the embodiment
  • FIG. 4 is a longitudinal sectional view of the resistance welding process of the metal case and the negative electrode collector in the same embodiment
  • FIG. 5 is a longitudinal sectional view of another resistance welding process of the metal case and the negative electrode current collector in the same embodiment
  • FIG. 6 is a perspective view of another negative electrode current collector of the same embodiment.
  • FIG. 8 is a longitudinal sectional view of the cylindrical storage battery according to the second embodiment of the present invention
  • FIG. 9 is a longitudinal sectional view of a resistance welding process of the metal case and the negative electrode current collector in the embodiment
  • FIG. 10 is a longitudinal sectional view of a resistance welding process of another metal case and the negative electrode current collector in the same embodiment
  • Fig. 11 is a diagram showing I (current) -V (voltage) characteristics.
  • FIG. 12 is a perspective view of a negative electrode current collector in a conventional cylindrical storage battery. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic cross-sectional view of a cylindrical battery according to the present embodiment.
  • an electrode group 5 of a cylindrical battery is formed by spirally winding a strip-shaped separator 6 between a strip-shaped positive electrode plate 1 and a strip-shaped negative electrode plate 2. ing.
  • a core material 3 projects above the electrode group 5, and in the negative electrode plate 2, a core material 4 projects below the electrode group 5.
  • Positive protruding upward from pole group 5 The positive electrode current collector 10 is welded to the protruding portion of the core material 3 of the electrode plate 1, and the negative electrode current collector 11 is welded to the protruding portion of the core material 4 of the negative electrode plate 2 protruding downward from the electrode plate group 5. It has been done.
  • the electrode plate group 5 to which the current collectors 10 and 11 are welded is housed inside a metal case 7 which also serves as a negative electrode input / output terminal.
  • the opening at the upper end of the metal case 7 is sealed by a sealing body 9 that is electrically insulated from the metal case 7 and has a cap that also serves as a positive terminal above.
  • the sealing body 9 and the positive electrode current collector 10 are connected by the connection lead 8.
  • Negative electrode current collector 11 and metal case 7 are connected by welding a plurality of projections 12 projecting from the lower surface of negative electrode current collector 11 to the inner bottom surface of metal case 7.
  • the electrode plate group 5 is manufactured as described above.
  • the positive electrode current collector 10 is welded to the protruding portion of the core 3 of the positive electrode plate 1 in the electrode plate group 5.
  • the negative electrode current collector 11 1 The projections 12a projecting downward at a plurality of locations in the region between the central portion and the peripheral portion facing the hollow cylindrical portion 5a of the electrode plate group 5 are formed, and the projections 12b are formed at the central portion. Then, the upper surface of the negative electrode current collector 11 is welded to the protruding portion of the core 4 of the negative electrode plate 2 in the electrode plate group 5.
  • a welding electrode 13c that comes into contact with the bottom surface of the metal case 7 in a ring shape can be used as the welding electrode placed in contact with the bottom surface of the metal case 7.
  • the welding current is generated by directly pressing the projection 12b and the bottom surface of the metal case 7 between the welding electrode rod 13a and the welding electrode 13b. Therefore, the projections 12 a and 12 b can be more uniformly welded to the bottom surface of the metal case 7.
  • this welding electrode 13c is used, the height of the projection 12b at the center is not particularly reduced, and the projection electrode 12c is almost equally applied to all the projections 12a and 12b. The welding current flows, and the projections 12a and 12b can be welded to some extent evenly.
  • the projection 12 b is provided in the center as shown in FIG. 2 as the negative electrode current collector 11 is shown.
  • FIG. 6 it is also possible to provide a configuration in which only a plurality of projections 12a arranged in the region between the projections 12a and 12b are provided, and the projection 12b at the center is omitted.
  • the slits 11a of the negative electrode current collector 11 are formed in three directions, and correspondingly, three projections 12a are provided at intervals of 120 degrees. I have.
  • the projections 12 a and 12 b project from the lower surface of the negative electrode current collector 11, and the metal case 7 is formed through the projections 12 a and 12 b.
  • the welding is performed on the bottom surface, in the present embodiment, the projection 15 (15a15b) is protruded on the inner bottom surface of the metal case 7 so that the planar shape of the negative electrode current collector 11 is formed. To be welded to the lower surface of the.
  • a plurality of projections 15a are formed so as to protrude upward in a region between a portion facing the hollow cylindrical portion 5a of the electrode plate group 5 and the peripheral edge portion.
  • One projection 15b is formed so as to protrude upward from a portion of the plate group 5 facing the hollow cylindrical portion 5a.
  • the plurality of projections 15a are arranged at equal intervals on a concentric circle. Before welding to the lower surface of the negative electrode current collector 11, the height of the projection 15b at the center is set lower than the height of the projection 15a arranged concentrically. .
  • the height difference is set, for example, to about 100 to 500 ⁇ m.
  • the electrode plate group 5 is pressurized with a required pressing force by the group press machine 14, and is brought into close contact with the bottom surface of the metal case 7.
  • a welding electrode rod 13a is inserted through a through-hole formed in the center of the positive electrode current collector 10 and the hollow cylindrical portion 5a of the electrode plate group 5, and the tip is inserted into the center of the negative electrode current collector 11 Press against the part.
  • the welding electrodes 13 b are arranged in contact with the bottom of the metal case 7.
  • a plurality of projections 15a and 15b on the bottom of the metal case 7 are connected to the negative electrode current collector 1 by applying a welding current between the welding electrode 13a and the welding electrode 13b. 1 is resistance welded to the lower surface.
  • the height of the central projection 15b which is located directly below the welding electrode 13a and where the welding current is easily applied and the welding current is likely to concentrate, has a plurality of surrounding projections. Since a gap is formed between the negative electrode current collector 11 and the negative electrode current collector 11, a plurality of surrounding projections 15 a and the negative electrode current collector 11 1 are formed in the initial stage of welding.
  • the welding current flows first between these points, and the leading ends of these projections 15a are melted and welded to some extent.As a result, the conduction resistance decreases and the height decreases. . After that, when the height of these projections 15a becomes the same as the height of the projection 15b in the center, the welding current flows through all the projections 15a and 15b almost equally. and c thus becomes no fear that that the welding is insufficient at the central portion of Purojekushiyo down 1 5 b only welding current more centralized to ambient Purojekushiyo down 1 5 a, All the projections 15a and 15b and the negative electrode current collector 11 can be uniformly welded.
  • the surrounding projections 15a are formed in a tapered shape so that their tips are relatively easily melted and their height is reduced. It is better to keep it.
  • the projection 15b is provided at the center of the bottom surface of the metal case 7, but as shown in FIG. 10, the projection 15b is provided in the area between the center and the periphery. Only a plurality of arranged projections 15a are provided, and the center project A configuration in which the ejection 15b is omitted can also be adopted. In the welding process of the projection 15a on the bottom of the metal case 7 and the negative electrode current collector 11 in this case, as shown in FIG.
  • a welding electrode to be arranged in contact with the bottom surface of the metal case 7 is used.
  • a welding electrode 13c that contacts in a ring shape can be used, and the same effect can be obtained by doing so.
  • the cylindrical battery A of the present invention is a nickel-metal hydride storage battery having a diameter of 33 mm, a height of 61 mm, and a nominal capacity of 600 OmAh, and its configuration and manufacturing method will be described in detail below.
  • a separator is interposed between the positive electrode plate and the negative electrode plate, and the exposed cores of the positive electrode plate and the negative electrode plate are arranged so as to protrude vertically by 1.5 mm, respectively.
  • This electrode group is inserted into a metal case, and the group of presses presses the electrode group and the metal case with a force of 200 N, so that the five-point projection of the negative electrode current collector and the metal case adhere to each other, and the positive electrode
  • a single welding electrode rod is passed through the central through-hole of the current collector, and a welding current of 4 kA is applied between the welding electrodes located under the metal case to project the negative electrode current collector.
  • Five points were welded to the inner bottom surface of the battery metal case.
  • the cylindrical battery A of the present invention was manufactured by welding to a sealing body and sealing the opening of the metal case with the sealing body.
  • a cylindrical battery B with no projection on the negative electrode current collector was fabricated.
  • the slope of the straight line (internal resistance) of the cylindrical battery B of the comparative example is large, while the slope of the cylindrical battery A of the present invention is small.
  • the internal resistance of each battery was 2.9 m ⁇ and 2.6 mQ, indicating that the internal resistance of the cylindrical battery A of the present invention was 0.3 ⁇ smaller. This is because the junction area between the negative electrode current collector and the metal case is large, and the current path from the negative electrode current collector to the metal case (negative electrode terminal) is short, reducing internal resistance and enabling high-efficiency discharge.
  • Table 1 below shows the results of battery internal pressure and metal case bottom swelling.
  • the battery ⁇ has half the amount of bottom swelling of the metal case with respect to the internal pressure as compared to the battery ⁇ , and has twice the metal case withstand pressure. This is because the bottom of the metal case of battery A was integrated with the negative electrode current collector by projection at five points, and the same effect as the effect of improving the pressure resistance was obtained when the bottom thickness of the metal case was increased. Think.
  • the negative electrode current collector and the metal case are separated from the central portion and the peripheral portion of the negative electrode current collector facing the hollow cylindrical portion of the electrode plate group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

極板群(5)と、極板群(5)における正極の芯材突出部に溶接された正極集電体(10)と、複数のプロジェクション(12)が下面に突出され、上面が極板群(5)における負極の芯材突出部に溶接された負極集電体(11)と、正・負極集電体(10、11)を接合された極板群(5)が負極集電体(11)を下方にして収容されかつ負極集電体(11)のプロジェクション(12)が内底面に溶接された金属ケース(7)と、金属ケース(7)内に注入された電解液と、金属ケース(7)とは電気的に絶縁されて金属ケース(7)の上部を密封する封口体(9)とを備え、負極集電体(11)のプロジェクション(12)を、極板群(5)の中空円筒部(5a)に対向する部分と周縁部の間の領域内の複数箇所に配置したことにより、大電流放電に強く、高い金属ケース耐圧性を有する円筒形電池を提供する。

Description

明 細 書 円筒形電池及びその製造方法 技術分野
本発明は、 渦巻状に巻回した極板群を備えた円筒形電池とその製造方法 に関するものである。 背景技術
円筒形電池には種々あるが、 ニッケル一カ ドミウム電池やニッケル一水 素電池などが代表的である。 これらの円筒形電池は、 信頼性が高く、 メン テナンスも容易であることから、 携帯電話やノートノ、。ソコン用の電源など の各種用途に幅広く使用されている。 また、 近年では、 電動アシス ト自転 車、 芝刈機、 さらに電気自動車などの電源として、 大電流放電に適した円 筒形電池の開発が要望されている。
このような大電流用の円筒形電池は、 帯状の正極板と負極板とを隔離用 のセパレータを介在させて重ね合わせ、 全体を渦卷状に巻回して極板群を 構成し、 この極板群を金属製の電池ケースに収納して構成されている。 ま た、 大電流の出入力に適した集電構造と しては、 極板群の上端面から突出 している正極板の端縁部分に正極集電体が複数個所で溶接され、 極板群の 下端面から突出している負極板の端縁部分に負極集電体が複数個所で溶 接されている。 また、 正極集電体は中央部に透孔が形成され、 負極集電体 2 1は、 図 1 2に示すように、 中央部に舌片状接続片 2 2が切り出し形成 され、 これらの正極と負極の集電体を溶接された極板群が負極集電体を下 にして金属ケース内に収納されている。 正極集電体は接続リードを介して 封口板に接続され、 負極集電体と金属ケースとは、 正極集電体の透孔及ぴ 極板群の中空円筒部を通して溶接電極棒を揷入し、 この溶接電極棒と金属 ケースの底面に接触配置した溶接電極との間で負極集電体の舌片状接続 片 2 2と金属ケースの内底面を挟圧した状態で溶接電流を流して抵抗溶 接されている。
また、 負極集電体の中央部に下方に突出する接触凹部を形成し、 金属ケ ースの底面に内側に突出する溶接用突起を形成し、 これら溶接用突起と接 触間部下面とを接触させることで、 両者間のスポッ ト溶接を良好に行える ようにしたものも知られている (例えば、 特開 2 0 0 0— 1 0 6 1 6 5号 公報参照)。
しかしながら、 上記従来の構成では、 金属ケースと負極集電体が 1点の 溶接箇所のみで接続されているため、 金属ケースと集電体の間の接続抵抗 が高いという問題がある。例えば、 1 0 0 Aのような大電流で放電すると、 金属ケースと負極集電体の溶接部の抵抗が高いため電池の電圧が急激に 低下してしまうという問題がある。 また、 図 1 2に示すように舌片状接続 片 2 2を金属ケースに溶接した場合、 舌片状接続片 2 2自体の通電抵抗が 大きく、 大電流を流した場合に舌片状接続片 2 2が溶融破断してしまう恐 れがあるという問題もある。 また、 特開 2 0 0 0— 1 0 6 1 6 5号公報に 開示されるように、 金属ケースの底面中央の溶接用突起と負極集電体を溶 接した場合、 電池過充電状態などで電池内圧が上昇して金属ケースの底面 が膨れると、 それに伴って負極集電体も同様に変形することになり、 負極 板との溶接部が剥がれ、 電池の抵抗が上昇する恐れがあるという問題があ る。
' そこで本発明は、 上記従来の問題点に鑑み、 金属ケースと集電体の接続 抵抗が低く、 大電流放電時に電圧が低下するのを抑制でき、 電池内圧上昇 時にも集電体の変形を抑制できて集電体と安定した接続状態を確保でき る円筒形電池とその製造方法を提供することを目的とする。 発明の開示 本発明の円筒形電池は、 帯状の正極板と負極板とセパレータから成り、 正極板と負極板との間にセパレータを介在させかつ正極板と負極板のそ れぞれの芯材を極板幅方向に互いに反対側に突出させた状態で渦巻状に 卷回して構成された極板群と、 極板群における一方の芯材突出部に溶接さ れた一方の集電体と、 複数のプロジェクシヨンが下面に突出され、 上面が 極板群における他方の芯材突出部に溶接された他方の集電体と、 両集電体 を接合された極板群が他方の集電体を下方にして収容されかつ他方の集 電体のプロジ工クションが内底面に溶接された金属ケースと、 金属ケース 内に注入された電解液と、 金属ケースとは電気的に絶縁されて金属ケース の上部を密封するとともに上方に入出力端子を兼ね備えたキャップを有 する封口体とを備え、 他方の集電体のプロジェクシヨンは、 極板群の中空 円筒部に対向する部分と周縁部の間の領域内の複数箇所に配置されてい るものである。
この構成によると、 極板群に溶接された他方の集電体と金属ケースとを- 他方の集電体における極板群の中空円筒部に対向する部分と周縁部の間 の領域内の複数箇所に突設したプロジ クションを介して溶接して接続 しているので、 複数箇所で接続されることで接続抵抗を低くでき、 それだ け電池の内部抵抗を小さくできて大電流放電時に接続部が溶断したり、 電 圧降下を来す恐れを無くすことができ、 電池の高効率充放電が可能となる t また、 電池ケース底面と他方の集電体とが複数箇所の溶接にて一体的に結 合されるので、 剛性が高くなって電池内圧上昇時にも金属ケース底面及び 集電体の変形を抑制でき、 安定した接続状態を確保することができ、 電池 性能を安定的に保持することができる。
また、 本発明の他の円筒形電池は、 帯状の正極板と負極板とセパレータ から成り、 正極板と負極板との間にセパレータを介在させかつ正極板と負 極板のそれぞれの芯材を極板幅方向に互いに反対側に突出させた状態で 渦卷状に卷回して構成された極板群と、 極板群における一方の芯材突出部 に溶接接合された一方の集電体と、 極板群における他方の芯材突出部に溶 接接合された他方の集電体と、 両集電体を接合された極板群が収容されか つ底面に内側に向けて突出された複数のプロジェクションを有し、 そのプ ロジェクションが収容された極板群の下方側の集電体に溶接接合された 金属ケースと、 金属ケース内に注入された電解液と、 金属ケースとは電気 的に絶縁されて金属ケースの上部を密封するとともに上方に入出力端子 を兼ね備えたキヤップを有する封口体とを備え、 金属ケース底面のプロジ クションは、 極板群の中空円筒部に対向する部分と周縁部の間の領域内 の複数箇所に配置されているものである。
このようにプロジェクシヨンを、 他方の集電体に代えて金属ケースの底 面側に突設した場合でも、 前述の円筒形電池と同様の作用効果を奏するこ とができる。
更に、 本発明の円筒形電池の製造方法は、 正極板と負極板との間にセパ レータを介在させ、 正極板と負極板はそれぞれの芯材を極板幅方向に互い に反対側に突出させた状態で渦卷状に巻回して極板群を作製する工程と、 極板群における一方の芯材突出部に一方の集電体を溶接する工程と、 他方 の集電体における極板群の中空円筒部に対向する部分と周縁部との間の 領域内の複数箇所に下方に突出するプロジェクションを作製する工程と、 極板群における他方の芯材突出部に他方の集電体の上面を溶接する工程 と、 極板群を金属ケース内に収容する工程と、 他方の集電体のプロジェク ショ ンと金属ケースを溶接する工程と、 電解液を金属ケース内に注入する 工程と、 入出力端子を兼ねたキャップを備えた封口体によって金属ケース の上部を金属ケースと電気的に絶縁された状態で密閉する工程とを備え、 他方の集電体のプロジェクションと金属ケースを溶接する工程において、 極板群と金属ケースを加圧して密着させ、 極板群の中空円筒部に挿入した 溶接電極棒と金属ケースの底面に接触配置した溶接電極を用いて抵抗溶 接するものである。 この製造方法によると、 極板群と金属ケースを加圧して密着させること で、 複数のプロジヱクションが他の集電体の中央部から離れて位置してい ても金属ケースの底面に確実に圧接させることができ、 その状態で他の集 電体の中央部に接触させた溶接電極棒と金属ケースの底面に接触させた 溶接電極との間に溶接電流を流すことで、 複数のプロジェクシヨンを金属 ケースの底面に確実に溶接することができ、 上記作用効果を奏する円筒形 電池を高い信頼性をもって製造することができる。
また、 本発明の他の円筒形電池の製造方法は、 正極板と負極板との間に セパレータを介在させ、 正極板と負極板はそれぞれの芯材を極板幅方向に 互いに反対側に突出させた状態で渦卷状に巻回して極板群を作製するェ 程と、 極板群における一方の芯材突出部に一方の集電体を溶接する工程と、 極板群における他方の芯材突出部に他方の集電体を溶接する工程と、 金属 ケースの底面における極板群の中空円筒部に対向する部分と周縁部との 間の領域内の複数箇所に内側に向けて突出するプロジェクションを作製 する工程と、 極板群を金属ケース内に収容する工程と、 他方の集電体と金 属ケースのプロジェクションとを溶接する工程と、 電解液を金属ケース内 に注入する工程と、 入出力端子を兼ねたキヤップを備えた封口体によって 金属ケースの上部を金属ケースと電気的に絶縁された状態で密閉するェ 程とを備え、 他方の集電体と金属ケースのプロジェクションとを溶接する 工程において、 極板群と金属ケースを加圧して密着させ、 極板群の中空円 筒部に挿入した溶接電極棒と金属ケースの底面に接触配置した溶接電極 を用い抵抗溶接するものである。
このようにプロジェクシヨンを、 他方の集電体に代えて金属ケースの底 面側に突設した場合でも、 前述の円筒形電池の製造方法と同様の作用効果 を奏することができる。 図面の簡単な説明 図 1は、 本発明の第 1の実施形態に係る円筒形蓄電池の縦断面図であり、 図 2は、 同実施形態の負極集電体の斜視図であり、
図 3は、 同実施形態の負極集電体の横断面図であり、
図 4は、 同実施形態における金属ケースと負極集竜体の抵抗溶接工程の 縦断面図であり、
図 5は、 同実施形態における金属ケースと負極集電体の別の抵抗溶接工 程の縦断面図であり、
図 6は、 同実施形態の他の負極集電体の斜視図であり、
図 7は、 同実施形態における金属ケースと他の負極集電体の抵抗溶接工 程の縦断面図であり、
図 8は、 本発明の第 2の実施形態に係る円筒形蓄電池の縦断面図であり、 図 9は、 同実施形態における金属ケースと負極集電体の抵抗溶接工程の 縦断面図であり、
図 1 0は、 同実施形態における他の金属ケースと負極集電体の抵抗溶接 工程の縦断面図であり、
図 1 1は、 I (電流) 一V (電圧) 特性を示す図であり、
図 1 2は、 従来例の円筒形蓄電池における負極集電体の斜視図である。 発明を実施するための最良の形態
(第 1の実施形態)
まず、 本発明の第 1の実施形態の円筒形電池とその製造方法について、 図 1〜図 7を参照して説明する。
図 1は、 本実施形態における円筒形電池の模式断面図である。 図 1にお いて、 円筒形電池の極板群 5は、 帯状の正極板 1 と帯状の負極板 2の間に 帯状のセパレータ 6を介在させた状態でこれらを渦巻状に卷回して構成 されている。 正極板 1は極板群 5の上方に芯材 3が突出され、 負極板 2は 極板群 5の下方に芯材 4が突出されている。 極扳群 5の上方へ突出した正 極板 1の芯材 3の突出部には正極集電体 1 0が溶接され、 極板群 5の下方 へ突出した負極板 2の芯材 4の突出部に負極集電体 1 1が溶接されてい る。
これらの集電体 1 0、 1 1が溶接された極板群 5は負極の入出力端子を 兼ねた金属ケース 7の内部に収容されている。 金属ケース 7の上端の開口 部は、 金属ケース 7と電気的に絶縁されかつ上方に正極端子を兼ねたキヤ ップを備えた封口体 9にて封口されている。 封口体 9と正極集電体 1 0は 接続リード 8によって接続されている。 負極集電体 1 1 と金属ケース 7は、 負極集電体 1 1の下面に突設された複数のプロジェクシヨ ン 1 2を金属 ケース 7の内底面に溶接することで接続されている。
図 2は負極集電体 1 1 の斜視図であり、 図 3は負極集電体 1 1 の横断面 図である。 図 2、 図 3において、 負極集電体 1 1の中心部と周縁部との間 の領域内に複数 (図示例では 4点) のプロジェクシヨ ン 1 2 a ( 1 2 ) が 突設され、 中心部に 1点のプロジェクシヨ ン 1 2 b ( 1 2 ) が突設されて いる。 プロジェクシヨ ン 1 2 aは、 同心円上に等間隔 (図示例では 9 0度 間隔)に配設されている。また、金属ケース 7の内底面に溶接する前には、 中心部のプロジェクシヨン 1 2 bの高さは、 同心円状に配置されたプロジ ェクシヨン 1 2 aの高さよりも低く設定されている。 この高さの差 dは、 例えば 1 0 0〜 5 0 0 m程度に設定される。
なお、 図 2において、 1 6は負極集電体 1 1に放射状に形成された複数 (図示例では 4つ) のス リ ッ ト 1 1 a の両側縁から上方に突出されたバー リング部である。 このパーリング部 1 6を極板群 5における負極板 2の芯 材 4の突出部に喰い込ませた状態で溶接することで、 負極板 2と負極集電 体 1 1を低抵抗で接続することができる。
次に、 以上の構成の円筒形電池の製造工程について説明する。 まず、 上 記のように極板群 5を作製する。 次に、 極板群 5における正極板 1の芯材 3の突出部に正極集電体 1 0を溶接する。 また、 負極集電体 1 1における 極板群 5の中空円筒部 5 aに対向する中央部と周縁部との間の領域内の 複数箇所に下方に突出するプロジェクション 1 2 aを作製し、 中央部にプ ロジェクシヨ ン 1 2 bを作製し、 この負極集電体 1 1 の上面を極板群 5に おける負極板 2の芯材 4の突出部に溶接する。 次に、 極板群 5を金属ケー ス 7内に収容し、 負極集電体 1 1のプロジェクシヨン 1 2 a、 1 2 bと金 属ケース 7の底面とを溶接する。次に、電解液を金属ケース 7内に注入し、 入出力端子を兼ねたキヤップを備えた封口体 9によって金属ケース 7 の 上部を金属ケース 7と電気的に絶縁された状態で密閉することで、 円筒形 電池が製造される。
上記負極集電体 1 1のプロジェクシヨ ン 1 2 a、 1 2 bを金属ケース 7 の底面とを溶接する工程について、 図 4を参照して詳しく説明する。 図 4 において、 群加圧機 1 4によって極板群 5を所要の加圧力で加圧し、 金属 ケース 7の内底面に密着させる。 また、 正極集電体 1 0の中央部に形成さ れた透孔及び極板群 5 の中空円筒部 5 aを通して溶接電極棒 1 3 aを揷 入し、 その先端を負極集電体 1 1 の中央部に圧接させる。 また、 金属ケー ス 7の底面に溶接電極 1 3 bを接触配置する。 この状態で、 溶接電極棒 1 3 a と溶接電極 1 3 bの間に溶接電流を流すことで、 負極集電体 1 1の複 数のプロジェクシヨ ン 1 2 a、 1 2 bが金属ケース 7の内底面に抵抗溶接 される。
この溶接に際して、 溶接電極棒 1 3 a の直下に位置し、 加圧力が直接作 用すると ともに溶接電流が集中し易い中央部のプロジェクシヨン 1 2 b の高さ寸法が、 周囲の複数のプロジェクション 1 2 aよりも低く設定され ているので、 溶接初期においては周囲の複数のプロジェクシヨン 1 2 a と 金属ケース 7の底面との間で先行して溶接電流が流れることになり、 これ らのプロジェクシヨン 1 2 aの先端部が溶融してある程度溶接され、 その 結果通電抵抗が小さくなるとともにその高さが低くなる。 その後、 これら のプロジェクシヨン 1 2 aの高さが中央部のプロジェクション 1 2 b と 同じ高さとなった時点で、 全てのプロジェクシヨン 1 2 a、 1 2 bにほぼ 均等に溶接電流が流れることになる。 かく して、 中央部のプロジェクショ ン 1 2 bにのみ溶接電流が集中して周囲の複数のプロジヱクシヨン 1 2 aでの溶接が不十分になるというような恐れがなく、 すべてのプロジェク シヨン 1 2 a、 1 2 bと金属ケース 7の底面を均等に溶接することができ る。 なお、 このような作用が確実に得られるように、 周囲の複数のプロジ ェクシヨン 1 2 aは、 その先端が比較的容易に溶融して高さが低くなるよ うに先細状に形成しておくのが好ましい。
また、 図 5に示すように、 金属ケース 7の底面に接触配置する溶接電極 として、 金属ケース 7の底面にリング状に接触する溶接電極 1 3 cを用い ることもできる。 このような溶接電極 1 3 cを用いると、 溶接電極棒 1 3 a と溶接電極 1 3 bの間でプロジェクシヨ ン 1 2 b と金属ケース 7の底 面が直接挟圧されることで溶接電流が集中するのを避けることができ、 各 プロジェクシヨン 1 2 a、 1 2 bをより均一に金属ケース 7の底面に溶接 することができる。 なお、 この溶接電極 1 3 cを用いる場合には、 中央部 のプロジヱクシヨ ン 1 2 bの高さ寸法を特に低く しなくても、 すべてのプ ロジェクション 1 2 a、 1 2 bにほぼ均等に溶接電流が流れて各プロジェ クシヨン 1 2 a、 1 2 bがある程度均一に溶接出来る。
以上の説明では、 負極集電体 1 1 と して、 図 2に示すように、 中央部に プロジェクシヨン 1 2 bを設けた例を示したが、 図 6に示すように、 中央 部と周縁部との間の領域内に配置した複数のプロジ クシヨン 1 2 aの みを設け、 中央部のプロジェクション 1 2 bを省略した構成とすることも できる。 なお、 図 6では、 負極集電体 1 1のスリ ッ ト 1 1 aが 3方向に形 成されており、 それに対応してプロジェクシヨン 1 2 aも 1 2 0度間隔で 3つ設けられている。
この場合の負極集電体 1 1のプロジェクシヨ ン 1 2 a と金属ケース 7 の底面の溶接工程では、 図 7に示すように、 群加圧機 1 4によって極板群 5を所要の加圧力で加圧し、 金属ケース 7の底面に密着させ、 正極集電体 1 0の中央部に形成された透孔及ぴ極板群 5 の中空円筒部 5 aを通して 溶接電極棒 1 3 aを揷入し、 その先端を負極集電体 1 1 の中央部に圧接さ せ、 金属ケース 7の底面に平面状に接する溶接電極 1 3 bを接触配置する。 この状態で、 溶接電極棒 1 3 a と溶接電極 1 3 bの間に溶接電流を流すこ とで、 負極集電体 1 1の複数のプロジヱクシヨ ン 1 2 aが金属ケース 7の 内底面に同時に抵抗溶接される。
(第 2の実施形態)
次に、 本発明の第 2の実施形態の円筒形電池とその製造方法について、 図 8〜図 1 0を参照して説明する。 なお、 上記第 1の実施形態と同一の構 成要素については同一参照符号を付して説明を省略し、 主として相違点に ついてのみ説明する。
上記第 1の実施形態では、 負極集電体 1 1の下面にプロジヱクシヨン 1 2 a、 1 2 bを突設し、 このプロジェクシヨ ン 1 2 a、 1 2 bを介して金 属ケース 7の内底面に溶接するようにしたが、 本実施形態では、 金属ケー ス 7の内底面上にプロジェクシヨン 1 5 ( 1 5 a 1 5 b ) を突設し、 負 極集電体 1 1の平面状の下面に溶接するようにしている。
図 8において、 金属ケース 7の底面において、 極板群 5の中空円筒部 5 aに対向する部分と周縁部との間の領域内に複数のプロジ クシヨン 1 5 aが上方に突出形成され、 極板群 5 の中空円筒部 5 aに対向する部分に 1つのプロジェクシヨン 1 5 bが上方に突出形成されている。 複数のプロ ジェクシヨン 1 5 aは、 同心円上に等間隔に配設されている。 また、 負極 集電体 1 1の下面に溶接する前には、 中心部のプロジェクシヨ ン 1 5 bの 高さは、 同心円状に配置されたプロジェクション 1 5 aの高さよりも低く 設定されている。 その高さの差は、 例えば 1 0 0〜 5 0 0 μ m程度に設定 される。
上記金属ケース 7の底面のプロジェクシヨ ン 1 5 a、 1 5 bを負極集電 体 1 1 と溶接する工程について、図 9を参照して説明する。図 9において、 群加圧機 1 4によって極板群 5を所要の加圧力で加圧し、 金属ケース 7の 底面に密着させる。 また、 正極集電体 1 0の中央部に形成された透孔及び 極板群 5の中空円筒部 5 aを通して溶接電極棒 1 3 aを挿入し、 その先端 を負極集電体 1 1の中央部に圧接させる。 また、 金属ケース 7の底面に溶 接電極 1 3 bを接触配置する。 この状態で、 溶接電極棒 1 3 a と溶接電極 1 3 bの間に溶接電流を流すことで、 金属ケース 7の底面の複数のプロジ ェクシヨ ン 1 5 a、 1 5 bが負極集電体 1 1 の下面に抵抗溶接される。 この溶接に際して、 溶接電極棒 1 3 a の直下に位置し、 加圧力が直接作 用すると ともに溶接電流が集中し易い中央部のプロジェクシヨ ン 1 5 b の高さ寸法が、 周囲の複数のプロジェクシヨ ン 1 5 aよりも低く設定され て負極集電体 1 1 との間に隙間が形成されているので、 溶接初期において は周囲の複数のプロジェクシヨ ン 1 5 a と負極集電体 1 1 との間で先行 して溶接電流が流れることになり、 これらのプロジェクシヨ ン 1 5 aの先 端部が溶融してある程度溶接され、 その結果通電抵抗が小さくなるととも にその高さが低くなる。 その後、 これらのプロジェクシヨン 1 5 aの高さ が中央部のプロジェクション 1 5 b と同じ高さとなった時点で、 全てのプ ロジェクシヨ ン 1 5 a、 1 5 bにほぼ均等に溶接電流が流れることになる c かく して、 中央部のプロジェクシヨ ン 1 5 bにのみ溶接電流が集中して周 囲の複数のプロジェクシヨ ン 1 5 a での溶接が不十分になるというよう な恐れがなく、 すべてのプロジェクシヨ ン 1 5 a、 1 5 bと負極集電体 1 1を均等に溶接することができる。 なお、 このような作用が確実に得られ るように、 周囲の複数のプロジェクシヨ ン 1 5 aは、 その先端が比較的容 易に溶融して高さが低くなるように先細状に形成しておくのが好ましレ、。 図 8、 図 9の例では、 金属ケース 7の底面の中央部にプロジェクシヨ ン 1 5 bを設けているが、 図 1 0に示すように、 中央部と周縁部との間の領 域内に配置した複数のプロジェクシヨ ン 1 5 aのみを設け、 中央部のプロ ジェクシヨン 1 5 bを省略した構成とすることもできる。 この場合の金属 ケース 7の底面のプロジェクシヨ ン 1 5 a と負極集電体 1 1の溶接工程 では、 図 1 0に示すように、 群加圧機 1 4によって極板群 5を所要の加圧 力で加圧し、 金属ケース 7の底面に密着させ、 正極集電体 1 0の中央部に 形成された透孔及び極板群 5の中空円筒部 5 aを通して溶接電極棒 1 3 aを挿入し、 その先端を負極集電体 1 1の中央部に圧接させ、 金属ケース 7の底面に平面状に接する溶接電極 1 3 bを接触配置する。 この状態で、 溶接電極棒 1 3 a と溶接電極 1 3 bの間に溶接電流を流すことで、 負極集 電体 1 1 と金属ケース 7の内底面の複数のプロジェクシヨ ン 1 5 aが同 時に抵抗溶接される。
また、 図示は省略するが、 図 9に示す溶接工程において、 第 1の実施形 態における図 5の例と同様に、 金属ケース 7の底面に接触配置する溶接電 極として、 金属ケース 7の底面にリング状に接触する溶接電極 1 3 cを用 いることもでき、 そうすることで同様の作用効果を奏することができる。
(実施例)
次に、 本発明の具体例を示す。 本発明の円筒形電池 Aは直径 3 3 mm 高さ 6 1 mm、 公称容量 6 0 0 OmA hのニッケル水素蓄電池であり、 以 下にその構成と製造方法を詳しく説明する。
帯状の厚さ 0. 5 mmの焼結式ニッケル正極板と、 厚さ 0. 3 mmの水 素吸蔵合金負極板とを用い、 かつそれぞれ幅方向に互いに反対側の側縁に 芯材を露出させている。 これら正極板と負極板の間にセパレータを介在さ せるとともに、 正極板と負極板の露出した芯材がそれぞれ上下に 1. 5 m mずれて突出するように配置し、 これら正極板と負極板全体を渦巻状に卷 回させ直径 3 0 mm、 高さ 5 0 mmの電極群を構成した。
上記の電極群上端面の露出芯材部に、 矩形で対角の長さ 2 7 厚み 4 0 0 / mの正極集電体を溶接し、 電極群下端面の露出芯材部には、 円形で 直径 2 7mm、 厚み 4 0 0 /i m、 中心部に高さ 3 0 0 / mの 1点のプロジェ クシヨン Xと中心部から 1 5 m mの同心円上に等間隔に配置した高さ 5 0 0 /Z mの 4点のプロジヱクション Yを有する負極集電体を溶接した。 この電極群を金属ケースに挿入し、 群加圧機によって電極群と金属ケー スを 2 0 0 Nの力で押さえることで負極集電体の 5点のプロジェクショ ンと金属ケースは密着し、 正極集電体の中央透孔部に 1本の溶接電極棒を 通し、 金属ケースの下に配置した溶接電極の間に 4 k Aの溶接電流を印加 することによつて負極集電体のプロジェクショ ン 5点を電池金属ケース の内底面に溶接した。 なお、 溶接時の電流をプロジ クシヨン 5点に均一 に流す為には、 中心のプロジェクション Yの高さはプロジェクショ ン の 高さよりも低いことが望ましい。
本実施例においては、 群加圧機の加圧力が 5 O N以下の加圧条件下で溶 接した場合、 プロジェクションと金属ケースとの密着が完全ではなく 5点 のプロジェクシヨ ンの内、 数点が溶接されない可能性があった。 また、 4 0 O N以上の場合、 電極群の芯材突出部が折れ曲がり、 正極と負極が短絡 する恐れがあった。 また、 1 k A以下の電流で溶接すると、 数点のプロジ ェクシヨ ンが溶接されない可能性があり、 逆に 6 k A以上の場合、 溶接部 からチリが飛び、 電池短絡の要因となった。
次に、 所定量のアル力リ電解液を正極集電体の中央透孔部から金属ケー ス内に注入した後、 正極集電体に設けた接続リ一ドの先端を正極端子とな る封口体に溶接し、 封口体で金属ケースの開口部を密閉して本発明の円筒 形電池 Aを作製した。
円筒形電池 Aと比較のために負極集電体にプロジェクシヨンがない円 筒形電池 Bを作製した。
円筒形電池 A、 Bを用いて内部抵抗を測定し、 比較を行った。 室温 ( 2 5 °C ) で 2 Aの電流値で電池電圧が 0 . 9 Vになるまで放電させた後、 6 Aの電流値で 3 0分充電した。 ついで、 1時間休止させた後、 2 5 Aの電 流値で 2 0秒間放電させ、 1 0秒目の電池電圧を測定した。 ついで、 放電 させた容量分を充電した後、 同様に、 5 0 A、 7 5 A、 1 0 O Aの電流値 で 2 0秒間放電させ、 1 0秒後の電池電圧をそれぞれ測定した。 このよう にして得られた 1 0秒後の電池電圧を縦軸とし、 各電流値を横軸として I (電流) —V (電圧) 特性における直線の傾きを求め, その結果を図 1 1 に示す。
図 1 1から明らかなように、 比較例の円筒形電池 Bの直線の傾き( 内部 抵抗) が大きいのに対して、 本発明の円筒形電池 Aの傾きは小さいことが わかる。 それぞれの電池の内部抵抗は、 2 . 9 m Ω , 2 . 6 m Q となり、 本発明の円筒形電池 Aの内部抵抗が 0 . 3 πι Ω 小さいことが分かる。 これ は、 負極集電体と金属ケースの接合面積が大きいことと、 負極集電体から 金属ケース(負極端子) まで電流が流れる経路が短いため内部抵抗が低減 し、 高効率放電が可能となったと考える。
また、 電池内圧と金属ケースの底膨れの結果を下記の表 1に示す。 表 1 から明らかなように、 電池 Αは電池 Βに比べ、 内圧に対する金属ケースの 底膨れ量は半分であり、 2倍の金属ケース耐圧が得られた。 これは、 電池 Aの金属ケースの底が 5点のプロジェクションによって負極集電体と一 体化し、 金属ケースの底厚を厚く した場合に耐圧性が向上する効果と同じ ような効果が得られたと考える。
(表 1 )
Figure imgf000016_0001
産業上の利用可能性
以上説明したとおり、 本発明の円筒形電池によれば、 負極集電体と金属 ケースを、 負極集電体における極板群の中空円筒部に対向する中央部と周 縁部の間の領域に配置した複数のプロジ クションを介して抵抗溶接す ることで、 接続抵抗を低くでき、 それだけ電池の内部抵抗を小さくできて 大電流放電に強く、 また金属ケースの耐圧強度を向上できることから、 特 に大電流放電用の円筒形電池に利用することに適している。

Claims

請 求 の 範 囲
1. 帯状の正極板 ( 1 ) と負極板 ( 2) とセパレータ ( 6 ) から成り、 正極板と負極板との間にセパレータを介在させかつ正極板と負極板のそ れぞれの芯材 ( 3、 4) を極板幅方向に互いに反対側に突出させた状態で 渦巻状に巻回して構成された極板群 ( 5 ) と、
極板群における一方の芯材突出部に溶接された一方の集電体( 1 0) と、 複数のプロジェクシヨン ( 1 2) が下面に突出され、 上面が極板群におけ る他方の芯材突出部に溶接された他方の集電体 ( 1 1 ) と、
両集電体を接合された極板群が他方の集電体を下方にして収容されか つ他方の集電体のプロジュクションが内底面に溶接された金属ケース
( 7 ) と、
金属ケース内に注入された電解液と、
金属ケースとは電気的に絶縁されて金属ケースの上部を密封するとと もに上方に入出力端子を兼ね備えたキャップを有する封口体 (9 ) とを備 え、
他方の集電体のプロジェクシヨンは、 極板群の中空円筒部 (5 a ) に対 向する部分と周縁部の間の領域内の複数箇所に配置されている円筒形電 池。
2. 他方の集電体 ( 1 1 ) のプロジ クシヨン ( 1 2 b ) は、 極板群 ( 5 ) の中空円筒部に対向する部分にも配設されている請求の範囲第 1項 に記載の円筒形電池。 3. 帯状の正極板 ( 1 ) と負極板 ( 2) とセパレータ (6 ) から成り、 正極板と負極板との間にセパレータを介在させかつ正極板と負極板のそ れぞれの芯材 ( 3、 4) を極板幅方向に互いに反対側に突出させた状態で 渦巻状に卷回して構成された極板群 ( 5 ) と、
極板群における一方の芯材突出部に溶接接合された一方の集電体 ( 1 0 ) と、
極板群における他方の芯材突出部に溶接接合された他方の集電体 ( 1 1 ) と、
両集電体を接合された極板群が収容されかつ底面に内側に向けて突出 された複数のプロジェクシヨ ン ( 1 5 ) を有し、 そのプロジェクションが 収容された極板群の下方側の集電体に溶接接合された金属ケース ( 7 ) と、 金属ケース内に注入された電解液と、
金属ケースとは電気的に絶縁されて金属ケースの上部を密封するとと もに上方に入出力端子を兼ね備えたキャップを有する封口体 (9 ) とを備 金属ケース底面のプロジェクシヨ ンは、 極板群の中空円筒部 ( 5 a ) に 対向する部分と周縁部の間の領域内の複数箇所に配置されている円筒形 電池。
4. 金属ケース ( 7 ) 底面のプロジ クシヨ ン ( 1 5 b ) は、 極板群 ( 5 ) の中空円筒部に対向する部分にも配設されている請求の範囲第 3項 に記載の円筒形電池。
5. 正極板 ( 1 ) と負極板 (2 ) との間にセパレータ (6 ) を介在さ せ、 正極板と負極板はそれぞれの芯材 ( 3、 4 ) を極板幅方向に互いに反 対側に突出させた状態で渦卷状に巻回して極板群( 5 ) を作製する工程と、 極板群における一方の芯材突出部に一方の集電体 ( 1 0 ) を溶接するェ 程と、
他方の集電体 ( 1 1 ) における極板群の中空円筒部 (5 a ) に対向する 部分と周縁部との間の領域内の複数箇所に下方に突出するプロジ クシ ヨ ン ( 1 2 ) を作製する工程と、
極板群における他方の芯材突出部に他方の集電体の上面を溶接するェ 程と、
極板群を金属ケース ( 7 ) 内に収容する工程と、
他方の集電体のプロジェクションと金属ケースを溶接する工程と、 電解液を金属ケース内に注入する工程と、 入出力端子を兼ねたキャップ を備えた封口体 ( 9 ) によって金属ケースの上部を金属ケースと電気的に 絶縁された状態で密閉する工程とを備え、
他方の集電体のプロジェクションと金属ケースを溶接する工程におい て、 極板群と金属ケースを加圧して密着させ、 極板群の中空円筒部に揷入 した溶接電極棒( 1 3 a ) と金属ケースの底面に接触配置した溶接電極( 1 3 b ) を用いて抵抗溶接する円筒形電池の製造方法。
6. 極板群 ( 5 ) の中空円筒部 ( 5 a ) に対応する部分にさらに別の プロジェクシヨン ( 1 2 b ) を有しかっこのプロジェクシヨ ンの高さは極 板群の中空円筒部に対応する部分と周縁部の間に位置する複数点のプロ ジェクシヨン ( 1 2 a ) の高さよりも低く設定されている他方の集電体を 用いる請求の範囲第 5項に記載の円筒形電池の製造方法。 7. 金属ケース ( 7 ) の底面にリ ング状に接触する溶接電極 ( 1 3 c ) を用いて他方の集電体 ( 1 1 ) のプロジェクシヨ ン ( 1 2 ) と金属ケース とを抵抗溶接する請求の範囲第 5項に記載の円筒形電池の製造方法。
8. 正極板 ( 1 ) と負極板 ( 2 ) との間にセパレータ (6 ) を介在さ せ、 正極板と負極板はそれぞれの芯材 ( 3、 4 ) を極板幅方向に互いに反 対側に突出させた状態で渦巻状に巻回して極板群( 5 ) を作製する工程と、 極板群における一方の芯材突出部に一方の集電体 ( 1 0 ) を溶接するェ 程と、
極板群における他方の芯材突出部に他方の集電体 ( 1 1 ) を溶接するェ 程と、
金属ケース ( 7 ) の底面における極板群の中空円筒部 (5 a ) に対向す る部分と周縁部との間の領域内の複数箇所に内側に向けて突出するプロ ジェクシヨ ン ( 1 5 ) を作製する工程と、
極板群を金属ケース内に収容する工程と、
他方の集電体と金属ケースのプロジェクシヨンとを溶接する工程と、 電解液を金属ケース内に注入する工程と、
入出力端子を兼ねたキャップを備えた封口体 ( 9 ) によって金属ケース の上部を金属ケースと電気的に絶縁された状態で密閉する工程とを備え、 他方の集電体と金属ケースのプロジェクションとを溶接する工程にお いて、 極板群と金属ケースを加圧して密着させ、 極板群の中空円筒部に揷 入した溶接電極棒 ( 1 3 a ) と金属ケースの底面に接触配置した溶接電極 ( 1 3 b ) を用い抵抗溶接する円筒形電池の製造方法。
9. 極板群 (5 ) の中空円筒部 ( 5 a ) に対応する部分にさらに別の プロジェクシヨン ( 1 5 b ) を有しかっこのプロジェクシヨンの高さは極 板群の中空円筒部に対応する部分と周縁部の間に位置する複数点のプロ ジェクシヨン ( 1 5 a ) の高さよりも低く設定されている金属ケース ( 7 ) を用いる請求の範囲第 8項に記載の円筒形電池の製造方法。
1 0. 金属ケース ( 7 ) の底面にリング状に接触する溶接電極 ( 1 3 c ) を用いて他方の集電体 ( 1 1 ) と金属ケースのプロジェクシヨ ン ( 1 5 ) とを抵抗溶接する請求の範囲第 8項に記載の円筒形電池の製造方法。
PCT/JP2004/012432 2003-08-25 2004-08-23 円筒形電池及びその製造方法 WO2005020351A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/569,599 US7763378B2 (en) 2003-08-25 2004-08-23 Cylindrical cell and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003299598 2003-08-25
JP2003-299598 2003-08-25
JP2004-210190 2004-07-16
JP2004210190A JP3709197B2 (ja) 2003-08-25 2004-07-16 円筒形電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2005020351A1 true WO2005020351A1 (ja) 2005-03-03

Family

ID=34220719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012432 WO2005020351A1 (ja) 2003-08-25 2004-08-23 円筒形電池及びその製造方法

Country Status (3)

Country Link
US (1) US7763378B2 (ja)
JP (1) JP3709197B2 (ja)
WO (1) WO2005020351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551645B2 (en) * 2006-02-20 2013-10-08 Samsung Sdi Co., Ltd. Can for cylindrical lithium rechargeable battery and cylindrical lithium rechargeable battery using the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641731B2 (ja) * 2004-03-11 2011-03-02 三洋電機株式会社 電池
JP4522123B2 (ja) * 2004-03-29 2010-08-11 三洋電機株式会社 円筒型電池およびその製造方法
JP4977951B2 (ja) * 2004-11-30 2012-07-18 株式会社Gsユアサ 密閉形電池とその製造方法及び密閉形電池の複数個で構成した組電池
US8703330B2 (en) * 2005-04-26 2014-04-22 Powergenix Systems, Inc. Nickel zinc battery design
JP2006324180A (ja) * 2005-05-20 2006-11-30 Matsushita Electric Ind Co Ltd 蓄電池およびその製造法
JP5119578B2 (ja) * 2005-07-04 2013-01-16 株式会社Gsユアサ ニッケル水素電池およびその製造方法
NZ566816A (en) * 2005-10-07 2011-02-25 Bluepoint Internat Pty Ltd Dispensing of restricted goods from an authorised vendor to an approved purchaser
JP5040698B2 (ja) * 2007-02-14 2012-10-03 パナソニック株式会社 キャパシタ
KR101536031B1 (ko) * 2008-04-02 2015-07-10 파워지닉스 시스템즈, 인코포레이티드 네거티브 캔을 포함하는 원통형 니켈-아연 전지
JP5198134B2 (ja) * 2008-04-28 2013-05-15 パナソニック株式会社 円筒形電池の製造方法
JP2013507752A (ja) * 2009-10-13 2013-03-04 パワージェニックス・システムズ・インコーポレーテッド 陽性の缶を有する円筒形ニッケル─亜鉛セル
CN102122705B (zh) * 2010-01-11 2013-08-28 陈也冰 一种具有50倍率放电能力的二次圆柱形电池的结构
JP2010165689A (ja) * 2010-03-19 2010-07-29 Panasonic Corp 円筒形電池およびその製造方法
CN102479969A (zh) * 2010-11-19 2012-05-30 朱益辉 一种颠覆传统结构的环柱体动力电池
JP2016110772A (ja) * 2014-12-04 2016-06-20 日立オートモティブシステムズ株式会社 円筒形二次電池
KR20200041625A (ko) * 2018-10-12 2020-04-22 삼성에스디아이 주식회사 이차전지
CN111370618B (zh) * 2020-04-17 2021-01-19 福建南平延平区南孚新能源科技有限公司 可充电纽扣电池
DE102022132405A1 (de) * 2021-12-23 2024-06-06 Skeleton Technologies GmbH Verfahren zur Herstellung eines Superkondensators
CN114614101B (zh) * 2022-03-17 2023-06-06 远景动力技术(江苏)有限公司 圆柱电池的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106165A (ja) * 1998-09-28 2000-04-11 Japan Storage Battery Co Ltd 円筒形電池
JP2000268850A (ja) * 1999-03-18 2000-09-29 Sanyo Electric Co Ltd アルカリ蓄電池およびその製造方法
JP2002134095A (ja) * 2000-10-24 2002-05-10 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2004055371A (ja) * 2002-07-22 2004-02-19 Matsushita Electric Ind Co Ltd 円筒型電池とそれを用いた電池間接続構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737336C1 (de) * 1987-11-04 1988-11-17 Deutsche Automobilgesellsch Schweiss- und Stuetzring und seine Verwendung
US5521349A (en) * 1993-04-12 1996-05-28 Nippon Corporation Projection welding method
ATE361040T1 (de) * 1997-04-15 2007-05-15 Schneider Usa Inc Prothese mit ausgewählt geschweissten gekreuzten fäden
JPH1131497A (ja) 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd 円筒型蓄電池
JP4538857B2 (ja) * 1998-08-07 2010-09-08 株式会社Gsユアサ 筒形電池及びその製造方法並びに電池用集電体のスポット溶接電極
JP4126684B2 (ja) * 2001-05-11 2008-07-30 松下電器産業株式会社 ニッケル水素二次電池
JP4580620B2 (ja) * 2002-03-13 2010-11-17 パナソニック株式会社 電池に用いる渦巻状電極群の製造方法
JP4342160B2 (ja) * 2002-09-10 2009-10-14 パナソニック株式会社 蓄電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106165A (ja) * 1998-09-28 2000-04-11 Japan Storage Battery Co Ltd 円筒形電池
JP2000268850A (ja) * 1999-03-18 2000-09-29 Sanyo Electric Co Ltd アルカリ蓄電池およびその製造方法
JP2002134095A (ja) * 2000-10-24 2002-05-10 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2004055371A (ja) * 2002-07-22 2004-02-19 Matsushita Electric Ind Co Ltd 円筒型電池とそれを用いた電池間接続構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551645B2 (en) * 2006-02-20 2013-10-08 Samsung Sdi Co., Ltd. Can for cylindrical lithium rechargeable battery and cylindrical lithium rechargeable battery using the same

Also Published As

Publication number Publication date
US20070020518A1 (en) 2007-01-25
JP3709197B2 (ja) 2005-10-19
JP2005100949A (ja) 2005-04-14
US7763378B2 (en) 2010-07-27

Similar Documents

Publication Publication Date Title
WO2005020351A1 (ja) 円筒形電池及びその製造方法
KR100573349B1 (ko) 전지 모듈 및 그 제조 방법
KR100375903B1 (ko) 알칼리축전지및그의제조방법
KR100558227B1 (ko) 축전지 및 그 제조 방법
JP3951526B2 (ja) 円筒型蓄電池
US8765300B2 (en) Battery manufacturing method, battery, pre-welding positive plate manufacturing method, and pre-welding positive plate
JP2005129433A (ja) 円筒形電池とそれを用いた電池間接続構造
JP3733009B2 (ja) 組電池の製造方法および製造装置
JP4079563B2 (ja) 蓄電池およびその製造方法
JP4090167B2 (ja) 蓄電池およびその製造方法
JP4251829B2 (ja) 電池およびその製造方法
JP4522123B2 (ja) 円筒型電池およびその製造方法
CN100416892C (zh) 圆筒形电池及其制造方法
JP2011170972A (ja) 二次電池の製造方法
JP3826607B2 (ja) 円筒型蓄電池
JP3540591B2 (ja) 蓄電池およびその製造方法
JP2000268850A (ja) アルカリ蓄電池およびその製造方法
JP3588249B2 (ja) アルカリ蓄電池およびその製造方法
JP2004055371A (ja) 円筒型電池とそれを用いた電池間接続構造
JP2009245771A (ja) アルカリ蓄電池およびその製造方法
JP2001023605A (ja) 電池の製造方法
JP2000195496A (ja) アルカリ蓄電池
JPH11102688A (ja) 角形電池の製造方法
JP2004139898A (ja) 円筒型蓄電池
JP2000106168A (ja) アルカリ蓄電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024741.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007020518

Country of ref document: US

Ref document number: 10569599

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10569599

Country of ref document: US