WO2005014198A1 - バルジ缶、バルジ缶の製造方法及びバルジ缶の製造装置 - Google Patents

バルジ缶、バルジ缶の製造方法及びバルジ缶の製造装置 Download PDF

Info

Publication number
WO2005014198A1
WO2005014198A1 PCT/JP2004/008050 JP2004008050W WO2005014198A1 WO 2005014198 A1 WO2005014198 A1 WO 2005014198A1 JP 2004008050 W JP2004008050 W JP 2004008050W WO 2005014198 A1 WO2005014198 A1 WO 2005014198A1
Authority
WO
WIPO (PCT)
Prior art keywords
bulge
load
blow
raw
press load
Prior art date
Application number
PCT/JP2004/008050
Other languages
English (en)
French (fr)
Inventor
Ichio Otsuka
Masashi Fujioka
Nobuhisa Okabe
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to JP2005512902A priority Critical patent/JP4696913B2/ja
Publication of WO2005014198A1 publication Critical patent/WO2005014198A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/049Deforming bodies having a closed end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2646Of particular non cylindrical shape, e.g. conical, rectangular, polygonal, bulged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • B65D1/165Cylindrical cans

Definitions

  • the present invention relates to a bulge can, a bulge can manufacturing method, and a bulge can manufacturing apparatus in which a bulge portion is formed only by press load and internal pressure by air blow without annealing in advance.
  • bulge cans have been manufactured by forming an overhang of a desired shape (bulge forming) on the body of a raw can using a split mold tool or a rubber bag.
  • the overhang ratio of the bulge portion (the ratio of the amount of expansion to the original diameter of the raw can) is increased, the bulge portion will be characterized more. Therefore, a technology for increasing the overhang ratio has been demanded.
  • a general three-piece can consists of three members: a can body having a welded portion (seam) by welding, a bottom lid, and an upper lid.
  • the bulge part of this three-piece can is made of an elastic body, an elastic bunch, and an elastic thin film.
  • a force is applied by pressurizing means using the pressure of liquid and liquid, a part of the can body protrudes and is formed.
  • the overhang rate of this bulge can (three-piece can) is up to about 14%.
  • the body of the seamless, three-piece can made of the bottom lid and the cap (e.g., Potoru shaped cans) bulge forming technology for the, c Japanese Patent 0 5 1 8 5 is substantially the same as described below 2-piece cans
  • a 3-piece aerosol can is subjected to internal pressure and axial load by one air blow, and furthermore, the amount of indentation is set in the axial direction and forced compression is performed, thereby purging.
  • the technology is disclosed. This technology can be easily reworked into containers of various shapes and sizes. However, since the magnitude and timing of the internal pressure and the axial load are not specifically described, the problem of the present invention cannot be solved.
  • a two-piece can consists of an ironed can body (a can body with a bottom) and an upper lid.
  • the bulge part of the two-piece can has an internal pressure of air that is blown directly into the can.
  • Bulge molding has been carried out by utilizing this.
  • the bulge can in a two-piece aluminum can made of a JIS standard
  • 300-based aluminum without an annealing step
  • the thickness of the side wall of the can body decreases locally at the initial stage of forming, the part is broken or quality control is performed. The required mechanical strength cannot be obtained.
  • EP 8 5 3 5 1 3 B 1 discloses that an aluminum two-piece can is annealed to recover the ductility of the material, and then the internal pressure and the axial load are applied by air blow to push in the axial direction.
  • a technique is disclosed in which the amount is set, forcibly compressed, and bulge forming with a large overhang ratio is performed.
  • This technology is based on the annealing temperature of the aluminum material (approx.
  • the ductility of the side wall of the can is recovered by annealing at 5 ° C to 288 ° C).
  • a bulge portion having an overhang ratio of about 4% to 6% can be formed on a can body side wall having a thickness of about 0.130 mm to 0.15 Omm.
  • the technology described in the above-mentioned EP 855 35 13 B1 discloses a power wrapping process, a body making process, a washing and drying process, a printing process, a baking process, an inner surface coating process, a baking process, and necking. '' It consists of a flanging process, a blow molding process, an inspection process, and a packing process. Annealing is usually performed at about 230 to 290 ° C in the washing and drying steps. For this reason, the bulge can manufactured by the above-mentioned technology suffered from the problem that the material softened, the pressure resistance at the bottom of the bulge was reduced, and the quality standard regarding mechanical strength could not be satisfied.
  • the above-described annealing reduces the material strength, and in a later process, the material is deformed or dented due to an impact at the time of transportation, which causes a problem in a process and lowers productivity.
  • this bulge can has a problem in that the thickness of the side wall of the can body is increased in order to improve the reduced mechanical strength, and it is not possible to reduce material costs.
  • the general drying temperature is about 210 ° C to 220 ° C, but the high temperature heating is performed to the annealing temperature (about 230 ° C to 290 ° C). As a result, more energy is required, and the production cost cannot be reduced.
  • the internal pressure of air blow can be used for aluminum two-piece cans to perform bulge forming with a large overhang ratio
  • the mechanical strength of the side walls is reduced by annealing, and to compensate for the reduced mechanical strength.
  • measures have been taken in an unfavorable direction from the viewpoint of quality, productivity and economy. If a force is applied to the aluminum two-piece can by the pressurizing means using an elastic body, the inner coating film may be damaged, and the elastic body needs to move forward and backward with respect to the can, and if productivity decreases, I had a problem.
  • the moldable range of the timing for applying the press load and the timing for starting the air blow is narrow, It was difficult to control the timing of applying air blow and press load.
  • the present invention solves the above-mentioned problems without reducing the mechanical strength of the material.
  • the production of bulge cans and bulge cans that enables bulge forming with a large overhang ratio and improves quality, productivity and economic efficiency by using the internal pressure of air blow without annealing.
  • a method and an apparatus for manufacturing a bulge can are provided. Disclosure of the invention
  • the bulge can of the present invention is a bulge can formed by bulging a two-piece can using the internal pressure of an air-pro unit, and has a bulge portion overhang ratio of 15% or less ( 0% is not included.), And the reduction rate of the thickness of the bulge portion (formula (1)) is set to 6% or less.
  • Tb Thickness before bulge forming [mm]
  • the bulge can of the present invention has a configuration in which the thickness of the bulge portion after the bulge forming is 0.08 mm to 0.15 mm for aluminum cans and 0.06 mm to 0.12 mm for steel cans. There is.
  • the method for producing a bulge can is characterized in that the metal plate is drawn and ironed, thinned deep drawn or thinned deep drawn and ironed so that the bulge portion has a moldable can body plate thickness.
  • Forming a can printing the outer periphery of the formed can, and surrounding the outer surface of the can with a mold having a concave portion for the bulge portion, applying a press load to the can.
  • the method includes a bulge forming step of applying an internal pressure by performing an air blow inside the raw can.
  • the plate thickness before bulging in the bulge portion of the raw can is 0.09 mm to 0.16 mm for an aluminum can, and 0.07 mm to 0.16 mm for a steel can. 13 mm.
  • the method for producing a bulge can of the present invention is a method having a neck flange forming step between the printing step and the bulge forming process.
  • the method for producing a bulge can according to the present invention further comprises: There is a method of setting the temperature to 0 ° C to 220 ° C.
  • a press load applied to a bottom mold pressing the bottom of the raw can and an internal pressure of air blow on the raw can is applied in a state that satisfies the following bulge forming condition formula (formula (2)).
  • the air blow is started at the same time as applying the press load, or within 2 Oms ec after the press load is applied, or The method is to apply the press load within 5 msec after starting the air blow.
  • the method for manufacturing a bulge can of the present invention is a method in which the press load includes a first press load equal to the blow load, and a second press load smaller than the first press load.
  • the method for manufacturing a bulge can of the present invention includes the step of applying the first press load and the professional load at the same time, or within 40 ms ec from the application of the first press load and the blow load.
  • the method for manufacturing a bulge can according to the present invention is a method in which the first press load and the professional load are applied before or after applying the second press load within 20 ms eC.
  • the bulge can manufacturing apparatus of the present invention is a bulge can manufacturing apparatus for forming a bulge portion in a raw can, and blow air discharging means for applying an internal pressure to the raw can by discharging blow air.
  • a mold having the following formula: A first axial cylinder that applies the same vertical pressure to the outside of the bottom of the can, and a second axial cylinder that applies a vertical pressure smaller than the vertical pressure to the outside of the bottom of the can.
  • the bulge can manufacturing apparatus of the present invention is configured such that an effective cross-sectional area of the first shaft cylinder is the same as a cross-sectional area inside the bottom of the raw can.
  • the effective sectional area of the second axial cylinder is smaller than the effective sectional area of the first axial force cylinder.
  • the rod of the first shaft cylinder is provided integrally with the rod of the second shaft cylinder, and at one end of the rod, a bottom outside of the raw can is provided. Is provided with a bottom die for pressing the pressure.
  • the bulge part with a large overhang rate can be shape
  • quality, productivity and economic efficiency can be improved by not annealing the raw can.
  • the reduction rate of the plate thickness is set to 6% or less, so that problems that occur when the mechanical strength is reduced can be prevented, and A bulge part with a large overhang rate (up to 15%) can be provided.
  • bulge forming with a large overhang ratio can be easily performed, and material costs can be reduced.
  • the method for manufacturing a bulge can of the present invention it is not necessary to perform annealing of the raw can, so that the number of annealing steps can be reduced, and productivity and economy can be improved. Further, by using the material without lowering the mechanical strength of the material, that is, without using annealing, it is not necessary to increase the thickness of the material, so that the cost of the material can be reduced. Furthermore, since the mechanical strength of the material is not reduced, the pressure resistance at the bottom of the can is reduced, and the quality standard for mechanical strength cannot be satisfied.Also, the bulge can is deformed in the post-process such as the filling process. Then, the trouble can be prevented.
  • neck flange processing can be performed on a raw can having no bulge portion, and since the external shape is simple, the processing can be easily performed and productivity can be improved.
  • the raw can is deformed into a shape different from the shape corresponding to the mold (die), and the thickness of the bulge and the nearby plate thickness is locally increased.
  • the mechanical strength is reduced due to thinning, problems can be prevented.
  • the timing of applying the air blow and applying the first press load and the second press load can be longer than that of the single biston type bulge can manufacturing device, and the bulge forming becomes slow.
  • the problem that the flange of the raw can is stretched due to the blow-in of the blower is a problem in the double biston type bulge can manufacturing equipment that applies the first press load to the raw can at the same time as inserting the professional. This can be eliminated.
  • FIG. 1 shows a schematic front view of a bulge can according to the present invention after bulge forming.
  • Fig. 2 shows a schematic front view of the raw can before bulging.
  • FIG. 3 is a schematic flowchart illustrating an embodiment of the method for manufacturing a bulge can according to the present invention.
  • FIG. 4 is a schematic sectional view of a single biston type bulge can manufacturing apparatus (bulge forming apparatus) for realizing the bulge can manufacturing method according to the present invention.
  • Figure 5 shows a schematic diagram of the air piping in a single-piston type bulge can manufacturing device (bulge forming device).
  • FIG. 6 is a schematic cross-sectional view of a main part for explaining the operation of a single-piston type bulge can manufacturing apparatus (bulge forming apparatus) for implementing the bulge can manufacturing method of the present invention.
  • (a) is a cross-sectional view when the raw can is mounted
  • (b) is a cross-sectional view when a press load is applied
  • (c) is a cross-sectional view when an internal pressure is applied by an air blow
  • (d) is a press load and air. The sectional view after the internal pressure of the blow is released is shown.
  • Fig. 7 is a schematic diagram for explaining the bulge forming condition formula according to the present invention, (a) is a cross-sectional view for explaining a press load and a blow load, and (b) is a buckling failure. (C) shows a graph explaining the conditions under which moldability is possible, and (d) shows a graph explaining conditions under which poor flange extension or can body rupture occurs.
  • FIG. 8 is a schematic sectional view of a double-piston type bulge can manufacturing apparatus (bulge forming apparatus) according to the present invention.
  • Fig. 9 shows a schematic diagram of the air piping in the double-piston type bulge can manufacturing equipment (bulge forming equipment).
  • A shows the effective cross-sectional area of the primary shaft cylinder 35 and the element. It is a schematic diagram when the cross-sectional area inside the bottom of can 2 is the same, and (b) is a schematic diagram when both cross-sectional areas are different.
  • FIG. 10 is a schematic cross-sectional view of an essential part for explaining the operation of the double biston type bulge can manufacturing apparatus (bulge forming apparatus) of the present invention.
  • FIG. 1 is a schematic front view of a bulge can according to the present invention after bulge forming.
  • FIG. 2 shows a schematic front view of the raw can before bulging.
  • a bulge can 1 is a seamless can, and includes a bottom portion 15, a body portion 12, and a neck flange portion 11.
  • the material used is an aluminum alloy (3000 series of JIS standard (no annealing)).
  • tin materials such as tinplate, tin-free steel (TFS), and Ni-plated steel plates, or resin-coated metal surfaces previously coated with a thermoplastic resin such as polyester can be used as the can material.
  • Pleco such as metal plate Material can be used.
  • the lower portion of the body 12 is a non-bulge portion 14 which is not bulged.
  • the raw can 2 before bulge forming includes a bottom portion 15, a body portion 22, and a neck flange portion 11, as shown in FIG.
  • the bulge can 1 is bulge-formed using the internal pressure of the air blow, so that the overhang ratio of the bulge portion 13 is 15% or less (not including 0%), and the thickness of the bulge portion 13 is reduced.
  • Equation (1) is set to 6% or less.
  • Tb Thickness before bulging [mm]
  • the overhang ratio is set to 15% or less (excluding 0%)
  • the present invention can be applied to, for example, a bulge portion overhanging a minute distance such as an overhang ratio of 0.1%. it can.
  • the reduction rate of the sheet thickness is set to 6% or less, so that problems that occur when the mechanical strength is reduced can be prevented, and large A bulge section 13 with an overhang rate (up to 15%) can be provided.
  • the overhang ratio of the bulge can 1 is set to 10% or less. In such a case, a decrease in the thickness of the bulge can 1 is suppressed, so that a decrease in mechanical strength can be prevented.
  • the overhang ratio is 3% or more, it is possible to obtain a can having excellent design properties in which the overall shape of the can is different from a general cylindrical shape.
  • the bulge can 1 has a configuration in which the thickness of the bulge portion 13 after the bulge forming is set to 0.08 mm to 0.15 mm.
  • the bulge portion 13 As described above, by reducing the thickness of the bulge portion 13, a large overhang ratio is obtained.
  • the bulge portion 13 can be easily provided, and the material cost can be reduced.
  • bulge forming can be performed without annealing, and bulge cans can be manufactured in a short time.
  • the bulge portion 13 having a small thickness and a large overhang ratio can be provided without a decrease in mechanical strength.
  • the thickness of the bulge at the bulge after forming the bulge may be 0.06 mm to 0.12 mm.
  • Example 1 of the bulge can 1 will be described.
  • Aluminum alloy 304 was used as the can material.
  • the raw can 2 was squeezed and ironed, washed, dried at about 210 ° C, and baked at about 200 ° C after the external printing. Subsequently, the inner surface was coated with an epoxy thiaryl-based water-based paint to a thickness of about 4 m, baked at about 200 ° C, and subjected to necking flange processing.
  • Example 15 Except for Example 15, the can material and manufacturing method were substantially the same as those of this example in each of Examples and Comparative Examples described later.
  • Tb the thickness before the bulge forming [mm]
  • Ta plate thickness after bulge forming [mm]
  • the degree of metal exposure on the inner surface was measured with an enameler for each of the cans that had been successfully bulged and evaluated according to the following criteria.
  • The average enamellator value of 100 cans is 0.5 mA or less.
  • the average enamellator value of 100 cans is 0.55.
  • O mA x Average enamellator value of 100 cans is 5.0 mA or more.
  • the degree of damage to the coating film on the inner surface of the can after bulging can be evaluated by an enameler test.
  • the bulge can 1 of Example 1 had an overhang ratio of about 8%, a reduction in the thickness of the bulge can of 4.31%, and the results of the moldability test and the can inner surface corrosion resistance test were both Was ⁇ .
  • the bulge can of Example 2 had an overhang rate of about 10% and a thickness reduction rate of 5.17%, and the results of the moldability test and the can inner surface corrosion resistance test were both negative.
  • the bulge can of Example 3 had an overhang rate of about 5% and a thickness reduction rate of 4.31%, and the results of the moldability test and the inner corrosion resistance test of the can were both negative.
  • Tb plate thickness before bulge forming [mm]
  • Ta plate thickness after bulge forming [mm]
  • Tb the thickness [mm] before the bulge forming
  • T a the thickness after the bulge forming
  • the bulge can of Example 4 had an overhang ratio of about 3% and a thickness reduction rate of 3.44%, and the results of the moldability test and the inner corrosion resistance test of the can were both negative.
  • the bulge can according to Example 5 had a total length of about 122 mm, an outer diameter of the can body of about 66 mm, an overhang outer diameter of about 66.4 Omm, and an overhang ratio of about 0.6%.
  • the bulge cans of Examples and Comparative Examples which will be described later have a total length of about 122 mm and an outer shape of the can body of about 66 mm, which is almost the same as the present example.
  • the bulge can of Example 5 had an overhang ratio of about 0.6% and a thickness reduction rate of 1.72%, and the results of the moldability test and the inner corrosion resistance test of the can were both negative.
  • Example 6 The bulge can according to Example 6 had an overhanging apex outer diameter of about 73.92 mm and an overhang ratio of about 12%.
  • the bulge can of Example 6 had an overhang rate of about 12% and a thickness reduction rate of 5.00%, and the results of both the moldability test and the inner corrosion resistance test of the can were negative.
  • the bulge can according to Example 7 had an overhanging apex outer diameter of about 75.9 Omm and an overhanging rate of about 15%.
  • the bulge can of Example 7 had an overhang rate of about 15% and a thickness reduction rate of 5.83%, and the results of the moldability test and the inner corrosion test of the can were both negative.
  • the bulge can according to Comparative Example 1 had an overhanging apex outer diameter of about 76.56 mm and an overhang ratio of about 16%.
  • Tb plate thickness before bulge forming [mm]
  • T a plate thickness after bulge forming [mm]
  • the bulge can of Comparative Example 1 had an overhang ratio of about 16% and a thickness reduction rate of 4.63%, and the result of the formability test was ⁇ (slight distortion occurred in the printed appearance).
  • the result of the internal corrosion resistance test of the can was X.
  • the bulge can according to Comparative Example 2 had an overhang apex outer diameter of about 76.56 mm and an overhang ratio of about 16%.
  • the bulge can of Comparative Example 2 had an overhang ratio of about 16%, a thickness reduction rate of 6.89%, a moldability test result of ⁇ , and a can inner surface corrosion resistance test result of X.
  • the bulge can according to Comparative Example 3 had an overhanging apex outer diameter of about 77.88 mm and an overhang ratio of about 18%.
  • Tb plate thickness before bulge forming [mm]
  • Ta plate thickness after bulge forming [mm]
  • the bulge can of Comparative Example 3 had an overhang ratio of about 18% and a thickness reduction rate of 7.75%, and the result of the formability test was X. Since the moldability was X, the corrosion test on the inner surface of the can was stopped.
  • the bulge can according to Example 8 had an overhang apex outer diameter of about 71.28 mm and an overhang ratio of about 8%. In each of Examples and Comparative Examples described later, the overhang ratio was set to about 8%.
  • the bulge can of Example 8 had an overhang ratio of about 8%, a thickness reduction rate of 4.76%, and a bulge part thickness of about 0.088 mm after the bulging, and a moldability test and can inner surface corrosion resistance. The test results were both negative. [Example 9]
  • Tb plate thickness before bulge forming [mm]
  • Ta plate thickness after bulge forming [mm] ]
  • the bulge can of Example 8 had an overhang ratio of about 8%, a reduction in thickness of 4.76%, and a bulge plate thickness of about 0.10 Omm after forming with a nozzle.
  • the results of the corrosion resistance test on the inner surface of the can were both negative.
  • the bulge can of Example 8 had an overhang ratio of about 8%, a thickness reduction rate of 4.44%, and a bulge part thickness of about 0.129 mm after bulge forming.
  • the test results were both negative.
  • the bulge can of Example 8 had an overhang rate of about 8%, a thickness reduction rate of 4.00%, a bulge part thickness of about 0.144 mm after bulging, a moldability test, and inner corrosion resistance of the can. The test results were both negative.
  • the bulge can of Example 12 had an overhang rate of about 8%, a thickness reduction rate of 3.85%, The bulge plate thickness after rudging was about 0.150 mm, and the results of the moldability test and the corrosion resistance test on the inner surface of the can were both negative.
  • Tb plate thickness before bulge forming [mm]
  • Ta plate thickness after bulge forming [mm]
  • the bulge can of Example 12 had an overhang rate of about 8%, a thickness reduction rate of 3.75%, and a bulge plate thickness of about 0.077 mm after the bulge forming.
  • the result of the corrosion test on the inner surface of the can was ⁇ .
  • the bulge can with a thickness of 0.08 to 0.15 mm after bulge forming is good, and when it is thinner than 0.08 mm, the formability decreases, local thin portions are generated, and bulges are generated normally. It was confirmed that molding was not possible.
  • the bulge can of Example 13 had an overhang rate of about 8%, a thickness reduction rate of 6.00%, and a bulge plate thickness of about 0.094 mm after bulge forming.
  • the test results were both negative.
  • the bulge can of Comparative Example 5 had an overhang ratio of about 8%, a thickness reduction rate of 7.00%, a bulge plate thickness of about 0.094 mm after bulge forming, and a result of the formability test of x. I'm sorry.
  • the bulge can according to Example 14 had a total length of about 122 mm, an outer diameter of a bare can of about 66 mm, an outside diameter of about 71.28 mm, and an overhang ratio of about 8%.
  • a canned steel plate (# 25725) was used.
  • the bulges were squeezed and ironed, washed, dried at about 210 ° C, coated with an outer white paint, and printed. Subsequently, the inner surface was coated with an epoxyacrylic water-based paint in two separate coats to a thickness of about 8 m, baked at about 20 ° C, and subjected to necking flange processing.
  • Tb plate thickness before bulge forming [mm]
  • Ta plate thickness after bulge forming [mm]
  • the bulge can of Example 14 had an overhang rate of about 8%, a thickness reduction rate of 3.75%, and a bulge part thickness of about 0.077 mm after bulge forming.
  • the test results were both negative.
  • the thickness reduction rate ⁇ was 6% or less, and the mechanical strength was able to satisfy the quality standard even when the bulge was formed.
  • the thickness can be reduced, and material costs can be significantly reduced.
  • the bulge cans of the above examples were manufactured by a bulge can manufacturing method described later.
  • FIG. 3 is a schematic flow chart illustrating one embodiment of a method for manufacturing a bulge can according to the present invention.
  • FIG. 3 illustrates a chart diagram.
  • the method of manufacturing the bulge can 1 according to the present invention is as follows. First, the raw can 2 is drawn and ironed to a sheet thickness capable of forming the bulge portion 13 by a press load and an internal pressure of an air blow. Molding process (Step S 1)). In this embodiment, the drawing and ironing step is performed. However, the present invention is not limited to this step. For example, a thinning deep drawing step or a thinning deep drawing and ironing step may be performed.
  • Step S 2 a step of washing and drying the drawn and ironed raw can 2 (Step S 2), a printing step of printing on the outer periphery of the raw can 2 (Step S 3), and an inner surface of the raw can 2 for inner coating It has a painting process (step S4).
  • an inner surface coating process is performed.
  • a precoat material such as a resin-coated metal plate
  • the inner surface coating is not required, so the inner surface coating process is not performed.
  • a mold 32 having a bulge recess (bulge forming shape 3 2 1) is used to surround the outer surface of the can 2, apply a press load to the can 2, and blow air into the can 2.
  • To apply internal pressure (bulge forming process (Step S5)) o
  • the material without lowering the mechanical strength of the material that is, without using annealing, it is not necessary to increase the thickness of the material, so that the cost of the material can be reduced. Furthermore, since the mechanical strength of the material is not reduced, the pressure resistance at the bottom of the can is reduced, and the quality standard for mechanical strength cannot be satisfied.Also, the bulge can is deformed in the post-process such as the filling process. Then, the trouble can be prevented.
  • the thickness of the bulge portion 13 before bulging is preferably set to 0.09 mm to 0.16 mm for aluminum cans and 0.07 mm to 0.13 mm for steel cans. In this way, by reducing the thickness of the bulge portion 13, bulge forming with a large overhang ratio can be easily performed.
  • a method having a neck flange processing step between the printing step (S 3) and the bulge forming step (S 5) may be employed.
  • neck flange processing can be performed on the raw can 2 having no bulge portion 13 formed thereon.
  • the external shape becomes simpler, and processing can be made easier, and productivity can be improved.
  • the drying temperature in the printing step (S2) is preferably 210 ° C. to 220 ° C.
  • the drying temperature in the coating step (S3) may be set to 210 ° C to 220 ° C.
  • FIG. 4 is a schematic cross-sectional view of a single biston type pallet and bulge can manufacturing apparatus (bulge can forming apparatus) for realizing the bulge can manufacturing method according to the present invention.
  • a single-piston type bulge can manufacturing apparatus 3 includes a mandrel 31, a mold 32, a bottom die 33, and a shaft cylinder 34.
  • the mandrel 31 has a columnar projection 312 formed with a plurality of discharge ports 311 for blowing air blow, and a base between the projection 312 and a gap between the bulge can put on the projection 312 and the projection 312. And a seal member 313 provided in the portion.
  • a load blow load: BF [N], see FIG. 7 (a)
  • the mold 32 is a cylindrical mold that is bisected in the axial direction, and has a bulge forming shape 321 processed on the inner surface, and is formed by applying the internal pressure of an air blow to a raw can (not shown). At this time, it is formed into a shape corresponding to the bulge forming shape 321.
  • the bottom mold 33 is a mold in which a shape corresponding to the bottom shape of the bulge can 1 is formed. The bottom mold 33 is connected to a rod 342 projecting from the axial force piston 341 of the shaft cylinder 34 and moves in the axial direction.
  • the axial cylinder 34 is moved by press air, and comprises an axial force piston 341 having rods 342 and 343 protruding from both sides, and a stopper 344 attached to the rod 343 to control the pressing position of the bottom die 33. I have.
  • Fig. 5 shows a schematic diagram of the air piping in the single biston type bulge can manufacturing equipment.
  • air supplied from a compressor 41 is regulated in pressure by a regulator 42 and supplied to a mandrel 31 from a blow valve 44 as blow air.
  • the blow air supplied to the mandrel 31 is exhausted from the exhaust valve 45.
  • the air supplied from the compressor 41 is pressure-regulated by a regulator 46, supplied as press air from the press valve 48 to the shaft cylinder 34, and exhausted from the exhaust valve 49.
  • the pressure of the professional air is measured by a pressure gauge 43, and the pressure of the press air is measured by a pressure gauge 47.
  • FIG. 6 is a schematic cross-sectional view of a main part for explaining the operation of a single-piston type bulge can manufacturing apparatus for carrying out the bulge can manufacturing method of the present invention.
  • b) is a cross-sectional view when the press load is applied
  • (c) is a cross-sectional view when the internal pressure of the air blow is applied
  • (d) is a cross-sectional view after the press load and the internal pressure of the air blow are released.
  • a projection 3 12 is inserted into the raw can 2 before the bulge forming from the opening 23, and the inner surface of the opening 23 comes into contact with the seal member 3 13, and the raw can 2 Sealed to prevent internal pressure from leaking to the outside.
  • the body 22 of the raw can 2 is held so as to be sandwiched by a mold 32 having a split structure, and a bottom mold 33 is located above the bottom 15.
  • FIG. 4 (b) when the press valve 48 is opened, the press air whose pressure is adjusted by the regulator 46 is supplied to the shaft cylinder 34, and the shaft cylinder 34 is moved to the bottom mold 33. Is pressed down, and the bottom mold 33 comes into contact with the bottom 15 of the raw can 2. Note that the internal pressure of the air blow has not yet acted inside the raw can 2. The bottom mold 33 is in contact with the bottom 15 of the can 2, but does not push the can 2 in the axial direction (downward).
  • FIG. 4C the raw can 2 is pushed in by a predetermined pushing amount (Ah) by the bottom mold 33 and stopped in a state where it is positioned by the stopper 344.
  • the stopper 344 is screwed to, for example, a rod 343 so that the position can be easily adjusted.
  • the pushing amount (Ah) is determined according to the overhang ratio, material, and the like.
  • the thickness of the bulge portion 13 after bulging can be adjusted. For example, if the pushing amount (Ah) is increased, the thickness decrease after bulging is reduced. Can be suppressed.
  • the blow valve 44 opens, and the blow air whose pressure has been adjusted by the regulator 4 2 is supplied to the mandrel 3 1, and the discharge port 3 1 Since the air blows from 1, the internal pressure of the air blow acts on the raw can 2. Then, when the raw can 2 is deformed in the outer peripheral direction by receiving the internal pressure of the air blow, it is formed into a shape corresponding to the bulge forming shape 3 21 of the mold 32.
  • the internal pressure of the raw can 2 rises according to the flow rate of the low valve 44 and rises to the set pressure of the regulator 42. Further, the bottom mold 33 descends in accordance with the flow rate of the pressure valve 48, presses the element 2 down by a predetermined pushing amount ( ⁇ ), stops at that position, and reaches the set pressure of the regulator 48. To rise.
  • the timing for opening the press valve 48 and the blow valve 44 is controlled by a command from a control unit (not shown). For example, the opening timing can be adjusted to be shifted.
  • a blow load BF acts in the axial direction (upward) on the raw can 2 due to the internal pressure of the air blow, and a press load PF acts in the axial direction (downward) by the axial cylinder 34.
  • blow load BF and press load PF are applied so as to satisfy the following bulge forming condition formula (formula (2)).
  • FIGS. 7A and 7B are schematic diagrams for explaining the bulge forming conditions according to the present invention.
  • FIG. 7A is a cross-sectional view illustrating a press load and a blow load
  • FIG. (C) shows a graph explaining the conditions under which molding is possible
  • (d) shows a graph explaining the conditions under which flange extension failure or can body rupture occurs.
  • AF PF-BF.
  • the blow load BF is adjusted to be smaller than the press load PF.
  • FIGS. (B), (c) and (d) are graphs showing the increase curves of the blow load BF and the press load PF in the initial stage of the bulge forming.
  • the press load PF is applied before the blow load BF, and the blow load BF and the press load PF increase when the press load PF is always larger than the professional load BF.
  • the axial load F becomes larger than the longitudinal compressive strength of the raw can 2 during the increasing process (for example, at time T)
  • the raw can 2 buckles.
  • the buckled portion becomes thinner and has a lower mechanical strength. Therefore, the buckled portion cannot withstand the internal pressure of the air blow and explodes, so that the bulge cannot be formed.
  • the raw can 2 is satisfactorily formed into a shape corresponding to the bulge forming shape 321 of the mold 32 under the internal pressure and the axial load of the air blow.
  • the pressurized Erareru ahead press load PF blow load BF is temporarily (e.g., at time T 2) blow load BF is larger than the press force PF, then The press load PF becomes larger than the blow load BF.
  • the blow load BF becomes larger than the press load PF
  • the raw can 2 It is pulled in the axial direction, and the area near the neck flange 11 of the raw can 2 extends, and the area near the bulge 13 expands.
  • the stretched portion is thinned and the mechanical strength is reduced. Therefore, the stretched portion cannot withstand the internal pressure of the air blow and ruptures, so that bulge forming cannot be performed.
  • the bulge portion 13 can be bulged in the mold 32 without annealing the raw can 2. It can be formed into a shape corresponding to the formed shape 321.
  • the material without annealing it is not necessary to increase the thickness of the sheet, so that the cost of the material can be reduced. Furthermore, since the mechanical strength of the material is not reduced, the pressure resistance at the bottom of the can is reduced, and quality standards for mechanical strength cannot be satisfied. When the is deformed, it is possible to prevent inconvenience.
  • FIG. 8 is a schematic sectional view of a double-piston type bulge can manufacturing apparatus (bulge forming apparatus) according to the present invention.
  • the structure is the same as that of the single-piston bulge can manufacturing device except for the axial force cylinder 34 of the single-piston bulge can manufacturing device 3. Therefore, as for the configuration of the double-piston type bulge can manufacturing device 3a, only the configuration of the shaft cylinder is described, and the other components are denoted by the same reference numerals as those of the single biston type bulge can manufacturing device 3 in the figure. Detailed description is omitted.
  • the shaft cylinder of the double biston-type bulge can manufacturing apparatus 3a is composed of a first shaft cylinder 35 moved by balance air and a second cylinder 36 moved by press air.
  • the first axial force cylinder 35 has a first axial force piston 351, in which rods 352 and 353 are protruded from both sides. Among them, the end of the rod 352 is connected to the bottom die 33, and the rod 3553 is connected to the second axial force piston 361 of the second shaft cylinder 36. That is, the rod 352 of the first shaft cylinder is integrally formed with the rod 353 shared by the first shaft cylinder and the second shaft cylinder via the first axial force piston 351. . As a result, the balance air or press air When any of the air is supplied, the bottom mold 3 3 moves, and a load is applied to the raw can 2.
  • the second axial force piston 36 1 of the second axial cylinder 36 has a port 36 2 that protrudes to the outside, and this rod 36 2 Control Stopper 3 4 4 is attached.
  • the effective cross-sectional area of the second shaft cylinder 35 is smaller than the effective cross-sectional area of the first shaft cylinder 35. This is because if the effective cross-sectional area of the second shaft cylinder 36 is small, it is possible to push the piston largely by supplying a small amount of air, and it is easy to control the second axial force piston. However, both the effective cross-sectional areas of the first axial cylinder 35 and the second axial cylinder 36 may be the same.
  • Fig. 9 shows a schematic diagram of the air piping in the double piston type bulge can manufacturing equipment.
  • (a) is a schematic diagram when the effective cross-sectional area of the first shaft cylinder 35 and the cross-sectional area inside the bottom of the raw can 2 are the same, and (b) is when the cross-sectional areas are different.
  • FIG. 10 is a schematic diagram when the effective cross-sectional area of the first shaft cylinder 35 and the cross-sectional area inside the bottom of the raw can 2 are the same, and (b) is when the cross-sectional areas are different.
  • the blow load applied to the inside of the raw can 2 by the blow air and the balance load applied by the first axial force biston must be the same in order to balance the bottom of the raw can 2.
  • the balance air supply can be supplied by sharing the pressure gauge 42, pressure gauge 43 and professional valve 44.
  • the air supplied from the compressor 41 is pressure-adjusted by the regulator 42 and supplied from the professional balance valve 44 as blow air and balance air to the double biston type plunge can manufacturing equipment. Is done.
  • the pro-air is supplied to the mandrel 31 and the balance air is supplied from the upper part of the first shaft capiston 35 1. Further, the pressure of the air supplied from the compressor 41 is adjusted by a regulator 46, and the air is supplied as press air from the press valve 48 to the second shaft cylinder 36.
  • the blow load and balance load must be adjusted to the same value.
  • the pressure of the air supplied from the compressor 41 is adjusted by a regulator 50 as shown in FIG. Then, the air is supplied from the balance pulp 52 to the first shaft cylinder 35 as balance air.
  • FIGS. 10A and 10B are schematic cross-sectional views of a main part for explaining the operation of the double biston type bulge can manufacturing apparatus according to the present invention, wherein FIG. 10A is a cross-sectional view when a raw can is mounted, and FIG. (C) shows a cross-sectional view when a blow load, a first press load and a second press load are applied, and (d) shows a cross-sectional view after all loads are released. .
  • the state in which the raw can 2 is installed in the double piston type bulge can manufacturing apparatus 3a is the same as the state in which the raw can 2 is installed in the single piston type bulge can manufacturing apparatus 3.
  • the blow valve 44 when the blow valve 44 is opened, the blow air whose pressure has been adjusted by the regulator 42 is supplied into the raw can 2, and the internal pressure acts on the raw can 2.
  • the balance air is supplied to the first shaft cylinder 35, and the first shaft cylinder 35 presses down the bottom die 33, and the bottom die 33 becomes the bottom die 33. It comes into contact with the bottom 15 of the can 2 ((b) in the same figure).
  • the effective cross-sectional area of the first shaft cylinder 35 and the cross-sectional area inside the bottom of the raw can 2 are the same, and when the same pressure is applied to blow air and press air, The load applied to the cross section and the load applied to the bottom die 3 are the same, and both loads are balanced in the axial direction.
  • the bottom mold 33 is in contact with the bottom 15 of the element 2, but the element can 2 is not pushed in the axial direction (downward). Therefore, the raw can 2 does not deform in the outer peripheral direction.
  • the effective sectional area of the primary shaft cylinder 35 and the sectional area inside the bottom of In this case, the pressure of the blow air and the press air is adjusted by adjusting the pressure and the pressure of the blow air and the press air, so that the load applied to the cross section inside the bottom of The applied load can be the same.
  • the air supply timing is a predetermined time. If it is within, the timing deviation is not a problem.
  • blow valve 44 and the balance valve 52 operate before or after the second press load is applied within 20 ms.
  • the raw can 2 since the internal pressure of the air blow is already acting on the raw can 2, the raw can 2 is deformed in the outer peripheral direction by receiving the internal pressure of the air blow, and the bulge forming shape of the mold 3 2 3 2 1 It is formed into a shape corresponding to.
  • the second press load by the press air is smaller than the first press load.
  • the press valve 48 be opened to supply the press air to the second axis cylinder at the same time as the supply of the blow air and the supply of the balance air, but the timing is within a predetermined time. There is no problem even if it shifts.
  • the second press load when the second press load is applied within 40 msec after the first press load and the blow load are applied simultaneously, good bulge molding can be performed. Further, when the first press load and the blow load are simultaneously applied within 20 msec after the second press load is applied, good bulge forming can be performed.
  • the air pro- cessor or the air blow is started at the same time as the press load is applied or within 20 msec after the press load is applied. Within 5 msec, normal bulge forming can be performed by applying a press load.
  • step (a) to (d) in the figure) are completed.
  • the bulge can and the method for manufacturing the bulge can of the present invention have been described with reference to the preferred embodiments.
  • the present invention is not limited to only the above-described embodiments, and various modifications may be made within the scope of the present invention. It goes without saying that changes can be made.
  • the bulge can according to the present invention may be any can that has been subjected to a bulge process, and is not limited to the above-mentioned two-piece can. Therefore, for example, three-piece cans, bottle-shaped cans, welded cans, and the like may be used. Further, the shape of the bulge portion is not limited to the simple shape described above, and may be, for example, a complex geometric shape or a concavo-convex shape according to the printing content of characters, figures, and the like. Industrial applicability
  • the present invention provides a bulge can, a bulge can manufacturing method and a bulge can manufacturing apparatus in which a protrusion of a desired shape is formed in a body portion of a raw can. It can be effectively used in the field of manufacturing bulge cans, and can be particularly effectively used in the field of manufacturing bulge cans filled with coffee beverages and beer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 材料の機械的強度を低下させずに、すなわち、焼鈍しなくても、エアーブローによる内圧を用いて、張り出し率の大きなバルジ成形を可能とし、かつ、品質,生産性及び経済性を向上させることの可能なバルジ缶、バルジ缶の製造方法及びバルジ缶製造装置の提供を目的とする。 シール缶を、エアーブローの内圧を利用してバルジ成形したバルジ缶1であって、バルジ部13の張り出し率を15%以下とし、かつ、バルジ部13の板厚に関して、下記板厚減少率α=(Tb−Ta)×100/Tb(ただし、Tb:バルジ成形前の板厚[mm],Ta:バルジ成形後の板厚[mm])を6%以下とした。

Description

明 細 書 バルジ缶、 バルジ缶の製造方法及びバルジ缶の製造装置 技術分野
本発明は、 あらかじめ焼鈍することなく、 プレス荷重とエアーブローによる内 圧のみによってパルジ部を成形したパルジ缶、 バルジ缶の製造方法及びパルジ缶 の製造装置に関する。 背景技術
従来、 割型の工具やゴム袋等を用いて、 素缶の胴部に所望の形状の張り出し部 を成形 (バルジ成形) した、 種々のバルジ缶 (変形缶) が製造されてきた。
バルジ缶は、 バルジ部の張り出し率 (素缶の元径に対する拡張量の割合) を大 きくすると、 バルジ部がより特徴付けられることから、 張り出し率を大きくする 技術が要望されてきた。
しかし、 バルジ缶は、 缶としての経済性や機械的強度, 生産性等の条件を満足 する必要があることから、 張り出し率を大きくすることは容易でなかった。
ところで、 コーヒー飲料やビール等が充填密封される缶には、 3ピース缶と 2 ピース缶がある。
一般的な 3ピース缶は、 溶接などによる溶接部 (シーム部) を有する缶胴, 底 蓋及び上蓋の三つの部材からなり、 この 3ピース缶におけるバルジ部は、 弾性体, 弾性ボンチ, 弾性薄膜と液体の圧力などを用いた加圧手段により力が加えられる ことによって、 缶胴の一部が張り出して成形される。 このバルジ缶 (3ピース 缶) の張り出し率は最大で約 1 4 %である。
なお、 シームレスの胴部, 底蓋及びキャップからなる 3ピース缶 (たとえば、 ポトル状缶) に対するバルジ成形技術は、 後述する 2ピース缶とほぼ同様である c 日本国特開平 0 5— 1 8 5 1 5 0号公報には、 3ピースエアゾール缶に、 エア 一ブローによる内圧と軸方向荷重を作用させ、 さらに、 軸方向に押込量を設定し 強制的に圧縮することにより、 パルジ成形しょうとする技術が開示されている。 この技術は、 様々な形状及び大きさの容器に容易に再加工できる技術ではある が、 内圧と軸荷重の大きさや、 タイミングについて具体的に記載されておらず、 本発明の課題を解決することはできない。
なお、 一般的な 3ピース缶は、 材料として鋼板 (板厚 =約 0. 2 0 mm) が使 用されるので、 エアーブローによる内圧を利用して缶胴を変形させることは、 理 論的には可能であるものの、 高圧エアーの取扱い等を考慮すると実質的には実現 困難であった。
一方、 2ピース缶は、 しごき成形された缶胴 (底部付き缶胴) と上蓋の二つの 部材からなり、 2ピース缶におけるバルジ部は、 缶内部に直接吹き出されるエア 一プロ一の内圧を利用してバルジ成形が行なわれてきた。 一 たとえば、 J I S規格の 3 0 0 0系アルミ材からなるアルミ 2ピース缶 (焼鈍 工程なし) におけるバルジ缶は、 張り出し率が最大で約 2 %であった。 特に、 ェ ァーブローによる内圧を利用して、 張り出し率の大きなバルジ成形を行なう場合、 成形初期に缶胴側壁の板厚が局部的に減少すると、 その箇所が破断したり、 ある いは、 品質管理上要求される機械的強度を有することができなくなる。
また、 上記アルミ 2ピース缶は、 缶胴側壁が、 缶胴成形時 (しごき成形時) に 硬化し材料の延性が失われるため、 張り出し率の大きなバルジ成形を行なうこと は非常に困難であった。
E P 8 5 3 5 1 3 B 1号公報には、 アルミ 2ピース缶の素缶を焼鈍して材料の 延性を回復させた上で、 エアーブローによる内圧と軸荷重を作用させ、 軸方向に 押込量を設定し強制的に圧縮し、 さらに、 張り出し率の大きなバルジ成形を行な う技術が開示されている。
この技術は、 アルミ 2ピース缶の缶胴側壁をアルミ材の焼鈍温度 (約 1 9 0.
5 °C〜2 8 8 °C) に加熱して焼鈍することにより、 缶胴側壁の延性を回復させて いる。
また、 上記技術を用いてアルミ 2ピース缶のバルジ成形を行なうと、 アルミ材 を焼鈍することによって、 バルジ成形は可能となるものの、 機械的強度が低下す る。 このため、 機械的強度が低下しないように、 缶胴側壁の板厚を厚くする必要 がある。
なお、 この技術によれば、 板厚約 0. 1 3 0 mm〜0. 1 5 O mmの缶胴側壁 に、 張り出し率約 4 %~ 6 %のパルジ部を成形することができる。 しかしながら、 上記 E P 8 5 3 5 1 3 B 1号公報に記載された技術は、 力ッパ 工程, ボディメイク工程, 洗浄,乾燥工程, 印刷工程, 焼付け工程, 内面塗装ェ 程, 焼付け工程, ネッキング ' フランジングェ程, ブロー成形工程, 検査工程, 梱包工程からなり、 焼鈍 (アニーリング) を洗浄 .乾燥工程において、 通常約 2 3 0 °C〜2 9 0 °Cで行なっている。 このため、 上記技術で製造されたバルジ缶は、 材料軟化が起こり、 缶底耐圧強度が低下し、 機械的強度に関する品質基準を満足 することができないといつた問題があつた。
また、 上記焼鈍により材料強度が低下し、 後工程において、 搬送時の衝撃等に より変形したり凹んでしまい、 工程トラブルを発生させ生産性を低下させるとい つた問題もあった。
さらに、 印刷外観不良や内面耐食性が低下するといつた不具合があつた。
さらに、 このバルジ缶は、 低下した機械的強度を向上させるために、 缶胴側壁 の板厚を厚くしてあり、 材料費のコストダウンを図ることができないといった問 題があった。
また、 上記技術は、 一般的な乾燥温度が約 2 1 0 °C〜2 2 0 °Cであるのに対し、 焼鈍温度 (約 2 3 0 °C〜2 9 0 °C) まで高温加熱するので、 エネルギーがその分 多く必要となり、 製造費のコストダウンを図ることができないといった問題があ つた。
すなわち、 アルミ 2ピース缶にエアーブローの内圧を利用して、 張り出し率の 大きなバルジ成形を行なうことができるものの、 焼鈍により側壁の機械的強度を 低下させ、 かつ、 機械的強度の低下を補うために側壁の板厚を厚くするといつた、 品質, 生産性及び経済性の観点から好ましくない方向に対策が施されてきた。 なお、 弾性体を用いた加圧手段でアルミ 2ピース缶に力を加えると、 内面塗膜 を損傷するおそれがあり、 また、 缶に対する弾性体の進退動作が必要となり、 生 産性が低下するといつた問題があつた。
さらに、 本発明にかかるパルジ缶を製造するためのシングルビストン型バルジ 缶製造装置 (バルジ成形装置) によれば、 プレス荷重を加えるタイミングとエア 一ブローを開始するタイミングの成形可能範囲が狭いため、 エア一ブローとプレ ス荷重を加えるタイミングの制御が難しかった。
本発明は、 上記諸問題を解決すべく、 材料の機械的強度を低下させずに、 すな わち、 焼鈍しなくても、 エアーブローによる内圧を用いて、 張り出し率の大きな バルジ成形を可能とし、 かつ、 品質, 生産性及び経済性を向上させることの可能 なバルジ缶、 パルジ缶の製造方法及びバルジ缶の製造装置の提供を目的とする。 発明の開示
この目的を達成するために、 本発明のバルジ缶は、 2ピース缶を、 エア一プロ 一の内圧を利用してバルジ成形したパルジ缶であって、 バルジ部の張り出し率を 1 5%以下 (0%を含まず。 ) とし、 かつ、 前記パルジ部の板厚の減少率 (式 (1) ) を 6%以下とした構成としてある。
(板厚減少率)
= (Tb-Ta) x l 00/Tb 式 (1) ただし、
:板厚減少率 [%]
Tb :バルジ成形前の板厚 [mm]
Ta :バルジ成形後の板厚 [mm]
また、 本発明のバルジ缶は、 前記バルジ部におけるバルジ成形後の板厚を、 ァ ルミ缶においては 0. 08mm~0. 15 mm、 スチール缶においては 0. 06 mm〜0. 12mmとした構成としてある。
また、 本発明のバルジ缶の製造方法は、 金属板を絞りしごき成形, 薄肉化深絞 り成形又は薄肉化深絞りしごき成形して、 バルジ部の成形可能な缶胴板厚となる ように素缶を成形する工程と、 成形した前記素缶の外周に印刷を行なう印刷工程 と、 前記バルジ部用の凹部を有する金型で前記素缶の外側面を囲み、 該素缶にプ レス荷重を加え、 かつ、 素缶の内部にエアーブローを行なって内圧を加えるバル ジ成形工程とを有する方法としてある。
また、 本発明のバルジ缶の製造方法は、 前記素缶の前記バルジ部におけるバル ジ成形前の板厚を、 アルミ缶においては 0. 09mm〜0. 16mm、 スチール 缶においては 0. 07mm〜0. 13 mmとした方法としてある。
また、 本発明のパルジ缶の製造方法は、 前記印刷工程とパルジ成形加工の間に、 ネックフランジ加工工程を有する方法としてある。
また、 本発明のバルジ缶の製造方法は、 前記印刷工程における乾燥温度を 21 0°C~220°Cとした方法としてある。
また、 本発明のバルジ缶の製造方法は、 前記バルジ部を成形するバルジ成形ェ 程において、 前記素缶の底部を押圧する底型に加えられるプレス荷重と、 前記素 缶に対するエアーブローの内圧により前記プレス荷重の作用方向と反対の方向に 作用するブロー荷重を、 下記バルジ成形条件式 (式 (2) ) を満足する状態で加 える方法としてある。
(バルジ成形条件式)
0<AFMAX= (PF-BF) MAX≤素缶の縦圧縮強度 式 (2) ただし、
Δ F:軸方向荷重 [N]
PF:プレス荷重 [N]
BF:ブロー荷重 [N]
また、 本発明のバルジ缶の製造方法は、 前記バルジ成形工程において、 前記プ レス荷重を加えると同時に、 若しくは、 前記プレス荷重を加えてから 2 Oms e c以内に、 前記エアーブローを開始し、 又は、 エア一ブローを開始してから 5m s e c以内に、 前記プレス荷重を加える方法としてある。
また、 本発明のバルジ缶の製造方法は、 前記プレス荷重が、 前記ブロー荷重と 等しい第一プレス荷重と、 この第一プレス荷重より小さい第二プレス荷重とから なる方法としてある。
また、 本発明のパルジ缶の製造方法は、 前記第一プレス荷重及び前記プロ一荷 重を加えると同時に、 又は、 前記第一プレス荷重及び前記ブロー荷重を加えてか ら 40ms e c以内に第二プレス荷重を加え、 又は、 前記第二プレス荷重を加え てから、 20ms e c以内に前記第一プレス荷重と前記ブロー荷重を同時に加え る方法としてある。
また、 本発明のバルジ缶の製造方法は、 前記第二プレス荷重を加える前、 又は 加えた後、 20ms e c以内に、 前記第一プレス荷重と前記プロ一荷重とを加え る方法としてある。
また、 本発明のバルジ缶の製造装置は、 素缶にバルジ部を形成するバルジ缶製 造装置であって、 ブローエアーを吐出することにより、 前記素缶に内圧を作用さ せるブローエアー吐出手段を有するモールドと、 前記素缶の底部内側に作用させ る内圧と、 同一の垂直圧を前記素缶の底部外側に作用させる第一軸カシリンダと、 前記垂直圧より小さい垂直圧を前記素缶の底部外側に作用させる第二軸カシリン ダと、 を有する構成としてある。
また、 本発明のバルジ缶の製造装置は、 前記第一軸カシリンダの有効断面積と、 前記素缶の底部内側の断面積とが同一である構成としてある。
また、 本発明のバルジ缶の製造装置は、 前記第二軸カシリンダの有効断面積が、 前記第一軸力シリンダの有効断面積より小さい構成としてある。
また、 本発明のバルジ缶の製造装置は、 前記第一軸カシリンダのロッドが、 前 記第二軸カシリンダのロッドと一体的に設けられ、 かつ、 このロッドの一端に、 前記素缶の底部外側を押圧する底型を設けた構成としてある。
本発明におけるバルジ缶及びバルジ缶の製造方法によれば、 材料の機械的強度 を低下させずに、 エアープロ一による内圧を用いて、 張り出し率の大きなバルジ 部を成形することができる。 また、 素缶を焼鈍しないことにより、 品質, 生産性 及び経済性を向上させることができる。
本発明のバルジ缶は、 エアーブローの内圧を利用してバルジ成形を行なつても、 板厚の減少率を 6 %以下としてあるので、 機械的強度が低下するといつた不具合 を防止でき、 かつ、 大きな張り出し率 (最大 1 5 %) のパルジ部を設けることが できる。
また、 バルジ部の板厚を材質に応じて薄くすることにより、 大きな張り出し率 のバルジ成形を容易に行なうことができ、 材料費のコストダウンを図ることがで ぎる。
さらに、 本発明のバルジ缶の製造方法によれば、 素缶の焼鈍を行なわなくても すむので、 焼鈍工程を削減でき、 生産性及び経済性を向上させることができる。 また、 材料の機械的強度を低下させずに、 すなわち、 焼鈍せずに材料を使用す ることにより、 板厚を厚くしなくてもすむので、 材料費のコストダウンを図るこ とができる。 さらに、 材料の機械的強度を低下させないので、 缶底耐圧強度が低 下してしまい、 機械的強度に関する品質規格を満足できないといった不具合や、 内容物充填工程などの後工程において、 バルジ缶が変形するといつた不具合を防 止することができる。
また、 バルジ部の板厚を材料に応じて薄くすることにより、 大きな張り出し率 のバルジ成形を容易に行なうことができる。
さらに、 パルジ部が形成されていない素缶に対して、 ネックフランジ加工を行 なうことができ、 外形形状が単純なので容易に加工でき、 生産性を向上させるこ とができる。
さらに、 素缶の縦圧縮強度を超える軸方向荷重 が作用しないので、 素缶が モールド (金型) に対応する形状と異なる形状に変形したり、 バルジ部やその近 傍の板厚が局所的に薄くなり機械的強度が低下するといつた不具合を防止するこ とができる。
また、 プレス荷重とブロー荷重を常時制御する代わりに、 プレス荷重とプロ一 荷重を加えるタイミングを制御するだけですむので、 制御系を単純化することが できる。
さらに、 ダブルピストン型バルジ缶製造装置によれば、 エア一ブロー及び第一 プレス荷重と第二プレス荷重を加えるタイミングをシングルビストン型バルジ缶 製造装置より長くとることができ、 バルジ成形がしゃすくなる。 また、 ブローェ ァ一の先入れにより、 素缶のフランジが伸張してしまうという問題は、 プロ一ェ ァーを入れると同時に、 第一プレス荷重を素缶に加えるダブルビストン型バルジ 缶製造装置によれば解消することができる。 図面の簡単な説明
図 1 :図 1は、 本発明にかかるバルジ缶のバルジ成形後の概略正面図を示してい る。
図 2 :図 2は、 バルジ成形前の素缶の概略正面図を示している。
図 3 :図 3は、 本発明にかかるバルジ缶の製造方法の一実施形態を説明する概略 フローチャート図を図示している。
図 4 :図 4は、 本発明にかかるバルジ缶の製造方法を実現するシングルビストン 型バルジ缶製造装置 (バルジ成形装置) の概略断面図を示している。
図 5 :図 5は、 シングルピストン型バルジ缶製造装置 (バルジ成形装置) におけ るエアー配管の概略図を示している。
図 6 :図 6は、 本発明のバルジ缶の製造方法を実施するシングルピストン型バル ジ缶製造装置 (バルジ成形装置) の動作を説明する要部の概赂断面図であり、 (a) は素缶装着時の断面図を、 (b) はプレス荷重作用時の断面図を、 (c) はエアーブローの内圧作用時の断面図を、 (d) はプレス荷重及ぴエアーブロー の内圧の解除後の断面図を示している。
図 7 :図 7は、 本発明にかかるバルジ成形条件式を説明するための概略図であり、 (a) はプレス荷重及びブロー荷重を説明する断面図を、 (b) は座屈不良とな る条件を説明するグラフを、 (c) は成形可となる条件を説明するグラフを、 ( d ) はフランジ伸ぴ不良または缶胴破裂となる条件を説明するダラフを示して いる。
図 8 :図 8は、 本発明にかかるダブルピストン型バルジ缶製造装置 (バルジ成形 装置) の概略断面図を示している。
図 9 :図 9は、 ダブルピストン型パルジ缶製造装置 (バルジ成形装置) における エア一配管の概略図を示したものであり、 (a) は、 第一軸カシリンダ 35の有 効断面積と素缶 2の底面内部の断面積が同一の場合の概略図であり、 (b) は、 両断面積が相違する場合の概略図である。
図 10 :図 10は、 本発明のダブルビストン型バルジ缶製造装置 (バルジ成形装 置) の動作を説明する要部の概略断面図であり、 (a) は素缶装着時の断面図を、
(b) はブロー荷重と第一プレス荷重作用時の断面図を、 (c) はブロー荷重、 第一プレス荷重及び第二プレス荷重作用時の断面図を、 (d) はすべての荷重の 解除後の断面図を示している。 発明を実施する最良の形態
[バルジ缶]
図 1は、 本発明にかかるバルジ缶のバルジ成形後の概略正面図を示している。 また、 図 2は、 バルジ成形前の素缶の概略正面図を示している。
図 1において、 バルジ缶 1は、 シームレス缶であり、 底部 15, 胴部 12及び ネックフランジ部 1 1とからなっている。 また、 材料には、 アルミ合金 (J I S 規格の 3000系 (焼鈍無し) ) が使用されている。
なお、 缶材料としては、 アルミニウム合金板のほか、 ぶりき、 ティンフリース チール (TFS) , N iめっき鋼板等のスチール材料、 あるいは、 あらかじめポ リエステル等の熱可塑性樹脂で金属表面を被覆した樹脂被覆金属板等のプレコ一 ト材料を使用することができる。
バルジ缶 1は、 円筒状の胴部 12の上部に、 張り出し率 8% (=071. 4m m/φ 66. 10mm= 1. 08) のバルジ部 13が形成してある。 また、 胴部 12の下部は、 バルジ成形されない非バルジ部 14としてある。
なお、 バルジ成形前の素缶 2は、 図 2に示すように、 底部 15, 胴部 22及び ネックフランジ部 1 1とからなっている。
バルジ缶 1は、 エアーブローの内圧を利用してバルジ成形してあり、 バルジ部 13の張り出し率を 15%以下 (0%を含まず。 ) とし、 かつ、 バルジ部 13の 板厚の減少率 (式 (1) ) を 6%以下としてある。
(板厚減少率)
a= (Tb-Ta) x 10 O/Tb 式 (1) ただし、
:板厚減少率 [%]
Tb :パルジ成形前の板厚 [mm]
Ta :バルジ成形後の板厚 [mm]
なお、 張り出し率は、 15%以下 (0%を含まず。 ) としてあるので、 たとえ ば、 張り出し率 0. 1%といった微小距離だけ張り出したバルジ部に対しても、 本発明を適用することができる。
このようにすると、 エアーブローの内圧を利用してバルジ成形を行なつても、 板厚の減少率を 6%以下としてあるので、 機械的強度が低下するといつた不具合 を防止でき、 かつ、 大きな張り出し率 (最大 15%) のパルジ部 13を設けるこ とができる。
また、 好ましくは、 バルジ缶 1の張り出し率を 10%以下とするとよく、 この ようにすると、 板厚の減少が抑制されるので、 機械的強度の低下を防ぐことがで ぎる。
また、 好ましくは、 張り出し率を 3%以上とすれば、 缶の全体的形状が通常の 円筒形とは異なる意匠性に優れた缶とすることができる。
また、 バルジ缶 1は、 バルジ部 13におけるバルジ成形後の板厚を、 0. 08 mm〜0. 15mmとした構成としてある。
このように、 バルジ部 13の板厚を、 薄くすることにより、 大きな張り出し率 のバルジ部 13を容易に設けることができ、 さらに、 材料費のコストダウンを図 ることができる。
また、 バルジ部 13の板厚を薄くすることにより、 焼鈍を行なわなくてもバル ジ成形が可能となり、 短時間でバルジ缶の製造が可能となる。
このように、 本実施形態のバルジ缶 1によれば、 機械的強度が低下せずかつ板 厚の薄い、 張り出し率の大きなバルジ部 13を設けることができる。
なお、 バルジ缶 1がスチール缶である場合には、 バルジ部におけるバルジ成形 後の板厚を、 0. 06mm〜0. 12mmとするとよい。
[実施例 1 ]
次に、 上記バルジ缶 1の実施例 1について説明する。
バルジ缶 1は、 図 1に示すように、 全長約 120. 95mm (押込量 =約 1. 25 mm) 、 素缶缶胴外形約 66. 10 mm、 張り出し頂点部外径約 71. 0 mmであり、 張り出し率約 8%とした。 また、 缶材料には、 アルミニウム合金 3 004を使用した。
また、 素缶 2は、 絞り, しごき加工を施した後洗浄し、 約 210°Cで乾燥させ、 さらに、 外面印刷塗装後約 200°Cで焼付けを行なった。 続いて、 内面にェポキ シアタリル系水性塗料を膜厚約 4 mとなるように塗装し、 約 200 °Cで焼付け を行い、 ネッキングフランジ加工を施すことにより製造した。
なお、 缶材料及び製造方法は、 実施例 15を除いて、 後述する各実施例及び比 較例において、 本実施例とほぼ同様とした。
バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板厚 [m m] ) が約 0. 1 16であり、 Ta (バルジ成形後の板厚 [mm] ) が約 0. 1 1 1であった。 したがって、 板厚減少率 α= (0. 1 16-0. I l l) x l 00/0. 1 16 = 4. 31 %となり、 6%より小さい板厚減少率であった (表 1参照) 。
また、 バルジ部 13において板厚が最も薄くなつている位置 (底部 15から高 さ約 74mmの位置 (A点) ) において、 Tb (バルジ成形前の板厚 [mm] ) が約 0. 1 14であり、 T a (バルジ成形後の板厚 [mm] ) が約 0. 1 10で あった。 したがって、 板厚減少率 α= (0. 1 14— 0. 1 10) x 100/ 0. 1 14 = 3. 51%となり、 6%より小さい板厚減少率であった。 次に、 上記条件でバルジ缶 1を 1 0 0個製造し、 1 0 0個のバルジ缶 1に対し て、 成形性及び缶内面耐食性の試験を行なった。 本実施例及び後述する実施例等 の試験結果を表 1に記載する。 表 1
Figure imgf000013_0001
なお、 上記試験結果において、 バルジ成形性を下記の基準で評価した。
〇: 1 0 0缶全て正常に成形できた。
Δ: 1 0 0缶全て成形可能ではあるが、 一部の缶でパルジ部に局所的な薄肉部 が発生した。
: 1缶以上で缶胴バルジ部に亀裂が発生した。
また、 缶内面耐食性については、 バルジ成形が成功した各 1ひ 0缶について、 エナメルレーターにより内面金属露出度を測定し、 下記の基準で評価した。
〇: 1 0 0缶の平均エナメルレーター値が 0 . 5 mA以下。
△: 1 0 0缶の平均エナメルレーター値が 0 . 5 5 . O mA x : 1 00缶の平均エナメルレーター値が 5. 0mA以上。
なお、 エナメルレーター試験により、 バルジ成形後の缶内面に塗膜の損傷程度 を評価することができる。
上述したように、 実施例 1のバルジ缶 1は、 張り出し率が約 8 %、 板厚減少率 が 4. 31%であり、 かつ、 成形性試験及び缶内面耐食性試験の結果は、 両方と も〇であった。
[実施例 2]
実施例 2にかかるバルジ缶は、 図示してないが、 全長約 120. 29mm (押 込量 =約 1. 9 lmm) 、 素缶缶胴外形約 66. 1 Omm、 張り出し頂点部外径 約 72. 71 mmであり、 張り出し率を約 10%とした。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (パルジ成形前の板 厚 [mm] ) が約 0. 1 16であり、 T a (バルジ成形後の板厚 [mm] ) が約 0. 1 10であった。 したがって、 板厚減少率 α= (0. 1 1 6— 0. 1 10) X 1 00/0. 1 1 6 = 5. 1 7%であった。 さらに、 バルジ部 13において 板厚が最も薄くなつている位置 (Α点) において、 Tb (バルジ成形前の板厚 [mm] ) が約 0. 1 14であり、 T a (バルジ成形後の板厚 [mm] ) が約 0. 1 08であった。 したがって、 板厚減少率 α= (0. 1 14-0. 1 08) 1 00/0. 1 14 = 5. 26%であった。
実施例 2のバルジ缶は、 張り出し率が約 10 %、 板厚減少率が 5. 17 %であ り、 成形性試験及び缶内面耐食性試験の結果は、 両方とも〇であった。
[実施例 3]
実施例 3にかかるバルジ缶は、 図示してないが、 全長約 121. 85mm (押 込量 =約 0. 35 mm) 、 素缶缶胴外形約 66. 10 mm、 張り出し頂点部外径 約 69. 4 lmmであり、 張り出し率を約 5%とした。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 1 16であり、 T a (パルジ成形後の板厚 [mm] ) が約 0. 1 1 1であった。 したがって、 板厚減少率 = (◦. 1 16-0. 1 1 1) 1 00/0. 1 1 6 = 4. 31 %であった。 さらに、 バルジ部 13において 板厚が最も薄くなつている位置 (A点) において、 Tb (バルジ成形前の板厚 [mm] ) が約 0. 1 14であり、 T a (パルジ成形後の板厚 [mm] ) が約 0. 1 1 1であった。 したがって、 板厚減少率 α= (0. 1 14-0. 1 1 1 ) 100/0. 1 14 = 2. 63%であった。
実施例 3のバルジ缶は、 張り出し率が約 5%、 板厚減少率が 4. 31%であり、 成形性試験及び缶内面耐食性試験の結果は、 両方とも〇であつた。
[実施例 4]
実施例 4にかかるバルジ缶は、 図示してないが、 全長約 122. 06mm (押 込量 =約 0. 14mm) 、 素缶缶胴外形約 66. 10 mm、 張り出し頂点部外径 約 68. 08mmであり、 張り出し率を約 3%とした。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 1 16であり、 T a (バルジ成形後の板厚 [mm] ) が約 0. 1 12であった。 したがって、 板厚減少率 = (0. 1 16-0. 1 12) X 100/0. 1 16 = 3. 44%であった。 さらに、 バルジ部 13において 板厚が最も薄くなつている位置 (Α点) において、 Tb (バルジ成形前の板厚 [mm] ) が約 0. 1 14であり、 T a (バルジ成形後の板厚 [mm] ) が約 0· 1 12であった。 したがって、 板厚減少率 = (0. 1 14— 0. 1 12) x 100/0. 1 14 = 1. 75%であった。
実施例 4のパルジ缶は、 張り出し率が約 3 %、 板厚減少率が 3. 44%であり、 成形性試験及び缶内面耐食性試験の結果は、 両方とも〇であつた。
[実施例 5]
実施例 5にかかるバルジ缶は、 図示してないが、 全長約 122mm、 素缶缶胴 外形約 66mm、 張り出し頂点部外径約 66. 4 Ommであり、 張り出し率を約 0. 6%とした。 なお、 後述する実施例及び比較例のバルジ缶は、 全長約 122 mm、 素缶缶胴外形約 66 mmとしてあり、 本実施例とほぼ同様とした。
バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板厚 [m m] ) が約 0. 1 16であり、 T a (パルジ成形後の板厚 [mm] ) が約 0. 1 12であった。 したがって、 板厚減少率 = (0. 1 16-0. 1 14) X 1 00/0. 1 16= 1. 72%であった。
実施例 5のバルジ缶は、 張り出し率が約 0. 6%、 板厚減少率が 1. 72%で あり、 成形性試験及び缶内面耐食性試験の結果は、 両方とも〇であつた。
[実施例 6] 実施例 6にかかるバルジ缶は、 張り出し頂点部外径約 73. 92mmであり、 張り出し率を約 12%とした。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 1 16であり、 Ta (バルジ成形後の板厚 [mm] ) が約 0. 120であった。 したがって、 板厚減少率 α= (0. 120-0. 1 14) X 100/0. 120 = 5. 00%であった。
実施例 6のバルジ缶は、 張り出し率が約 12%、 板厚減少率が 5. 00%であ り、 成形性試験及び缶内面耐食性試験の結果は、 両方とも〇であった。
[実施例 7]
実施例 7にかかるバルジ缶は、 張り出し頂点部外径約 75. 9 Ommであり、 張り出し率を約 15%とした。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 1 13であり、 T a (バルジ成形後の板厚 [mm] ) が約 0. 120であった。 したがって、 板厚減少率 = (0. 120-0. 1 13) X 100/0. 120 = 5. 83%であった。
実施例 7のパルジ缶は、 張り出し率が約 15%、 板厚減少率が 5. 83%であ り、 成形性試験及び缶内面耐食性試験の結果は、 両方とも〇であった。
[比較例 1 ]
比較例 1にかかるバルジ缶は、 張り出し頂点部外径約 76. 56mmであり、 張り出し率を約 16%とした。
また、 パルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 1 13であり、 T a (パルジ成形後の板厚 [mm] ) が約 0. 108であった。 したがって、 板厚減少率 α= (0. 108— 0. 103) X 100/0. 1 13 = 4. 63%であった。
比較例 1のバルジ缶は、 張り出し率が約 16 %、 板厚減少率が 4. 63%であ り、 成形性試験の結果が△ (印刷外観に軽度のゆがみが発生した。 ) であり、 缶 内面耐食性試験の結果が Xであつた。
[比較例 2]
比較例 2にかかるバルジ缶は、 張り出し頂点部外径約 76. 56mmであり、 張り出し率を約 16%とした。 また、 パルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 1 16であり、 Ta (バルジ成形後の板厚 [mm] ) が約 0. 108であった。 したがって、 板厚減少率 = (0. 116-0. 108) X 100/0. 1 16 = 6. 89%であった。
比較例 2のバルジ缶は、 張り出し率が約 16 %、 板厚減少率が 6. 89%であ り、 成形性試験の結果が△であり、 缶内面耐食性試験の結果が Xであった。
[比較例 3]
比較例 3にかかるバルジ缶は、 張り出し頂点部外径約 77. 88mmであり、 張り出し率を約 18%とした。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 1 16であり、 T a (バルジ成形後の板厚 [mm] ) が約 0. 107であった。 したがって、 板厚減少率 = (0. 1 16-0. 107) X 100/0. 1 16 = 7. 76%であった。
比較例 3のパルジ缶は、 張り出し率が約 18%、 板厚減少率が 7. 75%であ り、 成形性試験の結果が Xであった。 なお、 成形性が Xであったため、 缶内面 耐食性試験は中止した。
以上の各実施例及び比較例の結果から、 張り出し率 15 %以下のバルジ缶は良 好であり、 15%を超えると成形性が低下し、 局所的な薄肉部が発生し正常にバ ルジ成形できないことが確認できた。
[実施例 8]
実施例 8にかかるパルジ缶は、 張り出し頂点部外径約 71. 28mmであり、 張り出し率を約 8%とした。 なお、 後述する各実施例及び比較例においては、 張 り出し率を約 8%とした。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (パルジ成形前の板 厚 [mm] ) が約 0. 084であり、 Ta (バルジ成形後の板厚 [mm] ) が約 0. 080であった。 したがって、 板厚減少率 α= (0. 084-0. 080) X 100/0. 084 = 4. 76%であった。
実施例 8のバルジ缶は、 張り出し率が約 8%、 板厚減少率が 4. 76%、 パル ジ成形後のパルジ部板厚が約 0. 088mmであり、 成形性試験及び缶内面耐食 性試験の結果は、 両方とも〇であった。 [実施例 9]
実施例 9にかかるバルジ缶のバルジ部 13は、 張り出し頂点位置において、 T b (パルジ成形前の板厚 [mm] ) が約 0. 105であり、 T a (バルジ成形後 の板厚 [mm] ) が約 0. 100であった。 したがって、 板厚減少率 = (0. 105— 0. 100) X 100/0. 105 = 4. 76%であった。
実施例 8のバルジ缶は、 張り出し率が約 8 %、 .板厚減少率が 4. 76%、 ノ^レ ジ成形後のバルジ部板厚が約 0. 10 Ommであり、 成形性試験及び缶内面耐食 性試験の結果は、 両方とも〇であった。
[実施例 10]
実施例 10にかかるバルジ缶のバルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板厚 [mm] ) が約 0. 135であり、 T a (バルジ成形 後の板厚 [mm] ) が約 0. 129であった。 したがって、 板厚減少率 (0. 135-0. 129) 100/0. 135 = 4. 44%であった。
実施例 8のパルジ缶は、 張り出し率が約 8 %、 板厚減少率が 4. 44%、 バル ジ成形後のバルジ部板厚が約 0. 129mmであり、 成形性試験及び缶内面耐食 性試験の結果は、 両方とも〇であった。
[実施例 1 1 ]
実施例 1 1にかかるバルジ缶のバルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板厚 [mm] ) が約 0· 150であり、 Ta (バルジ成形 後の板厚 [mm] ) が約 0. 144であった。 したがって、 板厚減少率 α== (0. 150-0. 144) 100/0. 150 = 4. 00%であった。
実施例 8のパルジ缶は、 張り出し率が約 8%、 板厚減少率が 4. 00%、 バル ジ成形後のバルジ部板厚が約 0. 144mmであり、 成形性試験及び缶内面耐食 性試験の結果は、 両方とも〇であった。
[実施例 12]
実施例 12にかかるバルジ缶のバルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板厚 [mm] ) が約 0. 156であり、 Ta (バルジ成形 後の板厚 [mm] ) が約 0. 150であった。 したがって、 板厚減少率 = (0. 156-0. 150) 100/0. 156 = 3. 85%であった。
実施例 12のバルジ缶は、 張り出し率が約 8%、 板厚減少率が 3. 85%、 バ ルジ成形後のバルジ部板厚が約 0. 150mmであり、 成形性試験及び缶内面耐 '食性試験の結果は、 両方とも〇であった。
[比較例 4]
比較例 4にかかるパルジ缶のパルジ部 13は、 張り出し頂点位置において、 T b (バルジ成形前の板厚 [mm] ) が約 0. 080であり、 Ta (バルジ成形後 の板厚 [mm] ) が約 0. 077であった。 したがって、 板厚減少率 α= (0.
080-0. 077) X 100/0. 080 = 3. 75%であった。
実施例 12のバルジ缶は、 張り出し率が約 8 %、 板厚減少率が 3. 75%、 パ ルジ成形後のバルジ部板厚が約 0. 077mmであり、 成形性試験の結果が△で あり、 缶内面耐食性試験の結果が〇であった。
以上の結果から、 バルジ成形後の板厚が 0. 08mm〜0. 15mmのパルジ 缶は良好であり、 0. 08mmより薄くなると成形性が低下し、 局所的な薄肉部 が発生し正常にバルジ成形できないことが確認できた。
[実施例 13]
実施例 13にかかるパルジ缶のバルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板厚 [mm] ) が約 0. 100であり、 Ta (バルジ成形 後の板厚 [mm] ) が約 0. 094であった。 したがって、 板厚減少率 α= (0.
100— 0. 094) X 100/0. 100 = 6. 00%であった。
実施例 13のバルジ缶は、 張り出し率が約 8%、 板厚減少率が 6. 00%、 パ ルジ成形後のバルジ部板厚が約 0. 094mmであり、 成形性試験及び缶内面耐 食性試験の結果は、 両方とも〇であった。
[比較例 5]
比較例 5にかかるバルジ缶のバルジ部 13は、 張り出し頂点位置において、 T b (バルジ成形前の板厚 [mm] ) が約 0. 100であり、 Ta (バルジ成形後 の板厚 [mm] ) が約 0. 093であった。 したがって、 板厚減少率《= (0. 100— 0. 093) X 100/0. 100 = 7. 00%であった。
比較例 5のバルジ缶は、 張り出し率が約 8%、 板厚減少率が 7. 00%、 バル ジ成形後のバルジ部板厚が約 0. 094mmであり、 成形性試験の結果が xで めった。
以上の結果から、 板厚減少率が 6%を超えると成形性が低下し、 正常にパルジ 成形できないことが分かった。
[実施例 14]
実施例 14にかかるバルジ缶は、 図示してないが、 全長約 122mm、 素缶缶 胴外形約 66mm、 張り出し頂点部外径約 71. 28 mmであり、 張り出し率約 8%としてある。 また、 缶材料には、 すずめつき鋼板 (#25725) を使用し た。
また、 バルジ缶は、 絞り, しごき加工をした後洗浄し、 約 210°Cで乾燥させ、 外面ホワイ ト塗料を塗装し、 さらに、 印刷塗装を行なった。 続いて、 内面に二回 に分けエポキシァクリル系水性塗料を膜厚約 8 mとなるように塗装し、 約 20 o°cで焼付けを行い、 ネッキングフランジ加工を施すことにより製造した。
また、 バルジ部 13は、 張り出し頂点位置において、 Tb (バルジ成形前の板 厚 [mm] ) が約 0. 080であり、 Ta (バルジ成形後の板厚 [mm] ) が約 0. 077であった。 したがって、 板厚減少率 α= (0. 080-0. 077) X 100/0. 080 = 3. 75%であった。
実施例 14のバルジ缶は、 張り出し率が約 8%、 板厚減少率が 3. 75%、 バ ルジ成形後のバルジ部板厚が約 0. 077mmであり、 成形性試験及び缶内面耐 食性試験の結果は、 両方とも〇であった。
なお、 スチール缶に対しても、 上記アルミ缶と同様の試験を行い、 バルジ部の 張り出し率を 15%以下とし、 かつ、 バルジ部の板厚減少率を 6%以下とするこ とにより、 正常にバルジ成形できることが分かった。 また、 バルジ成形後のバル ジ部板厚を 0. 06mm〜0. 12mmとすることにより、 良好にバルジ成形で きることを確認した。
このように、 上記各実施例では、 いずれも、 板厚減少率 αが 6%以下となり、 バルジ成形しても、 機械的強度が品質規格を満足することができた。
また、 バルジ部 13の成形後の最小板厚を明確にすることにより、 板厚をより 薄くすることができ、 材料費を大幅にコストダウンすることができた。
なお、 上記各実施例のバルジ缶は、 後述するバルジ缶の製造方法により製造し た。
[バルジ缶の製造方法]
図 3は、 本発明にかかるバルジ缶の製造方法の一実施形態を説明する概略フロ 一チャート図を図示している。
同図において、 本発明にかかるバルジ缶 1の製造方法は、 まず、 プレス荷重と エアーブローの内圧によって、 バルジ部 1 3を成形可能な板厚に、 素缶 2を絞り しごき成形する (絞りしごき成形工程 (ステップ S 1 ) ) 。 なお、 本実施形態で は、 絞りしごき成形工程としたが、 この工程に限定されるものではなく、 たとえ ば、 薄肉化深絞り成形工程又は薄肉化深絞りしごき成形工程としてもよい。
次に、 絞りしごき成形した素缶 2を洗浄 ·乾燥する工程 (ステップ S 2 ) と、 素缶 2の外周に印刷を行なう印刷工程 (ステップ S 3 ) と、 素缶 2に内面塗装を 行なう内面塗装工程 (ステップ S 4 ) を有している。
なお、 一般的に、 内面塗装工程が実施されるが、 たとえば、 樹脂被覆金属板等 のプレコート材料を使用する場合には、 内面塗装を行なう必要がないので、 内面 塗装工程は行なわれない。
次に、 バルジ部用の凹部 (バルジ成形形状 3 2 1 ) を有するモールド 3 2で素 缶 2の外側面を囲み、 素缶 2にプレス荷重を加え、 かつ、 素缶 2の内部にエアー ブローを行なって内圧を加える (バルジ成形工程 (ステップ S 5 ) ) o
このようにすると、 素缶 2の焼鈍を行なわなくてもすむので、 焼鈍工程を削減 でき、 生産性及び経済性を向上させることができる。
また、 材料の機械的強度を低下させずに、 すなわち、 焼鈍せずに材料を使用す ることにより、 板厚を厚くしなくてもすむので、 材料費のコストダウンを図るこ とができる。 さらに、 材料の機械的強度を低下させないので、 缶底耐圧強度が低 下してしまい、 機械的強度に関する品質規格を満足できないといった不具合や、 内容物充填工程などの後工程において、 バルジ缶が変形するといつた不具合を防 止することができる。
また、 バルジ部 1 3におけるバルジ成形前の板厚を、 アルミ缶においては 0. 0 9 mm〜0. 1 6 mm、 スチール缶においては 0. 0 7 mm〜0. 1 3 mmと するとよく、 このようにすると、 バルジ部 1 3の板厚を薄くすることにより、 大 きな張り出し率のバルジ成形を容易に行なうことができる。
さらに、 図示してないが、 印刷工程 (S 3 ) とバルジ成形工程 (S 5 ) の間に、 ネックフランジ加工工程を有する方法としてもよい。 このようにすると、 バルジ 部 1 3が形成されていない素缶 2に対して、 ネックフランジ加工を行なうことが できるので、 外形形状が単純となりその分容易に加工でき、 生産性を向上させる ことができる。
また、 印刷工程 (S2) における乾燥温度を 210°C〜220°Cとするとよく、 このようにすると、 素缶 2が焼鈍されないので、 機械的強度の低下を防止するこ とができる。 また、 本実施形態では、 塗装工程 (S3) を有しているので、 塗装 工程 (S3) おける乾燥温度を同様に 210°C〜220°Cとするとよい。
次に、 上記バルジ缶の製造方法のバルジ成形工程 (S5) の詳細な説明につい て、 図面を参照して説明する。
図 4は、 本発明にかかるバルジ缶の製造方法を実現するシングルビストン型パ、 ルジ缶製造装置 (バルジ缶形成装置) の概略断面図を示している。
同図において、 シングルピストン型バルジ缶製造装置 3は、 マンドレル 31, モールド 32, 底型 33, 軸カシリンダ 34とからなっている。
マンドレル 31は、 エアーブローを吹き出す複数の吐出口 31 1が形成された 円柱状の突起部 312と、 突起部 312に被せられるバルジ缶と突起部 312と の隙間をシールする、 突起部 312の付け根部に設けられたシール部材 313と を備えた構成としてある。 なお、 ブローエアーの圧力を制御することにより、 素 缶 2を上方に持ち上げようとする荷重 (ブロー荷重: BF [N] 、 図 7 (a) 参 照) を制御することができる。
また、 モールド 32は、 軸方向に二つ割りされた円筒状の金型であり、 内面に バルジ成形形状 321が加工されており、 素缶 (図示せず) にエアーブローの内 圧をかけて成形する際、 このバルジ成形形状 321に対応した形状に成形する。 底型 33は、 バルジ缶 1の底部形状に対応した形状が形成された型であり、 軸 カシリンダ 34の軸力ビストン 341から突設されたロッド 342と連結され軸 方向に移動する。
軸カシリンダ 34は、 プレスエア一により移動する、 ロッド 342, 343が 両面から突設された軸力ビストン 341と、 このロッド 343に取り付けられ底 型 33の押下位置を制御するストツバ 344とからなっている。
なお、 プレスエアーの圧力を制御することにより、 底型 33が素缶の底部を押 下する荷重 (プレス荷重: PF [N] 、 図 7 (a) 参照) を制御することができ る。 また、 ストツバ 344の取り付け位置を調整することにより、 素缶を軸方向 に圧縮する量 (押込量) を制御することができる。
図 5は、 シングルビストン型バルジ缶製造装置におけるエア一配管の概略図を 示している。
同図において、 コンプレッサ 4 1から供給されるエアーは、 レギユレ一タ 4 2 で圧力調整され、 ブローエアーとしてブローバルブ 4 4からマンドレル 3 1に供 給される。 また、 マンドレル 3 1に供給されたブローエアーは、 排気バルブ 4 5 から排気される。
また、 コンプレッサ 4 1から供給されるエアーは、 レギユレ一夕 4 6で圧力調 整され、 プレスエアーとしてプレスバルブ 4 8から軸カシリンダ 3 4に供給され、 排気バルブ 4 9から排気される。
なお、 プロ一エアーの圧力は、 圧力計 4 3で測定され、 また、 プレスエアーの 圧力は圧力計 4 7で測定される。
次に、 シングルピストン型バルジ缶製造装置 3の動作について、 図面を参照し て説明する。
図 6は、 本発明のバルジ缶の製造方法を実施するシングルピストン型バルジ缶 製造装置の動作を説明する要部の概略断面図であり、 (a ) は素缶装着時の断面 図を、 (b ) はプレス荷重作用時の断面図を、 (c ) はエアーブローの内圧作用 時の断面図を、 (d ) はプレス荷重及びエアーブローの内圧の解除後の断面図を 示している。
同図 (a ) において、 バルジ成形前の素缶 2には、 突起部 3 1 2が開口部 2 3 から挿入され、 開口部 2 3の内面がシール部材 3 1 3と接触し、 素缶 2内部の圧 力が外部に漏れないようにシールされる。
また、 素缶 2の胴部 2 2を二つ割れ構造を有するモールド 3 2が挟むように保 持し、 底部 1 5の上方には、 底型 3 3が位置する。
次に、 同図 (b ) において、 プレスバルブ 4 8が開かれると、 レギユレ一夕 4 6により圧力調整されたプレスエアーが軸カシリンダ 3 4に供給され、 軸カシリ ンダ 3 4が底型 3 3を下方に押下し、 底型 3 3が素缶 2の底部 1 5と当接する。 なお、 素缶 2の内部には、 まだ、 エアーブローによる内圧は作用していない。 また、 底型 3 3は素缶 2の底部 1 5と当接しているが、 素缶 2を軸方向 (下向 き) に押込んではいない。 次に、 同図 (c ) において、 素缶 2は、 底型 3 3により所定の押込量 (A h) だけ押し込まれ、 ストツバ 3 4 4によって位置決めされた状態で停止する。 この ストツバ 3 4 4は、 たとえば、 ロッド 3 4 3に螺着してあり、 容易に位置調整す ることができる。 なお、 押込量 (A h) は、 張り出し率, 材質等に応じて決定さ れる。
このように押込量 (Δ ΐι) を調整することにより、 バルジ部 1 3のバルジ成形 後の板厚を調整でき、 たとえば、 押込量 (A h) を大きくすると、 バルジ成形後 の板厚減少を抑制することができる。
また、 底型 3 3が素缶 2への押込みを開始するとほぼ同時に、 ブローバルブ 4 4が開き、 レギユレ一夕 4 2により圧力調整されたブローエアーがマンドレル 3 1に供給され、 吐出口 3 1 1から吹き出るので、 素缶 2にエアーブローの内圧が 作用する。 そして、 素缶 2がエアーブローの内圧を受けて外周方向に変形すると き、 モールド 3 2のバルジ成形形状 3 2 1に対応した形状に成形される。
ここで、 素缶 2の内部圧力は、 7ローバルブ 4 4の流量に応じて上昇し、 レギ ユレータ 4 2の設定圧力まで上昇する。 また、 底型 3 3は、 押圧バルブ 4 8の流 量に応じて降下し、 所定の押込量 (Δ ΐι) だけ素缶 2を押下し、 その位置に停止 し、 レギユレータ 4 8の設定圧力まで上昇する。
なお、 プレスバルブ 4 8とブローバルブ 4 4を開くタイミングは、 制御部 (図 示せず) からの指令で制御され、 たとえば、 開くタイミングをずらした状態に調 整することができる。
なお、 素缶 2には、 エアーブローの内圧によって、 軸方向 (上向き) にブロー 荷重 B Fが作用し、 かつ、 軸カシリンダ 3 4によって、 軸方向 (下向き) にプレ ス荷重 P Fが作用する。
上記ブロー荷重 B Fとプレス荷重 P Fを、 下記バルジ成形条件式 (式 (2 ) ) を満足するように作用させる。
(バルジ成形条件式)
0 < A FMAX= (P F— B F) MAX 素缶の縦圧縮強度 式 (2) ただし、
Δ F :軸方向荷重 [N]
P F :プレス荷重 [N] BF:ブロー荷重 [N]
次に、 上記バルジ成形条件式について、 図面を参照して説明する。
図 7は、 本発明にかかるバルジ成形条件式を説明するための概略図であり、 (a) はプレス荷重及びブロー荷重を説明する断面図を、 (b) は座屈不良とな る条件を説明するグラフを、 (c) は成形可となる条件を説明するグラフを、 ( d ) はフランジ伸ぴ不良または缶胴破裂となる条件を説明するグラフを示して いる。
同図 (a) において、 軸方向荷重 は、 AF = PF— BFで表される。 ここ で、 ブロー荷重 BFがプレス荷重 PFより大きいと、 底型 33を持ち上げてしま うので、 一般的に、 ブロー荷重 BFはプレス荷重 PFより小さくなるように調整 してある。
また、 同図 (b) , (c) , (d) は、 バルジ成形の初期におけるブロー荷重 BFとプレス荷重 PFの増加曲線を示したグラフである。
同図 (b) に示すように、 プレス荷重 PFがブロー荷重 BFより先に加えられ、 プレス荷重 PFがプロ一荷重 BFより常に大きい状態で、 ブロー荷重 BFとプレ ス荷重 PFが増加し、 この増加過程で (たとえば、 時間 T において) 軸方向荷 重厶 Fが素缶 2の縦圧縮強度より大きくなると、 素缶 2が座屈する。 そして、 座 屈した箇所は、 板厚が薄くなり機械的強度が低下するので、 通常、 エアーブロー の内圧に耐えられずに破裂してしまい、 パルジ成形を行なうことはできない。 これに対し、 同図 (c) に示すように、 プレス荷重 PFとプロ一荷重 BFがほ ぼ同時に加えられると、 プレス荷重 PFがブロー荷重 BFより大きい状態で、 ブ 口一荷重 B Fとプレス荷重 PFが増加し、 この増加過程で軸方向荷重 Δ Fが素缶 2の縦圧縮強度以下となる。 すなわち、 上記バルジ成形条件式 (0<AFMAX = (PF— BF) MAX≤素缶の縦圧縮強度) を満足している。
この場合、 素缶 2は、 エア一ブローの内圧及び軸荷重を受けて、 モールド 32 のバルジ成形形状 321に対応した形状に良好に成形される。
また、 同図 (d) に示すように、 ブロー荷重 BFがプレス荷重 PFより先に加 えられると、 一時的に (たとえば、 時間 T2において) ブロー荷重 BFがプレス 荷重 PFより大きくなり、 その後、 プレス荷重 PFがブロー荷重 BFより大きく なる。 このようにブロー荷重 BFがプレス荷重 PFより大きくなると、 素缶 2が 軸方向に引っ張られ、 素缶 2のネックフランジ部 11付近が伸びたり、 バルジ部 13付近が伸びる。 そして、 伸びた箇所は、 板厚が薄くなり機械的強度が低下す るので、 通常、 エアーブローの内圧に耐えられずに破裂してしまい、 バルジ成形 を行なうことはできない。
すなわち、 上記バルジ成形条件 (式 (2) ) を満足するように、 ブロー荷重 B F及びプレス荷重 PFを制御することにより、 素缶 2の焼鈍を行なわなくて、 パ ルジ部 13をモールド 32のバルジ成形形状 321に対応した形状に成形するこ とができる。
ところで、 バルジ成形条件 (式 (2) ) を満足するように、 プレス荷重 PFと ブロー荷重 BFを常時制御することは、 制御系が複雑となり好ましくない。
この不具合を解決するために、 プレス荷重を加えると同時に、 若しくは、 プレ ス荷重を加えてから 2 Oms e c以内に、 エア一ブローを開始し、 又は、 エアー ブローを開始してから 5ms e c以内に、 プレス荷重を加えるとよい。 なお、 プ レス荷重 PFの増加曲線とブロー荷重 BFの増加曲線は、 同図 (c) に示すよう に、 PF>BFかつ PF— 素缶の縦圧縮強度を満足するようにあらかじめ 設定されている。
このようにすると、 プレス荷重 PFとブロー荷重 BFを常時制御する代わりに、 プレス荷重 PFとブロー荷重 BFを加えるタイミングを制御するだけですむので、 制御系を単純化することができる。 なお、 プレス荷重を加えてから 2 Oms e c 経過した後に、 エアープロ一を開始したのでは、 同図 (b) に示すように、 座屈 不良が発生し、 また、 エアーブローを開始してから 5ms e c経過した後に、 プ レス荷重を加えたのでは、 同図 (d) に示すように、 フランジ伸ぴ不良が発生し たり、 缶胴がエアーブローの内圧に耐えられずに破壊 (破胴) してしまいバルジ 成形を行なうことはできない。
次に、 図 6 (d) において、 ブローバルブ 44及びプレスバルブ 48を閉じ、 排気バルブ 45, 49を開いて、 エアーブローの内圧を解放するとともに、 プレ ス荷重を解除し、 底型 33を上昇させる。
ここで、 ほぼ同時にエア一ブローの内圧とプレス荷重を解除し、 成形終了時に おいても、 上記バルジ成形条件 (式 (2) ) を満足するように、 ブロー荷重 BF 及びプレス荷重 PFを制御する。 このようにすると、 軸方向荷重 AFによって、 バルジ缶 1が損傷するといつた不具合を防止することができる。
このように、 本発明にかかるバルジ缶の製造方法によれば、 素缶 2の焼鈍を行 なわなくてもすむので、 焼鈍工程を削減でき、 生産性及び経済性を向上させるこ とができる。
また、 焼鈍せずに材料を使用することにより、 板厚を厚くしなくてもすむので、 材料費のコストダウンを図ることができる。 さらに、 材料の機械的強度を低下さ せないので、 缶底耐圧強度が低下してしまい、 機械的強度に関する品質規格を満 足できないといった不具合や、 内容物充填工程などの後工程において、 パルジ缶 が変形するといつた不具合を防止することができる。
なお、 バルジ部 1 3におけるバルジ成形前の板厚を薄くするとよく (たとえば、 板厚 = 0. 0 9 mm~ 0. 1 6 mm (アルミ缶) 、 0. 0 7 mm〜0. 1 3 mm (スチール缶) ) 、 このようにすると、 エアーブローの内圧を低くすることがで き、 高圧エアーの取扱いが容易となる。
[ダブルビストン型バルジ缶製造装置]
図 8は、 本発明にかかるダブルピストン型バルジ缶製造装置 (バルジ成形装 置) の概略断面図を示している。
シングルピストン型バルジ缶製造装置 3の軸力シリンダ 3 4以外は、 シングル ピストン型バルジ缶製造装置と同様の構造である。 したがって、 ダブルピストン 型バルジ缶製造装置 3 aの構成については、 軸カシリンダの構成のみ説明をし、 その他の構成部分は、 図中でシングルビストン型バルジ缶製造装置 3と同一符号 を付し、 詳細な説明は省略する。
ダブルビストン型パルジ缶製造装置 3 aの軸カシリンダは、 バランスエアーに より移動する第一軸カシリンダ 3 5と、 プレスエア一により移動する第二軸カシ リンダ 3 6から構成されている。
第一軸力シリンダ 3 5は、 ロッド 3 5 2 , 3 5 3が両面から突設された第一軸 力ピストン 3 5 1を有している。 このうち、 ロッド 3 5 2の端部は、 底型 3 3と 連結し、 ロッド 3 5 3は、 第二軸カシリンダ 3 6の第二軸力ビストン 3 6 1と連 結されている。 すなわち、 第一軸カシリンダのロッド 3 5 2は、 第一軸力ピスト ン 3 5 1を介して、 第一軸カシリンダと第二軸カシリンダが共有するロッド 3 5 3と一体的に成形されている。 これにより、 バランスエア一又はプレスエア一の いずれかのエアーが供給されることにより、 底型 3 3が移動し、 素缶 2に荷重が 加わる。
また、 第二軸カシリンダ 3 6の第二軸力ピストン 3 6 1は、 外部に突出する口 ッド 3 6 2を有しており、 このロッド 3 6 2は、 底型 3 3の押下位置を制御する ストッパ 3 4 4が取り付けてある。
なお、 第二軸カシリンダ 3 6の有効断面積は、 第一軸カシリンダ 3 5の有効断 面積より小さい。 第二軸カシリンダ 3 6の有効断面積が小さければ、 少ないエア 一を供給することによってピストンを大きく押込むことが可能であり、 第二軸力 ピストンの制御が容易だからである。 しかし、 第一軸カシリンダ 3 5と第二軸力 シリンダ 3 6の両有効断面積が同一であってもよい。
図 9は、 ダブルピストン型バルジ缶製造装置におけるエアー配管の概略図を示 している。 このうち (a ) は、 第一軸カシリンダ 3 5の有効断面積と素缶 2の底 面内部の断面積が同一の場合の概略図であり、 (b ) は、 両断面積が相違する場 合の概略図である。
ブローエアーにより素缶 2の内部に加えるブロー荷重と第一軸力ビストンによ り加えるバランス荷重は、 素缶 2の底面部でバランスを取るため、 同一でなけれ ばならない。
第一軸カシリンダ 3 5の有効断面積とモールドに設置される素缶 2の底面内部 の断面積が同一の場合には、 同一圧力のブローエアーとバランスエアーを加えれ ばよいので、 ブローエアー供給用のレギユレ一夕 4 2、 圧力計 4 3、 プロ一パル ブ 4 4を共用して、 バランスエア一を供給することができる。
同図 (a ) において、 コンプレッサ 4 1から供給されるエアーは、 レギユレ一 夕 4 2で圧力調整され、 プロ一バランスバルブ 4 4からブローエアー及びバラン スエア一としてダブルビストン型パルジ缶製造装置に供給される。
プロ一エアーは、 マンドレル 3 1に供給され、 バランスエア一は、 第一軸カピ ストン 3 5 1の上部から供給される。 また、 コンプレッサ 4 1から供給されるェ ァ一は、 レギユレ一タ 4 6で圧力調整され、 プレスエアーとしてプレスバルブ 4 8から第二軸カシリンダ 3 6に供給される。
第一軸カシリンダ 3 5の有効断面積と素缶 2の底面内部の断面積が相違する場 合には、 ブロー荷重とバランス荷重を同一に調整する必要があるため、 コンプレ ッサ 4 1から供給されるエア一は、 同図 (b ) に示すように、 レギユレ一タ 5 0 で圧力調整される。 そして、 バランスエアーとしてパランスパルプ 5 2から第一 軸カシリンダ 3 5に供給される。
これにより、 第一軸カシリンダ 3 5の有効断面積とモールドに設置される素缶 2の底面内部の断面積が相違する場合であっても、 同一のブロー荷重とバランス 荷重を素缶 2の底面部に加えることができる。
次に、 ダブルビストン型バルジ缶製造装置 3 aの動作について、 図面を参照し て説明する。
図 1 0は、 本発明のダブルビストン型バルジ缶製造装置の動作を説明する要部 の概略断面図であり、 (a ) は素缶装着時の断面図を、 (b ) はブロー荷重と第 一プレス荷重作用時の断面図を、 (c ) はブロー荷重、 第一プレス荷重及び第二 プレス荷重作用時の断面図を、 (d) はすべての荷重の解除後の断面図を示して いる。
なお、 実際にダブルビストン型バルジ缶製造装置 3 aによりバルジ缶を製造す る場合には、 (b ) に示す動作と (c ) に示す動作は、 同時に行われる。
同図 (a ) において、 ダブルピストン型バルジ缶製造装置 3 aに素缶 2が設置 された状態は、 シングルピストン型バルジ缶製造装置 3に素缶 2が設置された状 態と同様である。
次に、 ブローバルブ 4 4が開かれると、 レギユレータ 4 2により圧力調整され たブローエアーが素缶 2の内部に供給され、 素缶 2に内圧が作用する。 素缶 2内 にブローエアーが供給されると同時に、 バランスエアーが第一軸カシリンダ 3 5 に供給され、 第一軸カシリンダ 3 5が底型 3 3を下方に押下し、 底型 3 3が素缶 2の底部 1 5と当接する (同図 (b ) ) 。
ここで、 第一軸カシリンダ 3 5の有効断面積と素缶 2の底部内側の断面積が同 一であり、 ブローエアーとプレスエアーに同一圧力を作用させたときには、 素缶 2の底部内側の断面に加わる荷重と底型 3 3に加わる荷重は同一となり、 軸方向 で両荷重はバランスする。 このように、 軸方向で荷重がバランスすると、 底型 3 3は素 ¾ 2の底部 1 5と当接しているが、 素缶 2を軸方向 (下向き) に押し込む ことはない。 したがって、 素缶 2は外周方向に変形しない。
また、 第一軸カシリンダ 3 5の有効断面積と素缶 2の底部内側の断面積が異な る場合であっても、 レギユレ一夕 4 2、 5 0を調整することにより、 ブローエア 一とプレスエアーの圧力を調整して、 素缶 2の底面内側の断面に加わる荷重と底 型 3 3に加わる荷重を同一にすることができる。
なお、 マンドレル 3 1へブローバルブ 4 4を介してエアーを供給し、 第一軸力 シリンダ 3 5へバランスバルブ 5 2を介してエア一を供給する場合には、 エアー を供給するタイミングが所定時間内であれば、 タイミングのずれは問題とならな い。
具体的には、 第二プレス荷重を加える前、 又は加えた後、 2 0 m s e c以内に、 ブローバルブ 4 4とバランスバルブ 5 2が作動すれば問題ない。
次に、 プレスバルブ 4 8が開かれると、 レギユレータ 4 6により圧力調整され たプレスエアーが第二軸カシリンダ 3 6に 給され、 第二プレス荷重が作用する。 これにより、 素缶 2は、 底型 3 3により所定の押込量 (A h) だけ押し込まれる (同図 (c ) )。
. この場合、 素缶 2には、 すでにエアーブローの内圧が作用しているので、 素缶 2がエア一ブローの内圧を受けて外周方向に変形し、 モールド 3 2のバルジ成形 形状 3 2 1に対応した形状に成形される。
なお、 プレスエアーによる第二プレス荷重は、 第一プレス荷重より小さい荷重 とすることが好ましい。
プレスバルブ 4 8を開いてプレスエアーを第二軸カシリンダに供給するタイミ ングは、 ブローエアーの供給とバランスエアーの供給と同時であることが好まし いが、 所定の時間内であれば、 タイミングがずれても問題はない。
具体的には、 第一プレス荷重及びブロー荷重を同時に加えてから 4 0 m s e c 以内に、 第二プレス荷重を加える場合には、 良好なパルジ成形を行うことができ る。 また、 第二プレス荷重を加えてから、 2 0 m s e c以内に第一プレス荷重及 ぴブロー荷重を同時に加える場合には、 良好なバルジ成形を行うことができる。 一方、 シングルピストン型バルジ缶製造装置によれば、 プレス荷重を加えると 同時に、 若しくは、 プレス荷重を加えてから、 2 0 m s e c以内に、 エア一プロ 一を開始し、 又はエアーブローを開始してから 5 m s e c以内に、 プレス荷重を 加えることにより、 正常なバルジ成形を行うことができる。
これにより、 ダブルピストン型バルジ缶製造装置によれば、 エア一プロ一及び 第一プレス荷重と第二プレス荷重を加えるタイミングがシングルビストン型より 長くなることから、 バルジ成形が行いやすくなる。
また、 ブローエアーを加えると同時に、 第一プレス荷重が素缶に加えられるこ とから、 ブローエア一の先入れにより、 素缶のフランジが伸張してしまうという 問題は、 生じない。
バルジ缶を成形した後、 第一軸力ビストン 3 5 1の下部及び第二軸力ビストン 3 6 1の下部から空気を供給し、 第一軸力ビストン 3 5 1の上部及び第二軸カピ ストンの上部から空気を排出することにより、 第一軸力ピストン 3 5 1、 第二軸 力ピストン 3 6 1及び底型 3 3は、 押し上げられ、 初期状態に戻る (同図 ( d) )。
最後に、 モールド 3 2から、 成形されたバルジ缶を取り出だし、 一連の工程 (同図 (a ) 〜 (d ) の工程) を終了する。
以上、 本発明のバルジ缶及びバルジ缶の製造方法について、 好ましい実施形態 を示して説明したが、 本発明は、 上述した実施形態にのみ限定されるものではな く、 本発明の範囲で種々の変更実施が可能であることは言うまでもない。
本発明にかかるバルジ缶は、 パルジ加工の施された缶であればよく、 上記 2ピ ース缶に限定されるものではない。 したがって、 たとえば、 3ピース缶, ボトル 状缶, 溶接缶等であって,もよい。 また、 バルジ部の形状は、 上記の単純な形状に 限定されるものではなく、 たとえば、 複雑な幾何学形状や文字, 図形等の印刷内 容に合わせた凹凸形状としてもよい。 産業上の利用可能性
本発明は、 素缶の胴部に所望の形状の張り出し部を成形したバルジ缶、 バルジ 缶の製造方法及びバルジ缶の製造装置を提供することにより、 技術の向上を図る ことができるため、 各種バルジ缶の製造分野において有効利用することができ、 特に、 コ一ヒ一飲料やビールなどを充填するバルジ缶の製造分野において有効に 利用することができる。

Claims

請 求 の 範 囲
1. エアーブローの内圧を利用してバルジ成形したバルジ缶であって、 バルジ部の張り出し率を 15%以下 (0%を含まず。 ) とし、 かつ、 前記バル ジ部の板厚の減少率 (式 (1) ) を 6%以下としたことを特徴とするパルジ缶。 (板厚減少率)
a= (Tb-Ta) x l 00/Tb 式 (1) ただし、
:板厚減少率 [%]
Tb :パルジ成形前の板厚 [mm]
Ta :バルジ成形後の板厚 [mm]
2. 前記バルジ部におけるバルジ成形後の板厚を、 アルミ缶においては 0. 0 8mm〜0. 15mm、 スチール缶においては 0. 06mm〜0. 1 2mmとし たことを特徴とする請求の範囲 1記載のバルジ缶。
3. 金属板を絞りしごき成形, 薄肉化深絞り成形又は薄肉化深絞りしごき成形 して、 パルジ部の成形可能な缶胴板厚となるように素缶を成形する工程と、 成形した前記素缶の外周に印刷を行なう印刷工程と、
前記バルジ部用の凹部を有する金型で前記素缶の外側面を囲み、 該素缶にプレ ス荷重を加え、 かつ、 素缶の内部にエアーブローを行なって内圧を加えるバルジ 成形工程と
を有することを特徴とするバルジ缶の製造方法。
4. 前記素缶の前記バルジ部におけるパルジ成形前の板厚を、 アルミ缶におい ては 0. 09mm〜0. 16 mm、 スチール缶においては 0. 07mm〜0. 1 3mmとしたことを特徴とする請求の範囲 3記載のバルジ缶の製造方法。
5. 前記印刷工程とバルジ成形加工の間に、 ネックフランジ加工工程を有する ことを特徴とする請求の範囲 3又は 4記載のパルジ缶の製造方法。
6. 前記印刷工程における乾燥温度を 210°C~220°Cとしたことを特徴と する請求の範囲 3〜 5のいずれかに記載のバルジ缶の製造方法。
7. 前記バルジ部を成形するパルジ成形工程において、 前記素缶の底部を押圧 する底型に加えられるプレス荷重と、 前記素缶に対するエア一ブローの内圧によ り前記プレス荷重の作用方向と反対の方向に作用するブロー荷重を、 下記パルジ 成形条件式 (式 (2) ) を満足する状態で加えることを特徴とする請求の範囲 3 〜 6のいずれかに記載のバルジ缶の製造方法。
(バルジ成形条件式)
0<AFMAX= (PF-BF) MAX 素缶の縦圧縮強度 式 (2) ただし、
厶 F:軸方向荷重 [N]
PF:プレス荷重 [N]
BF:ブロー荷重 [N]
8. 前記バルジ成形工程において、 前記プレス荷重を加えると同時に、 若しく は、 前記プレス荷重を加えてから 2 Oms e c以内に、 前記エアーブローを開始 し、 又は、 エアーブローを開始してから 5ms e c以内に、 前記プレス荷重を加 えることを特徴とする請求の範囲 3〜7のいずれかに記載のバルジ缶の製造方法。
9. 前記プレス荷重が、
前記ブロー荷重と等しい第一プレス荷重と、
この第一プレス荷重より小さい第二プレス荷重とからなる請求の範囲 7記載の バルジ缶の製造方法。
10. 前記第一プレス荷重及び前記プロ一荷重を加えると同時に、 又は、 前記 第一プレス荷重及び前記ブロー荷重を加えてから 40ms e c以内に第二プレス 荷重を加え、 又は、 前記第二プレス荷重を加えてから、 20ms e,c以内に前記 第一プレス荷重と前記ブロー荷重を同時に加える請求の範囲 9記載のバルジ缶の 製造方法。
1 1 . 前記第二プレス荷重を加える前、 又は加えた後、 2 0 m s e c以内に、 前記第一プレス荷重と前記プロ一荷重とを加える請求の範囲 9記載のバルジ缶の 製造方法。
1 2. 素缶にバルジ部を形成するパルジ缶製造装置であって、
ブローエアーを吐出することにより、 前記素缶に内圧を作用させるブローエア 一吐出手段を有するモ一ルドと、
前記素缶の底部内側に作用させる内圧と、 同一の垂直圧を前記素缶の底部外側 に作用させる第一軸カシリンダと、
前記垂直圧より小さい垂直圧を前記素缶の底部外側に作用させる第二軸力シリ ンダと、
を有することを特徴としたバルジ缶製造装置。
1 3. 前記第一軸カシリンダの有効断面積と、 前記素缶の底部内側の断面積とが 同一である請求の範囲 1 2記載のバルジ缶製造装置。
1 4. 前記第二軸カシリンダの有効断面積が、 前記第一軸カシリンダの有効断面 積より小さい請求の範囲 1 2又は 1 3記載のバルジ缶製造装置。
1 5. 前記第一軸力シリンダの口ッドが、 前記第二軸力シリンダの口ッドと一体 的に設けられ、 かつ、 このロッドの一端に、 前記素缶の底部外側を押圧する底型 を設けた請求の範囲 1 2、 1 3又は 1 4記載のバルジ缶製造装置。
PCT/JP2004/008050 2003-08-08 2004-06-03 バルジ缶、バルジ缶の製造方法及びバルジ缶の製造装置 WO2005014198A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005512902A JP4696913B2 (ja) 2003-08-08 2004-06-03 バルジ缶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003290190 2003-08-08
JP2003-290190 2003-08-08

Publications (1)

Publication Number Publication Date
WO2005014198A1 true WO2005014198A1 (ja) 2005-02-17

Family

ID=34131577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008050 WO2005014198A1 (ja) 2003-08-08 2004-06-03 バルジ缶、バルジ缶の製造方法及びバルジ缶の製造装置

Country Status (2)

Country Link
JP (1) JP4696913B2 (ja)
WO (1) WO2005014198A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069241A (ja) * 2005-09-07 2007-03-22 Toyo Seikan Kaisha Ltd ロータリー式ブロー成形装置及びロータリー式ブロー成形方法
JP2008073759A (ja) * 2006-09-25 2008-04-03 Toyo Seikan Kaisha Ltd 樹脂被覆缶、及びその製造方法
JP2015505275A (ja) * 2011-12-30 2015-02-19 ザ コカ・コーラ カンパニーThe Coca‐Cola Company ブロー成形を用いて金属飲料容器を形成するためのシステムおよび方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388512B1 (ja) 2022-09-22 2023-11-29 東洋製罐株式会社 缶の製造方法及び装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235024A (ja) * 1985-04-11 1986-10-20 Takeuchi Press Kogyo Kk 特殊絞りしごき缶の製造方法
JPH09118336A (ja) * 1995-10-24 1997-05-06 Toyo Seikan Kaisha Ltd バルジ加工缶の製造法
JPH09234533A (ja) * 1996-02-29 1997-09-09 Mitsubishi Materials Corp ボトムグロース防止缶及び缶のボトム部の成形方法
JPH09253763A (ja) * 1996-03-22 1997-09-30 Toyo Seikan Kaisha Ltd バルジ缶の製造方法
JPH09314263A (ja) * 1996-05-29 1997-12-09 Kishimoto Akira 2ピースシームレスアルミニウム缶体とその製造方法
JP2000218333A (ja) * 1999-01-28 2000-08-08 Takeuchi Press Ind Co Ltd 金属缶の製造方法
JP2001276946A (ja) * 2000-03-30 2001-10-09 Daiwa Can Co Ltd 製缶用オーブン装置
JP2002102969A (ja) * 2000-09-28 2002-04-09 Daiwa Can Co Ltd ボトル型缶の製造方法
JP2003245733A (ja) * 2002-02-26 2003-09-02 Mitsubishi Materials Corp 缶製造方法及びその装置
JP2003335337A (ja) * 2002-05-13 2003-11-25 Daiwa Can Co Ltd フィルム貼着金属缶

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522423A (en) * 1978-08-03 1980-02-18 Nippon Baruji Kogyo Kk Operating method of lateral push cylinder in hydraulic bulge forming device
JPS6092028A (ja) * 1983-10-21 1985-05-23 Daiwa Can Co Ltd 変形di缶のエキスバンド成形装置
JP3291686B2 (ja) * 1997-10-23 2002-06-10 東洋製罐株式会社 ラミネート板及びこれを用いたシームレス缶
JP2002210531A (ja) * 2001-01-17 2002-07-30 Toyo Seikan Kaisha Ltd 金属円筒体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235024A (ja) * 1985-04-11 1986-10-20 Takeuchi Press Kogyo Kk 特殊絞りしごき缶の製造方法
JPH09118336A (ja) * 1995-10-24 1997-05-06 Toyo Seikan Kaisha Ltd バルジ加工缶の製造法
JPH09234533A (ja) * 1996-02-29 1997-09-09 Mitsubishi Materials Corp ボトムグロース防止缶及び缶のボトム部の成形方法
JPH09253763A (ja) * 1996-03-22 1997-09-30 Toyo Seikan Kaisha Ltd バルジ缶の製造方法
JPH09314263A (ja) * 1996-05-29 1997-12-09 Kishimoto Akira 2ピースシームレスアルミニウム缶体とその製造方法
JP2000218333A (ja) * 1999-01-28 2000-08-08 Takeuchi Press Ind Co Ltd 金属缶の製造方法
JP2001276946A (ja) * 2000-03-30 2001-10-09 Daiwa Can Co Ltd 製缶用オーブン装置
JP2002102969A (ja) * 2000-09-28 2002-04-09 Daiwa Can Co Ltd ボトル型缶の製造方法
JP2003245733A (ja) * 2002-02-26 2003-09-02 Mitsubishi Materials Corp 缶製造方法及びその装置
JP2003335337A (ja) * 2002-05-13 2003-11-25 Daiwa Can Co Ltd フィルム貼着金属缶

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069241A (ja) * 2005-09-07 2007-03-22 Toyo Seikan Kaisha Ltd ロータリー式ブロー成形装置及びロータリー式ブロー成形方法
JP2008073759A (ja) * 2006-09-25 2008-04-03 Toyo Seikan Kaisha Ltd 樹脂被覆缶、及びその製造方法
JP2015505275A (ja) * 2011-12-30 2015-02-19 ザ コカ・コーラ カンパニーThe Coca‐Cola Company ブロー成形を用いて金属飲料容器を形成するためのシステムおよび方法

Also Published As

Publication number Publication date
JPWO2005014198A1 (ja) 2006-09-28
JP4696913B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
CA2504251C (en) Can end, tooling for manufacture of the can end and seaming chuck adapted to affix a converted can end to a can body
US10865036B2 (en) Beverage can having a grommet
JP3418628B2 (ja) 耐圧性の板金製閉鎖部材、当該部材の成形方法および成形装置
EP2969785B1 (en) Drawn and ironed aerosol can
JP7484612B2 (ja) 容器の製造方法および容器の製造装置
EP1603802B1 (en) Seaming apparatus and method for cans
US20110011896A1 (en) Steel one-piece necked-in aerosol can
WO2005014198A1 (ja) バルジ缶、バルジ缶の製造方法及びバルジ缶の製造装置
JP2003128060A (ja) 変形シームレス缶およびその製造方法
JP3396947B2 (ja) 変形シームレス缶の製造方法
US20230256500A1 (en) Can lid and manufacturing method therefor
KR102363184B1 (ko) 몸체 일체성 향상을 위한 소화기
US4863063A (en) Metal vessel having circumferential side seam
JP4229650B2 (ja) ボトル型缶
KR100646261B1 (ko) 금속 캔과 이의 제조 방법
JP2004276068A (ja) エアゾール容器用金属缶の製造方法
WO2024106115A1 (ja) シームレス缶の製造方法
JP6576047B2 (ja) 缶蓋
KR20230044499A (ko) 용기의 제조 방법 및 용기의 제조 장치
JP2010222045A (ja) 缶体
JP2017080815A (ja) 缶胴
JP2001239328A (ja) 深絞り成形型

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512902

Country of ref document: JP

122 Ep: pct application non-entry in european phase