WO2005019320A1 - 混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品 - Google Patents

混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品 Download PDF

Info

Publication number
WO2005019320A1
WO2005019320A1 PCT/JP2004/012212 JP2004012212W WO2005019320A1 WO 2005019320 A1 WO2005019320 A1 WO 2005019320A1 JP 2004012212 W JP2004012212 W JP 2004012212W WO 2005019320 A1 WO2005019320 A1 WO 2005019320A1
Authority
WO
WIPO (PCT)
Prior art keywords
polytetrafluoroethylene
resin
molded article
porous
powder
Prior art date
Application number
PCT/JP2004/012212
Other languages
English (en)
French (fr)
Inventor
Yasuhiko Sawada
Hiroyuki Yoshimoto
Shunji Kasai
Shuji Tagashira
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP20040786425 priority Critical patent/EP1661942A1/en
Priority to JP2005513353A priority patent/JPWO2005019320A1/ja
Priority to US10/569,455 priority patent/US20070009727A1/en
Publication of WO2005019320A1 publication Critical patent/WO2005019320A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/24Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to a mixed polytetrafluoroethylene powder, a polytetrafluoroethylene porous molded article, a method for producing the same, a polytetrafluoroethylene porous foam molded article, and a product for high-frequency signal transmission.
  • the resin that constitutes the insulating material has a low dielectric constant and a low dielectric loss tangent (tan 5), which contributes to a reduction in dielectric loss, and is also excellent in other properties such as heat resistance. It is desirable to use a fluorine-containing resin.
  • a material using a polytetrafluoroethylene resin as an insulating material a coaxial material obtained by mixing a foaming polytetrafluoroethylene powder with a pore forming agent, a swelling agent and a lubricant and extruding the mixture is used.
  • a cable has been proposed (for example, see Patent Document 2).
  • Patent Document 2 there is no description about the production method of expanded polytetrafluoroethylene, etc., and it is considered that a molded body cannot be obtained in practice and the insulating material surface is flared.
  • the polytetrafluoroethylene resin porous material As the polytetrafluoroethylene resin porous material, as the resin, fired powder of polytetrafluoroethylene or fired powder of polytetrafluoroethylene and 1% by weight of tetrafluoroethylene / perfluoroethylene are used. There has been proposed a method in which a mixture with a vinyl ether copolymer [PFA] powder is used, and a preformed body formed by pressing is calcined (for example, see Patent Document 3).
  • PFA vinyl ether copolymer
  • the polytetrafluoroethylene resin porous body uses polytetrafluoroethylene powder which has been baked and cured in advance, and the powder particles are subjected to pressure during pre-molding.
  • the porous body is obtained by arranging the particles so as not to be completely crushed, and by baking and bonding the contacts between the powder particles, which is completely different from the present invention described later.
  • Patent Document 1 International Publication No. 03/00792 pamphlet
  • Patent Document 2 JP-A-60-93709
  • Patent Document 3 JP-A-61-66730
  • an object of the present invention is to provide a polytetrafluoroethylene porous molded article and a polytetrafluoroethylene porous foam molded article in which fine air bubbles are uniformly distributed, and to obtain these molded articles.
  • An object of the present invention is to provide a mixed polytetrafluoroethylene powder which can be produced and a product for transmitting a high-frequency signal.
  • the present invention is characterized in that the specific gravity is 0.9-2.0, and the aspect ratio of the voids formed inside the molded product is 1 or more and 3 or less. It is a porous molded body.
  • the present invention relates to a polytetrafluoro having an endothermic curve having a maximum peak temperature of 333-347 ° C and a standard specific gravity of 2.12-2.20, which appears on a crystal melting curve obtained by a differential scanning calorimeter.
  • the present invention is a polytetrafluoroethylene porous molded article obtained by using the mixed polytetrafluoroethylene powder, and the specific gravity of the porous polytetrafluoroethylene molded article is 0.9-2. 0, and the aspect ratio of voids formed inside the molded article is 1 or more and 3 or less.
  • the present invention relates to a method for producing a polytetrafluoroethylene porous molded article, comprising molding the mixed polytetrafluoroethylene powder using the mixed polytetrafluoroethylene powder.
  • the polymer is composed of a polytetrafluoroethylene resin (A) having a maximum endothermic curve peak temperature of 333 347 ° C and a standard specific gravity of 2.12-2.20 (A), which appears on the crystal melting curve of the differential scanning calorimeter. ⁇ It is composed of polytetrafluoroethylene resin (B) whose endothermic force appearing on the crystal melting curve by a calorimeter has a maximum peak temperature of 324 330 ° C and a standard specific gravity of 2.12-2.20.
  • the molding process is a method for producing a polytetrafluoroethylene porous molded body, comprising a step of firing at a temperature not lower than the melting point of the polytetrafluoroethylene resin (A).
  • the present invention relates to a polytetrafluoroethylene porous foam comprising a polytetrafluoroethylene resin (P) and a thermoplastic resin (Q) having a melt viscosity at 350 ° C of 5000 OOOPa's or less.
  • a foam molded article, the polytetrafluoroethylene porous foam molded article has a specific gravity of 0.8 to 1.9, and the aspect ratio of voids formed inside the molded article is 1 or more, 3 or less. It is a polytetrafluoroethylene porous foam molded article characterized by the following.
  • the present invention provides a method for producing the above-mentioned polytetrafluoroethylene porous foam molded article, wherein the above-mentioned method for producing a polytetrafluoroethylene porous foam molded article comprises a polytetrafluoroethylene resin.
  • the above-mentioned method for producing a polytetrafluoroethylene porous foam molded article comprises a polytetrafluoroethylene resin.
  • Q thermoplastic resin whose melt viscosity at 350 ° C is 500,000 Pa's or less
  • the present invention relates to a high-frequency signal transmission product characterized by using the above-mentioned polytetrafluoroethylene porous molded article, or the above-mentioned polytetrafluoroethylene porous foam molded article. is there.
  • the present invention is a filter characterized by using the above polytetrafluoroethylene porous molded body.
  • the polytetrafluoroethylene porous molded article of the present invention has a specific gravity of 0.9-2.0.
  • the “polytetrafluoroethylene porous molded article” is a molded article obtained by using a polytetrafluoroethylene resin.
  • the polytetrafluoroethylene porous molded article is preferably a molded article obtained by using only a polytetrafluoroethylene resin as a resin component.
  • polytetrafluoroethylene resin examples include, for example, those exemplified below. Among them, tetrafluoroethylene resin (A) and tetrafluoroethylene resin (B) described later are preferred. More preferably, a resin consisting solely of a tetrafluoroethylene resin (A) and a tetrafluoroethylene resin (B) is more preferable.
  • the lower limit of the above specific gravity is preferably 1.2 in terms of mechanical strength.
  • the specific gravity is relatively low as in the above range because a large number of air bubbles are present, and these air bubbles enable a low dielectric constant.
  • the above specific gravity is a value measured by a water displacement method based on ASTM D792.
  • the aspect ratio of the voids formed inside the molded article is 1 or more and 3 or less.
  • the upper limit of the aspect ratio is preferably 2 in terms of mechanical strength.
  • the above aspect ratio can be determined by measuring the longest diameter and the shortest diameter of the void in an arbitrary cross section of the polytetrafluoroethylene porous molded article of the present invention.
  • the polytetrafluoroethylene porous molded article of the present invention has a high mechanical strength because the aspect ratio is within the above range. [0022] Since the polytetrafluoroethylene porous molded article of the present invention has the above specific gravity and the above aspect ratio respectively within the above ranges, it has a low relative dielectric constant and is excellent in shape stability. It can be suitably used as a material for products for high-frequency signal transmission.
  • the mixed polytetrafluoroethylene powder of the present invention comprises a polytetrafluoroethylene resin (A) and a polytetrafluoroethylene resin (B).
  • the polytetrafluoroethylene resin (A) has a maximum endothermic peak temperature of an endothermic curve appearing on a crystal melting curve obtained by a differential scanning calorimeter (hereinafter, may be referred to as "maximum endothermic peak temperature").
  • the force S333 is 347 ° C
  • the polytetrafluoroethylene resin (B) has a maximum endothermic peak temperature of 324-330 ° C.
  • the polytetrafluoroethylene resin (A) and the polytetrafluoroethylene resin (B) are different from each other in that the maximum endothermic peak temperature is different.
  • the monomer composition and the average molecular weight of the constituent polymer Other properties such as may be the same, or different, may be different.
  • the polytetrafluoroethylene resin generally has a maximum endothermic peak temperature (hereinafter, referred to as "primary maximum endothermic peak temperature”) when a powder obtained by drying a wet powder obtained by polymerization is heated for the first time.
  • the maximum endothermic peak temperature (hereinafter referred to as the “secondary maximum endothermic peak temperature”) is 333-347 ° C, and is measured for those that have a history of heating to a temperature higher than the primary maximum endothermic peak temperature. 324-330 ° C.
  • the polytetrafluoroethylene resin (A) has a maximum endothermic peak temperature of 333-347 ° C, that is, a primary maximum endothermic peak temperature.
  • Polytetrafluoroethylene resin with no history of heating to temperature In this specification, the absence of a history of heating the polytetrafluoroethylene resin to a temperature equal to or higher than the primary maximum endothermic peak temperature may be referred to as “unfired”.
  • a more preferred lower limit of the maximum endothermic peak temperature of the polytetrafluoroethylene resin (A) is 337 ° C, and a more preferred upper limit is 343 ° C.
  • the crystal melting curve was measured at a heating rate of 10 ° C./min. It is.
  • the fluoropolymer constituting the polytetrafluoroethylene resin (A) may be a tetrafluoroethylene [TFE] homopolymer or a copolymer of TFE and a trace monomer other than TFE. In addition, it may be non-melted (hereinafter, referred to as modified polytetrafluoroethylene [modified PTFE]).
  • TFE tetrafluoroethylene
  • modified PTFE modified polytetrafluoroethylene
  • Examples of the above-mentioned trace monomer include perfluoroolefin, perfluoro (alkynolebutyrene), cyclic fluorinated monomer, perfluoroalkylethylene, and the like.
  • Hexafluoropropylene [HFP] and the like can be mentioned as the above perfluoroolefin, and perfluoro (alkyl vinyl ether) and perfluoro (propyl butyl ether) can be mentioned as the perfluoro (alkyl vinyl ether).
  • Examples of the cyclic fluorinated monomer include fluorodixol and the like, and examples of perfluoroalkylethylene include perfluoromethylethylene and the like.
  • the content of the trace monomer units derived from the trace monomers in the total monomer units is usually in the range of 0.001 to 1 mol%.
  • the “trace amount monomer unit” is a part of the molecular structure of the fluoropolymer, and means a part derived from the corresponding monomer.
  • the TFE unit is a part on the molecular structure of the polymer, a part derived from TFE, and _ (CF-C
  • F is represented by _.
  • the “all monomer units” are all of the moieties derived from monomers in the molecular structure of the polymer.
  • the “content of the trace monomer units to the total monomer units (mol 0/0)”, the monomers derived from the “all monomer units” is, i.e., the total amount of monomers which was to constitute the polymer Means the mole fraction (mol%) of the trace monomer derived from the trace monomer unit.
  • the fluoropolymer constituting the polytetrafluoroethylene resin (A) is preferably a TFE homopolymer from the viewpoint of lowering the relative dielectric constant and the dielectric loss tangent of the obtained molded article.
  • the polytetrafluoroethylene resin (A) preferably has a standard specific gravity [SSG] of 2.2 or less, and usually has a standard specific gravity of 2.12 to 2.20.
  • the lower limit of the above SSG is preferably 2.13, more preferably 2.15, and still more preferably 2.17.
  • a more preferred upper limit is 2.19.
  • SSG Standard Specific Gravity
  • the average primary particle diameter of the resin particles composed of the polytetrafluoroethylene resin (A) is preferably 0.1-0.5 xm in terms of cell uniformity and foaming degree. Les ,. A more preferred lower limit of the average primary particle size is 0.2 / im, and a still more preferred upper limit is 0.3 / im. In the present specification, the average primary particle size is a value obtained by measurement based on a gravity sedimentation method.
  • the polytetrafluoroethylene resin (A) can be produced by a known method such as emulsion polymerization or suspension polymerization. It facilitates paste extrusion such as electric wire extrusion and tube extrusion. And those obtained from emulsion polymerization are preferred.
  • the polytetrafluoroethylene resin (B) has a maximum endothermic peak temperature (maximum endothermic peak temperature) of 324 to 330 ° C. in an endothermic curve appearing on a crystal melting curve by a differential scanning calorimeter. is there.
  • the maximum endothermic peak temperature is the secondary maximum endothermic peak temperature of the above-mentioned polytetrafluoroethylene resin, and therefore, the primary maximum endothermic peak temperature of the polytetrafluoroethylene resin. It is a polytetrafluoroethylene resin that has a history of heating to the above temperatures.
  • the polytetrafluoroethylene resin (B) exhibits a maximum endothermic peak temperature within the above range. As long as it is a fluoropolymer constituting the polytetrafluoroethylene resin (B), it may be a TFE homopolymer, similarly to the polytetrafluoroethylene resin (A). Although the above-mentioned modified PTFE may be used, the TFE homopolymer is preferable in that the obtained molded article has a low relative dielectric constant and a low dielectric loss tangent.
  • the polytetrafluoroethylene resin (B) preferably has a standard specific gravity of 2.2 or less, and usually has a standard specific gravity of 2.12-2.20.
  • the preferred lower limit of the standard specific gravity is 2.13, the more preferred lower limit is 2.14, and the more preferred upper limit is 2.18.
  • the standard specific gravity is a value measured by using a sample formed in accordance with ASTM D-489598 and a water displacement method in accordance with ASTM D-792.
  • the polytetrafluoroethylene resin (B) is obtained by (1) a step of preparing a powder comprising a polytetrafluoroethylene resin by polymerization, and (2) a primary step of preparing the polytetrafluoroethylene resin. It can be obtained by performing a heat treatment at a temperature higher than the maximum endothermic peak temperature, usually at a temperature of 333 ° C or higher, and a cooling step, and (3) a mechanical pulverization step in this order.
  • the above polymerization can be carried out using a known polymerization method such as emulsion polymerization, suspension polymerization, solution polymerization, or the like. From the viewpoint of facilitation, those obtained from emulsion polymerization are preferred.
  • Preparation of the powder in the above step (1) can be performed by a known method according to the polymerization method used.
  • the powder comprising the polytetrafluoroethylene resin obtained in the above step (1) may be a fine powder obtained through emulsion polymerization, or a molding powder obtained through a polymerization method other than emulsion polymerization. Although it depends on the use of the mixed polytetrafluoroethylene powder obtained, fine powder is preferred when performing the paste extrusion described below.
  • a preferable lower limit of the temperature at which the heat treatment is performed is 340 ° C. from the viewpoint that the polytetrafluoroethylene resin can be sufficiently melted. Is 360 ° C., and the preferable upper limit is a temperature lower than the decomposition temperature of the polytetrafluoroethylene resin, but 400 ° C., more preferably 3 90 ° C.
  • the heating time may be appropriately set according to the amount of the powder.
  • the heating may be performed on a tray or may be performed on a conveyor.
  • the heat treatment is preferably carried out with no load by loading the polytetrafluoroethylene into a thickness of about 20 mm in a heat-resistant container such as Why Spat.
  • the polytetrafluoroethylene resin (B) Since the polytetrafluoroethylene resin (B) is obtained through the heat treatment in the step (2), it has the above-mentioned maximum endothermic peak temperature.
  • the method of the mechanical pulverization is not particularly limited, and a method including pulverization using a known pulverizer such as a mixer may be used.
  • the powder made of the polytetrafluoroethylene resin (B) obtained by the mechanical pulverization in the above step (3) preferably has an average particle size of about 500 ⁇ m or less.
  • the average particle diameter is more preferable because the density of the obtained porous molded body is easily reduced, and the lower limit is 10 ⁇ , and the more preferable lower limit is 30 / im.
  • a more preferable upper limit is 300 / im, and a more preferable upper limit is 100 ⁇ or less, in that it is easy to uniformly distribute.
  • the mixed polytetrafluoroethylene powder of the present invention is, for example, an aqueous dispersion in which particles made of the polytetrafluoroethylene resin (A) are dispersed in an aqueous medium, or a polytetrafluoroethylene resin. It can be obtained by mixing a powder consisting of (A) and a powder consisting of polytetrafluoroethylene resin (B).
  • a powder comprising a polytetrafluoroethylene resin (A) is preferred in that the operation is simple and a low-density mixed polytetrafluoroethylene powder is obtained.
  • the dry mixing method (i) in which a powder comprising the polytetrafluoroethylene resin (B) is mixed is preferable, and the polytetrafluoroethylene resin is preferred because the cells are uniform, the diameter of the cells is small, and a porous molded body can be easily obtained.
  • the co-coagulation method (ii) in which the particles comprising (A) are dispersed in an aqueous medium and the aqueous dispersion obtained by co-coagulation with the powder comprising polytetrafluoroethylene resin (B) is preferred. ,.
  • the mixed polytetrafluoroethylene powder of the present invention is obtained by the dry mixing method (i)
  • the polytetrafluoroethylene powder is mixed before mixing with the powder comprising the polytetrafluoroethylene resin (B).
  • Pulverization of resin (A) powder using a Henschel mixer or the like in advance Therefore, it is possible to sufficiently mix the powder composed of the polytetrafluoroethylene resin (A) with the powder composed of the polytetrafluoroethylene resin (B) to make the fibers to some extent. It is preferable because it is possible.
  • the content of the polytetrafluoroethylene resin (B) is determined by comparing the content of the polytetrafluoroethylene resin (A) with the content of the polytetrafluoroethylene resin. (B), preferably 30-80% by mass with respect to the total. If the content is less than 30% by mass, the amount of air bubbles in the porous molded body obtained using the mixed polytetrafluoroethylene powder is reduced, and the amount of added gas of the relative dielectric constant becomes insufficient. In some cases, when the content exceeds 80% by mass, the mechanical strength of the obtained porous molded article may be reduced.
  • a more preferred lower limit of the content of the polytetrafluoroethylene resin (B) is 40% by mass.
  • a still more preferred lower limit is 50% by mass, a more preferred upper limit is 70% by mass, and a still more preferred upper limit is 60% by mass.
  • the mixed polytetrafluoroethylene powder of the present invention may be used in addition to the above-mentioned polytetrafluoroethylene resin (A) and the above-mentioned polytetrafluoroethylene resin (B), and may be nucleated according to the intended use. And known additives such as antioxidants and the like.
  • the mixed polytetrafluoroethylene powder of the present invention is not particularly limited, it can be used as a molding material, and particularly for obtaining a porous molded body in which a large number of air bubbles are distributed in the molded body. It can be suitably used as a molding material for.
  • the mixed polytetrafluoroethylene powder of the present invention is preferably subjected to porous molding by heating to a temperature equal to or higher than the primary maximum endothermic peak temperature of the polytetrafluoroethylene resin to perform molding power. A body that can be obtained.
  • the powder particles constituting the mixed polytetrafluoroethylene powder the powder particles composed of the polytetrafluoroethylene resin (B) were obtained by performing the heat treatment in the step (2) once.
  • the mixed polytetrafluoroethylene powder of the present invention is used and molded, the above poly is hardly shrunk even when heated to a temperature higher than the secondary maximum endothermic peak temperature of the polytetrafluoroethylene resin.
  • the volume occupied by each powder particle made of tetrafluoroethylene resin (B) hardly decreases.
  • the particles made of the polytetrafluoroethylene resin (A) have no history of heating to a temperature equal to or higher than the primary maximum endothermic peak temperature of the polytetrafluoroethylene resin.
  • the polyethylene resin is heated to a temperature higher than the primary maximum endothermic peak temperature, its volume usually shrinks by about 30%, depending on the heating time.
  • the mixed polytetrafluoroethylene powder of the present invention is a mixture of particles comprising the above-mentioned polytetrafluoroethylene resin (A) and particles comprising the above-mentioned polytetrafluoroethylene resin (B).
  • A polytetrafluoroethylene resin
  • B polytetrafluoroethylene resin
  • the mixed polytetrafluoroethylene powder of the present invention is characterized in that the polytetrafluoroethylene resin (A) and the polytetrafluoroethylene resin whose chemical properties are not substantially different except for the maximum endothermic peak temperature are different. Since it is composed of fluoroethylene resin (B), it can be sufficiently mixed, and the resulting molded article can be uniformly foamed with the polytetrafluoroethylene resin (A). Can be formed into a porous molded body in which is uniformly distributed.
  • the mixed polytetrafluoroethylene powder of the present invention is made of a polytetrafluoroethylene resin, a molded article having a low relative dielectric constant and a low dielectric tangent can be obtained.
  • the presence of bubbles due to the shrinkage of the polytetrafluoroethylene resin (A) makes it possible to obtain a porous molded body whose relative dielectric constant is sufficiently reduced.
  • the polytetrafluoroethylene porous compact of the present invention described above is a porous compact obtained using the mixed polytetrafluoroethylene powder of the present invention, and has a specific gravity of 0.9-2.0.
  • the aspect ratio of the voids formed inside the molded body may be 1 or more and 3 or less.
  • a porous molded article obtained by using the above-mentioned mixed polytetrafluoroethylene powder is hereinafter referred to as a polytetrafluoroethylene of the present invention. It may be referred to as a porous ethylene molded article (C).
  • the polytetrafluoroethylene porous molded article (C) of the present invention is usually obtained by firing at a temperature not lower than the melting point of the polytetrafluoroethylene resin (A) and molding. It is.
  • the polytetrafluoroethylene porous molded article (C) of the present invention has a temperature at which the unfired polytetrafluoroethylene resin (A) is not lower than the primary maximum endothermic peak temperature of the polytetrafluoroethylene resin.
  • the polytetrafluoroethylene resin (B) which has a history of heating at a temperature equal to or higher than the primary maximum endothermic peak temperature, Since it is obtained using the fact that there is almost no change in the standard specific gravity even after firing, it is a porous molded body in which a large number of bubbles generated by the shrinkage of the polytetrafluoroethylene resin (A) are formed. .
  • the polytetrafluoroethylene porous molded article (C) is made of a polytetrafluoroethylene resin, the dielectric constant and the dielectric loss tangent are low.
  • the polytetrafluoroethylene porous molded article of the present invention is a porous molded article made of polytetrafluoroethylene resin, the relative dielectric constant is considerably low.
  • the relative permittivity ( ⁇ r) of the polytetrafluoroethylene porous molded body can be set to 1 ⁇ 2-1.8.
  • a more preferred lower limit of the relative permittivity is 1.7, and a still more preferred upper limit is 1.6.
  • the polytetrafluoroethylene porous molded article of the present invention has a dielectric loss tangent represented by tan 5 of 1.
  • X 10- 4 is preferably X 10- 4 or less.
  • Preferred upper limit of the dielectric loss tangent 0.1 a 8 X 10- 4, a more preferred upper limit is 0. 7 X 10- 4.
  • the dielectric loss tangent and the relative dielectric constant are measured by measuring changes in resonance frequency and electric field strength at a temperature of 20 to 25 ° C using a network analyzer.
  • the polytetrafluoroethylene porous molded article of the present invention has a low relative dielectric constant and a low induction tangent, it is suitable for high-frequency signal transmission products requiring a high transmission speed and a low dielectric loss. Can be used.
  • the polytetrafluoroethylene porous molded article of the present invention has a low relative dielectric constant and an induced tangent, it is more preferably used as an insulator in a high-frequency signal transmission product which is preferably used as an insulator.
  • the polytetrafluoroethylene porous molded article of the present invention is used in high-frequency signal transmission products.
  • the transmission speed of a high-frequency signal can be increased.
  • the transmission speed is expressed as a value obtained by dividing the speed of light by the square root of the relative dielectric constant ( ⁇ r).
  • the polytetrafluoroethylene porous molded article of the present invention has a sufficiently low relative dielectric constant. Speed can be achieved.
  • the polytetrafluoroethylene porous molded article of the present invention when used as an insulator in a high-frequency transmission cable or the like to be described later, the dielectric loss is low, and a low transmission loss can be achieved. It is suitable for insulators, especially for various high-frequency signal transmission products such as high-frequency transmission cables.
  • Transmission loss is generally classified into conductor loss and dielectric loss.
  • the dielectric loss is expressed as a function of relative permittivity and dielectric loss tangent as shown in the following general formula.
  • the polytetrafluoroethylene porous molded article of the present invention has a low dielectric loss because the dielectric constant and the dielectric loss tangent are low.
  • the products for transmitting various high-frequency signals are not particularly limited as long as they are products used for transmitting high-frequency signals.
  • Insulating plates for high-frequency circuits, terminal plates for electric components, insulators for connecting components, printed materials examples include molded plates such as wiring boards, (II) molded products such as a base for high-frequency vacuum tubes and antenna covers, and (III) insulated wires such as high-frequency transmission cables and coaxial feeders.
  • a printed wiring board is preferred from the viewpoint of utilizing the good electrical properties and heat resistance of the polytetrafluoroethylene porous molded article of the present invention.
  • the printed wiring board is not particularly limited, and examples include a printed wiring board for an electronic circuit such as a mobile phone, various kinds of consumers, and communication equipment.
  • an antenna cover is preferred because of its low transmission loss, excellent electrical properties, as well as weather resistance and mechanical strength.
  • the method for forming the above-mentioned (I) molded plate and (II) molded article is not particularly limited.
  • a method comprising mixing the above-mentioned mixed polytetrafluoroethylene powder and, if desired, a known processing aid or the like, and then performing compression molding or extrusion rolling molding, or the like, may be mentioned.
  • a high-frequency transmission cable is preferred from the viewpoint of taking advantage of good electrical characteristics and heat resistance.
  • a coaxial cable, a LAN cable, and the like are preferable.
  • the above coaxial cable generally has a structure in which an inner conductor, an insulating coating layer, an outer conductor layer, and a protective coating layer are laminated in this order from the core to the outer periphery.
  • the thickness of each layer in the above structure is not particularly limited, but usually, the inner conductor has a diameter of about 0.13 mm, the insulating coating layer has a thickness of about 0.33 mm, and the outer conductor layer has a thickness of about 0.33 mm. Has a thickness of about 0.5-10 mm, and the protective coating layer has a thickness of about 0.52 mm.
  • the high-frequency transmission cable can be manufactured by a known method such as the method described in JP-A-2001-357729, the method described in JP-A-9-55120, and the like.
  • the high-frequency transmission cable generally has the polytetrafluoroethylene porous molded body as an insulating coating layer.
  • the method for forming and processing the polytetrafluoroethylene porous molded article of the present invention as the insulating coating layer is not particularly limited, and examples thereof include an extrusion coating method, a wrapping tape method, and a calender rolling method.
  • the extrusion coating method is preferred as the molding method, and paste extrusion molding is preferred as the extrusion coating method.
  • the paste extrusion molding for example, after mixing a paste extrusion aid with the mixed polytetrafluoroethylene powder, the mixture is charged into a paste extruder, and extruded so as to cover the core wire.
  • a method comprising heating and drying at a temperature of 100 to 250 ° C., followed by baking at a temperature equal to or higher than the melting point of the polytetrafluoroethylene resin (A).
  • the polytetrafluoroethylene porous molded article of the present invention is a porous molded article in which fine cells are distributed in the molded article, and thus can be used for a filter.
  • the filter 1 may be one that is required to have electrical properties such as a low dielectric constant, but may be one that is not required.
  • the polytetrafluoroethylene porous molded body The filter can be tailored to the intended use, taking advantage of the property of allowing air to pass through but not allowing water to pass through.
  • the filter include a terminal portion waterproof cap of an electronic component.
  • the polytetrafluoroethylene porous molded article of the present invention can be made into a filter suitable for use by stretching or compressing to reduce the size of bubbles.
  • the method for producing a porous polytetrafluoroethylene molded article of the present invention comprises molding using the mixed polytetrafluoroethylene powder.
  • the molding process includes a step of firing at a temperature equal to or higher than the melting point of the polytetrafluoroethylene resin (A) (hereinafter, sometimes referred to as a “firing step”).
  • the baking step is generally performed after a step of forming the mixture into a predetermined shape using the mixed polytetrafluoroethylene powder (hereinafter, may be referred to as a “shaping step”).
  • the method of molding using the mixed polytetrafluoroethylene powder is not particularly limited as long as the method includes the above-mentioned sintering step.
  • it may include a shape applying step by a known method such as a compression molding, an extrusion rolling molding, an extrusion coating molding system, a tape wrapping system, and a calendar rolling system.
  • the above-mentioned molding may be performed using other known processing aids for the purpose of improving molding processability, physical properties such as mechanical strength of the obtained molded body, and the like. It may be performed by adding an agent or the like.
  • paste extrusion molding is preferable in terms of good formability.
  • the particles comprising the polytetrafluoroethylene resin (A) are formed into fibers, and the polytetrafluoroethylene resin (B) is entrained therein. Since it has a desired shape, the mechanical strength of the resulting polytetrafluoroethylene porous molded article is improved.
  • drying method is not particularly limited, for example, drying is performed in a drying oven at 100 to 200 ° C. Method.
  • the above-mentioned baking is heat-treated at 350 to 450 ° C.
  • the polytetrafluoroethylene porous foamed article of the present invention comprises a polytetrafluoroethylene resin (P) and a thermoplastic resin (Q), and has a specific gravity of 0.8- 1.9, and the aspect ratio of the voids formed inside the compact is 1 or more and 3 or less.
  • the specific gravity is preferably 1.7 or less in terms of a decrease in relative dielectric constant, and more preferably 0.9 or more in terms of mechanical strength, more preferably 1.6 or less. Is preferred.
  • the preferred range of the aspect ratio is the same as the range described for the polytetrafluoroethylene porous article of the present invention.
  • the polytetrafluoroethylene porous foam molded article of the present invention has a specific gravity and an aspect ratio in the above-mentioned ranges, respectively, the specific dielectric constant is low and the shape stability is excellent. It can be suitably used as a material for transmission products.
  • the polytetrafluoroethylene resin (P) has a maximum endothermic peak temperature (hereinafter, also referred to as “maximum endothermic peak temperature”) of an endothermic curve appearing on a crystal melting curve by a differential scanning calorimeter of 320—.
  • maximum endothermic peak temperature a maximum endothermic peak temperature of an endothermic curve appearing on a crystal melting curve by a differential scanning calorimeter of 320—.
  • a temperature of 345 ° C. is preferred.
  • a more preferred lower limit of the maximum endothermic peak temperature of the polytetrafluoroethylene resin (P) is 337 ° C, and a more preferred upper limit is 343 ° C.
  • the polytetrafluoroethylene resin (P) may have no history of heating to a temperature equal to or higher than the primary maximum endothermic peak temperature of the polytetrafluoroethylene resin, or may have the history.
  • the polytetrafluoroethylene porous foamed article of the present invention may have pores formed therein, and, in terms of pore formation, may be baked, may be used, or may be preferably used.
  • the fluoropolymer constituting the polytetrafluoroethylene resin (P) may be a homopolymer of tetrafluoroethylene [TFE] or the above-mentioned modified polytetrafluoroethylene [modified PTFE]. Good.
  • a TFE homopolymer is preferable from the viewpoint of lowering the dielectric constant and the dielectric loss tangent of a molded product obtained from the molding material.
  • the polytetrafluoroethylene resin (P) preferably has a standard specific gravity [SSG] of 2.2 or less.
  • SSG standard specific gravity
  • the lower limit of SSG is preferably 2.12, more preferably 2.13, and even more preferably 2.15.
  • a particularly preferred lower limit is 2.17, and a more preferred upper limit in terms of moldability is 2.19.
  • the average primary particle diameter of the resin particles comprising the polytetrafluoroethylene resin (P) is usually
  • the preferred lower limit of the average primary particle size is 0, and the preferred upper limit is 0.
  • the polytetrafluoroethylene resin (P) can be produced by a known method such as emulsion polymerization or suspension polymerization.
  • emulsion polymerization or suspension polymerization.
  • paste extrusion such as wire extrusion and tube extrusion becomes easy.
  • those obtained from emulsion polymerization are preferred.
  • thermoplastic resin (Q) has a melt viscosity at 350 ° C of 500000 Pa's or less.
  • melt viscosity has a preferred upper limit of 80000 Pa's, more preferably 60000 Pa * s, and a lower limit of 40,000 Pa * s, j; 50000P a * s "3DO 0
  • melt viscosity is a value measured at 350 ° C. using a viscoelasticity meter RDS-2 manufactured by Rheometrics as a dynamic viscoelasticity measuring device.
  • the melting point of the thermoplastic resin (Q) is preferably 100 ° C or more and less than 330 ° C.
  • the melting point of the thermoplastic resin (Q) is 320 ° C. in terms of mechanical strength and moldability, preferably 100 ° C. or more, more preferably 120 ° C. or more, in terms of mechanical strength during use. C or less is preferred
  • the melting point of the thermoplastic resin (Q) can be determined by measuring an endothermic peak at a heating rate of 10 ° C / min using a differential scanning calorimeter.
  • thermoplastic resin (Q) is preferably a fluorine-containing resin or a polyolefin resin.
  • fluorine-containing resin examples include a non-melt-processable fluorine-containing resin and a melt-processable fluorine-containing resin.
  • polystyrene resin examples include a polyethylene resin and a polypropylene resin.
  • a polypropylene resin is preferred.
  • non-melt-processable fluorine-containing resin examples include low-molecular-weight polytetrafluoroethylene [PTFE] resin.
  • the low-molecular-weight PTFE resin is usually a PTFE resin having a number-average molecular weight of 1,000,000 ⁇ 500,000, and the fluoropolymer constituting the PTFE resin may be the TFE homopolymer or the modified PTFE described above. However, a TFE homopolymer is preferred in that it lowers the relative dielectric constant and the dielectric loss tangent.
  • the low-molecular PTFE resin include Lubron (trade name, manufactured by Daikin Industries, Ltd.).
  • the number average molecular weight is a value calculated from a standard specific gravity [SSG] measured by a water displacement method according to ASTM D-792, using a sample made according to ATSM D-489598. It is.
  • melt processable fluororesin examples include, for example, a fluoropolymer comprising tetrafluoroethylene Z perfluoro (alkylbutyl ether) [TFEZPAVE] copolymer, tetrafluoroethylene / hexafluoropropylene [FEP].
  • Fluorine-containing resins such as copolymers, tetrafluoroethylene / ethylene [ETFE] copolymers, ethylene / tetrafluoroethylene / hexafluoropropylene [EFEP] copolymers, and the like can be mentioned.
  • TFE / PAVE copolymer examples include tetrafluoroethylene / perfluoro mouth (methyl vinyl ether) copolymer [MFA] and tetrafluoroethylene / perfluoro mouth (propyl bier ether) [TFE / PPVE] And copolymers.
  • the fluororesin as the thermoplastic resin (Q) can be produced by a known method such as emulsion polymerization, suspension polymerization, solution polymerization, or the like.
  • aqueous dispersion of a fluorine-containing resin it is preferable that the resin is polymerized by an emulsion polymerization method.
  • the average primary particle size is usually about 0.02 to 0.5111.
  • a preferred lower limit of the diameter is 0.1xm, and a preferred upper limit is 0.1.
  • the constituent olefin polymer may be a homoolefin homopolymer, or may be a copolymer of olefin as a main monomer and another monomer copolymerizable with olefin. It may be a polymer.
  • Examples of the above-mentioned copolymer of olefin include propylene / ethylene copolymers in which propylene and ethylene are copolymerized in random or block form.
  • thermoplastic resin (Q) a fluorine-containing resin is preferred because a foamed molded article having excellent heat resistance and being stably usable even at a relatively high temperature is obtained.
  • melt-processable fluorine-containing resin in view of heat resistance, a melt-processable fluorine-containing resin is preferred, and as the melt-processable fluorine-containing resin, a resin whose constituent fluoropolymer is a FEP or TFE / PAVE copolymer is preferable. .
  • TFE / PAVE copolymer MFA and TFE / PPVE copolymer are preferred.
  • the number average molecular weight of the thermoplastic resin (Q) is not particularly limited, but is preferably from 1,000 to 1,000,000. If the number average molecular weight is too large, the moldability may decrease, while if it is too small, the mechanical strength of the obtained molded article may decrease.
  • the polytetrafluoroethylene ethylene resin (P) is a mixture of the polytetrafluoroethylene resin (P) and the thermoplastic resin (Q). It is preferable that the total amount be 1 to 95% by mass.
  • a more preferred lower limit of the content of the polytetrafluoroethylene resin (P) is 20% by mass, a still more preferred lower limit is 30% by mass, a more preferred upper limit is 70% by mass, and a still more preferred upper limit is 50% by mass. % By mass.
  • the content of the polytetrafluoroethylene resin (P) exceeds 95% by mass, the foaming rate of a molded article obtained from a molding material may decrease.
  • the content is less than 5%, The relative permittivity and the dielectric loss tangent may not be significantly reduced.
  • the polytetrafluoroethylene porous foam molded article of the present invention is obtained by subjecting a molding material comprising the polytetrafluoroethylene resin (P) and the thermoplastic resin (Q) to a method described below.
  • a molding material comprising the polytetrafluoroethylene resin (P) and the thermoplastic resin (Q) to a method described below.
  • molding material the material of the molding force may be referred to as “molding material”.
  • the molding material only the polytetrafluoroethylene resin (P) and the thermoplastic resin (Q) may be used, but a foaming agent and other additives described below are added. It may be something.
  • the polytetrafluoroethylene porous foamed article of the present invention is a polytetrafluoroethylene foam. It may be obtained by using a molding material comprising a resin (P), a thermoplastic resin (Q), and a foaming agent.
  • the foaming agent is not particularly limited as long as it can generate air bubbles during molding, and examples thereof include decomposable compounds such as carbonyl hydrazide, azo compounds, and inorganic compounds.
  • Examples of the carbonyl hydrazide include 4, 4-bisoxybenzenesulfonyl hydrazide.
  • azo compound examples include azodicarboxylic acid amide and 5-phenyltetrazole.
  • inorganic compound examples include boron nitride, talc, sericite, diatomaceous earth, silicon nitride, fine silica, alumina, zirconia, quartz powder, kaolin, and benzonite titanium oxide.
  • the foaming agent is preferably added in an amount of 0.1 to 5% by mass of the total of the polytetrafluoroethylene resin (P) and the thermoplastic resin (Q).
  • the amount of the foaming agent varies depending on the type of the foaming agent to be used, but is preferably 1% by mass or less in view of the dielectric loss tangent, which is more preferably 0.5% by mass or more in terms of the foaming rate.
  • the method for preparing the molding material includes, for example, (i) the polytetrafluoroethylene resin described above.
  • thermoplastic resin (Q) is other than the melt-processable fluororesin, that is, for example, when the thermoplastic resin (Q) is a non-melt-processable fluororesin, a polyolefin resin, or the like, (ii) the polytetrafluorocarbon Among the ethylene resin (P) and the thermoplastic resin (Q) other than the above-mentioned melt-processable fluorine-containing resin, a powder of the other resin is added to an aqueous dispersion of one of the resins to coagulate.
  • Co-coagulation method (iii) mixing the aqueous dispersion of the polytetrafluoroethylene resin (P) with the aqueous dispersion of the thermoplastic resin (Q) other than the melt-processable fluororesin. And coagulation.
  • the co-coagulation method of the above (ii) or (iii) is preferred because it is easy to obtain a foam molded article which can be sufficiently mixed, is homogeneous, and has excellent mechanical strength and electrical properties. Is more preferable.
  • the (i) dry mixing method and (ii) co-coagulation method can be performed by the same method as that described for the mixed polytetrafluoroethylene powder of the present invention described above.
  • the co-coagulation method of the above (iii) is not particularly limited. However, except for the aqueous dispersion after the polymerization of the particles made of the polytetrafluoroethylene resin (P) and the melt-processable fluororesin, It is preferable to mix the aqueous dispersion of the thermoplastic resin (Q) after polymerization with an aqueous dispersion of the particles and then coagulate the mixture with a coagulant such as an inorganic acid or a metal salt thereof.
  • a coagulant such as an inorganic acid or a metal salt thereof.
  • the polytetrafluoroethylene resin (P) is sufficiently mixed with the thermoplastic resin (Q) so that a homogeneous mixture is easily obtained. It is more preferable that the average particle diameter of the particles made of the above and the average particle diameter of the particles made of the thermoplastic resin (Q) are almost the same.
  • the foaming agent may be added at any time in each of the above-mentioned preparation methods.
  • the foaming agent may be added at the time of the above (ii) or (iii).
  • the coagulation method it is added to the aqueous dispersion and co-coagulated together with the above-mentioned thermoplastic resin (Q) other than the polytetrafluoroethylene resin (P) and the melt-processable fluorine-containing resin. Good.
  • the molding material has improved molding processability, and the resulting polytetrafluoroethylene porous foamed machine has For the purpose of improving physical properties such as mechanical strength and the like, other known additives such as extrusion aids may be added.
  • the above-mentioned extrusion aid is preferably used in the case of performing the paste extrusion described below, preferably 10% based on the total amount of the above polytetrafluoroethylene resin (P) and the above thermoplastic resin (Q).
  • polytetramethylene full O b ethylene porous foamed molded article of the present invention is preferably a dielectric loss tangent, represented by tan [delta] is 1. It 5 X 10- 4 or less. A preferred upper limit of the dielectric loss tangent is 0.8 X 1
  • 0_ is 4, a more preferred upper limit is 0. 6 X 10- 4.
  • the polytetrafluoroethylene porous foam molded article of the present invention has a relative dielectric constant ( ⁇ ) of usually 1.2 to 1.8. In terms of transmission speed, the preferred upper limit of the relative permittivity is 1.9. is there.
  • the method for producing a polytetrafluoroethylene porous foam molded article of the present invention comprising using the above-mentioned polytetrafluoroethylene resin (P) and the above-mentioned thermoplastic resin (Q) to produce a polytetrafluoroethylene resin.
  • Another aspect of the present invention is a method for producing a polytetrafluoroethylene porous foam molded article, which comprises molding at a temperature not lower than the melting point of (P).
  • the above-mentioned molding process can be usually performed using the above-mentioned molding material.
  • the method of molding using the above molding material is not particularly limited, and it depends on the intended use of the polytetrafluoroethylene porous foam molded article.
  • Examples of the method include compression molding, extrusion rolling molding, and extrusion coating.
  • Known methods such as a molding method, a wrapping tape method, and a calender rolling method can be used.
  • paste extrusion molding is preferred from the viewpoint of ease of molding force.
  • the molding material is molded by paste extrusion, it is preferable that the polytetrafluoroethylene resin (P) be subjected to the molding without being fired.
  • the temperature at which the heat treatment is performed is determined by using the polytetrafluoroethylene resin (P), the thermoplastic resin (Q), and / or Although it depends on the type of the foaming agent, if the temperature is equal to or higher than the melting point of the thermoplastic resin (Q), the above-described polytetrafluoroethylene porous foamed molded article may have a higher mechanical strength. Temperatures above the melting point of the tetrafluoroethylene resin (P) are preferred.
  • a more preferred lower limit of the temperature for the heat treatment is 355 ° C
  • a further preferred lower limit is 360 ° C
  • a particularly preferred lower limit is 370 ° C
  • a preferred upper limit is 400 ° C
  • a more preferred upper limit is 390. C.
  • thermoplastic resin (Q) in the above-mentioned molding processing, in the heat treatment at a temperature equal to or higher than the melting point of the thermoplastic resin (Q), air bubbles generated by the partial decomposition of the thermoplastic resin (Q) are melted by the thermoplastic thermoplastic resin (Q). As a result of the resin (Q) acting as a barrier to make it difficult for the resin (Q) to escape to the outside, it is possible to obtain a molded article in which the remaining bubbles are distributed.
  • the bubbles generated by the decomposition of the foaming agent by the heat treatment are similarly produced by the Essen action of the molten thermoplastic resin (Q). It can be contained in a tetrafluoroethylene porous foam molded article. Since the obtained polytetrafluoroethylene porous foamed product has fine and uniform distribution of bubbles generated by at least partial decomposition of the thermoplastic resin (Q), it has a stable wire diameter and the like. It has shape stability and stable impedance, and has no surface roughness.
  • the polytetrafluoroethylene porous molded article of the present invention described above or the polytetrafluoroethylene porous foamed article of the present invention described above has a low relative dielectric constant and excellent shape stability. It can be suitably used as a high-frequency signal transmission product.
  • a high-frequency signal transmission product characterized by using the above-described polytetrafluoroethylene porous molded article of the present invention or the above-described polytetrafluoroethylene porous foam molded article of the present invention is also provided. This is one of the present invention.
  • the product for transmitting a high-frequency signal of the present invention may generally include the polytetrafluoroethylene porous foamed product of the present invention as an insulator.
  • Such a high-frequency signal transmission product is not particularly limited as long as it is a product used for transmitting a high-frequency signal.
  • an insulating plate of a high-frequency circuit for example, (I) an insulating plate of a high-frequency circuit, a terminal plate of an electric component, an insulator of a connection component, Examples include molded plates such as printed wiring boards, (II) molded products such as bases of high-frequency vacuum tubes and antenna covers, and (III) insulated wires such as high-frequency transmission cables and coaxial feeders.
  • a printed wiring board is preferable because good heat resistance and electrical characteristics are obtained.
  • the printed wiring board is not particularly limited, and examples include a printed wiring board for an electronic circuit such as a mobile phone, various kinds of consumers, and communication equipment.
  • an antenna cover is preferable because excellent weather resistance and mechanical strength can be obtained.
  • the method for forming the above-mentioned (I) molded plate and (II) molded product is not particularly limited. No.
  • a high-frequency transmission cable is preferred in that good heat resistance and electrical characteristics are obtained.
  • a coaxial cable, a LAN cable, or the like is preferable.
  • the shape of the coaxial cable is the same as that described for the above-mentioned various high-frequency signal transmission products.
  • Examples of the method of manufacturing the high-frequency transmission cable include the above-described known methods.
  • the high-frequency transmission cable may have the polytetrafluoroethylene porous foam molded article of the present invention as an insulating coating layer.
  • the method of forming the insulating coating layer is not particularly limited, and examples thereof include an extrusion coating method, a wrapping tape method, and a calender rolling method.
  • the extrusion coating method is preferred as the molding method, and paste extrusion molding is preferred as the extrusion coating method.
  • the wire diameter having a low relative dielectric constant and a low dielectric loss tangent is obtained. Etc., and can exhibit stable shape and stable impedance.
  • the high-frequency signal transmission product of the present invention uses a polytetrafluoroethylene resin and has an increased transmission speed.
  • the mixed polytetrafluoroethylene powder of the present invention can be suitably used as a material for the above-mentioned polytetrafluoroethylene porous article.
  • PTFE resin molding powder (TFE homopolymer, SSG 2.155, primary maximum endothermic peak temperature 340 ° C) Spread 1 kg on a stainless steel tray to a thickness of 20 mm and use an electric furnace at 380 ° C for 5 hours. And fired to obtain a lump of PTFE resin.
  • the obtained mass of PTFE resin was pulverized using a pulverizer to an average particle size of 50 ⁇ m to obtain a pulverized powder (hereinafter, referred to as a gelled powder).
  • the obtained mixed powder was preformed in a preforming machine at a pressure of 3MPa for 15 minutes, and then a paste extruder (cylinder diameter 38mm, mandrel diameter 16mm, manufactured by Jennings Co., Ltd.) was used.
  • a paste extruder cylinder diameter 38mm, mandrel diameter 16mm, manufactured by Jennings Co., Ltd.
  • APC19 diameter 0.91 mm
  • SPCW silver plating copper-coated steel wire
  • 3.18 mm diameter as a cylindrical mold at a winding speed of 3 m / min.
  • An insulating coating material having an outer diameter of 3.3 lmm immediately after being discharged was formed.
  • the obtained insulating coating material was dried in a drying oven set at 130 ° C and 190 ° C for about 1 minute, and then at a temperature of 420 ° C for 1 minute in a constant temperature bath. Firing was performed to obtain a coated wire for a coaxial cable.
  • the outer diameter was 2.95 mm
  • the specific gravity was 1.662
  • the relative dielectric constant was 1.6.
  • the wire diameter having a low relative permittivity and a low dielectric tangent is obtained. Etc., and can exhibit stable shape and stable impedance.
  • the high-frequency signal transmission product of the present invention uses a polytetrafluoroethylene resin and has an increased transmission speed.
  • the mixed polytetrafluoroethylene powder of the present invention can be suitably used as a material for the above-mentioned polytetrafluoroethylene porous article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

比重が0.9~2.0であり、成形体内部に形成されている空隙のアスペクト比が1以上、3以下であることを特徴とするポリテトラフルオロエチレン多孔成形体。

Description

明 細 書
混合ポリテトラフルォロエチレン粉体及びポリテトラフルォロエチレン多孔 成形体及びこれらの製造方法、ポリテトラフルォロエチレン多孔発泡成形体並び に高周波信号伝送用製品
技術分野
[0001] 本発明は、混合ポリテトラフルォロエチレン粉体及びポリテトラフルォロエチレン多孔 成形体及びこれらの製造方法、ポリテトラフルォロエチレン多孔発泡成形体並びに 高周波信号伝送用製品に関する。
背景技術
[0002] 同軸ケーブル、 LANケーブル、プリント配線基板等の高周波信号伝送用製品は、伝 送速度を高め、誘電体損を低減させるために、誘電率( ε )ができるだけ低い絶縁材 を用いることが求められる。絶縁材を構成する樹脂としては、誘電率が低ぐまた、誘 電正接 (tan 5 )も低いことから誘電体損の低下にも寄与するほか、耐熱性等の他の 特性にも優れるので、含フッ素樹脂を用いることが望ましレ、。
[0003] 絶縁材の誘電率を低下させるために、絶縁材を構成する樹脂よりも誘電率が低い物 質を樹脂中に分散させると効果的であることが知られている。樹脂中に分散させる低 誘電率の物質としては、空気が好適である。
[0004] 絶縁材を構成する含フッ素樹脂としては、成形性が良好である溶融加工性含フッ素 樹脂の使用が試みられてきた。溶融加工性含フッ素樹脂中に空気を分散させたもの として、例えば、テトラフルォロエチレン/へキサフルォロプロピレン共重合体〔FEP〕 力 なる発泡電線が提案されている(例えば、特許文献 1参照。)。
[0005] 近年の高周波信号伝送技術の進展により、伝送速度の高速化と誘電体損の低減が 一層求められるようになつてきた。このため、絶縁材として、溶融加工性含フッ素樹脂 よりも誘電率及び誘電正接が低いポリテトラフルォロエチレン樹脂を用いた成形体が 検討されている。
[0006] 絶縁材にポリテトラフルォロエチレン樹脂を用いたものとしては、発泡ポリテトラフルォ 口エチレン粉末に細孔形成剤、膨張剤及び潤滑剤を混合して押出しにより得た同軸 ケーブルが提案されている(例えば、特許文献 2参照)。し力 ながら、発泡ポリテトラ フルォロエチレンの製法等に関する一切の記載がなぐ実際には成形体が得られず 絶縁材表面がささくれだつものと考えられる。
[0007] ポリテトラフルォロエチレン樹脂多孔質体としては、樹脂として、ポリテトラフルォロェ チレン焼成粉末、又は、ポリテトラフルォロエチレン焼成粉末と 1重量%のテトラフノレ ォロエチレン/パーフルォロビニルエーテル共重合体〔PFA〕粉末との混合物を用 レ、、加圧形成した予備成形体を焼成したものが提案されている(例えば、特許文献 3 参照。)。
[0008] し力、しながら、このポリテトラフルォロエチレン樹脂多孔質体は、予め焼成して硬化さ せたポリテトラフルォロエチレン粉末を用い、予備成形時の加圧を粉末粒子が完全 に潰れない程度に行レ、、粉末粒子同士の接点を焼成して結着させることにより、多孔 質体を得るものであり、後述する本発明とは発明思想が全く異なる。
[0009] 特許文献 1:国際公開第 03/00792号パンフレット
特許文献 2:特開昭 60 - 93709号公報
特許文献 3:特開昭 61— 66730号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、上記現状に鑑み、微細な気泡が均一に分布したポリテトラフルォ 口エチレン多孔成形体とポリテトラフルォロエチレン多孔発泡成形体、及び、これらの 成形体を得ることができる混合ポリテトラフルォロエチレン粉体、並びに、高周波信号 伝送用製品を提供することにある。
課題を解決するための手段
[0011] 本発明は、比重が 0. 9-2. 0であり、成形体内部に形成されている空隙のアスペクト 比が 1以上、 3以下であることを特徴とするポリテトラフルォロエチレン多孔成形体で ある。
[0012] 本発明は、示差走查熱量計による結晶融解曲線上に現れる吸熱カーブの最大ピー ク温度が 333— 347°C、標準比重が 2. 12-2. 20であるポリテトラフルォロエチレン 樹脂 (A)と、示差走查熱量計による結晶融解曲線上に現れる吸熱カーブの最大ピ ーク温度が 324— 330°C、標準比重が 2· 12-2. 20であるポリテトラフルォロェチレ ン榭脂(Β)とからなることを特徴とする混合ポリテトラフルォロエチレン粉体である。
[0013] 本発明は、上記混合ポリテトラフルォロエチレン粉体を用いて得られるポリテトラフノレ ォロエチレン多孔成形体であって、上記ポリテトラフルォロエチレン多孔成形体は、 比重が 0. 9-2. 0であり、成形体内部に形成されている空隙のアスペクト比が 1以上 、 3以下であることを特徴とするポリテトラフルォロエチレン多孔成形体である。
[0014] 本発明は、混合ポリテトラフルォロエチレン粉体を用いて成形カ卩ェすることよりなる上 記ポリテトラフルォロエチレン多孔成形体の製造方法であって、上記混合ポリテトラフ ルォロエチレン粉体は、示差走查熱量計による結晶融解曲線上に現れる吸熱カー ブの最大ピーク温度が 333 347°C、標準比重が 2. 12-2. 20であるポリテトラフ ルォロエチレン樹脂 (A)と、示差走查熱量計による結晶融解曲線上に現れる吸熱力 ーブの最大ピーク温度が 324 330°C、標準比重が 2. 12-2. 20であるポリテトラ フルォロエチレン樹脂(B)とからなるものであり、上記成形加工は、上記ポリテトラフ ルォロエチレン樹脂 (A)の融点以上の温度にて焼成する工程を含むことを特徴とす るポリテトラフルォロエチレン多孔成形体の製造方法である。
[0015] 本発明は、ポリテトラフルォロエチレン樹脂(P)と、 350°Cにおける溶融粘度が 5000 OOOPa' s以下である熱可塑性樹脂(Q)とからなるポリテトラフルォロエチレン多孔発 泡成形体であって、上記ポリテトラフルォロエチレン多孔発泡成形体は、比重が 0. 8 一 1. 9であり、成形体内部に形成されている空隙のアスペクト比が 1以上、 3以下で あることを特徴とするポリテトラフルォロエチレン多孔発泡成形体である。
[0016] 本発明は、上記ポリテトラフルォロエチレン多孔発泡成形体の製造方法であって、上 記ポリテトラフルォロエチレン多孔発泡成形体の製造方法は、ポリテトラフルォロェチ レン樹脂(P)と、 350°Cにおける溶融粘度が 5000000Pa' s以下である熱可塑性樹 脂(Q)とを用いてポリテトラフルォロエチレン樹脂(P)の融点以上の温度にて成形加 ェすることよりなることを特徴とするポリテトラフルォロエチレン多孔発泡成形体の製 造方法である。
[0017] 本発明は、上記ポリテトラフルォロエチレン多孔成形体、又は、上記ポリテトラフルォ 口エチレン多孔発泡成形体を用いてなることを特徴とする高周波信号伝送用製品で ある。
[0018] 本発明は、上記ポリテトラフルォロエチレン多孔成形体を用いてなることを特徴とする フィルターである。
以下に本発明を詳細に説明する。
[0019] 本発明のポリテトラフルォロエチレン多孔成形体は、比重が 0. 9-2. 0であるもので ある。
本明細書において、上記「ポリテトラフルォロエチレン多孔成形体」は、ポリテトラフル ォロエチレン樹脂を用いて得られる成形体である。
上記ポリテトラフルォロエチレン多孔成形体は、なかでも、樹脂成分として、ポリテトラ フルォロエチレン樹脂のみを用いて得られる成形体であることが好ましい。
上記ポリテトラフルォロエチレン樹脂としては、例えば、後に例示するもの等が挙げら れる力 後述するテトラフルォロエチレン樹脂 (A)及びテトラフルォロエチレン樹脂( B)が好ましぐなかでも、テトラフルォロエチレン樹脂 (A)とテトラフルォロエチレン樹 脂(B)とのみからなるものがより好ましレ、。
[0020] 本発明のポリテトラフルォロエチレン多孔成形体において、上記比重は、機械的強 度の点で、好ましい下限が 1. 2である。
本発明のポリテトラフルォロエチレン多孔成形体において、上記範囲内のように比重 が比較的低いのは、気泡が多数存在するためであり、この気泡により、低い比誘電率 が可能となる。
本明細書において、上記比重は、 ASTM D 792に準拠した水置換法により測定 した値である。
[0021] 本発明のポリテトラフルォロエチレン多孔成形体は、成形体内部に形成されている空 隙のアスペクト比が 1以上、 3以下であるものである。
上記アスペクト比は、機械的強度の点で、好ましい上限が 2である。
上記アスペクト比は、本発明のポリテトラフルォロエチレン多孔成形体の任意の断面 において、空隙の最長径と最短径とを計測して求めることができる。
本発明のポリテトラフルォロエチレン多孔成形体は、上記アスペクト比が上記範囲内 にあるものであるので、機械的強度が高い。 [0022] 本発明のポリテトラフルォロエチレン多孔成形体は、上記比重及び上記アスペクト比 力 それぞれ上述の範囲内にあるものであるので、比誘電率が低ぐ形状安定性に 優れているため、高周波信号伝送用製品の材料として好適に使用することができる。
[0023] 本発明の混合ポリテトラフルォロエチレン粉体は、ポリテトラフルォロエチレン樹脂 (A )とポリテトラフルォロエチレン樹脂(B)とからなるものである。
[0024] 上記ポリテトラフルォロエチレン樹脂 (A)は、示差走查熱量計による結晶融解曲線上 に現れる吸熱カーブの最大ピーク温度(以下、「最大吸熱ピーク温度」ということがあ る。)力 S333 347°Cであるものであり、上記ポリテトラフルォロエチレン樹脂(B)は、 最大吸熱ピーク温度が 324— 330°Cであるものである。ポリテトラフルォロエチレン樹 脂 (A)とポリテトラフルォロエチレン樹脂(B)とは、このように最大吸熱ピーク温度が 異なる点で異なるものである力 構成するポリマーのモノマー組成、平均分子量等の 他の性状は同じであってもよレ、し、異なってレ、てもよレ、。
本明細書において、(A)又は(B)を付すことなぐ単に「ポリテトラフルォロエチレン樹 脂」というときは、上記 (A)又は上記(B)の何れであるかを区別することなぐ両者を 含み得る概念である。
[0025] 上記ポリテトラフルォロエチレン樹脂は、一般に、重合により得た湿潤粉末を乾燥し て得られる粉末を初めて加熱する際の最大吸熱ピーク温度(以下、「一次最大吸熱 ピーク温度」ということがある。)が 333— 347°Cであり、上記一次最大吸熱ピーク温 度以上の温度に加熱した履歴があるものについて測定される最大吸熱ピーク温度( 以下、「二次最大吸熱ピーク温度」ということがある。)が、 324— 330°Cである。
[0026] 上記ポリテトラフルォロエチレン樹脂 (A)は、最大吸熱ピーク温度が 333— 347°C、 即ち、一次最大吸熱ピーク温度であるものであり、従って、上記一次最大吸熱ピーク 温度以上の温度に加熱した履歴がないポリテトラフルォロエチレン樹脂である。 本明細書において、ポリテトラフルォロエチレン樹脂について、上記一次最大吸熱ピ ーク温度以上の温度に加熱した履歴がないことを「未焼成」と言うことがある。
上記ポリテトラフルォロエチレン樹脂 (A)の最大吸熱ピーク温度のより好ましい下限 は 337°Cであり、より好ましい上限は 343°Cである。
本明細書において、上記結晶融解曲線は、昇温速度 10°C/分の条件で測定したも のである。
[0027] 上記ポリテトラフルォロエチレン樹脂 (A)を構成するフルォロポリマーは、テトラフル ォロエチレン [TFE]単独重合体であってもよいし、 TFEと、 TFE以外の微量モノマ 一との共重合体であって、非溶融カ卩ェ性であるもの(以下、変性ポリテトラフルォロェ チレン [変性 PTFE]という。)であってもよい。
[0028] 上記微量モノマーとしては、例えば、パーフルォロォレフイン、パーフルォロ(アルキ ノレビュルエーテノレ)、環式のフッ素化された単量体、パーフルォロアルキルエチレン 等が挙げられる。
上記パーフルォロォレフインとしては、へキサフルォロプロピレン [HFP]等が挙げら れ、パーフルォロ(アルキルビュルエーテル)としては、パーフルォロ(メチルビニルェ 一テル)、パーフルォロ(プロピルビュルエーテル)等が挙げられ、環式のフッ素化さ れた単量体としては、フルォロジォキソール等が挙げられ、パーフルォロアルキルェ チレンとしては、パーフルォロメチルエチレン等が挙げられる。
[0029] 上記変性 PTFEにおいて、上記微量モノマーに由来する微量モノマー単位の全モノ マー単位に占める含有率は、通常 0. 001— 1モル%の範囲である。
本明細書において、上記「微量モノマー単位」は、フルォロポリマーの分子構造上の 一部分であって、対応するモノマーに由来する部分を意味する。例えば TFE単位は 、ポリマーの分子構造上の一部分であって、 TFEに由来する部分であり、 _ (CF -C
2
F ) _で表される。
2
上記「全モノマー単位」は、ポリマーの分子構造上、モノマーに由来する部分の全て である。
本明細書において、「全モノマー単位に占める微量モノマー単位の含有率(モル0 /0) 」とは、上記「全モノマー単位」が由来するモノマー、即ち、ポリマーを構成することと なったモノマー全量に占める、上記微量モノマー単位が由来する微量モノマーのモ ル分率(モル%)を意味する。
[0030] 上記変性 PTFEにおいて、上記全モノマー単位に占める微量モノマー単位の含有 率は、高いほど成形性に優れるが、得られる多孔品の比誘電率と誘電正接が小さく なる点で、低い方が好ましい。上記含有率の好ましい上限は、 0. 1モル%である。 [0031] 上記ポリテトラフルォロエチレン樹脂 (A)を構成するフルォロポリマーとしては、得ら れる成形体の比誘電率と誘電正接を低くさせる点で、 TFE単独重合体が好ましい。
[0032] 上記ポリテトラフルォロエチレン樹脂 (A)は、標準比重 [SSG]が 2. 2以下であるもの が好ましぐ通常、 2. 12-2. 20であるものである。
得られる成形体の機械的強度や電気的特性の点で、上記 SSGの好ましい下限は 2 . 13、より好ましい下限は 2. 15、更に好ましい下限は 2. 17であり、成形性の点でよ り好ましい上限は 2. 19である。
本明細書において、 SSG (Standard Specific Gravity)は、 ASTM D—4895 98に準拠して成形されたサンプルを用レ、、 ASTM D—792に準拠した水置換法に より測定した値である。
[0033] 上記ポリテトラフルォロエチレン樹脂 (A)からなる樹脂粒子の平均一次粒径は、セル の均一性及び発泡度の点で、 0. 1-0. 5 x mであることが好ましレ、。上記平均一次 粒径のより好ましい下限は 0. 2 /i mであり、更に好ましい上限は 0. 3 /i mである。 本明細書において、上記平均一次粒径は、重力沈降法に基づく測定により得られる 値である。
[0034] 上記ポリテトラフルォロエチレン樹脂 (A)は、乳化重合、懸濁重合等、公知の方法に より製造することができる力 電線押出、チューブ押出等のペースト押出が容易にな る点で、乳化重合から得られたものが好ましレ、。
[0035] 上記ポリテトラフルォロエチレン樹脂(B)は、示差走査熱量計による結晶融解曲線上 に現れる吸熱カーブの最大ピーク温度(最大吸熱ピーク温度)が 324— 330°Cであ るものである。
上記ポリテトラフルォロエチレン樹脂(B)は、最大吸熱ピーク温度が上述のポリテトラ フルォロエチレン樹脂の二次最大吸熱ピーク温度であるものであり、従って、ポリテト ラフルォロエチレン樹脂の一次最大吸熱ピーク温度以上の温度に加熱した履歴があ るポリテトラフルォロエチレン樹脂である。
上記最大吸熱ピーク温度の好ましい下限は、 325°C、好ましい上限は、 327°Cである [0036] 上記ポリテトラフルォロエチレン樹脂(B) 、上記範囲内の最大吸熱ピーク温度を示 すものであれば、上記ポリテトラフルォロエチレン樹脂(B)を構成するフルォロポリマ 一としては、上記ポリテトラフルォロエチレン樹脂 (A)と同様に、 TFE単独重合体で あってもよいし、上述した変性 PTFEであってもよいが、得られる成形体の比誘電率と 誘電正接が低レ、点で、 TFE単独重合体が好ましレ、。
[0037] 上記ポリテトラフルォロエチレン樹脂(B)は、標準比重が 2. 2以下であるものが好ま しぐ通常、標準比重が 2. 12-2. 20であるものである。上記標準比重の好ましい下 限は 2. 13、更に好ましい下限は 2. 14であり、より好ましい上限は 2. 18である。 本明細書において、標準比重は、 ASTM D— 4895 98に準拠して成形されたサン プノレを用レ、、 ASTM D— 792に準拠した水置換法により測定した値である。
[0038] 上記ポリテトラフルォロエチレン樹脂(B)は、 (1)重合によりポリテトラフルォロェチレ ン樹脂からなる粉体を調製する工程、(2)ポリテトラフルォロエチレン樹脂の一次最 大吸熱ピーク温度以上の温度、通常 333°C以上の温度において熱処理を行い、冷 却する工程、及び、 (3)機械的に粉碎する工程をこの順に行うことにより得ることがで きる。
[0039] 上記工程(1)において、上記重合は、乳化重合、懸濁重合、溶液重合等の公知の重 合方法を用いて行うことができるが、電線押出、チューブ押出等のペースト押出が容 易になる点で、乳化重合から得られたものが好ましい。
上記工程(1)における粉体の調製は、用いた重合方法に応じて公知の方法により行 うことができる。
上記工程(1)により得られるポリテトラフルォロエチレン樹脂からなる粉体は、乳化重 合を経て得られるファインパウダーであってもよいし、乳化重合以外の重合方法を経 て得られるモールディングパウダーであってもよぐ得られる混合ポリテトラフルォロェ チレン粉体の用途によるが、後述のペースト押出を行う場合、ファインパウダーが好ま しい。
[0040] 上記工程(2)におレ、て、上記熱処理を行う温度の好ましい下限は、上記ポリテトラフ ルォロエチレン樹脂を充分に溶融させることができる点で、 340°Cであり、より好まし い下限は 360°Cであり、好ましい上限は、上記ポリテトラフルォロエチレン樹脂の分 解温度未満の温度であればよいが、エネルギー効率の点で 400°C、より好ましくは 3 90°Cである。
上記加熱時間は粉末量に応じて適宜設定すればよい。上記加熱は、トレイ上に載せ て行ってもよいし、コンベア上に載せて行ってもよい。
[0041] 上記熱処理は、例えば、ステレンスパット等の耐熱性の容器に、上記ポリテトラフルォ 口エチレンを 20mm程度の厚さに積載し、無荷重にて行うことが好ましい。
上記ポリテトラフルォロエチレン樹脂(B)は、上記工程(2)における熱処理を経て得 られるものであるので、上述の最大吸熱ピーク温度を有することとなる。
[0042] 上記工程(3)におレ、て、上記機械的粉砕の方法としては特に限定されず、ミキサー 等、公知の粉砕装置を用レ、て粉砕することからなる方法が挙げられる。
上記工程(3)の機械的粉砕により得られるポリテトラフルォロエチレン樹脂(B)からな る粉末は、平均粒径約 500 μ m以下であることが好ましい。
上記平均粒径は、得られる多孔成形体の低密度化が容易となる点で、より好ましレ、 下限は 10 μ ΐη、更に好ましい下限は 30 /i mであり、多孔成形体中の気泡を均質に 分布させやすい点で、より好ましい上限は 300 /i m、更に好ましい上限は 100 μ ΐη以 下である。
[0043] 本発明の混合ポリテトラフルォロエチレン粉体は、例えば、ポリテトラフルォロェチレ ン樹脂 (A)からなる粒子が水性媒体に分散している水性分散液、又は、ポリテトラフ ルォロエチレン樹脂 (A)からなる粉末と、ポリテトラフルォロエチレン樹脂(B)からなる 粉末とを混合することより得ることができる。
[0044] 上記混合の方法としては、操作が簡便であり、低密度の混合ポリテトラフルォロェチ レン粉体が得られる点で、ポリテトラフルォロエチレン樹脂 (A)からなる粉末と、ポリテ トラフルォロエチレン樹脂(B)からなる粉末とを混合する乾式混合法 (i)が好ましく、 気泡が均一で気泡の径が細カ 、多孔成形体が容易に得られる点で、ポリテトラフル ォロエチレン樹脂 (A)からなる粒子が水性媒体に分散してレ、る水性分散液と、ポリテ トラフルォロエチレン樹脂(B)からなる粉末とを共凝析する共凝析法 (ii)が好ましレ、。
[0045] 上記乾式混合法 (i)により本発明の混合ポリテトラフルォロエチレン粉体を得る場合、 上記ポリテトラフルォロエチレン樹脂(B)からなる粉末と混合する前に、上記ポリテトラ フルォロエチレン樹脂 (A)からなる粉末を予めヘンシェルミキサー等を用いた粉砕等 により、ある程度繊維化させておくことが、上記ポリテトラフルォロエチレン樹脂 (A)か らなる粉末と上記ポリテトラフルォロエチレン樹脂 (B)からなる粉末との混合を充分に 行うことができるので好ましい。
[0046] 本発明の混合ポリテトラフルォロエチレン粉体において、上記ポリテトラフルォロェチ レン樹脂(B)の含有率は、上記ポリテトラフルォロエチレン樹脂 (A)と上記ポリテトラ フルォロエチレン樹脂(B)との合計に対し、 30— 80質量%であることが好ましレ、。 上記含有率が 30質量%未満であると、混合ポリテトラフルォロエチレン粉体を用いて 得られる多孔成形体中の気泡の量が少なくなり、比誘電率の添カ卩が不充分となること があり、上記含有率が 80質量%を超えると、得られる多孔成形体の機械的強度が低 下することがある。
上記ポリテトラフルォロエチレン樹脂(B)の含有率のより好ましい下限は、 40質量%
、更に好ましい下限は、 50質量%であり、より好ましい上限は 70質量%、更に好まし い上限は 60質量%である。
[0047] 本発明の混合ポリテトラフルォロエチレン粉体は、上記ポリテトラフルォロエチレン樹 脂 (A)及び上記ポリテトラフルォロエチレン樹脂(B)に加え、用途に応じ、成核剤、 酸化防止剤等の公知の添加剤を含有するものであってもよい。
[0048] 本発明の混合ポリテトラフルォロエチレン粉体は、特に限定されないが、成形材料と して用いることができ、特に成形体中に気泡が多数分布している多孔成形体を得る ための成形材料として好適に用いることができる。
[0049] 本発明の混合ポリテトラフルォロエチレン粉体は、好ましくはポリテトラフルォロェチレ ン樹脂の一次最大吸熱ピーク温度以上の温度に加熱して成形力卩ェを行うことにより 多孔成形体を得ることができるものである。
上記混合ポリテトラフルォロエチレン粉体を構成する粉体粒子のうち、上記ポリテトラ フルォロエチレン樹脂(B)からなる粉末粒子は、上記工程(2)における熱処理を一 旦行ったものであるので、得られる本発明の混合ポリテトラフルォロエチレン粉体を用 レ、て成形する際、ポリテトラフルォロエチレン樹脂の二次最大吸熱ピーク温度以上の 温度に加熱しても収縮しにくぐ上記ポリテトラフルォロエチレン樹脂(B)からなる粉 末粒子 1つ 1つが占める体積は殆ど減少しない。 その一方、上記ポリテトラフルォロエチレン樹脂 (A)からなる粒子は、ポリテトラフルォ 口エチレン樹脂の一次最大吸熱ピーク温度以上の温度に加熱した履歴がないもので あるので、成形時等にポリテトラフルォロエチレン樹脂の一次最大吸熱ピーク温度以 上の温度に加熱すると、加熱時間等によるが、その体積は通常約 30%収縮する。
[0050] 本発明の混合ポリテトラフルォロエチレン粉体は、上記ポリテトラフルォロエチレン樹 脂 (A)からなる粒子と上記ポリテトラフルォロエチレン樹脂(B)からなる粒子との間の 加熱時の収縮の差を利用し、ポリテトラフルォロエチレン樹脂の一次最大吸熱ピーク 温度以上の温度で成形加工することにより、上記ポリテトラフルォロエチレン樹脂(B) は殆ど収縮しないが、上記ポリテトラフルォロエチレン樹脂 (A)の収縮に起因する気 泡を生じさせることにより多孔成形体を得ることができるものである。
[0051] 本発明の混合ポリテトラフルォロエチレン粉体は、最大吸熱ピーク温度が異なる以外 、化学的性質が実質的に大きく異ならない上記ポリテトラフルォロエチレン樹脂 (A) と上記ポリテトラフルォロエチレン樹脂(B)とからなるものであるので、充分に混合す ること力 Sでき、得られる成形体を上記ポリテトラフルォロエチレン樹脂 (A)の均一な分 布により、気泡が均一に分布している多孔成形体とすることができる。
[0052] 本発明の混合ポリテトラフルォロエチレン粉体は、ポリテトラフルォロエチレン樹脂か らなるものであるので、比誘電率と誘電正接とが低い成形体を得ることができ、更に 上記ポリテトラフルォロエチレン樹脂 (A)の収縮による気泡を有することにより比誘電 率が充分に低下した多孔成形体を得ることができる。
[0053] 上述の本発明のポリテトラフルォロエチレン多孔成形体は、本発明の混合ポリテトラ フルォロエチレン粉体を用いて得られる多孔成形体であって、比重が 0. 9— 2. 0で あり、成形体内部に形成されている空隙のアスペクト比が 1以上、 3以下であるもので あってもよレヽ。
本明細書において、本発明のポリテトラフルォロエチレン多孔成形体のうち、上述の 混合ポリテトラフルォロエチレン粉体を用いて得られる多孔成形体を、以下、本発明 のポリテトラフルォロエチレン多孔成形体 (C)と称することがある。
本発明のポリテトラフルォロエチレン多孔成形体 (C)は、通常、上述したポリテトラフ ルォロエチレン樹脂 (A)の融点以上の温度で焼成して成形加工することにより得ら れる。
[0054] 本発明のポリテトラフルォロエチレン多孔成形体(C)は、未焼成のポリテトラフルォロ エチレン樹脂 (A)がポリテトラフルォロエチレン樹脂の一次最大吸熱ピーク温度以上 の温度で加熱すると収縮し、標準比重が約 1. 5から約 2. 15に増加するのに対し、 上記一次最大吸熱ピーク温度以上の温度で加熱した履歴がある上記ポリテトラフル ォロエチレン樹脂(B)が、再焼成しても標準比重変化はほとんどないことを利用して 得たものであるので、上記ポリテトラフルォロエチレン樹脂 (A)の収縮により生じた気 泡が多数形成された多孔成形体である。
上記ポリテトラフルォロエチレン多孔成形体(C)は、また、ポリテトラフルォロエチレン 樹脂からなるものであるので、比誘電率と誘電正接とが低レ、ものである。
[0055] 本発明のポリテトラフルォロエチレン多孔成形体は、ポリテトラフルォロエチレン樹脂 力 なる多孔成形体であるので、比誘電率がかなり低レ、。
上記ポリテトラフルォロエチレン多孔成形体の比誘電率( ε r)は、 1 · 2- 1. 8にする こと力 Sできる。上記比誘電率のより好ましい下限は 1. 7、更に好ましい上限は 1. 6で ある。
本発明のポリテトラフルォロエチレン多孔成形体は、 tan 5で表される誘電正接が 1.
5 X 10— 4以下であることが好ましい。上記誘電正接の好ましい上限は、 0. 8 X 10— 4で あり、より好ましい上限は、 0. 7 X 10— 4である。
[0056] 本明細書において、上記誘電正接及び上記比誘電率は、それぞれネットワークアナ ライザ一を用いて、共振周波数及び電界強度の変化を 20— 25°Cの温度下で測定し
、 12GHzにおける値を算出して得られるものである。
[0057] 本発明のポリテトラフルォロエチレン多孔成形体は、比誘電率及び誘導正接が低い ものであるので、高い伝送速度と低い誘電体損とが求められる高周波信号伝送用製 品に好適に用いることができる。
本発明のポリテトラフルォロエチレン多孔成形体は、比誘電率及び誘導正接が低い ものであるので絶縁体として用いることが好ましぐ高周波信号伝送用製品における 絶縁体として用いることがより好ましい。
[0058] 本発明のポリテトラフルォロエチレン多孔成形体は、高周波信号伝送用製品におけ る絶縁体として用いる場合、特に、高周波信号の伝送速度を高速化することができる 。上記伝送速度は、光速を比誘電率( ε r)の平方根で除した値として表され、本発明 のポリテトラフルォロエチレン多孔成形体は比誘電率が充分に低レ、ので、伝送速度 の高速化を達成することができる。
[0059] 本発明のポリテトラフルォロエチレン多孔成形体は、例えば後述の高周波伝送ケー ブル等における絶縁体として用いる場合、誘電体損が低ぐ低伝送損失を可能にす ること力 Sでき、絶縁体、特に高周波伝送ケーブル等の各種高周波信号伝送用製品に おける絶縁体に好適である。
伝送損失は、一般に、導体損によるものと、誘電体損によるものとに分類される。上記 誘電体損ひ は、下記一般式で表されるように比誘電率及び誘電正接の関数で表さ
k
れ、本発明のポリテトラフルォロエチレン多孔成形体は、比誘電率と誘電正接とが低 いので誘電体損が低い。
[0060] [数 1]
(誘電体損び κ) = K - A/" £ r ■ t a n (5 ' f ( d BZm) K:定数 ε r : 比誘電率 f :周波数
[0061] 上記各種高周波信号伝送用製品としては、高周波信号の伝送に用いる製品であれ ば特に限定されず、(I)高周波回路の絶縁板、電気部品の端子板、接続部品の絶縁 物、プリント配線基板等の成形板、(II)高周波用真空管のベース、アンテナカバー等 の成形品、及び、(III)高周波伝送ケーブル、同軸フィーダ一等の絶縁電線等が挙 げられる。
[0062] 上記 (I)成形板としては、本発明のポリテトラフルォロエチレン多孔成形体の良好な 電気特性及び耐熱性を活かす点で、プリント配線基板が好ましレ、。
上記プリント配線基板としては特に限定されないが、例えば、携帯電話、各種コンビ ユーター、通信機器等の電子回路のプリント配線基板等が挙げられる。
上記 (II)成形品としては、低伝送損失であり、優れた電気特性のみならず、耐侯性 及び機械的強度を活かす点で、アンテナカバーが好ましレ、。
[0063] 上記 (I)成形板及び (II)成形品に成形加工する方法としては特に限定されなレ、が、 例えば、上記混合ポリテトラフルォロエチレン粉体と、所望により公知の加工助剤等と を混合した後、圧縮成形又は押出圧延成形等を行うことからなる方法等が挙げられ る。
[0064] 上記 (III)絶縁電線としては、良好な電気特性及び耐熱性を活かす点で、高周波伝 送ケーブルが好ましぐ上記高周波伝送ケーブルとしては、同軸ケーブル、 LANケ 一ブル等が好ましい。
上記同軸ケーブルは、一般に、内部導体、絶縁被覆層、外部導体層及び保護被覆 層が、この順で芯部より外周部に積層することからなる構造を有する。上記構造にお ける各層の厚さは特に限定されなレ、が、通常、内部導体は、直径約 0. 1 3mmであ り、絶縁被覆層は、厚さ約 0. 3 3mm、外部導体層は、厚さ約 0. 5— 10mm、保護 被覆層は、厚さ約 0. 5 2mmである。
[0065] 上記高周波伝送ケーブルは、例えば、特開 2001—357729号公報に記載の方法、 特開平 9-55120号公報に記載の方法等、公知の方法により製造することができる。 上記高周波伝送ケーブルは、通常、上記ポリテトラフルォロエチレン多孔成形体を絶 縁被覆層として有するものである。
上記絶縁被覆層として本発明のポリテトラフルォロエチレン多孔成形体を成形加工 する方法としては特に限定されないが、例えば、押出被覆成形方式、ラッピングテー プ方式、カレンダー圧延方式等が挙げられる。
上記成形加工の方法としては押出被覆成形方式が好ましぐ上記押出被覆成形方 式としてはペースト押出成形が好ましレ、。
[0066] 上記ペースト押出成形の方法としては、例えば、上記混合ポリテトラフルォロエチレン 粉体にペースト押出助剤を混合したのち、ペースト押出機に装填し、芯線を被覆させ るように押出し、 100— 250°Cの温度下で加熱乾燥した後、上記ポリテトラフルォロェ チレン樹脂 (A)の融点以上で焼成することからなる方法等が挙げられる。
[0067] 本発明のポリテトラフルォロエチレン多孔成形体は、微細な気泡が成形体中に分布 している多孔成形体であるので、フィルターに用いることができる。
上記フィルタ一は、低比誘電率等の電気特性が求められるものであってもよいが、求 められないものであってもよぐ例えば、上記ポリテトラフルォロエチレン多孔成形体 の空気を通すが水は通しにくい性質を活力 たものとして、用途に応じたフィルター にすることができる。上記フィルタ一としては、例えば、電子部品の端子部防水キヤッ プ等が挙げられる。
本発明のポリテトラフルォロエチレン多孔成形体は、延伸又は圧縮することにより、気 泡のサイズを小さくし、用途に応じたフィルターにすることができる。
[0068] 本発明のポリテトラフルォロエチレン多孔成形体の製造方法は、上記混合ポリテトラ フルォロエチレン粉体を用いて成形加工することよりなるものである。
上記成形加工は、上記ポリテトラフルォロエチレン樹脂 (A)の融点以上の温度にて 焼成する工程(以下、「焼成工程」ということがある)を含むものである。
上記焼成工程は、通常、上記混合ポリテトラフルォロエチレン粉体を用いて所定形状 に成形する工程 (以下、「形状付与工程」ということがある)したのち、行う。
[0069] 上記混合ポリテトラフルォロエチレン粉体を用いて成形加工する方法としては上記焼 成工程を含むものであれば特に限定されず、 目的とするポリテトラフルォロエチレン 多孔成形体の用途に応じ、例えば、圧縮成形、押出圧延成形、押出被覆成形方式、 テープラッピング方式、カレンダー圧延方式等の公知の方法による形状付与工程を も含むものであってよい。
[0070] 上記成形加工は、上記混合ポリテトラフルォロエチレン粉体に加え、成形加工性の 向上、得られる成形体の機械的強度等の物性の向上等を目的として、その他公知の 加工助剤等を添加して行ってもよい。
[0071] 上記成形加工する方法としては、成形加工性がよい点で、ペースト押出成形が好ま しい。
上記混合ポリテトラフルォロエチレン粉体をペースト押出成形する場合、上記ポリテト ラフルォロエチレン樹脂 (A)からなる粒子は繊維化され、上記ポリテトラフルォロェチ レン樹脂(B)を巻き込んで所望の形状になるので、得られるポリテトラフルォロェチレ ン多孔成形体の機械的強度が向上する。
[0072] 上記混合ポリテトラフルォロエチレン粉体をペースト押出成形する場合、押出成形後 、押出助剤を乾燥炉内で蒸発させる乾燥を行った後、焼成を行う。
上記乾燥の方法は特に限定されなレ、が、例えば 100 200°Cの乾燥炉内で乾燥す る方法が挙げられる。
上記焼成は、 350— 450°Cにて熱処理することが好ましい。
[0073] 本発明のポリテトラフルォロエチレン多孔発泡成形体は、ポリテトラフルォロエチレン 樹脂(P)と、熱可塑性樹脂(Q)とからなるものであって、比重が 0. 8- 1. 9であり、成 形体内部に形成されている空隙のアスペクト比が 1以上、 3以下であるものである。 上記比重は、比誘電率の低下の点で、 1. 7以下であることが好ましぐ 1. 6以下であ ることがより好ましぐ機械的強度の点で、 0. 9以上であることが好ましい。
上記アスペクト比の好ましい範囲は、上述の本発明のポリテトラフルォロエチレン多 孔成形体に関して説明した範囲と同じである。
本発明のポリテトラフルォロエチレン多孔発泡成形体は、比重及びアスペクト比が、 それぞれ上述の範囲内にあるものであるので、比誘電率が低ぐ形状安定性に優れ ているため、高周波信号伝送用製品の材料として好適に使用することができる。
[0074] 上記ポリテトラフルォロエチレン樹脂(P)としては、示差走査熱量計による結晶融解 曲線上に現れる吸熱カーブの最大ピーク温度(以下、「最大吸熱ピーク温度」ともいう 。)が 320— 345°Cであるものが好ましい。
成形加工時の成形性の点で、上記ポリテトラフルォロエチレン樹脂(P)の最大吸熱ピ ーク温度のより好ましい下限は 337°Cであり、より好ましい上限は 343°Cである。 上記ポリテトラフルォロエチレン樹脂(P)は、ポリテトラフルォロエチレン樹脂の一次 最大吸熱ピーク温度以上の温度に加熱した履歴がないものであってもよいし、上記 履歴があるものであってもよいが、本発明のポリテトラフルォロエチレン多孔発泡成形 体の孔形成がょレ、点で、焼成されてレ、なレ、ものが好ましレ、。
[0075] 上記ポリテトラフルォロエチレン樹脂(P)を構成するフルォロポリマーとしては、テトラ フルォロエチレン [TFE]単独重合体であってもよいし、上述の変性ポリテトラフルォ 口エチレン [変性 PTFE]であってもよい。
上記ポリテトラフルォロエチレン樹脂(P)としては、上記成形材料から得られる成形体 の比誘電率と誘電正接とを低くさせる点で、 TFE単独重合体が好ましい。
[0076] 上記ポリテトラフルォロエチレン樹脂(P)は、標準比重〔SSG〕が 2. 2以下であるもの が好ましい。 得られるポリテトラフルォロエチレン多孔発泡成形体の機械的強度や電気的特性の 点で、上記 SSGの好ましい下限は 2. 12、より好ましい下限は 2. 13、更に好ましい 下限は 2. 15であり、特に好ましい下限は 2. 17であり、成形性の点でより好ましい上 限は 2. 19である。
[0077] 上記ポリテトラフルォロエチレン樹脂(P)からなる樹脂粒子の平均一次粒径は、通常
、 0. 1-0. である。上記平均一次粒径の好ましい下限は 0. であり、好ま しい上限は 0. である。
[0078] 上記ポリテトラフルォロエチレン樹脂(P)は、乳化重合、懸濁重合等、公知の方法に より製造することができる力 電線押出、チューブ押出等のペースト押出が容易にな る点で、乳化重合から得られたものが好ましレ、。
[0079] 上記熱可塑性樹脂(Q)は、 350°Cにおける溶融粘度が 5000000Pa' s以下であるも のである。
上記溶融粘度は、機械的強度の点で、好ましい上限は 80000Pa' s、より好ましい上 艮 ίま 60000Pa* sであり、女子ましレヽ下限 ίま 40000Pa* s、 j;り子ましレヽ下艮 ίま 50000P a* s" 3DO0
本明細書において、上記溶融粘度は、動的粘弾性測定装置としてレオメトリタス社製 粘弾性測定器 RDS-2を使用し、 350°Cにおいて測定した値である。
[0080] 上記熱可塑性樹脂(Q)の融点は、 100°C以上、 330°C未満であることが好ましい。
上記熱可塑性樹脂(Q)の融点は、使用時の機械的強度の点で、 100°C以上が好ま しぐ 120°C以上がより好ましぐ機械的強度と成形性の点で、 320°C以下が好ましく
、 300°C以下がより好ましい。
[0081] 上記熱可塑性樹脂(Q)の融点の測定法としては、示差走査熱量計を用いて、昇温 速度 10°C/分の条件で吸熱ピークを測定することにより求めることができる。
[0082] 上記熱可塑性樹脂(Q)としては、含フッ素樹脂又はポリオレフイン樹脂が好ましレ、。
上記含フッ素樹脂としては、例えば、非溶融加工性含フッ素樹脂、溶融加工性含フ ッ素樹脂等が挙げられる。
上記ポリオレフイン樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂 等が挙げられる力 ポリプロピレン系樹脂が好ましレ、。 [0083] 上記非溶融加工性含フッ素樹脂としては、例えば、低分子量ポリテトラフルォロェチ レン [PTFE]樹脂が挙げられる。
上記低分子量 PTFE樹脂は、通常、数平均分子量が 100万 ± 50万の PTFE樹脂で あり、上記 PTFE樹脂を構成するフルォロポリマーとしては、上記 TFE単独重合体で あってもよいし、上述の変性 PTFEであってもよレ、が、比誘電率と誘電正接とを低下 させる点で、 TFE単独重合体が好ましい。上記低分子 PTFE樹脂としては、例えば、 ルブロン (商品名、ダイキン工業社製)等が挙げられる。
本明細書において、数平均分子量は、 ATSM D— 4895 98に準拠して成形した サンプノレを用レ、、 ASTM D—792に準拠した水置換法により測定した標準比重〔S SG〕から算出した値である。
[0084] 上記溶融加工性含フッ素樹脂としては、例えば、構成するフルォロポリマーがテトラ フルォロエチレン Zパーフルォロ(アルキルビュルエーテル) [TFEZPAVE]共重 合体、テトラフルォロエチレン/へキサフルォロプロピレン [FEP]共重合体、テトラフ ノレォロエチレン/エチレン [ETFE]共重合体、エチレン/テトラフルォロエチレン/ へキサフルォロプロピレン [EFEP]共重合体等である含フッ素樹脂が挙げられる。 上記 TFE/PAVE共重合体 [PFA]としては、テトラフルォロエチレン/パーフルォ 口(メチルビニルエーテル)共重合体 [MFA]、テトラフルォロエチレン/パーフルォ 口(プロピルビエルエーテル) [TFE/PPVE]共重合体等が挙げられる。
[0085] 上記熱可塑性樹脂 (Q)としての含フッ素樹脂は、乳化重合、懸濁重合、溶液重合等 の公知の方法で製造することができるが、後述の成形材料の調製に、上記熱可塑性 樹脂 (Q)として含フッ素樹脂の水性分散液を用いる場合、乳化重合法により重合さ れたものが好ましい。
上記熱可塑性樹脂 (Q)としての含フッ素樹脂は、乳化重合法により重合されたもの である場合、平均一次粒径は、通常約 0. 02-0. 5 111でぁるカ 上記平均一次粒 径の好ましい下限は 0. l x mであり、好ましい上限は 0. である。
上記ポリオレフイン樹脂は、構成するォレフインポリマーがォレフィン単独重合体であ るものであってもよいし、主要単量体としてのォレフィンと、ォレフィンと共重合可能な その他の単量体との共重合体であるものであってもよい。 上記ォレフィンの共重合体としては、例えば、プロピレンとエチレンとがランダム又は ブロック状に共重合したプロピレン/エチレン系共重合体等が挙げられる。
[0086] 上記熱可塑性樹脂(Q)としては、耐熱性に優れ、比較的高温下でも安定した使用が 可能な発泡成形体が得られる点で、含フッ素樹脂が好ましレ、。
上記含フッ素樹脂としては、耐熱性の点で、溶融加工性含フッ素樹脂が好ましぐ溶 融加工性含フッ素樹脂としては、構成するフルォロポリマーが FEP、 TFE/PAVE 共重合体である樹脂が好ましい。上記 TFE/PAVE共重合体としては、 MFA、 TF E/PPVE共重合体が好ましレ、。
[0087] 上記熱可塑性樹脂(Q)の数平均分子量は特に限定されなレ、が、 1000— 100万で あることが好ましい。上記数平均分子量は、大きすぎると成形性が低下することがあり 、小さ過ぎると、得られる成形体の機械的強度が低下することがある。
[0088] 本発明のポリテトラフルォロエチレン多孔発泡成形体において、上記ポリテトラフルォ 口エチレン樹脂(P)は、上記ポリテトラフルォロエチレン樹脂(P)と上記熱可塑性樹 脂(Q)との合計の 1一 95質量%であることが好ましい。
上記ポリテトラフルォロエチレン樹脂(P)の含有率のより好ましい下限は、 20質量% 、更に好ましい下限は、 30質量%であり、より好ましい上限は 70質量%、更に好まし い上限は 50質量%である。
上記ポリテトラフルォロエチレン樹脂(P)の含有率は 95質量%を超えると、成形材料 から得られる成形体の発泡率が低下する場合があり、上記含有率が 5%未満である 場合、比誘電率及び誘電正接が有意に低下しないことがある。
[0089] 本発明のポリテトラフルォロエチレン多孔発泡成形体は、上記ポリテトラフルォロェチ レン樹脂 (P)と上記熱可塑性樹脂 (Q)とからなる成形材料を後述の方法を行うことに より得ることができる。
本明細書において、上記成形力卩ェの材料を「成形材料」ということがある。
上記成形材料としては、上記ポリテトラフルォロエチレン樹脂(P)と上記熱可塑性樹 脂(Q)とのみであってもよレ、が、後述の発泡剤その他の添加剤を添カ卩したものであつ てもよい。
[0090] 本発明のポリテトラフルォロエチレン多孔発泡成形体は、ポリテトラフルォロエチレン 樹脂 (P)と、熱可塑性樹脂 (Q)と、更に、発泡剤とからなる成形材料を用いて得られ るものであってもよレ、。
上記発泡剤としては、成形カ卩ェ時に気泡を生じ得るものであれば特に限定されない が、例えば、カルボニルヒドラジド、ァゾ系化合物、無機化合物等の分解性化合物が 挙げられる。
[0091] 上記カルボニルヒドラジドとしては、 4, 4_ビスォキシベンゼンスルホニルヒドラジド等 が挙げられる。
上記ァゾ系化合物としては、例えば、ァゾジカルボン酸アミド、 5—フエ二ルテトラゾー ルが挙げられる。
上記無機化合物としては、窒化ホウ素、タルク、セリサイト、珪藻土、窒化ケィ素、ファ インシリカ、アルミナ、ジルコユア、石英粉、カオリン、ベンゾナイト酸化チタン等が挙 げられる。
[0092] 上記発泡剤は、上記ポリテトラフルォロエチレン樹脂(P)及び上記熱可塑性樹脂(Q )の合計の 0· 1— 5質量%の量で添カ卩することが好ましい。
上記発泡剤の添加量は、使用する発泡剤の種類により異なるが、発泡率の点で、 0. 5質量%以上がより好ましぐ誘電正接の点で、 1質量%以下がより好ましい。
[0093] 上記成形材料の調製方法としては、例えば、(i)上記ポリテトラフルォロエチレン樹脂
(P)からなる粉末と上記熱可塑性樹脂 (Q)からなる粉末とを混合する乾式混合法等 が挙げられる。また、上記熱可塑性樹脂(Q)が、溶融加工性含フッ素樹脂以外であ る場合、即ち、例えば非溶融加工性含フッ素樹脂、ポリオレフイン樹脂等である場合 、(ii)上記ポリテトラフルォロエチレン樹脂(P)と、上記溶融加工性含フッ素樹脂以外 の熱可塑性樹脂(Q)のうち、何れか一方の樹脂からなる水性分散液に、他方の樹脂 力 なる粉末を添加して凝析する共凝析法、(iii)上記ポリテトラフルォロエチレン樹 脂 (P)からなる水性分散液と、上記溶融加工性含フッ素樹脂以外の熱可塑性樹脂( Q)からなる水性分散液とを混合して凝析する共凝析法等が挙げられる。
なかでも、充分に混合でき、均質で、機械的強度と電気特性に優れた発泡成形体が 得られやすい点で、上記 (ii)又は (iii)の共凝析法が好ましぐ (iii)の共凝析法がより 好ましい。 [0094] 上記 (i)乾式混合法及び (ii)共凝析法は、上述の本発明の混合ポリテトラフルォロェ チレン粉体について説明した方法と同様の方法により行うことができる。
上記 (iii)の共凝析法としては特に限定されなレ、が、上記ポリテトラフルォロエチレン 樹脂 (P)からなる粒子の重合上がりの水性分散液と、上記溶融加工性含フッ素樹脂 以外の熱可塑性樹脂(Q)からなる粒子の重合上がりの水性分散液とを混合した後、 無機酸又はその金属塩等の凝析剤を作用させて共凝析することよりなる方法が好ま しい。
[0095] 上記ポリテトラフルォロエチレン樹脂 (P)と上記熱可塑性樹脂(Q)とが充分に混合さ れ、均質な混合物を得やすい点で、上記ポリテトラフルォロエチレン樹脂(P)からな る粒子の平均粒径と上記熱可塑性樹脂(Q)からなる粒子の平均粒径とは、互いにほ ぼ同じであることがより好ましい。
[0096] 上記成形材料が、上記発泡剤を含むものである場合、上記発泡剤は、上記各調製 方法において、いずれの時点で添加してもよぐ例えば、上述の(ii)又は(iii)の共凝 析法を用いる場合、水性分散液に添加し、上記ポリテトラフルォロエチレン樹脂(P) 及び上記溶融加工性含フッ素樹脂以外の熱可塑性樹脂 (Q)と一緒に共凝析させて あよい。
[0097] 上記成形材料は、上記ポリテトラフルォロエチレン樹脂(P)及び上記熱可塑性樹脂( Q)に加え、成形加工性の向上、得られるポリテトラフルォロエチレン多孔発泡成形体 の機械的強度等の物性の向上等を目的として、その他公知の押出助剤等の添加剤 を添加したものであってもよい。
上記押出助剤は、特に後述のペースト押出を行う場合、用いることが好ましぐ上記 ポリテトラフルォロエチレン樹脂(P)と上記熱可塑性樹脂(Q)との合計に対し、 10
25質量%の量で添カ卩することが好ましレ、。
[0098] 本発明のポリテトラフルォロエチレン多孔発泡成形体は、 tan δで表される誘電正接 が 1. 5 X 10— 4以下であることが好ましい。上記誘電正接の好ましい上限は、 0. 8 X 1
0_4であり、より好ましい上限は、 0. 6 X 10— 4である。
[0099] 本発明のポリテトラフルォロエチレン多孔発泡成形体は、比誘電率( ε )が通常 1. 2 一 1. 8であるものである。伝送速度の点で、上記比誘電率の好ましい上限は 1. 9で ある。
[0100] 本発明のポリテトラフルォロエチレン多孔発泡成形体の製造方法であって、上記ポリ テトラフルォロエチレン樹脂(P)と、上記熱可塑性樹脂(Q)とを用いてポリテトラフノレ ォロエチレン樹脂(P)の融点以上の温度にて成形カ卩ェすることよりなるポリテトラフル ォロエチレン多孔発泡成形体の製造方法もまた、本発明の 1つである。
上記成形加工は、通常、上述した成形材料を用いて行うことができる。
[0101] 上記成形材料を用いて成形加工する方法としては特に限定されず、 目的とするポリ テトラフルォロエチレン多孔発泡成形体の用途によるが、例えば、圧縮成形、押出圧 延成形、押出被覆成形方式、ラッピングテープ方式、カレンダー圧延方式等の公知 の方法を用いることができる。
なかでも、成形力卩ェの容易さの点で、ペースト押出成形が好ましい。
上記成形材料をペースト押出成形により成形加工する場合、上記ポリテトラフルォロ エチレン樹脂(P)は未焼成のまま上記成形加工に供することが好ましレ、。
[0102] 上記成形材料を用いた成形加工において熱処理を行う場合、上記熱処理を行う温 度は、使用する上記ポリテトラフルォロエチレン樹脂(P)、上記熱可塑性樹脂(Q)及 び/又は発泡剤の種類により異なるが、上記熱可塑性樹脂(Q)の融点以上の温度 であればょレ、が、得られるポリテトラフルォロエチレン多孔発泡成形体の機械的強度 の点で、上記ポリテトラフルォロエチレン樹脂(P)の融点以上の温度が好ましレ、。
[0103] 上記熱処理を行う温度のより好ましい下限は 355°C、更に好ましい下限は 360°Cで あり、特に好ましい下限は 370°Cであり、好ましい上限は 400°C、より好ましい上限は 390。Cである。
[0104] 上記成形加工は、上記熱可塑性樹脂(Q)の融点以上の温度での熱処理において、 上記熱可塑性樹脂 (Q)が部分的に分解することにより生じた気泡を、溶融した上記 熱可塑性樹脂(Q)がバリアの働きをして外部に逃しにくくする結果、残存した上記気 泡が分布した成形体を得ることを可能にするものである。
上記成形材料が発泡剤を含むものである場合、上記熱処理により、上記発泡剤が分 解して生じる気泡は、同様に、溶融した上記熱可塑性樹脂(Q)のノ^ァ的作用により 、得られるポリテトラフルォロエチレン多孔発泡成形体中に封じ込めることができる。 得られたポリテトラフルォロエチレン多孔発泡成形体は、少なくとも上記熱可塑性榭 脂(Q)の部分的分解により生じた気泡が微細で均一に分布したものであるので、安 定した線径等の形状安定性と、安定したインピーダンスとを有し、更に、表面に荒れ がないものである。
従来、樹脂として、ポリテトラフルォロエチレン樹脂のみを用レ、、発泡剤により多孔発 泡成形体を得ようとしても、生じた気泡が成形体の外部に逃げてしまい、ポリテトラフ ルォロエチレン樹脂からなる多孔発泡成形体は、実質的に得られないか、又は、得ら れたとしても、気泡量が極めて少なく成形体表面に荒れを起したり、線径が一定しな い等、形状安定性に劣るものであったと考えられる。
[0105] 上述した本発明のポリテトラフルォロエチレン多孔成形体、又は、上述した本発明の ポリテトラフルォロエチレン多孔発泡成形体は、比誘電率が低ぐ形状安定性に優れ るので、高周波信号伝送用製品として好適に使用することができる。
上述した本発明のポリテトラフルォロエチレン多孔成形体、又は、上述した本発明の ポリテトラフルォロエチレン多孔発泡成形体を用いてなることを特徴とする高周波信 号伝送用製品もまた、本発明の 1つである。
[0106] 本発明の高周波信号伝送用製品は、本発明のポリテトラフルォロエチレン多孔発泡 成形体を、通常、絶縁体として含むものであってもよい。
このような高周波信号伝送用製品としては、高周波信号の伝送に用いる製品であれ ば特に限定されず、例えば、(I)高周波回路の絶縁板、電気部品の端子板、接続部 品の絶縁物、プリント配線基板等の成形板、(II)高周波用真空管のベース、アンテ ナカバー等の成形品、及び、(III)高周波伝送ケーブル、同軸フィーダ一等の絶縁 電線等が挙げられる。
[0107] 上記 (I)成形板としては、良好な耐熱性及び電気特性が得られる点で、プリント配線 基板が好ましい。
上記プリント配線基板としては特に限定されないが、例えば、携帯電話、各種コンビ ユーター、通信機器等の電子回路のプリント配線基板等が挙げられる。
[0108] 上記 (II)成形品としては、優れた耐侯性及び機械的強度が得られる点で、アンテナ カバーが好ましい。 [0109] 上記 (I)成形板及び (II)成形品に成形加工するための方法としては特に限定されな レ、が、例えば、上述した各種高周波信号伝送用製品に関する記載で挙げた方法等 が挙げられる。
[0110] 上記 (III)絶縁電線としては、良好な耐熱性及び電気特性が得られる点で、高周波 伝送ケーブルが好ましぐ上記高周波伝送ケーブルとしては、同軸ケーブル、 LAN ケーブル等が好ましい。
上記同軸ケーブルの形状は、上述の各種高周波信号伝送用製品に関し説明したも のと同様である。
[0111] 上記高周波伝送ケーブルの製造方法としては、例えば、上述の公知の方法が挙げら れる。
本発明において、上記高周波伝送ケーブルは、本発明のポリテトラフルォロエチレン 多孔発泡成形体を絶縁被覆層として有するものであってもよい。
上記絶縁被覆層に成形加工する方法としては特に限定されないが、例えば、押出被 覆成形方式、ラッピングテープ方式、カレンダー圧延方式等が挙げられる。上記成形 加工の方法としては押出被覆成形方式が好ましぐ上記押出被覆成形方式としては ペースト押出成形が好ましい。
[0112] 上記ペースト押出成形の方法としては、例えば、本発明の混合ポリテトラフルォロェ チレン粉体に代えて上述の成形材料を用いること以外は、上述したものと同様にする ことからなる方法が挙げられる。
発明の効果
[0113] 本発明のポリテトラフルォロエチレン多孔成形体及び本発明のポリテトラフルォロェ チレン多孔発泡成形体は、上述の構成よりなることから、比誘電率及び誘電正接が 低ぐ線径等の形状安定性と安定したインピーダンスとを示し得るものである。
本発明の高周波信号伝送用製品は、ポリテトラフルォロエチレン樹脂を用レ、、伝送 速度を高速化したものである。
本発明の混合ポリテトラフルォロエチレン粉体は、上記ポリテトラフルォロエチレン多 孔成形体の材料として好適に使用することができる。
発明を実施するための最良の形態 [0114] 本発明を実施例により更に詳細に説明するが、本発明はこの実施例によって限定さ れるものではない。
[0115] 実施例において、以下の方法を用いて得られた成形品を評価した。
(1)外径:得られたケーブルを外周方向に垂直に切断した切断面を測定した。
(2)溶融粘度:動的粘弾性測定装置 (商品名: PDS— II、レオメトリタス社製)を用いて 、測定対象樹脂の融点よりも 30°C高レ、温度における値を測定した。
(3)融点温度:示差走查熱量計 (RDC220;セイコー電子社製)を用いて、昇温速度 10°C/分の条件で吸熱ピークを測定することにより求めた。
(4)比誘電率:空洞共振器法により、ネットワークアナライザー(HP8510C;ヒユーレ ットパッカード社製)を用いて、共振周波数及び Qu値(電界強度)の変化を 20— 25 °Cの温度にて測定し、 12GHzにおける値を算出した。
(5)比重: ASTM D— 792に準拠した水置換法により測定した。
[0116] 実施例 1
PTFE樹脂モールディングパウダー (TFE単独重合体、 SSG2. 155、一次最大吸 熱ピーク温度 340°C) 1kgをステンレス製トレーに厚さ 20mmに広げて、 380°Cにて、 5時間、電気炉を用いて焼成し、 PTFE樹脂のかたまりを得た。
得られた PTFE樹脂のかたまりを、粉砕機を使って平均粒径 50 μ mまで粉碎して、 粉砕粉 (以後、ゲル化粉と称する。)を得た。
得られたゲルィ匕粉(二次最大吸熱ピーク温度 327°C)を 160g、 PTFE樹脂ファイン パウダー(SSG2. 160、一次最大吸熱ピーク温度 339°C、)640g、及び、押出助剤 (商品名:ァイソパー G、ェクソンシェル社製) 136gを 5Lのポリエチレンビンに入れて 、 10分間回転させることにより混合する。ポリエチレンビンに入れたまま、 25°Cにて 1 2時間熟成を行い、 PTFE樹脂ファインパウダー及びゲル化粉からなる混合粉体 (P TFE樹脂ファインパウダー:ゲル化粉 = 77: 23、質量比) 800gを得た。
[0117] 得られた混合粉体を予備成形機にて、 3MPaの圧力下で 15分間予備成形したのち 、ペースト押出機(シリンダ径 38mm、マンドレル径 16mm、ジヱニングス社製)を用 レ、、芯線として SPCW (銀メツキ銅被覆鋼線)の AWG19 (直径 0. 91mm)、円筒金 型として直径 3. 18mmのものを使用して、卷取り速度 3m/分にて被覆を行い、押 出し直後の外径が 3. 3 lmmである絶縁被覆材を成形した。
続いて、 130°C及び 190°Cに設定した乾燥炉を用いて約 1分間、得られた絶縁被覆 材の乾燥を行ったのち、 420°Cの温度にて、 1分間、恒温槽にて焼成を行い、同軸ケ 一ブル用被覆線を得た。
[0118] 得られた同軸ケーブル用被覆線の評価を行ったところ、外径 2. 95mm,比重 1. 66 2、比誘電率 1. 6であった。
産業上の利用可能性
[0119] 本発明のポリテトラフルォロエチレン多孔成形体及び本発明のポリテトラフルォロェ チレン多孔発泡成形体は、上述の構成よりなることから、比誘電率及び誘電正接が 低ぐ線径等の形状安定性と安定したインピーダンスとを示し得るものである。
本発明の高周波信号伝送用製品は、ポリテトラフルォロエチレン樹脂を用い、伝送 速度を高速化したものである。
本発明の混合ポリテトラフルォロエチレン粉体は、上記ポリテトラフルォロエチレン多 孔成形体の材料として好適に使用することができる。

Claims

請求の範囲
[1] 比重が 0. 9-2. 0であり、
成形体内部に形成されている空隙のアスペクト比が 1以上、 3以下である
ことを特徴とするポリテトラフルォロエチレン多孔成形体。
[2] 示差走查熱量計による結晶融解曲線上に現れる吸熱カーブの最大ピーク温度が 33 3— 347°C、標準比重が 2. 12-2. 20であるポリテトラフルォロエチレン樹脂(A)と、 示差走査熱量計による結晶融解曲線上に現れる吸熱カーブの最大ピーク温度が 32 4一 330°C、標準比重が 2. 12-2. 20であるポリテトラフルォロエチレン樹脂(B)と からなる
ことを特徴とする混合ポリテトラフルォロエチレン粉体。
[3] ポリテトラフルォロエチレン樹脂 (A)からなる粒子が水性媒体に分散している水性分 散液と、ポリテトラフルォロエチレン樹脂(B)からなる粉末とを共凝析することにより得 られたものである請求項 2記載の混合ポリテトラフルォロエチレン粉体。
[4] 請求項 2又は 3記載の混合ポリテトラフルォロエチレン粉体を用いて得られるポリテト ラフルォロエチレン多孔成形体であって、
前記ポリテトラフルォロエチレン多孔成形体は、比重が 0. 9-2. 0であり、 成形体内部に形成されている空隙のアスペクト比が 1以上、 3以下である
ことを特徴とするポリテトラフルォロエチレン多孔成形体。
[5] 混合ポリテトラフルォロエチレン粉体を用いて成形加工することよりなる請求項 1又は 4記載のポリテトラフルォロエチレン多孔成形体の製造方法であって、
前記混合ポリテトラフルォロエチレン粉体は、示差走查熱量計による結晶融解曲線 上に現れる吸熱カーブの最大ピーク温度が 333 347°C、標準比重が 2. 12-2. 2 0であるポリテトラフルォロエチレン樹脂 (A)と、示差走查熱量計による結晶融解曲線 上に現れる吸熱カーブの最大ピーク温度が 324 330°C、標準比重が 2. 12-2. 2 0であるポリテトラフルォロエチレン樹脂(B)とからなるものであり、
前記成形加工は、前記ポリテトラフルォロエチレン樹脂 (A)の融点以上の温度にて 焼成する工程を含む
ことを特徴とするポリテトラフルォロエチレン多孔成形体の製造方法。
[6] ポリテトラフルォロエチレン樹脂(P)と、 350°Cにおける溶融粘度力 S5000000Pa' s 以下である熱可塑性樹脂(Q)とからなるポリテトラフルォロエチレン多孔発泡成形体 であって、
前記ポリテトラフルォロエチレン多孔発泡成形体は、比重が 0. 8-1. 9であり、 成形体内部に形成されている空隙のアスペクト比が 1以上、 3以下である
ことを特徴とするポリテトラフルォロエチレン多孔発泡成形体。
[7] 熱可塑性樹脂(Q)は、含フッ素樹脂又はポリオレフイン樹脂である
請求項 6記載のポリテトラフルォロエチレン多孔発泡成形体。
[8] ポリテトラフルォロエチレン樹脂 (P)と、熱可塑性樹脂(Q)と、更に、発泡剤とからなる 成形材料を用いて得られる請求項 6又は 7記載のポリテトラフルォロエチレン多孔発 泡成形体。
[9] 請求項 6、 7又は 8記載のポリテトラフルォロエチレン多孔発泡成形体の製造方法で あってヽ
前記ポリテトラフルォロエチレン多孔発泡成形体の製造方法は、ポリテトラフルォロェ チレン樹脂(P)と、 350°Cにおける溶融粘度が 5000000Pa ' s以下である熱可塑性 樹脂(Q)とを用いてポリテトラフルォロエチレン樹脂(P)の融点以上の温度にて成形 カロェすることよりなる
ことを特徴とするポリテトラフルォロエチレン多孔発泡成形体の製造方法。
[10] 請求項 1若しくは 4記載のポリテトラフルォロエチレン多孔成形体、又は、請求項 6、 7 若しくは 8記載のポリテトラフルォロエチレン多孔発泡成形体を用いてなる ことを特徴とする高周波信号伝送用製品。
[11] 高周波伝送ケーブルである請求項 10記載の高周波信号伝送用製品。
[12] プリント配線基板である請求項 10記載の高周波信号伝送用製品。
[13] アンテナカバーである請求項 10記載の高周波信号伝送用製品。
[14] 請求項 1、 4又は 5記載のポリテトラフルォロエチレン多孔成形体を用いてなる
ことを特徴とするフィルター。
PCT/JP2004/012212 2003-08-25 2004-08-25 混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品 WO2005019320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20040786425 EP1661942A1 (en) 2003-08-25 2004-08-25 Mixed polytetrafluoroethylene powder, polytetrafluoroethylene porous shaped body, methods for producing those, polytetrafluoroethylene porous foam shaped body, and product for high-frequency signal transmission
JP2005513353A JPWO2005019320A1 (ja) 2003-08-25 2004-08-25 混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品
US10/569,455 US20070009727A1 (en) 2003-08-25 2004-08-25 Mixed polytetrafluoroethylene powder, polytetrafluoroethylene porous shaped body, methods for producing those, polytetrafluoroethylene porous foam shaped body, and product for high-frequency signal transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003300640 2003-08-25
JP2003-300640 2003-08-25

Publications (1)

Publication Number Publication Date
WO2005019320A1 true WO2005019320A1 (ja) 2005-03-03

Family

ID=34213837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012212 WO2005019320A1 (ja) 2003-08-25 2004-08-25 混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品

Country Status (5)

Country Link
US (1) US20070009727A1 (ja)
EP (1) EP1661942A1 (ja)
JP (1) JPWO2005019320A1 (ja)
CN (1) CN100436517C (ja)
WO (1) WO2005019320A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070233A (ja) * 2004-08-31 2006-03-16 Starlite Co Ltd 混合系の非溶融加工性フッ素樹脂
JP2007153967A (ja) * 2005-12-02 2007-06-21 Kurabe Ind Co Ltd Ptfe多孔体及びバルクフィルタ
WO2008029878A1 (en) * 2006-09-07 2008-03-13 Nippon Valqua Industries, Ltd. Fluororesin composition for radome, and radome
WO2008035682A1 (fr) * 2006-09-22 2008-03-27 Kurabe Industrial Co., Ltd. Corps poreux à base de ptfe, mélange de ptfe, procédé de production de corps poreux à base de ptfe, et fil/câble électrique utilisant le corps poreux à base de ptfe
JP2008537964A (ja) * 2005-01-19 2008-10-02 ケビン ジー. ネルソン、 誘電体材料のための方法および組成物
JP2009242710A (ja) * 2008-03-31 2009-10-22 Daikin Ind Ltd ポリテトラフルオロエチレンの成形体、混合粉末及び成形体の製造方法
JP2010013520A (ja) * 2008-07-02 2010-01-21 Daikin Ind Ltd ポリテトラフルオロエチレンの成形体、混合粉末及び成形体の製造方法
WO2012086721A1 (ja) * 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
WO2013069206A1 (ja) * 2011-11-07 2013-05-16 日東電工株式会社 絶縁層被覆電線
WO2018221556A1 (ja) * 2017-05-31 2018-12-06 日東電工株式会社 ポリテトラフルオロエチレン及び充填剤を含有する板状の複合材料
JPWO2018174113A1 (ja) * 2017-03-24 2020-01-30 住友電気工業株式会社 絶縁電線
JPWO2018221556A1 (ja) * 2017-05-31 2020-04-02 日東電工株式会社 ポリテトラフルオロエチレン及び充填剤を含有する板状の複合材料
WO2021167073A1 (ja) 2020-02-20 2021-08-26 ダイキン工業株式会社 誘電体導波線路
WO2022030500A1 (ja) * 2020-08-03 2022-02-10 ダイキン工業株式会社 発泡成形用組成物、発泡成形体、電線、発泡成形体の製造方法、及び、電線の製造方法
WO2022211093A1 (ja) * 2021-03-31 2022-10-06 ダイキン工業株式会社 フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080138630A1 (en) * 2006-12-08 2008-06-12 Ngk Spark Plug Co., Ltd. Assembly including polytetrafluoroethylene porous body
JP5633793B2 (ja) * 2010-08-26 2014-12-03 旭硝子株式会社 ポリテトラフルオロエチレン延伸フィルムの製造方法およびポリテトラフルオロエチレン延伸フィルム
JP4984007B1 (ja) * 2010-12-21 2012-07-25 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
EP2657290B1 (en) * 2010-12-21 2017-10-04 Daikin Industries, Ltd. Polytetrafluoroethylene mixture
US9378863B2 (en) * 2011-11-16 2016-06-28 Sumitomo Electric Industries, Ltd. Insulating varnish and insulated electrical wire using same
US20150079392A1 (en) * 2012-04-11 2015-03-19 Sumitomo Electric Fine Polymer, Inc. Fluororesin microporous membrane, method for producing the same, and filter element using the fluororesin microporous membrane
KR102112645B1 (ko) 2013-11-29 2020-05-19 아사히 가세이 가부시키가이샤 고분자 전해질막
CN105794031B (zh) 2013-11-29 2019-01-29 旭化成株式会社 高分子电解质膜
EP3075767A4 (en) 2013-11-29 2017-07-05 Daikin Industries, Ltd. Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
US11084895B2 (en) * 2013-11-29 2021-08-10 Daikin Industries, Ltd. Modified polytetrafluoroethylene fine powder and uniaxially stretched porous body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166730A (ja) * 1984-09-07 1986-04-05 Chuko Kasei Kogyo Kk ポリテトラフルオロエチレン樹脂多孔質体の製造方法
JPS61293830A (ja) * 1985-06-21 1986-12-24 Nippon Valqua Ind Ltd ポリテトラフルオロエチレン製多孔質膜の製造方法
JPS62201943A (ja) * 1986-03-01 1987-09-05 Nippon Puraudaa Kk フツ素樹脂多孔体
JPH0243911A (ja) * 1988-08-02 1990-02-14 Mitsubishi Rayon Co Ltd ガスフイルター
JPH06322168A (ja) * 1993-02-11 1994-11-22 Minnesota Mining & Mfg Co <3M> 熱可塑性発泡物品およびその製造方法
JPH07233273A (ja) * 1994-02-24 1995-09-05 Nitto Denko Corp フッ素樹脂多孔質フィルムの製造法
JPH107833A (ja) * 1996-06-27 1998-01-13 Toray Ind Inc 連続シート状フッ素系樹脂架橋発泡体
JPH11322991A (ja) * 1998-05-20 1999-11-26 Mitsubishi Rayon Co Ltd 高発泡成形用ポリオレフィン系樹脂組成物および発泡体
JP2001357729A (ja) * 2000-06-15 2001-12-26 Daikin Ind Ltd 高周波信号伝送用製品の絶縁用ポリテトラフルオロエチレン混合粉末およびそれを用いた高周波信号伝送用製品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851864B2 (ja) * 2002-10-23 2006-11-29 住友電工ファインポリマー株式会社 多孔質複層中空糸および該多孔質複層中空糸を備えた濾過モジュール

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166730A (ja) * 1984-09-07 1986-04-05 Chuko Kasei Kogyo Kk ポリテトラフルオロエチレン樹脂多孔質体の製造方法
JPS61293830A (ja) * 1985-06-21 1986-12-24 Nippon Valqua Ind Ltd ポリテトラフルオロエチレン製多孔質膜の製造方法
JPS62201943A (ja) * 1986-03-01 1987-09-05 Nippon Puraudaa Kk フツ素樹脂多孔体
JPH0243911A (ja) * 1988-08-02 1990-02-14 Mitsubishi Rayon Co Ltd ガスフイルター
JPH06322168A (ja) * 1993-02-11 1994-11-22 Minnesota Mining & Mfg Co <3M> 熱可塑性発泡物品およびその製造方法
JPH07233273A (ja) * 1994-02-24 1995-09-05 Nitto Denko Corp フッ素樹脂多孔質フィルムの製造法
JPH107833A (ja) * 1996-06-27 1998-01-13 Toray Ind Inc 連続シート状フッ素系樹脂架橋発泡体
JPH11322991A (ja) * 1998-05-20 1999-11-26 Mitsubishi Rayon Co Ltd 高発泡成形用ポリオレフィン系樹脂組成物および発泡体
JP2001357729A (ja) * 2000-06-15 2001-12-26 Daikin Ind Ltd 高周波信号伝送用製品の絶縁用ポリテトラフルオロエチレン混合粉末およびそれを用いた高周波信号伝送用製品

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070233A (ja) * 2004-08-31 2006-03-16 Starlite Co Ltd 混合系の非溶融加工性フッ素樹脂
JP2008537964A (ja) * 2005-01-19 2008-10-02 ケビン ジー. ネルソン、 誘電体材料のための方法および組成物
JP2007153967A (ja) * 2005-12-02 2007-06-21 Kurabe Ind Co Ltd Ptfe多孔体及びバルクフィルタ
WO2008029878A1 (en) * 2006-09-07 2008-03-13 Nippon Valqua Industries, Ltd. Fluororesin composition for radome, and radome
WO2008035682A1 (fr) * 2006-09-22 2008-03-27 Kurabe Industrial Co., Ltd. Corps poreux à base de ptfe, mélange de ptfe, procédé de production de corps poreux à base de ptfe, et fil/câble électrique utilisant le corps poreux à base de ptfe
US8207447B2 (en) 2006-09-22 2012-06-26 Kurabe Industrial Co., Ltd. PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire/cable using PTFE porous body
JP2009242710A (ja) * 2008-03-31 2009-10-22 Daikin Ind Ltd ポリテトラフルオロエチレンの成形体、混合粉末及び成形体の製造方法
JP2010013520A (ja) * 2008-07-02 2010-01-21 Daikin Ind Ltd ポリテトラフルオロエチレンの成形体、混合粉末及び成形体の製造方法
WO2012086721A1 (ja) * 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
JP2012144718A (ja) * 2010-12-21 2012-08-02 Daikin Industries Ltd ポリテトラフルオロエチレン混合物
WO2013069206A1 (ja) * 2011-11-07 2013-05-16 日東電工株式会社 絶縁層被覆電線
JPWO2018174113A1 (ja) * 2017-03-24 2020-01-30 住友電気工業株式会社 絶縁電線
JP7076429B2 (ja) 2017-03-24 2022-05-27 住友電気工業株式会社 絶縁電線
JP7102402B2 (ja) 2017-05-31 2022-07-19 日東電工株式会社 ポリテトラフルオロエチレン及び充填剤を含有する板状の複合材料
JPWO2018221556A1 (ja) * 2017-05-31 2020-04-02 日東電工株式会社 ポリテトラフルオロエチレン及び充填剤を含有する板状の複合材料
US11884796B2 (en) 2017-05-31 2024-01-30 Nitto Denko Corporation Plate-like composite material containing polytetrafluoroethylene and filler
US11453762B2 (en) 2017-05-31 2022-09-27 Nitto Denko Corporation Plate-like composite material containing polytetrafluoroethylene and filler
WO2018221556A1 (ja) * 2017-05-31 2018-12-06 日東電工株式会社 ポリテトラフルオロエチレン及び充填剤を含有する板状の複合材料
WO2021167073A1 (ja) 2020-02-20 2021-08-26 ダイキン工業株式会社 誘電体導波線路
JP7078882B2 (ja) 2020-08-03 2022-06-01 ダイキン工業株式会社 発泡成形用組成物、発泡成形体、電線、発泡成形体の製造方法、及び、電線の製造方法
JP2022028640A (ja) * 2020-08-03 2022-02-16 ダイキン工業株式会社 発泡成形用組成物、発泡成形体、電線、発泡成形体の製造方法、及び、電線の製造方法
WO2022030500A1 (ja) * 2020-08-03 2022-02-10 ダイキン工業株式会社 発泡成形用組成物、発泡成形体、電線、発泡成形体の製造方法、及び、電線の製造方法
WO2022211093A1 (ja) * 2021-03-31 2022-10-06 ダイキン工業株式会社 フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体
JP2022159204A (ja) * 2021-03-31 2022-10-17 ダイキン工業株式会社 フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体
JP7323833B2 (ja) 2021-03-31 2023-08-09 ダイキン工業株式会社 フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体

Also Published As

Publication number Publication date
EP1661942A1 (en) 2006-05-31
CN1842562A (zh) 2006-10-04
US20070009727A1 (en) 2007-01-11
CN100436517C (zh) 2008-11-26
JPWO2005019320A1 (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
WO2005019320A1 (ja) 混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品
JP4816084B2 (ja) 高周波信号伝送用製品及びその製造方法並びに高周波伝送ケーブル
US8883313B2 (en) Modified polytetrafluoroethylene powder and method for producing tetrafluoroethylene polymer
CN107408751B (zh) 电介质波导线路
JP6134818B2 (ja) テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体及び電線
KR20070105973A (ko) 불소중합체 코팅 전도체, 그것을 사용한 동축 케이블, 및그들의 제조 방법
US7638588B2 (en) Fluororesin and coated electric wire
US20090038821A1 (en) Covered electric wire and coaxial cable
JP4617538B2 (ja) 高周波信号伝送用製品の絶縁用ポリテトラフルオロエチレン混合粉末およびそれを用いた高周波信号伝送用製品
KR200494839Y1 (ko) 소결되지 않은 폴리테트라플루오로에틸렌을 포함하는 유전체 기판 및 이의 제조 방법
CN101563408A (zh) 可发泡含氟聚合物的挤出方法
EP0526556B1 (en) Electrical insulating material
KR20060094440A (ko) 케이블 절연재료 조성물 및 이로부터 형성된 절연층을 구비하는 케이블
CN108473732A (zh) 高孔隙度微孔聚乙烯
JP5131202B2 (ja) フッ素樹脂組成物、フッ素樹脂成形品及びその製造方法
JP5167910B2 (ja) ポリテトラフルオロエチレンの成形体、混合粉末及び成形体の製造方法
JP2008186680A (ja) 樹脂系誘電体の製造方法、および、樹脂系誘電体
JP2001357730A (ja) 高周波信号伝送用製品およびその製法
JPS6019604B2 (ja) 複合誘電体
CN113330635A (zh) 配线板
JPS58166605A (ja) 複合誘電体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024321.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513353

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007009727

Country of ref document: US

Ref document number: 10569455

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004786425

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004786425

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569455

Country of ref document: US