WO2005019809A1 - 時系列変換パルス分光計測装置の時系列信号取得のための光路差補償機構 - Google Patents

時系列変換パルス分光計測装置の時系列信号取得のための光路差補償機構 Download PDF

Info

Publication number
WO2005019809A1
WO2005019809A1 PCT/JP2004/011926 JP2004011926W WO2005019809A1 WO 2005019809 A1 WO2005019809 A1 WO 2005019809A1 JP 2004011926 W JP2004011926 W JP 2004011926W WO 2005019809 A1 WO2005019809 A1 WO 2005019809A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
time
sample
optical path
series
Prior art date
Application number
PCT/JP2004/011926
Other languages
English (en)
French (fr)
Inventor
Seizi Nishizawa
Toshiyuki Iwamoto
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP20040771887 priority Critical patent/EP1662249B1/en
Priority to US10/568,528 priority patent/US7507966B2/en
Priority to CN2004800237219A priority patent/CN1839307B/zh
Priority to JP2005513296A priority patent/JP4059403B2/ja
Publication of WO2005019809A1 publication Critical patent/WO2005019809A1/ja
Priority to US12/371,325 priority patent/US7705311B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/08Beam switching arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0698Using reference pulsed source

Definitions

  • the present invention relates to a time-series converted pulse spectrometer, and more particularly to a scanning mechanism for obtaining a time-series signal, and an array structure (optical arrangement) of an optical system.
  • Time-series converted pulse spectroscopy measures the time-dependent electric field strength of a pulsed electromagnetic wave, and forms a panel by Fourier-transforming the time-dependent data (time-series data). This is a spectroscopic method for obtaining the electric field intensity and phase of each frequency component.
  • the measurement wavelength region is the boundary region between light and radio waves, which was difficult to measure in the past. Therefore, the spectroscopy is expected to clarify the properties of new materials and new phenomena.
  • conventional spectroscopy can only obtain the electric field strength of electromagnetic waves, but this time-series converted pulse spectrometry directly measures the time-dependent changes in the electric field strength of electromagnetic waves, so only the electric field strength (amplitude) of electromagnetic waves is measured.
  • phase shift spectrum can be obtained by comparing with a case without a sample. Since the phase shift is proportional to the wave vector, the dispersion relation in the sample can be determined using this spectroscopy, and the dielectric constant of the dielectric material can be obtained from the dispersion relation (see See Japanese Unexamined Patent Publication No. 2002-277394).
  • FIG. 1 shows an example of a conventional time-series converted pulse spectrometer.
  • Reference numeral 1 is a light source that emits a femtosecond laser. Femtosecond emitted from light source 1
  • the laser beam LI is split by the beam splitter (division means) 2.
  • the femtosecond laser beam is applied to the pulsed light emitting means 5 as a pulsed laser light for excitation (pumped pulsed light) L2.
  • the excitation pulse laser beam L2 is modulated by the optical chopper 3 and then collected by the objective lens 4.
  • the pulsed light radiating means 5 is, for example, a photoconductive element, and when a pulsed laser beam for excitation L2 is irradiated, a current flows instantaneously and emits a far-infrared electromagnetic wave pulse.
  • the far-infrared electromagnetic wave pulse is guided by parabolic mirrors 6 and 7 and irradiates the measurement sample 8.
  • the reflected or transmitted pulsed electromagnetic wave (the transmitted pulsed electromagnetic wave in this example) of the sample 8 is guided to the detection means 12 by the parabolic mirrors 9 and 10.
  • the other laser beam split by the beam splitter 2 is guided to the detection means 12 as a detection pulse laser beam (sampling pulse light) L3.
  • the detecting means 12 is also a photoconductive element, for example, and is irradiated only with the pulse laser beam L3 for detection and becomes conductive only at that moment, so that the electric field intensity of the reflected or transmitted pulse electromagnetic wave from the sample 8 arriving at that moment is obtained. Can be detected as a current.
  • the time-series signal of the electric field intensity of the reflected or transmitted electromagnetic wave from the sample 8 is converted from the excitation pulse laser beam L2 to the detection pulse laser beam L3 using the optical delay means 13 (or 14). Can be obtained by giving a delay time difference at predetermined time intervals.
  • an optical delay means 14 (or 13) for adjusting the time origin is provided.
  • Each time-resolved data of the electric field intensity of the reflected or transmitted pulse electromagnetic wave of the sample 8 is processed by the signal processing means. That is, the data is transmitted to the computer 17 via the lock-in amplifier 16, sequentially stored as time-series data, and a series of time-series data is subjected to Fourier transform processing by the computer 17 to be converted into a frequency (frequency) space. As a result, the spectrum of the amplitude and the phase of the electric field intensity of the reflected or transmitted pulse electromagnetic wave of the sample 8 can be obtained.
  • Patent Document 1 JP-A-2003-131137
  • Patent Document 2 JP-A-2003-121355
  • Patent Document 3 JP-A-2003-83888
  • Patent Document 4 JP-A-2003-75251
  • Patent Document 5 JP-A-2003-14620
  • Patent Document 6 JP-A-2002-277393
  • Patent Document 7 JP-A-2002-277394
  • Patent Document 8 JP-A-2002-257629
  • Patent Document 9 JP-A-2002-243416
  • Patent Document 10 JP-A-2002-98634
  • Patent Document 11 JP 2001-141567 A
  • Patent Document 12 JP-A-2001-66375
  • Patent Document 13 JP 2001-21503 A
  • Patent Document 14 JP 2001-275103 A
  • Non-Patent Document 1 Q. Wu and X.- C. Zhang, Appl. Phys. Lctt. 67 (1995) 3523)
  • Non-Patent Document 2 M. Tani, S. Matsuura, SaSakai, and S. Nakashima, Appl.
  • Non-Patent Document 3 Kiyoshi Sakai: Spectroscopic Research, 50 (2001) 261
  • Non-patent document 4 Seiji Kojima, Seiji Nishizawa, Mitsuo Takeda: Spectroscopic Research, 52 (2003) 69
  • the time-series converted pulse spectrometer does not only include the far-infrared wavelength region in the spectroscopic measurement band, which is difficult with the conventional spectrometer, but also disperses the intensity in the measurement spectrum.
  • the phase dispersion can be measured independently.
  • time-resolved spectroscopy which tracks picosecond transients in real time, is also possible. Because of these features, there are a wide variety of sample types and states (solids, liquids, gases, etc.) that can be measured or desired to be measured by a time-series conversion pulse spectrometer.
  • the present invention has been made in view of the above circumstances, and is a time-series converted pulse spectrometer capable of easily and quickly performing time-series converted pulse spectrometry of various samples and their states.
  • the purpose is to provide.
  • the present invention for achieving the above object employs the following configuration.
  • the time-series converted pulse spectrometer of the present invention includes a pulse laser light source, and a dividing unit that divides the pulse laser light from the pulse laser light source into an excitation pulse laser light and a detection pulse laser light.
  • Pulsed light emitting means for emitting pulsed light including wavelengths in the far-infrared wavelength region by irradiation with a pulsed excitation laser, and reflected or transmitted pulsed light from a sample irradiated with the pulsed light having the pulsed light emitting means.
  • Detecting means for detecting a time-series signal of the electric field strength, a sample holding unit for holding the sample, and the pulse light emitted from the pulse light emitting means was guided to the sample, and reflected or transmitted from the sample by the irradiation.
  • a sample part input / output optical system that guides pulsed light to the detection means side, the input-side light from the splitting means to the pulsed light emission means in the time series conversion pulse spectrometer.
  • And / or at least one light path length changing means for setting a photometric area arranged in the detection side light path from the division means to the detection means, and the incident side light path and / or the pulse light emission means from the division means.
  • at least one optical delay unit for measuring the time-series signal, which is arranged in a detection-side optical path from the division unit to the detection unit.
  • sample part input / output optical system refers to a sample (or a sample holding part) that requires an adjustment and / or an optical arrangement change of the optical system when changing the type or state of the sample.
  • the "optical path length changing means for setting the photometric range” means that the optical path length of the sample section input / output optical system is changed, for example, by replacing the optical system and / or changing the optical arrangement accompanying a change in the type or state of the sample. If it changes, it sets the measurement start position of the time-series signal of the electric field strength of the reflected or transmitted pulsed electromagnetic wave from the sample to compensate for the change in the optical path length. It also has a configuration capable of compensating for a large change in the optical path length, for example, only by scanning the reflector, with respect to a large change in the optical path length.
  • the change of the optical path length by the optical path length changing means may be a configuration that can be changed continuously or a configuration that can be changed discontinuously. That is, for example, the configuration is such that the optical path length is continuously changed by running a reflector arranged in the optical path, or A configuration may be adopted in which the optical path in which the photometric area has been set for the sample is switched to the optical path in which the photometric area is set for another sample by switching the optical path using a reflection mirror.
  • Optical delay means for measuring time-series signals is such that each optical delay means has the same function as conventional optical delay means for measuring time-series signals (reference numeral 13 or 14 in FIG. 1). However, in the case where a plurality of optical delay means are provided, the conventional optical delay means that the configuration enables measurement of a time-series signal for a longer time than the number of optical delay means. It is different from the means.
  • optical length changing means for setting the photometric range and the “optical delay means for measuring the time-series signal” can be arranged in various ways regardless of whether they are arranged in parallel or in series.
  • the optical path length of the input / output optical system of the sample portion changes, measurement of the time-series signal of the electric field intensity of the reflected or transmitted pulse electromagnetic wave from the sample is compensated for by compensating for the change in the optical path length.
  • the position can be set.
  • the photometric range can be set freely.
  • the optical path length changing means for setting the photometric range is a movable reflector.
  • the "movable reflector for setting the photometric range” is typically a reflector of which the optical path length can be changed by scanning, but a time origin required in accordance with the adjustment of the optical arrangement is determined.
  • the technical idea is completely different from the conventional reflector for adjusting (reference numeral 13 or 14 in FIG. 1).
  • the conventional reflector for adjusting the time origin is for adjusting the time origin shifted in the optical adjustment performed at the time of measurement, and the running of the reflector is performed.
  • the area can be short, so it was sufficient to have one.
  • the ⁇ optical delay means for measuring time-series signals '' may also have the function of adjusting the time origin, so that it may not have a reflector for adjusting the time origin independently.In that sense, The reflector for adjusting the time origin was not an essential component.
  • the movable reflector for setting the photometric range according to the present invention is an essential component of the present invention.
  • the scanning area including the movable reflectors for setting the photometric area is significantly wider than that of the reflector for adjusting the time origin. By providing a larger number of reflectors, it is possible to further increase the scanning area.
  • the movable reflector for setting the photometric range finds a completely different use method for the reflector that can be scanned, and is applicable to a wide variety of samples in which a large change in the optical path length cannot be avoided. It is significant that the measurement can be easily performed only by scanning the reflector for setting the photometric range.
  • the "movable reflector for setting the photometric range" is provided by, for example, arranging a plurality of reflectors in parallel when the scanning distance of one reflector cannot be increased due to size restrictions. In this configuration, a larger optical path length can be secured by the number of reflectors.
  • the “movable reflector for setting the photometric range” can be used not only for setting the measurement start position of the time-series signal, but also for adjusting the time origin, and various optical path lengths need to be changed. It can be used for setting the appropriate photometric range.
  • the “movable reflector for setting the measurement area” is, for example, a reflecting mirror such as a corner cube mirror, but is not limited to this.
  • the optical path length changing means for setting the measurement area is a movable or fixed reflector, and one of the reflectors is A gate means for passing or blocking the pulse light to the reflector is provided on the incident side of the pulse light to the reflector, and an optical path passing through one or more of the reflectors by switching the passage or the blocking. Is added to extend the optical path length, and / or one or more of the reflectors can be skipped to shorten the optical path length.
  • the gate means is, for example, a reflection mirror.
  • the reflection mirror is moved to the optical path to switch the optical path of the pulse light to change the optical path length. That is, the pulse light enters or is blocked by a predetermined reflector due to the movement of the reflection mirror, and an optical path passing through the reflector is added to extend the optical path length, or the reflector is used. To Skipping can shorten the optical path length.
  • the gate means may be configured to pass and block the pulse light without moving spatially.
  • the switching of the passage or blocking of the gate means may be either automatic or manual, and the change of the optical path length may be performed by a plurality of gate means.
  • the present invention it is possible to change the optical path length without moving the reflector spatially. That is, since the optical path length can be changed only by the fixed type reflector, there is an effect that the device can be manufactured at low cost. It is possible to select the reflector to be used from among a plurality of reflectors, and it is possible to freely set an optical path according to the measurement. Therefore, there is an effect that it is possible to select and use a reflector to be used for each measurement of the same sample, not only for each exchange of the sample. Further, for example, when a failure occurs in one or more reflectors among a plurality of reflectors, it is possible to avoid the reflectors and set an optical path. Further, there is an effect that the optical arrangement of the optical system according to the plurality of reflectors can be more variously arranged.
  • the time-series converted pulse spectrometer of the present invention is further characterized in that at least one of the gate means is passed or blocked by being inserted into and removed from the optical path by translational movement of the gate means. I do.
  • the gate means may be configured to translate along with the reflector.
  • the time-series converted pulse spectrometer of the present invention is further characterized in that the passage or blocking of at least one of the gate means is performed by insertion and removal into and from an optical path by rotation of the gate means.
  • rotation includes all cases in which the optical path can be switched by the rotational movement of the gate means.
  • the time-series converted pulse spectrometer of the present invention further includes a drive device for automatically scanning the optical path length changing means and / or the optical delay means, and automatically controls the drive device.
  • a computer control device for automatically scanning the optical path length changing means and / or the optical delay means, and automatically controls the drive device.
  • the “drive device” is, for example, a normal drive such as a stepping motor.
  • the force at which the motive device can be used is not limited to this.
  • the optical path length changing unit and / or the optical delay unit can be automatically scanned, and the scanning can be automatically controlled by a computer.
  • the sample holding section and the sample section input / output optical system are further provided in an attached optical unit that can be attached to and detached from the apparatus. It is characterized by the following.
  • the accessory optical unit is specially designed for exclusive use with a sample part input / output optical system optimized and designed for each sample.
  • the dimensions of the space on which the accessory optical unit is provided are corrected by the scannable reflector for setting the photometric range to compensate for changes in the optical path length. Is determined within a range in which is possible.
  • the dimensions of the space are 150 mm or more and 250 mm or less in width, 180 mm or more in depth, and 150 mm or more in height.
  • the optical path length changing means for setting the photometric area can be compensated for by the optical path length changing means for setting the photometric area.
  • the use of a special-purpose accessory optical unit equipped with a sample-part input / output optical system optimized for each sample eliminates the need to adjust the sample-part input / output optical system when replacing the accessory optical unit. It has the effect of becoming.
  • time-series converted pulse spectrometer of the present invention is further characterized in that it is optically designed so as to have an optical match with the attached optical unit.
  • having optical matching means that values of FOV (Field of view) match.
  • the present invention provides a pulse laser light source, a division means for dividing one pulse laser light from the pulse laser light source into an excitation pulse laser light and a detection pulse laser light, and the excitation pulse laser.
  • Pulse light emitting means for emitting pulsed light including wavelengths in the far-infrared wavelength region by irradiation with light, and a time series of the electric field intensity of reflected or transmitted pulsed light from a sample irradiated with the pulsed light from the pulsed light emitting means
  • Detection means for detecting a signal;
  • a sample holding unit for holding a sample, and a sample unit for guiding pulsed light from the pulsed light radiating means to the sample, and guiding pulsed light reflected or transmitted from the sample by the irradiation to the detecting means.
  • An optical system comprising: a time-series converted pulse spectrometer that includes the pulse light emitting unit and the sample unit input and output optical system, and / or the detection unit and the sample unit input and output optical system.
  • a time-series converted pulse spectrometer that includes the pulse light emitting unit and the sample unit input and output optical system, and / or the detection unit and the sample unit input and output optical system.
  • a plurality of plane mirrors and one or more aspherical mirrors are arranged and arranged in this order.
  • the aspherical mirror arranged on the incident side optical path between the pulsed light emitting means and the sample section input / output optical system focuses the pulsed light toward the sample.
  • the plane mirror is disposed between the pulse light emitting means and the aspherical mirror, and folds the pulse light emitted from the pulse light emitting means.
  • the optical path length between the pulse light emitting means and the aspherical mirror can be increased.
  • the focal area focused by the aspherical mirror can be reduced as much as possible, and the spatial resolution of the sample to be measured can be improved. it can.
  • the apparatus since the pulse light is folded back by the plane mirror, the apparatus can be configured to be extremely compact while having a long optical path length.
  • the optical path length between the pulsed light emitting means and the aspherical mirror can be increased, the distance between the aspherical mirror and the sample can be increased while maintaining a desired focal area.
  • the space around the sample that is, the space for the sample part input / output optical system and the sample holding part is sufficiently secured, so that the degree of freedom of the analysis operation can be increased.
  • the detection-side optical path between the detection means and the sample-part entrance / emission optical system has a configuration in which a plane mirror is disposed between the aspherical mirror and the detection means to increase the optical path length, similarly to the incident-side optical path. Therefore, the focal area of the light beam condensed by the aspherical mirror can be made as small as possible, and the spatial resolution of the sample to be measured can be improved.
  • the device similarly to the light path on the entrance side, the device can be configured outside the comparator, and a sufficient space around the sample can be secured.
  • FIG. 1 is a schematic configuration diagram of a conventional time-series converted pulse spectroscopy apparatus.
  • FIG. 2 is a schematic configuration diagram of one embodiment of a time-series converted pulse spectroscopy apparatus of the present invention.
  • FIG. 3 (a) Compensation of optical path difference for obtaining time-series signal of time-series converted pulse spectroscopy apparatus of the present invention It is a schematic structure figure of one embodiment of a compensation mechanism.
  • (B) is a diagram showing a configuration in which the configurations shown in (a) are arranged in parallel.
  • FIG. 4 is a schematic configuration diagram of another embodiment of an optical path difference compensating mechanism for acquiring a time series signal of the time series conversion pulse spectroscopy apparatus of the present invention.
  • FIG. 5 (a) is a schematic configuration diagram of another embodiment of an optical path difference compensation mechanism for acquiring a time series signal of the time series conversion pulse spectroscopy apparatus of the present invention.
  • (B) It is an enlarged view of a part of (a).
  • Garden 6 is a schematic configuration diagram of another embodiment of an optical path difference compensation mechanism for acquiring a time series signal of the time series conversion pulse spectroscopy apparatus of the present invention.
  • FIG. 7 (a) is a schematic configuration diagram of another embodiment of an optical path difference compensation mechanism for acquiring a time series signal of the time series conversion pulse spectroscopy apparatus of the present invention.
  • (B) It is a figure which shows the case where the gate means and the reflector of (a) were moved.
  • FIG. 2 shows a schematic configuration of an embodiment of a time-series converted pulse spectrometer according to the present invention and an optical path difference compensation mechanism for obtaining a time-series signal therefrom.
  • the description of the same components as those in FIG. 1 will be omitted using the same reference numerals.
  • the time-series converted pulse spectrometer 20 includes the pulse laser light source 1.
  • the pulsed laser light L1 from the pulsed laser light source 1 is guided to a splitting means 2 for splitting the pulsed laser light L2 for excitation and the pulsed laser light L3 for detection.
  • the time-series converted pulse spectrometer 20 further includes a pulse light emitting unit 5 that emits laser light having a wavelength in the far-infrared wavelength region by irradiation with the excitation pulse laser L2, and a pulse light emitting unit.
  • Detecting means 12 for detecting a time-series signal of the electric field intensity of the reflected pulse light from the sample 8 irradiated with the pulse light from 5.
  • a sample holding unit 31 for holding the sample 8 is provided between the pulse light emitting means 5 and the detecting means 12, and a sample part incident optical system 32, 33, which guides the pulse light from the pulse light emitting means side to the sample. 34, and a sample section emission optical system 35, 36, 37 for guiding the pulsed light reflected by the sample by the irradiation to the detection means 12 side.
  • the time-series converted pulse spectrometer 20 includes at least one optical path length changing means (corner cube mirror in FIG. 2) 41 for setting a photometric area, and at least one time-series signal measuring means.
  • Optical delay means 42 (corner cube mirror in FIG. 2).
  • the optical path length changing means 41 is a movable reflector that can run.
  • the optical path length changing means 41 for setting the photometric range and the optical delay means 42 for measuring the time-series signal are provided with a driving device (not shown) for automatically scanning.
  • a computer control device (not shown) for controlling the computer is provided.
  • the reflectors 41 and 42 may be configured such that the former is used for measuring a time-series signal and the latter is used for setting a photometric range.
  • the sample holding unit 31 and the sample unit input / output optical systems 32, 33, 34, 35, 36 and 37 are provided in the attached optical unit 30 that can be attached to and detached from the time series converted pulse spectrometer.
  • An elliptical mirror (aspherical mirror) 26 and a plane mirror 27 are installed as optical elements in the light path on the incident side between the pulse light emitting means 5 and the attached optical unit 30.
  • the elliptical mirror 26 collects the pulse light from the pulse light emitting means 5.
  • the plane mirror 27 is disposed between the pulse light emitting means 5 and the elliptical mirror 26, and has a function of turning back the pulse light from the pulse light emitting means 5.
  • the number of the elliptical mirror 26 and the plane mirror 27 may be one as in this embodiment, but a plurality of them may be used in combination.
  • An elliptical mirror (aspherical mirror) 28 and a plane mirror 29 are provided as optical elements in a detection-side optical path between the detection means 12 and the attached optical unit 30.
  • the elliptical mirror 28 collects the reflected panelless light from the sample 8.
  • the plane mirror 29 is arranged between the elliptical mirror 28 and the detection means 12, and has a function of turning back the reflected pulse light from the elliptical mirror 28.
  • the elliptical mirror 28 and the plane mirror 29 may be provided as long as one as in the present embodiment, but a plurality of them may be used in combination.
  • optical elements such as the elliptical mirror 26, the plane mirror 27, the ellipsoid mirror 28, the plane mirror 29, and other optical systems (not shown) are optically designed so as to have optical matching with the attached optical unit 30. .
  • the configuration is such that a time-series signal of the electric field intensity of the reflected pulse light from the sample is detected.
  • a configuration may be adopted in which a time-series signal of the electric field intensity of the transmitted pulse light is detected.
  • the sample 8 to be measured is attached to the sample holder 31 in the attached optical unit 30.
  • the attached optical unit 30 is mounted on the time-series converted pulse spectrometer 20.
  • the driving device and the computer control device are operated to scan the reflector 41 for setting the photometric range. Thus, preparation for sample measurement is completed.
  • the time-series converted pulse spectrometer of the present invention was also compared with the conventional device shown in FIG. Acts substantially the same.
  • the pulse laser light L1 emitted from the light source 1 is divided by the dividing means 2 into the excitation pulse laser light (pump pulse light) L2 and the detection pulse laser light (sampling panelless light) L3. .
  • the excitation pulse laser light L2 is applied to the pulsed light emitting means 5 via the lens 4.
  • the pulse light emitting means 5 emits a far-infrared electromagnetic wave pulse.
  • This far-infrared electromagnetic wave pulse is returned to the elliptical mirror 26 after its optical path is turned by the plane mirror 27, and is collected.
  • the far-infrared electromagnetic wave pulse guided into the attached optical unit 30 is condensed through the sample-unit incident optical systems 32, 33, and 34 and irradiated onto the sample 8.
  • the reflected pulse electromagnetic wave reflected from the sample 8 including the optical information of the sample 8 is reflected by the elliptical mirror 28 outside the attached optical unit 30 through the sample part incident optical systems 35, 36, and 37, and The light is turned back by the plane mirror 29 and further guided to the detection means 12.
  • the detection pulse laser beam L3 split by the splitting means 2 makes the detecting means 12 conductive only at that moment, and the electric field strength of the reflected noise electromagnetic wave from the sample 8 arriving at that moment is converted into a current. It is possible to detect as.
  • the reflector 42 gives a delay time difference to the pulse laser beam L2 for excitation with respect to the pulse laser beam L2 for excitation at predetermined time intervals, so that the intensity of the electric field of the reflected pulse electromagnetic wave from the sample 8 is increased. A sequence signal can be obtained.
  • the time-series converted pulse spectrometer may include a reflector dedicated to adjusting the time origin.
  • the pulse light emitted from the pulse light emitting means 5 is folded back by the plane mirror 27 disposed between the pulse light emitting means 5 and the elliptical mirror 26. become.
  • the optical path length between the pulsed light emitting means 5 and the elliptical mirror 26 can be made longer, and the focal area of the light beam condensed by the elliptical mirror 26 can be made as small as possible, and thus the measurement can be performed.
  • the spatial resolution of the target sample 8 can be improved.
  • the apparatus can be made extremely compact while keeping the optical path length long.
  • the optical path length between the pulsed light emitting means 5 and the elliptical mirror 26 can be increased, The distance between the elliptical mirror 26 and the sample 8 can be increased while maintaining the focal area of the lens. As a result, a sufficient space for installing the attached optical unit 30 is secured, so that the analysis operation can be facilitated.
  • the detection-side optical path between the detection means 12 and the attached optical unit 30 has a configuration in which a plane mirror 29 is disposed between the elliptical mirror 28 and the detection means 12 to increase the optical path length. Therefore, the focal area of the light beam condensed by the elliptical mirror 28 can be made as small as possible, and the spatial resolution of the sample 8 to be measured can be improved.
  • the device similarly to the light path on the incident side, the device can be configured outside the compartment, and a sufficient space for installing the attached optical unit 30 is secured.
  • FIG. 3 (a) shows a schematic configuration of another embodiment of an optical path difference compensating mechanism for acquiring a time series signal of the time series converted pulse spectrometer according to the present invention.
  • the optical delay means (reflector in the case of FIG. 3) is opposed to each other with the optical paths incident and reflected on the reflector being parallel and the optical paths being shifted.
  • the reflector is a corner cube mirror. In this configuration, the pulsed laser light L2 or L3 incident on the scanning mechanism is sequentially reflected by the corner cube mirrors 51, 52, 53,... And guided out of the scanning mechanism, and the pulsed light emitting means 5 or Sent to detection means 12
  • the optical path length can be changed by the number of reflectors as compared with the case of one reflector.
  • such a configuration enables a large change in the optical path length even when there is sufficient space in the scanning direction of the reflector but there is sufficient space in the direction perpendicular to the scanning direction. be able to.
  • the running mechanisms having the configuration as shown in FIG. 3 (a) may be arranged in parallel in the incident side optical path and / or the detection side optical path.
  • FIG. 4 shows light for acquiring a time-series signal of the time-series converted pulse spectrometer of the present invention.
  • 7 shows a schematic configuration of another embodiment of a road difference compensation mechanism.
  • two reflectors for setting the photometric range (corner cube mirror in the figure) and two reflectors for measuring the time-series signal (corner cube mirror in the figure) are each provided.
  • (61 and 62 and 63 and 64) are configured to run side by side at the same time, and the light paths of the reflectors 61 and 62 for setting the photometric area and the reflectors 63 and 64 for measuring the time series signal are shifted. They are placed facing each other in the state.
  • the excitation pulse laser beam L2 or the detection pulse laser beam L3 split by the splitting means 2 is reflected by the mirror 65 and then enters the scanning mechanism to set the photometric range and to measure the time-series signal. Reflected by the reflectors 63, 61, 64, and 62 in order, and guided outside the running mechanism, further reflected by mirrors 66 and 67, and sent to the pulsed light emitting means 5 and the detecting means 12.
  • the optical path length can be changed twice as much as the traveling distance of the reflector as compared with the case of one corner cube mirror. Therefore, there is an effect that it is possible to quickly set a photometry area and set for time-series signal measurement.
  • the configuration shown in FIG. 4 may be used for the optical path length changing means, the optical delay means, and the deviation.
  • FIG. 5 (a) shows a schematic configuration of another embodiment of an optical path difference compensating mechanism for acquiring a time series signal of the time series conversion pulse spectrometer of the present invention.
  • Gate means for passing or blocking pulsed light to this reflector should be provided at least on the pulsed light incident side to this reflector.
  • the gate means is a reflecting mirror, and includes reflecting mirrors 72, 74,... For reflecting the pulse light reflected from the reflectors 81, 82, 83,. .
  • at least one reflecting mirror is passed or blocked by turning the reflecting mirror so that the reflecting mirror moves into the optical path.
  • FIG. 5B is an enlarged view of a part of FIG. 5A.
  • the reflecting mirror 71 is inserted in the optical path (solid line) and the reflecting mirror 72 (solid line) is removed from the optical path before switching, the laser beam L4 is reflected by the reflecting mirror 71. L41 and proceed as L5. In this case, the reflector 81 has been skipped.
  • the laser beam L4 is regarded as L42 and reflected by the reflector.
  • the light is reflected at 81, becomes L43, is further reflected, becomes L44, and is reflected at the reflecting mirror 72, and proceeds as L5.
  • the optical path length via the reflector 81 is added by the switching.
  • the optical path passing through the reflector 81 is eliminated, and the optical path length is shortened.
  • the configuration shown in FIG. 5 may be used for either the optical path length changing means or the optical delay means.
  • FIG. 6 shows a schematic configuration of another embodiment of an optical path difference compensating mechanism for obtaining a time-series signal of the time-series converted pulse spectrometer of the present invention.
  • a plurality of reflectors 101, 102,... are provided at appropriate positions according to the application, and the gate means 91, 93,.
  • the gate length is changed by using a reflector.
  • the pulse light incident on the optical path length changing means is first reflected by the gate means 91, and beside the reflecting mirror 92, the gate means 93, and the reflecting mirror 94.
  • the light passes through the mirror 95, is reflected by the reflector 95, and is guided to the outside. In this case, the measurement of the sample using the reflectors 101 and 102 is not performed.
  • the pulsed light can be used for measurement of the sample using the reflector 101 (reflection measurement in the figure).
  • FIGS. 7 (a) and 7 (b) show a schematic configuration of another embodiment of an optical path difference compensating mechanism for acquiring a time series signal of the time series conversion pulse spectrometer side device.
  • the passage or prevention of at least one gate means 112 is performed by the gate means. This is done by insertion and removal of the step 112 into and out of the optical path by translation.
  • both the gate means 112 and the reflector 115 are mounted on the moving device 116.
  • a reflector 115 is provided in the moving device 116 to reflect the reflected pulse light to the reflector 114 for reflection.
  • the gate means 112 is a reflecting mirror.
  • the moving device 116 when the moving device 116 is arranged at the position shown in FIG. 7A, the pulsed light reflected from the reflecting mirror 111 passes by the gate means 112 and the reflecting mirror 113 and passes through the reflecting mirror 114. And is guided outside.
  • the moving device 116 moves from the position shown in FIG. 7 (a) to the position shown in FIG. 7 (b), the gate means 112, the reflecting mirror 113 and the reflector 115 are translated together, and the optical path through the reflector 115 is moved. Is added to extend the optical path length, and measurement using the reflector 115 becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 多様な試料やその状態等の時系列変換パルス分光計測が容易に短時間に行うことができる時系列変換パルス分光計測装置を提供することを目的とする。本発明の時系列変換パルス分光計測装置は、パルスレーザー光源とパルスレーザー光源からのパルスレーザー光を励起用パルスレーザー光と検出用パルスレーザー光とに分割する分割手段とパルス光放射手段と検出手段と試料を保持する試料保持部と試料部入出射光学系とを備えた時系列変換パルス分光計測装置において、分割手段からパルス光放射手段までの入射側光路及び/又は分割手段から検出手段までの検出側光路のいずれかに配置された少なくとも一の測光域設定用の光路長変更手段と、分割手段からパルス光放射手段までの入射側光路及び/又は分割手段から検出手段までの検出側光路のいずれかに配置された少なくとも一の時系列信号測定用の光学的遅延手段と、を備えたことを特徴とする。

Description

明 細 書
時系列変換パルス分光計測装置の時系列信号取得のための光路差補 償機構
技術分野
[0001] 本発明は、時系列変換パルス分光計測装置、特に、その時系列信号取得のため の走査機構、及び、光学系の配列構造 (光学配置)に関するものである。
背景技術
[0002] 近年、極短幅パルスレーザー技術の実用化により、パルス状のコヒーレントな遠赤外 領域 (特に、テラへルツ帯域)の電磁波の放射技術及び検出技術が飛躍的に進歩し た。それによつて、このパルス状の遠赤外領域の電磁波を用いた時系列変換パルス 分光が可能となり、 日本においても時系列変換パルス分光計測装置の実用化装置 の開発が先駆的に進められた。
[0003] 時系列変換パルス分光とは、パルス状の電磁波の時間に依存した電場強度を測定 し、その時間に依存したデータ (時系列データ)をフーリエ変換することにより、そのパ ノレスを形成する各周波数成分の電場強度と位相とを得る分光法である。この分光法 の特徴の一つは、測定波長領域が従来計測が困難であった光と電波の境界領域で あること力 s挙げられる。そのため、この分光法により新規材料の性質や新しい現象の 解明が期待されている。また、従来の分光法では電磁波の電場強度しか得られなか つたが、この時系列変換パルス分光計測法では、電磁波の電場強度の時間変化を 直接測定することから、電磁波の電場強度 (振幅)だけでなぐその位相をも得ることが できるというユニークな特徴を持っている。従って、試料がない場合と比較することに よって、位相シフトスペクトルを得ることができる。位相シフトは波数ベクトルに比例す ることから、この分光法を用いて試料中の分散関係を決定することができ、この分散 関係から誘電体材料の誘電率を知得することも可能となる (特開 2002-277394号公報 参照)。
[0004] 図 1に、従来の時系列変換パルス分光計測装置の一例を示す。
[0005] 符号 1はフェムト秒レーザーを放射する光源である。光源 1から放射されたフェムト秒 レーザー光 LIは、ビームスプリッタ (分割手段) 2で分割される。一方のフェムト秒レー ザ一は、励起用パルスレーザー光 (ポンプパルス光) L2としてパルス光放射手段 5に 照射される。このとき、励起用パルスレーザー光 L2は光チヨッパ 3により変調された後 、対物レンズ 4によって集光される。このパルス光放射手段 5は例えば光伝導素子で あり、励起用パルスレーザー光 L2が照射されたときに瞬間的に電流が流れ、遠赤外 電磁波パルスを放射する。この遠赤外電磁波パルスは、放物面鏡 6,7により導光され 測定試料 8に照射される。その試料 8の反射又は透過パルス電磁波 (この例では透過 パルス電磁波)は、放物面鏡 9, 10により検出手段 12へ導光される。
[0006] ビームスプリッタ 2で分割されたもう一方のレーザー光は、検出用パルスレーザー光 (サンプリングパルス光) L3として検出手段 12へ導光される。この検出手段 12も例えば 光伝導素子であり、検出用パルスレーザー光 L3が照射されて、その瞬間だけ導電性 となるので、その瞬間に到達した試料 8からの反射又は透過パルス電磁波の電場強 度を電流として検出することができる。試料 8からの反射又は透過ノ^レス電磁波の電 場強度の時系列信号は、光学的遅延手段 13(又は 14)を用いて、励起用パルスレー ザ一光 L2に対して検出用パルスレーザー光 L3に所定の時間間隔づっ遅延時間差 を付与することにより得ること力 Sできる。この例では、時系列信号測定用の光学的遅 延手段 13(又は 14)の他に、時間原点調整用の光学的遅延手段 14(又は 13)も備えて いる。
[0007] 試料 8の反射又は透過パルス電磁波の電場強度の各時間分解データは、信号処 理手段によって処理される。すなわち、ロックインアンプ 16を介してコンピュータ 17に 伝送され、順次、時系列データとして記憶され、一連の時系列データを、該コンビュ ータ 17でフーリエ変換処理して振動数 (周波数)空間に変換することにより、試料 8の 反射又は透過パルス電磁波の電場強度の振幅及び位相の分光スペクトルが得られ る。
[0008] 特許文献 1 :特開 2003-131137号公報
特許文献 2:特開 2003-121355号公報
特許文献 3:特開 2003-83888号公報
特許文献 4:特開 2003-75251号公報 特許文献 5:特開 2003-14620号公報
特許文献 6:特開 2002-277393号公報
特許文献 7:特開 2002-277394号公報
特許文献 8:特開 2002-257629号公報
特許文献 9:特開 2002-243416号公報
特許文献 10:特開 2002-98634号公報
特許文献 11 :特開 2001-141567号公報
特許文献 12:特開 2001-66375号公報
特許文献 13:特開 2001-21503号公報
特許文献 14 :特開 2001-275103号公報
非特許文献 1 : Q. Wu and X. - C. Zhang, Appl. Phys.Lctt. 67 (1995) 3523)
非特許文献 2 : M. Tani, S. Matsuura, Κ·· Sakai, and S. Nakashima, Appl.
Opt.36(1997)7853
非特許文献 3:阪井清美:分光研究、 50(2001)261
非特許文献 4 :小島誠治、西澤誠治、武田三男:分光研究、 52(2003)69
発明の開示
[0009] 以上のように、時系列変換パルス分光計測装置では、従来の分光装置では困難で あった遠赤外波長域を分光測定帯域に含むに留まらず、その測定スぺ外ルに強度 分散のみならず位相分散を独立に計測することができる。さらに、ピコ秒領域の過渡 現象を実時間で追跡する時間分解分光測定も可能である。このような特徴を備えて いるために、時系列変換パルス分光計測装置で測定でき又は測定したい試料の種 類や状態 (固体、液体、気体等)等は多岐にわたる。しかしながら、このような多様な試 料やその状態等の時系列変換分光計測を実施するためには、それらに応じて異なる 光学系又は光学配置が必要となり、使用者に多大な負担をかけると共に試料交換後 測定開始までの準備等に長時間を要するという問題があった。
[0010] 従って、本発明は、上記事情に鑑みてなされたもので、多様な試料やその状態等 の時系列変換パルス分光計測を容易に短時間に行うことができる時系列変換パルス 分光計測装置を提供することを目的とする。 [0011] 上記目的を達成するための本発明は、以下の構成を採用した。
本発明の時系列変換パルス分光計測装置は、パルスレーザー光源と、該パルスレ 一ザ一光源からのパルスレーザー光を励起用パルスレーザー光と検出用パルスレー ザ一光とに分割する分割手段と、前記励起用パルスレーザーの照射により遠赤外波 長域の波長を含むパルス光を放射するパルス光放射手段と、該パルス光放射手段 力 のパルス光が照射された試料からの反射又は透過パルス光の電界強度の時系 列信号を検出する検出手段と、試料を保持する試料保持部と、パルス光放射手段側 力 のパルス光を試料へ導光すると共に、該照射によって試料から反射又は透過し たパルス光を検出手段側へ導光する試料部入出射光学系と、を備えた時系列変換 パルス分光計測装置において、前記分割手段から前記パルス光放射手段までの入 射側光路及び/又は前記分割手段から前記検出手段までの検出側光路に配置され た少なくとも一の測光域設定用の光路長変更手段と、前記分割手段から前記パルス 光放射手段までの入射側光路及び/又は前記分割手段から前記検出手段までの検 出側光路に配置された少なくとも一の前記時系列信号測定用の光学的遅延手段と、 を備えたことを特徴とする。
[0012] ここで、「試料部入出射光学系」とは、試料の種類や状態の変更に際して、光学系 の交換'調整及び/又は光学配置の変更'調整が必要な試料 (又は試料保持部)前後 の光学系を含む光学系であって、前記パルス光放射手段と前記検出手段との間に 配置した光学系をいう。
[0013] 「測光域設定用の光路長変更手段」とは、例えば試料の種類や状態の変更に伴う 光学系の交換及び/又は光学配置の変更により、試料部入出射光学系の光路長が 変化した場合に、その光路長の変化を補って試料からの反射又は透過パルス電磁 波の電場強度の時系列信号の測定開始位置を設定するものであって、特に、光学 系の交換に伴う大幅な光路長の変化に対しても、例えば反射器の走査だけでその大 幅な光路長の変化を補償することができる構成を備えたものをいう。
[0014] 前記光路長変更手段による光路長の変更は、連続的に変更できる構成であっても 、不連続に変更できる構成であってもよい。すなわち、例えば、光路に配置された反 射器を走查することにより連続的に光路長を変更する構成であったり、又は、一の試 料用に測光域が設定されていた光路を反射ミラーにより光路を切り換えて他の試料 用に測光域が設定されている光路に変更する構成であってもよい。
[0015] 「時系列信号測定用の光学的遅延手段」は、各光学的遅延手段は従来の時系列 信号測定用の光学的遅延手段 (図 1における符合 13又は 14)と同様の機能を有するも のであるが、光学的遅延手段を複数備えた場合には、光学的遅延手段の数の分だ けより長い時間にわたる時系列信号の測定を可能にする構成である点で従来の光学 的遅延手段と異なるものである。
[0016] 「測光域設定用の光学長変更手段」及び「時系列信号測定用の光学的遅延手段」 は、並列配置、直列配置を問わず、種々の配置が可能であることは言うまでもない。
[0017] 本発明によれば、試料部入出射光学系の光路長が変化した場合に、その光路長 の変化を補って試料からの反射又は透過パルス電磁波の電場強度の時系列信号の 測定開始位置を設定することができるという効果を奏する。特に、光学系の交換に伴 う大幅な光路長の変化に対してもその測定域設定用の光路長変更手段を用いてそ の大幅な光路長の変化を補償することができるという効果を奏する。また、測光域を 自在に設定することができるという効果を奏する。時系列信号測定用の光学的遅延 手段を複数備えた場合には、光学的遅延手段の数の分だけより長い時間にわたる 時系列信号の測定が可能であるという効果を奏する。
[0018] また、本発明の時系列変換パルス分光計測装置は、さらに、前記測光域設定用の 光路長変更手段が可動型の反射器とされている。
[0019] 「測光域設定用の可動型の反射器」は、典型的には走査によって光路長を変更で きるタイプの反射器であるが、光学配置の調整に伴って必要となる時間原点を調整 するための従来の反射器 (図 1における符合 13又は 14)とは全く技術的思想が異なる ものである。すなわち、具体的な構成の差異についていうと、従来の時間原点調整用 の反射器は、測定の際に行われる光学調整においてずれた時間原点を調整するた めのものであり、反射器の走查域は短くて構わないため、 1個備えていれば十分であ つた。装置によっては、「時系列信号測定用の光学的遅延手段」に時間原点調整の 機能をも担わせることによって、独立に、時間原点調整用の反射器を備えない場合も あり、その意味では、時間原点調整用の反射器は必須の構成要素ではなかった。こ れに対して、本発明の測光域設定用の可動型の反射器は本発明の必須の構成要 素であり、大幅な光路長の変更さえも補償することを可能とするために、一又はニ以 上の測光域設定用の可動型の反射器を合算した走査域は、時間原点調整用の反 射器と比べて顕著に広い構成となっている。そして、より多数の反射器を備えることに より、走査域をさらに広げることをも可能とする構成である。従って、本発明の測光域 設定用の可動型の反射器は、走査可能な反射器に対して従来とは全く異なる利用 方法を見出し、光路長の大きな変化が避けられない多岐にわたる各種試料に対して も測光域設定用の反射器の走査だけで容易に測定を可能としたところに意義がある と B る。
[0020] さらに、「測光域設定用の可動型の反射器」は、サイズ上の制限から一の反射器の 走査距離を長くとれない場合に、反射器を複数平行に配置する等により、その反射 器の数の分だけより大きな光路長を確保することができる構成である。
なお、「測光域設定用の可動型の反射器」は、時系列信号の測定開始位置の設定 に限らず、時間原点調整用にも用いることができることは言うまでもないし、光路長の 変更を要する様々な測光域の設定に活用できる。
[0021] 「測定域設定用の可動型の反射器」としては、例えば、コーナーキューブミラー等の 反射鏡であるが、これに限定されない。
[0022] 本発明によれば、光路長を連続的に変更することができるという効果を奏する。
[0023] 本発明の時系列変換パルス分光計側窓値装置は、さらに、前記測定域設定用の 光路長変更手段は可動型又は固定型の反射器であり、該反射器のいずれかは、該 反射器へのパルス光の入射側に該反射器へのパルス光の通過又は阻止を行うゲー ト手段を備え、前記通過又は阻止の切り換えによって、一又は二以上の前記反射器 を経由した光路を付加して光路長を延長すること、及び/又は、一又は二以上の前記 反射器をスキップして光路長を短縮することを可能とすることを特徴とする。
[0024] 前記ゲート手段は、例えば、反射ミラーであり、この場合、この反射ミラーを光路へ 揷脱することによりパルス光の光路を切り換えて光路長を変更するものである。すな わち、反射ミラーの揷脱によって、パルス光が所定の反射器へ入射し又は阻止され て、その反射器を経由した光路を付加して光路長を延長したり、又は、その反射器を スキップして光路長を短縮することが可能となる。
[0025] 前記ゲート手段は空間的に移動しないで、パルス光の通過及び阻止を行う構成の ものであってもよい。
[0026] 前記ゲート手段の通過又は阻止の切り換えは、 自動'手動のいずれでもよいし、光 路長の変更は複数のゲート手段によって行ってもよい。
[0027] 本発明によれば、反射器を空間的に移動しないで光路長を変更することができると レ、う効果を奏する。すなわち、固定型の反射器だけでも光路長の変更ができるので、 低価格で装置を製造できるという効果を奏する。複数の反射器の中から、使用する 反射器を選択することが可能となり、測定に応じた自在の光路設定が可能となるとい う効果を奏する。従って、試料の交換毎に限らず、同じ試料について測定毎に、使用 する反射器を選択して測定することも可能となるという効果を奏する。また、例えば、 複数の反射器の中の一又は二以上の反射器に不具合が発生した場合には、その反 射器を回避して光路を設定することも可能となるという効果を奏する。また、複数の反 射器に係る光学系の光学配置について、より多様な配置が可能となるという効果を奏 する。
[0028] また、本発明の時系列変換パルス分光計測装置はさらに、少なくとも一の前記ゲー ト手段の通過又は阻止が、該ゲート手段の並進移動による光路への挿脱によって行 われることを特徴とする。
[0029] 前記ゲート手段は、前記反射器と共に並進移動する構成であってもよい。
[0030] また本発明の時系列変換パルス分光計測装置は、さらに、少なくとも一の前記ゲー ト手段の通過又は阻止は、該ゲート手段の回動による光路への挿脱によって行われ ることを特徴とする。
[0031] ここで、「回動」とは、ゲート手段の回転運動によって光路の切り換え操作が可能な 全ての場合を含む。
[0032] また、本発明の時系列変換パルス分光計測装置はさらに、前記光路長変更手段及 び/又は前記光学的遅延手段を自動で走査する駆動装置と、該駆動装置を自動的 に制御するコンピュータ制御装置とを備えたことを特徴とする。
[0033] ここで、「駆動装置」としては、例えば、ステッピングモータ等の通常の走查用の駆 動装置を用いることができる力 これに限定されない。
[0034] 本発明によれば、光路長変更手段及び/又は光学的遅延手段を自動で走査するこ とができ、その走査をコンピュータで自動に制御できるという効果を奏する。
[0035] また、本発明の時系列変換パルス分光計測装置は、さらに、前記試料保持部と前 記試料部入出射光学系とは前記装置に着脱交換可能な付属光学ユニット内に備え られていることを特徴とする。
[0036] 前記付属光学ユニットは、試料毎に最適化設計された試料部入出射光学系を備え た専用特化されているのが好ましい。
[0037] 尚、この時系列変換パルス分光計測装置では、付属光学ユニットが装備される装 置上の空間の寸法は、前記測光域設定用の走査可能な反射器によって光路長の変 化の補正が可能となる範囲内で定められる。従って、例えば、空間の寸法は、幅 150mm以上 250mm以下、奥行き 180mm以上、高さ 150mm以上である。
[0038] 本発明によれば、付属光学ユニットの交換に伴う大幅な光路長の変化は、前記測 光域設定用の光路長変更手段によって補償することができるので、測定開始までの 準備時間が短縮できるという効果を奏する。また、試料毎に最適化設計された試料 部入出射光学系を備えた専用特化の付属光学ユニットを用いることにより、付属光学 ユニットの交換の際の試料部入出射光学系の調整が不要となるという効果を奏する。
[0039] また、本発明の時系列変換パルス分光計測装置は、さらに、前記付属光学ユニット に対して光学的整合を有するように光学設計がなされてレ、ることを特徴とする。
[0040] ここで、「光学的整合を有する」とは、 FOV(Field of view)の値が一致することを意味 する。
[0041] 本発明によれば、付属光学ユニットの交換によっても、付属光学ユニットと装置との 接続部分での光の損失を防止することができるという効果を奏する。
[0042] また、本発明は、パルスレーザー光源と、該パルスレーザー光源からのパルスレー ザ一光を励起用パルスレーザー光と検出用パルスレーザー光とに分割する分割手 段と、前記励起用パルスレーザーの照射により遠赤外波長域の波長を含むパルス光 を放射するパルス光放射手段と、該パルス光放射手段からのパルス光が照射された 試料からの反射又は透過パルス光の電界強度の時系列信号を検出する検出手段と 、試料を保持する試料保持部と、パルス光放射手段側からのパルス光を試料へ導光 すると共に、該照射によって試料から反射又は透過したパルス光を検出手段側へ導 光する試料部入出射光学系と、を備えた時系列変換パルス分光計測装置において 、前記パルス光放射手段から前記試料部入出射光学系にかけて、および/または、 前記検出手段から前記試料部入出射光学系にかけて、一又は複数の平面鏡および 一又は複数の非球面鏡が、この順番で配置されてレ、ることを特徴とする。
[0043] パルス光放射手段と試料部入出射光学系との間の入射側光路に配置された非球 面鏡は、試料に向けてパルス光を集光する。一方、平面鏡は、パルス光放射手段と 非球面鏡との間に配置され、パルス光放射手段から放射されたパルス光を折り返す 。これにより、パルス光放射手段と非球面鏡との光路長を長くとることができる。この光 路長を長くとることにより、非球面鏡によって集光される焦点面積を可及的に小さくす ること力 Sでき、ひレ、ては測定対象となる試料の空間分解能を向上させることができる。 また、平面鏡によりパルス光を折り返すこととしているので、光路長を長くとりつつも 、装置を極めてコンパクトに構成することができる。
また、パルス光放射手段と非球面鏡との光路長を長くとることができるので、所望の 焦点面積を維持しながら非球面鏡と試料との間の距離を大きくとることができる。これ により、試料周りのスペース、すなわち試料部入出射光学系および試料保持部のス ペースが十分に確保されるので、分析作業の自由度を増大させることができる。
[0044] 検出手段と試料部入出射光学系との間の検出側光路についても上記入射側光路 と同様に、非球面鏡と検出手段との間に平面鏡を配置して光路長を長くとる構成とし たので、非球面鏡によって集光される光束の焦点面積を可及的に小さくすることがで き、ひいては測定対象となる試料の空間分解能を向上させることができる。また、入 射側光路と同様に、装置をコンパ外に構成でき、試料周りのスペースを十分に確保 できる。
図面の簡単な説明
[0045] [図 1]従来の時系列変換パルス分光装置の概略構成図である。
[図 2]本発明の時系列変換パルス分光装置の一実施形態の概略構成図である。
[図 3](a)本発明の時系列変換パルス分光装置の時系列信号取得のための光路差補 償機構の一実施形態の概略構成図である。(b)(a)で示した構成を並列に配置した構 成を示す図である。
[図 4]本発明の時系列変換パルス分光装置時系列信号取得のための光路差補償機 構の他の実施形態の概略構成図である。
[図 5](a)本発明の時系列変換パルス分光装置時系列信号取得のための光路差補償 機構の他の実施形態の概略構成図である。(b)(a)の一部の拡大図である。
6]本発明の時系列変換パルス分光装置の時系列信号取得のための光路差補償 機構の他の実施形態の概略構成図である。
園 7](a)本発明の時系列変換パルス分光装置の時系列信号取得のための光路差補 償機構の他の実施形態の概略構成図である。(b)(a)のゲート手段と反射器を移動し た場合を示す図である。
符号の説明
1 パルスレーザー光源
2 分割手段
8 試料
12 検出手段
20 時系列変換パルス分光計測装置
26,27,28,29 非球面鏡
30 付属光学ユニット
31 試料保持部
32,33,34 試料部入射光学系
35,36,37 試料部出射光学系
41,42 光路長変更手段又は光学的遅延手段
51,52,53 反射器
61,62,63,64 反射器
71,73,75 ゲート手段
81,82,83 反射器
91,93 ゲート手段 101, 102 反射器
112 ゲート手段
115 反射器
発明を実施するための最良の形態
[0047] 図 2に、本発明に係る時系列変換パルス分光計測装置及びそれの時系列信号取 得のための光路差補償機構の一実施形態の概略構成を示す。図 1と同様な構成要 素については同じ符合を用いてその説明を省略する。
[0048] この時系列変換パルス分光計測装置 20は、パルスレーザー光源 1を備えている。こ のパルスレーザー光源 1からのパルスレーザー光 L1は、励起用パルスレーザー光 L2 と検出用パルスレーザー光 L3とに分割する分割手段 2へと導かれる。
時系列変換パルス分光計測装置 20は、さらに、励起用パルスレーザー L2の照射に より遠赤外波長域の波長を含むノ^レス光を放射するパルス光放射手段 5と、このパル ス光放射手段 5からのパルス光が照射された試料 8からの反射パルス光の電界強度 の時系列信号を検出する検出手段 12と、を備えている。
パルス光放射手段 5と検出手段 12との間には、試料 8を保持する試料保持部 31と、 パルス光放射手段側からのパルス光を試料へ導光する試料部入射光学系 32,33,34 と、この照射によって試料力 反射したパルス光を検出手段 12側へ導光する試料部 出射光学系 35,36,37と、が設けられている。
[0049] さらに、時系列変換パルス分光計測装置 20は、少なくとも一の測光域設定用の光 路長変更手段 (図 2の場合、コーナーキューブミラー) 41と、少なくとも一の時系列信号 測定用の光学的遅延手段 42(図 2の場合、コーナーキューブミラー)とを備えている。こ こで、光路長変更手段 41は、走查することができる可動型の反射器である。
また、測光域設定用の光路長変更手段 41及び時系列信号測定用の光学的遅延手 段 42には自動で走査する駆動装置 (図示せず)が備えられ、さらにこの駆動装置を自 動的に制御するコンピュータ制御装置 (図示せず)が備えられている。(但し、反射器 41及び 42は、前者が時系列信号測定用で後者が測光域設定用でも構わない。 ) さらに、試料保持部 31と試料部入出射光学系 32,33,34,35,36,37とは、この時系列 変換パルス分光計測装置に着脱交換可能な付属光学ユニット 30内に備えられてい る。
[0050] パルス光放射手段 5と付属光学ユニット 30との間の入射側光路には、光学要素とし て、楕円鏡 (非球面鏡) 26と平面鏡 27とが設置されている。楕円鏡 26は、パルス光放 射手段 5からのパルス光を集光する。平面鏡 27は、パルス光放射手段 5と楕円鏡 26と の間に配置されており、パルス光放射手段 5からのパルス光を折り返す機能を果たす 。なお、楕円鏡 26及び平面鏡 27は、本実施形態のように 1つずっとしても良いが、複 数を組み合わせて用いることもできる。
[0051] 検出手段 12と付属光学ユニット 30との間の検出側光路には、光学要素として、楕円 鏡 (非球面鏡) 28と平面鏡 29とが設置されている。楕円鏡 28は、試料 8からの反射パ ノレス光を集光する。平面鏡 29は、楕円鏡 28と検出手段 12との間に配置されており、 楕円鏡 28からの反射パルス光を折り返す機能を果たす。なお、楕円鏡 28及び平面鏡 29は、本実施形態のように 1つずっとしても良レ、が、複数を組み合わせて用いることも できる。
[0052] 光学要素である楕円鏡 26,平面鏡 27,楕円鏡 28,平面鏡 29及び図示しない他の光学 系は、この付属光学ユニット 30に対して光学的整合を有するように光学設計がなされ ている。
本実施形態の場合、試料からの反射パルス光の電界強度の時系列信号を検出す る構成となっている。もちろん、透過パルス光の電界強度の時系列信号を検出する 構成としてもよい。
[0053] 概略以上のような構成を備えた本発明の時系列変換パルス分光計測装置におい て、試料測定の準備は以下のように行われる。
まず、測定する試料 8を付属光学ユニット 30内の試料保持部 31に取り付ける。次い で、付属光学ユニット 30を時系列変換パルス分光計測装置 20に装着する。次に、こ の付属光学ユニット 30内の試料部入出射光学系 32,33,34,35,36,37に固有の光路長 に対する出力信号の時系列配置の原点を設定するために、図示しない駆動装置及 びコンピュータ制御装置を作動して測光域設定用の反射器 41を走査する。こうして、 試料測定の準備が完了する。
試料測定は、本発明の時系列変換パルス分光計測装置も図 1で示した従来装置と 実質的に同様に作用する。
[0054] すなわち、光源 1から放射されたパルスレーザー光 L1は、分割手段 2によって励起 用パルスレーザー光 (ポンプパルス光) L2と検出用パルスレーザー光 (サンプリングパ ノレス光) L3とに分割される。
励起用パルスレーザー光 L2はレンズ 4を介してパルス光放射手段 5に照射される。 この照射によってパルス光放射手段 5は遠赤外電磁波パルスを放射する。この遠赤 外電磁波パルスは、平面鏡 27によってその光路を折り返された後に、楕円鏡 26へと 導かれ、集光される。付属光学ユニット 30内に導光された遠赤外電磁波パルスは、試 料部入射光学系 32,33,34を介して集光されて試料 8に照射される。試料 8の光学的情 報を含んで試料 8から反射された反射パルス電磁波は、試料部入射光学系 35,36,37 を介して付属光学ユニット 30の外の楕円鏡 28で反射された後に、平面鏡 29で折り返 され、さらに検出手段 12へ導光される。
[0055] 他方、分割手段 2で分割された検出用パルスレーザー光 L3は、検出手段 12をその 瞬間だけ導電性として、その瞬間に到達した試料 8からの反射ノ^レス電磁波の電場 強度を電流として検出することを可能としている。ここで、反射器 42によって、励起用 パルスレーザー光 L2に対して検出用パルスレーザー光 L3に所定の時間間隔づっ遅 延時間差を付与することにより、試料 8からの反射パルス電磁波の電場強度の時系 列信号を得ることができる。
図示していないが、この時系列変換パルス分光計測装置は、時間原点の調整専用 の反射器を備えてもよい。
[0056] このように、本実施形態によれば、パルス光放射手段 5と楕円鏡 26との間に配置さ れた平面鏡 27により、パルス光放射手段 5から放射されたパルス光が折り返されること になる。これにより、パルス光放射手段 5と楕円鏡 26との光路長を長くとることができ、 楕円鏡 26によって集光される光束の焦点面積を可及的に小さくすることができ、ひい ては測定対象となる試料 8の空間分解能を向上させることができる。
また、平面鏡 27によりパルス光を折り返すこととしているので、光路長を長くとりつつ も、装置を極めてコンパクトに構成することができる。
また、パルス光放射手段 5と楕円鏡 26との光路長を長くとることができるので、所望 の焦点面積を維持しながら楕円鏡 26と試料 8との間の距離を大きくとることができる。 これにより、付属光学ユニット 30を設置するスペースが十分に確保されるので、分析 作業を容易にすることができる。
[0057] 検出手段 12と付属光学ユニット 30との間の検出側光路も入射側光路と同様に、楕 円鏡 28と検出手段 12との間に平面鏡 29を配置して光路長を長くとる構成としたので、 楕円鏡 28によって集光される光束の焦点面積を可及的に小さくすることができ、ひい ては測定対象となる試料 8の空間分解能を向上させることができる。また、入射側光 路と同様に、装置をコンパ外に構成でき、付属光学ユニット 30を設置するスペースが 十分に確保される。
[0058] 図 3(a)に、本発明の時系列変換パルス分光計測装置時系列信号取得のための光 路差補償機構の他の実施形態の概略構成を示す。
[0059] この実施形態では、前記分割手段から前記パルス光放射手段までの入射側光路 及び/又は前記分割手段から前記検出手段までの検出側光路において、複数の光 路長変更手段及び/又は光学的遅延手段 (図 3の場合、反射器)が反射器に入射及 び反射する光路を平行にして光路をずらした状態で対向配置されてレ、る。図の場合 、反射器はコーナーキューブミラーである。この構成において、走査機構に入射した パルスレーザー光 L2又は L3は、コーナーキューブミラー 51,52,53、…に順に反射さ れて、走査機構の外へ導光されて、パルス光放射手段 5又は検出手段 12へ送られる
[0060] このような構成のため、 1個の反射器の場合と比較して、反射器の数の分だけの光 路長の変更が可能である。また、このような構成によって、反射器の走査方向にはス ペースが十分はなレ、が走查方向に直交する方向には十分スペースがある場合にも、 大きな光路長の変更を可能とすることができる。この実施形態において、図 3(b)のよう に、図 3(a)のような構成の走查機構が入射側光路及び/又は検出側光路において並 列に配置されてもよい。
[0061] 図 3(b)のように、図 3(a)のような構成の光路長変更手段及び/又は光学的遅延手段 が入射側光路及び/又は検出側光路において並列に配置されてもよい。
[0062] 図 4に、本発明の時系列変換パルス分光計測装置の時系列信号取得のための光 路差補償機構の他の実施形態の概略構成を示す。
[0063] この実施形態では、測光域設定用の反射器 (図の場合、コーナーキューブミラー)及 び時系列信号測定用の反射器 (図の場合、コーナーキューブミラー)のそれぞれが、 2 個づっ (61及び 62と 63及び 64)並置されて同時に走查するように構成され、測光域設 定用の反射器 61,62と時系列信号測定用の反射器 63,64とが光路をずらした状態で 対向配置されている。この構成において、分割手段 2で分割された励起用パルスレー ザ一光 L2又は検出用パルスレーザー光 L3は、ミラー 65で反射された後、走查機構に 入り、測光域設定用及び時系列信号測定用の反射器 63,61,64及び 62に順に反射さ れて走查機構の外へ導光され、さらに、ミラー 66及び 67で反射されてパルス光放射 手段 5又検出手段 12へ送られる。
[0064] このような構成であるため、 1個のコーナーキューブミラーの場合と比較して、反射 器の走查に対して 2倍の光路長の変更が可能となるという特徴を有する。従って、迅 速な測光域設定及び時系列信号測定用の設定が可能となるという効果を奏する。図 4の構成を光路長変更手段、光学的遅延手段のレ、ずれに用いてもょレ、。
[0065] 図 5(a)に、本発明の時系列変換パルス分光計測装置時系列信号取得のための光 路差補償機構の他の実施形態の概略構成を示す。
[0066] 図 5(a)の実施形態では、測定域設定用の光路長変更手段 81,82,83,…は可動型又 は固定型の反射器であり、この反射器のいずれかは、少なくともこの反射器へのパル ス光の入射側に、この反射器へのパルス光の通過又は阻止を行うゲート手段
71,73,75を備え、この通過又は阻止の切り換えによって、一又は二以上の反射器 81,82,83,…を経由した光路を付加して光路長を延長すること、及び/又は、一又は二 以上の反射器 81,82,83,…をスキップして光路長を短縮することができる。また、図 5の 場合、ゲート手段は反射鏡であり、反射器 81,82,83,…からの反射したパルス光を隣 接する反射器側へ反射する反射鏡 72,74,…を備えている。この実施形態では、少な くとも一の反射鏡 (ゲート手段)の通過 ·阻止は反射鏡の回動によって反射鏡の光路 への揷脱することによって行われる。図中で反射鏡の近傍に付した矢印及び反射鏡 を示す実線及び点線は、反射鏡の通過'阻止の切り換えの様子を模式的に示したも のである。 [0067] この実施形態の作用について、図 5(a)の一部を拡大した図 5(b)を用いて説明する。 例えば、切り換え前に、反射鏡 71が光路中に挿入されており (実線)かつ反射鏡 72(実 線)が光路中から外されている場合には、レーザー光 L4は反射鏡 71で反射されて L41 となり L5として進んでいく。この場合、反射器 81がスキップされている。これに対して、 反射鏡 71,72を切り換えて点線のように反射鏡 71が光路中から外されかつ反射鏡 72 が光路中へ挿入されている場合には、レーザー光 L4は L42として反射器 81で反射さ れて L43となりさらに反射されて L44となり、反射鏡 72で反射されて L5として進んでいく 。こうして、切り換えによって反射器 81を経由した光路長が付加される。これに対して 、この切り換えの順序を逆にすれば、逆に、反射器 81を経由する光路がなくなり、光 路長が短縮される。図 5の構成を光路長変更手段、光学的遅延手段のいずれに用い てもよい。
[0068] 図 6に、本発明の時系列変換パルス分光計測装置の時系列信号取得のための光 路差補償機構の他の実施形態の概略構成を示す。
[0069] この実施形態では、用途に応じて複数の反射器 101, 102,…が適切な位置に配備さ れており、ゲート手段 91,93, · "及び隣接した反射器へ送る反射鏡 92,94, · · ·によって光 路長の変更する構成である。図 6の場合、ゲート手段は反射鏡である。
[0070] この実施形態において、ゲート手段 91,93,…及び隣接した反射器へ送る反射鏡
92,94,…が実線の位置に配置している場合、光路長変更手段に入射したパルス光は 、まず、ゲート手段 91で反射され、反射鏡 92,ゲート手段 93,及び反射鏡 94の傍らを通 過し、反射鏡 95で反射されて外部へ導光される。この場合、反射器 101及び 102を用 レ、た試料の測定を行わない場合である。他方、ゲート手段 91及び反射鏡 92が点線の 位置に切り換えることによって、パルス光は反射器 101を用いた試料の測定 (図では、 反射測定)が可能となる。さらに、ゲート手段 91及び反射鏡 92を実線の位置に切り換 え、さらに、ゲート手段 93及び反射鏡 94を点線の位置に切り換えることによって、反射 器 102を用いた試料の測定 (図では、ガスセル測定)が可能となる。
[0071] 図 7(a)及び図 7(b)に、時系列変換パルス分光計側装置の時系列信号取得のための 光路差補償機構の他の実施形態の概略構成を示す。
[0072] この実施形態では、少なくとも一のゲート手段 112の通過又は阻止は、該ゲート手 段 112の並進移動による光路への挿脱によって行われる。特に図 7の場合、ゲート手 段 112と反射器 115とは共に移動装置 116の上に装備されている。さらに、反射器 115 力 反射されたパルス光を反射鏡 114へ反射して送る反射鏡 113も移動装置 116に装 備されている。図の場合、ゲート手段 112は反射鏡である。
この場合、移動装置 116が図 7(a)の位置に配置しているときは、反射鏡 111から反射 されてきたパルス光は、ゲート手段 112及び反射鏡 113の傍らを通過して反射鏡 114 に反射されて外へ導光される。移動装置 116が図 7(a)の位置から図 7(b)の位置に移動 させると、ゲート手段 112及び反射鏡 113と反射器 115とが共に並進移動して、反射器 115を経由した光路が付加されて光路長が延長され、反射器 115を用いた測定が可 能となる。

Claims

請求の範囲
[1] パルスレーザー光源と、
該パルスレーザー光源からのパルスレーザー光を励起用パルスレーザー光と検出 用パルスレーザー光とに分割する分割手段と、
前記励起用パルスレーザーの照射により遠赤外波長域の波長を含むパルス光を 放射するパルス光放射手段と、
該パルス光放射手段からのパルス光が照射された試料からの反射又は透過パルス 光の電界強度の時系列信号を検出する検出手段と、
試料を保持する試料保持部と、
パルス光放射手段側からのパルス光を試料へ導光すると共に、該照射によって試 料から反射又は透過したパルス光を検出手段側へ導光する試料部入出射光学系と 、を備えた時系列変換パルス分光計測装置において、
前記分割手段から前記パルス光放射手段までの入射側光路及び/又は前記分割 手段から前記検出手段までの検出側光路に配置された少なくとも一の測光域設定 用の光路長変更手段と、
前記分割手段から前記パルス光放射手段までの入射側光路及び/又は前記分割 手段から前記検出手段までの検出側光路に配置された少なくとも一の前記時系列 信号測定用の光学的遅延手段と、を備えたことを特徴とする時系列変換パルス分光 計測装置。
[2] 前記測定域設定用の光路長変更手段は可動型の反射器であることを特徴とする請 求項 1に記載の時系列変換パルス分光計測装置。
[3] 前記測定域設定用の光路長変更手段は可動型又は固定型の反射器であり、 該反射器のいずれかは、該反射器へのパルス光の入射側に該反射器へのパルス 光の通過又は阻止を行うゲート手段を備え、前記通過又は阻止の切り換えによって、 一又は二以上の前記反射器を経由した光路を付加して光路長を延長すること、及び /又は、一又は二以上の前記反射器をスキップして光路長を短縮することを可能とす ることを特徴とする請求項 1に記載の時系列変換パルス分光計測装置。
[4] 少なくとも一の前記ゲート手段の通過又は阻止は、該ゲート手段の並進移動による 光路への挿脱によって行われることを特徴とする請求項 3に記載の時系列変換パノレ ス分光計測装置。
[5] 少なくとも一の前記ゲート手段の通過又は阻止は、該ゲート手段の回動による光路 への揷脱によって行われることを特徴とする請求項 3に記載の時系列変換パルス分 光計測装置。
[6] 前記光路長変更手段及び/又は前記光学的遅延手段を自動で走査する駆動装置 と、該駆動装置を自動的に制御するコンピュータ制御装置とを備えたことを特徴とす る請求項 1から 5のいずれか一項に記載の時系列変換パルス分光計測装置。
[7] 前記試料保持部と前記試料部入出射光学系とは前記時系列変換パルス分光計測 装置に着脱交換可能な付属光学ユニット内に備えられていることを特徴とする請求 項 1から 6のいずれか一項に記載の時系列変換パルス分光計測装置。
[8] 前記付属光学ユニットに対して光学的整合を有するように光学設計がなされている ことを特徴とする請求項 7に記載の時系列変換パルス分光計測装置。
[9] パルスレーザー光源と、
該パルスレーザー光源からのパルスレーザー光を励起用パルスレーザー光と検出 用パルスレーザー光とに分割する分割手段と、
前記励起用パルスレーザーの照射により遠赤外波長域の波長を含むパルス光を 放射するパルス光放射手段と、
該パルス光放射手段からのパルス光が照射された試料からの反射又は透過パルス 光の電界強度の時系列信号を検出する検出手段と、
試料を保持する試料保持部と、
パルス光放射手段側からのパルス光を試料へ導光すると共に、該照射によって試 料力 反射又は透過したパルス光を検出手段側へ導光する試料部入出射光学系と 、を備えた時系列変換パルス分光計測装置において、
前記パルス光放射手段から前記試料部入出射光学系にかけて、および/または、 前記検出手段から前記試料部入出射光学系にかけて、一又は複数の平面鏡および 一又は複数の非球面鏡が、この順番で配置されてレ、ることを特徴とする時系列変換 パルス分光計測装置。 [10] パルスレーザー光源と、
該パルスレーザー光源からのパルスレーザー光を励起用パルスレーザー光と検出 用パルスレーザー光とに分割する分割手段と、
前記励起用パルスレーザーの照射により遠赤外波長域の波長を含むパルス光を 放射するパルス光放射手段と、
該パルス光放射手段からのパルス光が照射された試料からの反射又は透過パルス 光の電界強度の時系列信号を検出する検出手段と、
試料を保持する試料保持部と、
パルス光放射手段側からのパルス光を試料へ導光すると共に、該照射によって試 料力 反射又は透過したパルス光を検出手段側へ導光する試料部入出射光学系と 、を備えた時系列変換パルス分光計測装置において、
前記パルス光放射手段から前記試料部入出射光学系にかけて、および/または、 前記検出手段から前記試料部入出射光学系にかけて、一又は複数の平面鏡および 一又は複数の非球面鏡が、この順番で配置されていることを特徴とする請求項 1から 8のいずれかに記載の時系列変換パルス分光計測装置。
PCT/JP2004/011926 2003-08-22 2004-08-19 時系列変換パルス分光計測装置の時系列信号取得のための光路差補償機構 WO2005019809A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20040771887 EP1662249B1 (en) 2003-08-22 2004-08-19 Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer
US10/568,528 US7507966B2 (en) 2003-08-22 2004-08-19 Optical-path-difference compensation mechanism for acquiring wave form signal of time-domain pulsed spectroscopy apparatus
CN2004800237219A CN1839307B (zh) 2003-08-22 2004-08-19 时间序列变换脉冲分光计测装置
JP2005513296A JP4059403B2 (ja) 2003-08-22 2004-08-19 時系列変換パルス分光計測装置の時系列信号取得のための光路差補償機構
US12/371,325 US7705311B2 (en) 2003-08-22 2009-02-13 Optical-path-difference compensation mechanism for acquiring wave from signal of time-domain pulsed spectroscopy apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-299373 2003-08-22
JP2003299373A JP2005069840A (ja) 2003-08-22 2003-08-22 時系列変換パルス分光計測装置の時系列信号取得のための光路差補償機構

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10568528 A-371-Of-International 2004-08-19
US12/371,325 Continuation US7705311B2 (en) 2003-08-22 2009-02-13 Optical-path-difference compensation mechanism for acquiring wave from signal of time-domain pulsed spectroscopy apparatus

Publications (1)

Publication Number Publication Date
WO2005019809A1 true WO2005019809A1 (ja) 2005-03-03

Family

ID=34213756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011926 WO2005019809A1 (ja) 2003-08-22 2004-08-19 時系列変換パルス分光計測装置の時系列信号取得のための光路差補償機構

Country Status (7)

Country Link
US (2) US7507966B2 (ja)
EP (2) EP2442093A3 (ja)
JP (2) JP2005069840A (ja)
KR (2) KR100800037B1 (ja)
CN (2) CN101487793B (ja)
HK (1) HK1131437A1 (ja)
WO (1) WO2005019809A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117664902A (zh) * 2024-01-31 2024-03-08 合肥中科红外精密仪器有限公司 一种改进的多光程开放式怀特池红外光谱分析系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI114824B (fi) * 2003-02-12 2004-12-31 Temet Instr Oy Infrapunamodulaattori spektrometriä varten
JP4769490B2 (ja) * 2005-05-27 2011-09-07 キヤノン株式会社 光路長制御装置
JP4783662B2 (ja) * 2006-04-17 2011-09-28 株式会社ミツトヨ 光路差増倍装置
CN101201322B (zh) * 2006-12-14 2011-05-18 上海通微分析技术有限公司 高灵敏度荧光检测装置
JP5037929B2 (ja) * 2006-12-18 2012-10-03 キヤノン株式会社 テラヘルツ波を用いた対象物の情報取得装置及び方法
KR100905881B1 (ko) * 2007-10-05 2009-07-03 삼성전기주식회사 레이저 측량장치
JP5357531B2 (ja) * 2008-02-05 2013-12-04 キヤノン株式会社 情報取得装置及び情報取得方法
CN101514920B (zh) * 2008-02-20 2010-06-09 厦门大学 紫外分光光度计检测头
US7910891B2 (en) * 2008-09-24 2011-03-22 James Edward Cannon Method and apparatus for photographing “small” x-ray scintillation images at the same(“full”) camera resolution normally available for “large” scintillation images
JP5717335B2 (ja) 2009-01-23 2015-05-13 キヤノン株式会社 分析装置
CN102656597B (zh) * 2009-11-03 2017-07-18 诺基亚技术有限公司 用于将消息和附件组织为会话的方法和装置
US8754566B2 (en) * 2009-12-16 2014-06-17 Nidec Motor Corporation Assembling method for a stator and stator produced thereby
US8378304B2 (en) 2010-08-24 2013-02-19 Honeywell Asca Inc. Continuous referencing for increasing measurement precision in time-domain spectroscopy
US8638443B2 (en) 2011-05-24 2014-01-28 Honeywell International Inc. Error compensation in a spectrometer
CN103888111B (zh) * 2014-04-11 2016-06-01 北京理工大学 基于迈克尔逊干涉仪的脉冲序列调制方法及调制器
CN105203208B (zh) * 2015-09-15 2018-01-30 中国电子科技集团公司第五十研究所 级联快速旋转延迟扫描装置
JP7078956B2 (ja) 2016-04-05 2022-06-01 株式会社分光計測 生体組織力学的物性量観測方法および生体組織力学的物性量観測装置
CN106441580B (zh) * 2016-06-16 2018-07-13 电子科技大学 可变角度入射同时测透射和反射的太赫兹时域光谱仪
CN106291507B (zh) * 2016-07-21 2018-10-30 京东方科技集团股份有限公司 检测光测距装置及测距方法
US11092552B2 (en) * 2017-07-10 2021-08-17 Shimadzu Corporation Flame atomic absorption spectrophotometer
EP3550328B1 (en) * 2018-04-04 2023-05-31 Melexis Technologies NV Pulsed-light detection and ranging apparatus and method of detection and ranging of an object in a pulsed light detection and ranging system
KR102079864B1 (ko) 2018-06-27 2020-02-19 한국전력공사 순간압력센서 시험장치 및 시험방법
CN111045200A (zh) * 2019-11-29 2020-04-21 安徽省生态环境监测中心(安徽省重污染天气预报预警中心) 一种用于延长光程的光反射组件
CN110849809A (zh) * 2019-12-19 2020-02-28 中国科学院长春光学精密机械与物理研究所 一种多档可变气体吸收池

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108845A (ja) * 1997-03-14 1999-04-23 Lucent Technol Inc 検査対象物の組成画像をリアルタイムで提供する方法
WO2000050859A1 (en) 1999-02-23 2000-08-31 Teraprobe Limited Method and apparatus for terahertz imaging
JP2000275105A (ja) 1999-03-25 2000-10-06 Jasco Corp 赤外分光装置
JP2001066375A (ja) 1999-08-31 2001-03-16 Communication Research Laboratory Mpt サブテラヘルツ電磁波を用いた粉粒体中異物検査装置およびその検査方法
JP2001141567A (ja) 1999-11-10 2001-05-25 Jasco Corp 赤外分光装置
JP2002098634A (ja) 2000-03-27 2002-04-05 Tochigi Nikon Corp 半導体の電気特性評価装置および電気特性評価方法
JP2002243416A (ja) 2001-02-13 2002-08-28 Tochigi Nikon Corp 厚み測定方法及び装置並びにウエハ
JP2002257629A (ja) 2001-02-27 2002-09-11 Communication Research Laboratory 電磁波検出装置および検出方法
JP2002277393A (ja) 2001-03-15 2002-09-25 Tochigi Nikon Corp 測定方法及び装置、並びに、イメージ化方法及び装置
JP2002277394A (ja) 2001-03-15 2002-09-25 Mitsuo Takeda 誘電体物質の光物性定数の光学的測定方法及びその装置並びにその装置を組み込んだ製造システム
JP2003014620A (ja) 2001-06-27 2003-01-15 Matsushita Electric Ind Co Ltd 偏光解析装置及び偏光解析方法
JP2003075251A (ja) 2001-09-06 2003-03-12 Communication Research Laboratory テラヘルツ光等の検出方法及び装置、並びに、これを用いたテラヘルツ光装置及びイメージ化装置
JP2003083888A (ja) 2001-09-10 2003-03-19 Communication Research Laboratory テラヘルツ電磁波時間分解分光装置
JP2003121355A (ja) 2001-10-10 2003-04-23 Tochigi Nikon Corp 試料情報取得方法及びテラヘルツ光装置
JP2003131137A (ja) 2001-10-24 2003-05-08 Tochigi Nikon Corp テラヘルツ光供給光学系、テラヘルツ光検出光学系、及びこれを用いたテラヘルツ光装置
WO2003058212A1 (en) 2001-12-28 2003-07-17 Nikon Corporation Spectral measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650030B1 (en) * 1989-09-25 1999-05-12 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of evaluating multilayer thin films
JPH05115485A (ja) 1991-10-25 1993-05-14 Hitachi Ltd 生体光計測装置
JP4368082B2 (ja) * 1999-06-21 2009-11-18 浜松ホトニクス株式会社 テラヘルツ波分光器
JP3896532B2 (ja) 1999-07-09 2007-03-22 独立行政法人科学技術振興機構 テラヘルツ帯複素誘電率測定装置
JP2001275103A (ja) 2000-03-23 2001-10-05 Matsushita Electric Ind Co Ltd 監視システム及びその動き検出方法
JP2004003902A (ja) * 2002-06-03 2004-01-08 Tochigi Nikon Corp テラヘルツ光を用いた平面基板の電気特性測定方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108845A (ja) * 1997-03-14 1999-04-23 Lucent Technol Inc 検査対象物の組成画像をリアルタイムで提供する方法
WO2000050859A1 (en) 1999-02-23 2000-08-31 Teraprobe Limited Method and apparatus for terahertz imaging
JP2000275105A (ja) 1999-03-25 2000-10-06 Jasco Corp 赤外分光装置
JP2001066375A (ja) 1999-08-31 2001-03-16 Communication Research Laboratory Mpt サブテラヘルツ電磁波を用いた粉粒体中異物検査装置およびその検査方法
JP2001141567A (ja) 1999-11-10 2001-05-25 Jasco Corp 赤外分光装置
JP2002098634A (ja) 2000-03-27 2002-04-05 Tochigi Nikon Corp 半導体の電気特性評価装置および電気特性評価方法
JP2002243416A (ja) 2001-02-13 2002-08-28 Tochigi Nikon Corp 厚み測定方法及び装置並びにウエハ
JP2002257629A (ja) 2001-02-27 2002-09-11 Communication Research Laboratory 電磁波検出装置および検出方法
JP2002277393A (ja) 2001-03-15 2002-09-25 Tochigi Nikon Corp 測定方法及び装置、並びに、イメージ化方法及び装置
JP2002277394A (ja) 2001-03-15 2002-09-25 Mitsuo Takeda 誘電体物質の光物性定数の光学的測定方法及びその装置並びにその装置を組み込んだ製造システム
JP2003014620A (ja) 2001-06-27 2003-01-15 Matsushita Electric Ind Co Ltd 偏光解析装置及び偏光解析方法
JP2003075251A (ja) 2001-09-06 2003-03-12 Communication Research Laboratory テラヘルツ光等の検出方法及び装置、並びに、これを用いたテラヘルツ光装置及びイメージ化装置
JP2003083888A (ja) 2001-09-10 2003-03-19 Communication Research Laboratory テラヘルツ電磁波時間分解分光装置
JP2003121355A (ja) 2001-10-10 2003-04-23 Tochigi Nikon Corp 試料情報取得方法及びテラヘルツ光装置
JP2003131137A (ja) 2001-10-24 2003-05-08 Tochigi Nikon Corp テラヘルツ光供給光学系、テラヘルツ光検出光学系、及びこれを用いたテラヘルツ光装置
WO2003058212A1 (en) 2001-12-28 2003-07-17 Nikon Corporation Spectral measuring device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOJIMA S. ET AL.: "Terahertz time domain spectroscopy of complex dielectric constants of boson peaks", JOURNAL OF MOLECULAR STRUCTURE, vol. 651-653, 1 June 2003 (2003-06-01), pages 285 - 288, XP002904117 *
See also references of EP1662249A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117664902A (zh) * 2024-01-31 2024-03-08 合肥中科红外精密仪器有限公司 一种改进的多光程开放式怀特池红外光谱分析系统

Also Published As

Publication number Publication date
HK1131437A1 (en) 2010-01-22
JP2005069840A (ja) 2005-03-17
EP2442093A3 (en) 2017-03-15
EP2442093A2 (en) 2012-04-18
EP1662249A4 (en) 2008-02-13
KR100852453B1 (ko) 2008-08-14
KR100800037B1 (ko) 2008-01-31
EP1662249A1 (en) 2006-05-31
JP4059403B2 (ja) 2008-03-12
KR20060054443A (ko) 2006-05-22
EP1662249B1 (en) 2014-10-15
US20090152469A1 (en) 2009-06-18
CN1839307B (zh) 2010-05-05
CN1839307A (zh) 2006-09-27
JPWO2005019809A1 (ja) 2007-11-08
US20060278830A1 (en) 2006-12-14
US7705311B2 (en) 2010-04-27
US7507966B2 (en) 2009-03-24
CN101487793A (zh) 2009-07-22
KR20070052364A (ko) 2007-05-21
CN101487793B (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2005019809A1 (ja) 時系列変換パルス分光計測装置の時系列信号取得のための光路差補償機構
JP6333257B2 (ja) 長波長赤外線の検出および長波長赤外光源を用いた画像処理
JP6113730B2 (ja) 放出及び透過光学分光計
US4875773A (en) Optical system for a multidetector array spectrograph
WO2007121593A1 (en) Method for measurement and determination of concentration within a mixed medium
US4691110A (en) Laser spectral fluorometer
JP4237363B2 (ja) 赤外分光装置
CN114729882A (zh) 分光分析装置以及分光分析方法
EP3175221B1 (en) Raster optic device for optical hyper spectral scanning
WO2013148368A1 (en) Multi-spectral terahertz source and imaging system
US20070064230A1 (en) Broadband laser spectroscopy
JP3992390B2 (ja) 分光分析方法
JP4632373B2 (ja) 時系列変換パルス分光計測装置
US11592680B2 (en) Apparatus and method for measuring spectral components of Raman scattered light
JP4031360B2 (ja) テラヘルツ光を用いた測定装置
JP3830483B2 (ja) 反射分光スペクトル観測のための光学配置
JPH08313348A (ja) 赤外光時間応答測定装置
US8749779B2 (en) Spectrometer
JP5740781B2 (ja) 分光装置
CN118483211A (zh) 基于级联光谱仪的拉曼光谱测试系统及其测试方法
JPH05215604A (ja) 分光分析装置
JPH07270237A (ja) エシェル型分光器を用いた分光分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023721.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006278830

Country of ref document: US

Ref document number: 1020067003365

Country of ref document: KR

Ref document number: 10568528

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004771887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005513296

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020067003365

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004771887

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10568528

Country of ref document: US