WO2005010095A1 - 2液系プラスチゾル組成物およびその使用方法 - Google Patents

2液系プラスチゾル組成物およびその使用方法 Download PDF

Info

Publication number
WO2005010095A1
WO2005010095A1 PCT/JP2004/010668 JP2004010668W WO2005010095A1 WO 2005010095 A1 WO2005010095 A1 WO 2005010095A1 JP 2004010668 W JP2004010668 W JP 2004010668W WO 2005010095 A1 WO2005010095 A1 WO 2005010095A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
organic solvent
plastisol composition
plastisol
liquid composition
Prior art date
Application number
PCT/JP2004/010668
Other languages
English (en)
French (fr)
Inventor
Toshihiro Kasai
Shinji Saiki
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to US10/566,277 priority Critical patent/US20070191535A1/en
Priority to EP04747981.1A priority patent/EP1652883B1/en
Priority to JP2005512057A priority patent/JP4951239B2/ja
Publication of WO2005010095A1 publication Critical patent/WO2005010095A1/ja
Priority to US12/489,723 priority patent/US20090260752A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a two-part composition of a plastisol composition obtained by dispersing thermoplastic polymer particles in a plasticizer. More particularly, the present invention relates to a plastisol composition capable of obtaining a sufficient Gellich state without heating, in which the gelling rate after mixing the two liquids is extremely high, use of the plastisol composition, and articles using the same.
  • a plastisol obtained by dispersing fine particles of a thermoplastic resin in a plasticizer has a high level at room temperature and has fluidity, so that operations such as coating and casting are easy, and gelation occurs in a short time by heating.
  • a coating film or a molded body Taking advantage of this property, it is widely used in various industrial fields.
  • Representative examples are vinyl chloride-based plastizol (hereinafter abbreviated as “vinyl visol”) using vinyl chloride-based resin and acrylic resin.
  • Acrylic plastisols hereinafter abbreviated as Atari Luzonore
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-301944 discloses that the coating film strength and the pot light at room temperature are required.
  • An acrylic sol in which a high molecular weight acrylic monomer is blended in order to achieve both compatibility is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-30194
  • an object of the present invention is to provide a novel material which gels at room temperature for 1 hour or less, preferably several minutes or less, and can exhibit practically sufficient performance.
  • the inventors of the present invention have conducted intensive studies on the above problems, and have found that a plastisol composition in which fine particles of a thermoplastic polymer are dispersed and an organic material having high solubility and solubility in the polymer.
  • the present inventors have found that an extremely fast gelation rate can be realized by using a solvent in combination, and have led to the present invention.
  • the gist of the present invention is a two-part plastisol composition comprising two kinds of liquid compositions (LA) and (LB), wherein the composition after mixing (LA) and (LB)
  • the two-pack plastisol composition characterized in that the gelation time is less than or equal to the force time (measured at 30 ° C), and the plastisol composition is mixed and discharged immediately before use, and adhered to any substrate.
  • the present invention relates to a method for using a two-part plastisol composition to be used.
  • organic solvent having a reactive functional group as the organic solvent to be gelled, it is possible to achieve both quick gelich property and reduced volatility during heating.
  • the term "gel time” in the present invention means the time measured by the following method.
  • two-part plastizonore is mixed Immediately after the measurement (tan ⁇ at this point is greater than 1), the dynamic viscoelasticity measurement is started over time, and the time required for tan ⁇ to become 1 for the first time is called the “gel time”. Define.
  • the dynamic viscoelasticity is measured after a certain period of time such as 10 minutes and 5 minutes after mixing, and the tan at that time is measured. If the ⁇ force is equal to or less than Si, the gel time of the sample can be determined with an upper limit value such as 10 minutes or less, 5 minutes or less.
  • the measurement value at 30 ° C. is used for the gelling time.
  • the gelation time is 1 hour or less after mixing. It is preferably 10 minutes or less, more preferably 3 minutes or less. The reason for this is, of course, that the speed of gelling is directly reflected in the production speed of the product. If it is less than 10 minutes, it can be used for products that are in line production. In the following cases, it is often unnecessary to reduce the line speed from the current speed.
  • liquid compositions (LA) and (LB) of the two-part plastizonore will be described in order below.
  • the liquid composition (LA) is prepared by dispersing a thermoplastic polymer fine particle, particularly an acrylic polymer fine particle (A), into a dispersion medium (B) substantially insoluble in the fine particle (A) at room temperature. It is preferable that the composition is a liquid composition dispersed in (1). However, the dispersion medium (B) may be soluble in the polymer fine particles (A) when heated to an arbitrary temperature sufficiently higher than room temperature.
  • the room temperature here broadly means the overall ambient temperature in the room where the material is used, but generally 25 ° C is a representative value, and the upper limit is about 40 ° C in consideration of seasonal fluctuations. And In this specification, measured values at 25 ° C are treated as physical properties at room temperature.
  • the reason for using acrylic polymer fine particles is preferable in the plastisol field.
  • the acrylic polymer has a lower intermolecular cohesion and can be dissolved and gelled with less thermal energy than the vinyl chloride polymer, which is the most common polymer, which means that the gelation rate is faster. This is because it can be designed.
  • the reason that the dispersion medium (B) is preferably insoluble in the polymer fine particles (A) at least at room temperature is that a sufficiently long pot life is required before mixing the two liquid materials. This is because, when the dispersion medium has solubility in the polymer fine particles, gelation proceeds during storage, and it becomes impossible to use the dispersion medium.
  • the term “substantially insoluble” means that the liquid composition (LA) obtained by mixing the polymer fine particles (A) and the dispersion medium (B) at a predetermined ratio described below is mixed at room temperature. The state where the viscosity increase rate after storage for 50 days is 50% or less.
  • the dispersion medium is insoluble only at room temperature, and may be soluble in polymer fine particles when heated to a temperature sufficiently higher than room temperature.
  • the liquid composition (LB) must contain, as an essential component, an organic solvent (C) having sufficiently high solubility at room temperature with respect to the acrylic polymer fine particles (A) at room temperature. Is preferred. This is because the organic solvent (C) cannot rapidly dissolve the polymer fine particles at room temperature, and in the case where it is less than 1 hour, the gelation rate cannot be exhibited.
  • the sufficiently high solubility at ordinary temperature means that when the polymer fine particles (A) and the organic solvent (C) are mixed at a predetermined ratio described below, a state in which gelation occurs at room temperature for 1 hour or less at ordinary temperature. To tell.
  • the acrylic polymer fine particles (A) are not particularly limited, and may be any of alkyl methacrylate and Z or alkyl acrylate, alone or in combination with Z or a copolymer, and if necessary, various comonomers. Polymerized products can be widely used. Specific examples of usable monomers will be described later.
  • the particle structure of the acrylic polymer fine particles (A) is not particularly limited, and can be widely used such as a uniform structure, a core shell structure, a gradient structure, and other hetero-phase structures. Further, particles having two or more of these structures can be used in combination. However, when a long life is required for the pot life before mixing the two liquids, it is preferable to have a core / shell structure. This is because the core polymer exhibits higher solubility and the shell polymer This is because it is easy to achieve high performance by sharing functions, as it expresses the pot life during storage. In order to further increase the gelling speed, particles having a core / shell structure and particles having a uniform gelling property can be used in combination.
  • the method for producing the acrylic polymer fine particles (A) is not particularly limited, and examples thereof include an emulsion polymerization method, a soap-free polymerization method, a suspension polymerization method, a fine suspension polymerization method, and a dispersion polymerization method.
  • an emulsion polymerization method or a soap-free polymerization method is used.
  • it is easy to control the particle structure such as a core-shell structure.
  • various known emulsifiers can be used. Specific examples include sodium dioctyl sulfosuccinate.
  • linear alkyl alcohols such as acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth) acrylate
  • cyclic alkyl alcohols such as cyclohexyl (meth) acrylate (Meta) atarylates.
  • Methacrylic acid acrylic acid, itaconic acid, crotonic acid, maleic acid, fumanoleic acid, 2-methacryloyloxetyl succinic acid, 2_methacryloyloxetyl maleic acid, 2-methacryloyl norexichetyl Powers such as phthalic acid, 2-methacryloyloxetylhexahydrophthalic acid, monomers containing sulphonic acid group such as ruboxyl group, sulphonic acid, etc., phosphoric acid such as 2- (meth) arylioxixyl acid phosphate Acid group-containing monomers such as group-containing (meth) acrylates.
  • Hydroxyl group-containing (meth) atalylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, and carbonyl groups such as acetoacetchichinole (meth) acrylate
  • Various functional group-containing monomers such as amino group-containing (meth) atalylates such as (meth) acrylates, N-dimethylaminoethyl (meth) atalylate, and N-dimethylaminoethyl (meth) acrylate.
  • Poly ethylene glycol di (meth) atalylate, propylene glycol di (meth) atalyle
  • Polyfunctional monomers such as polyfunctional (meth) atalylates such as 1,6-hexanediol di (meth) acrylate and trimethylolpropane tri (meth) phthalate.
  • acrylamide and its derivatives for example, diacetone acrylamide, N-methylol acrylamide, N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, N-butoxymethyl acrylamide, etc., and styrene and its derivatives, butyl acetate, urethane modified Special monomers such as acrylates, epoxy-modified acrylates, and silicone-modified acrylates.
  • the two-part plastisol composition of the present invention rapidly gels even at room temperature by mixing, and can obtain a practically sufficient level of elastic modulus.
  • VOC volatile organic compounds
  • the organic solvent (C) contained in the two-pack plastisol composition is a good solvent that can rapidly dissolve the polymer fine particles in the initial stage, but does not volatilize in the latter stage. It is preferred to stay in the material.
  • the organic solvent (C) used in the present invention is soluble in a compound having a radical polymerizable double bond, a compound containing an epoxy group or a hydroxyl group, or a polymer. It is preferable to use a plasticizer having high properties. Alternatively, these can be used together.
  • a compound having a radical polymerizable double bond when used, it is polymerized under arbitrary conditions by selecting various initiator systems due to the radical polymerizability, thereby increasing the molecular weight and volatilizing. This is preferable because it is possible to suppress the property and to improve the mechanical properties such as the elastic modulus and the strength of the molded product after gelation.
  • a compound having a radical polymerizable double bond generally has a high solubility in acrylic polymer particles.
  • an extremely rapid gelation rate can be obtained. This can be realized and is preferable.
  • a radical polymerization initiator is contained in either of the liquid compositions (LA) and (LB). It is preferred to have.
  • the type and amount of the radical polymerization initiator are not particularly limited, but are 0.1 to 5 parts by mass, preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the compound having a radical polymerizable double bond as the organic solvent (C). It is desirable to use in the range of 5-2 parts by mass.
  • the decomposition rate that is, the 10-hour half-life temperature can also be arbitrarily selected.
  • the 10-hour half-life temperature is required. It is necessary to select an appropriate one according to the pot life to be used, and care should be taken when using a liquid having an extremely low 10-hour half-life temperature because the pot life of the liquid composition (LB) alone becomes short.
  • the radical polymerization initiator When the radical polymerization initiator is blended in the liquid composition (LA), the radical polymerization initiator may have high solubility in the acrylic polymer fine particles depending on the type of the radical polymerization initiator. However, in this case, care must be taken because the pot life of the liquid composition (LA) alone becomes short.
  • radical polymerization initiator examples include but are not limited thereto.
  • the compound having a radical polymerizable double bond that can be used as the organic solvent (C) is not particularly limited, but is preferably (1) a molecular weight of 200 or less, (2) an oxygen atom or the like.
  • Compounds satisfying the conditions of having many terror atoms, (3) having high reactivity such as an epoxy group or a hydroxyl group, and having a functional group, particularly, metathallate or atalylate are preferable. This is because when any one of the above conditions (1) to (3) is satisfied, the Görich time when the solubility in the acrylic polymer fine particles is extremely high is likely to be significantly shorter than 1 hour.
  • a compound that reacts with these functional groups is further added to the plastisol composition, whereby these can be reacted to further increase the molecular weight. This is because it can contribute to further reduction of C and further improvement of the mechanical properties of the gelled product. Further, two or more of these radically polymerizable compounds may be used in combination.
  • the organic solvent (C) When a compound having a radically polymerizable double bond is used as the organic solvent (C), it is extremely preferable that the two liquids can be mixed and once subjected to gelling, and further heated. As an example, this material is allowed to gel at once in the first half of the production line, to give the minimum mechanical properties required for passage through the line, and to be heated again in the second half of the production line. High material strength can be obtained.
  • Examples of the compound containing an epoxy group or a hydroxyl group that can be used as the organic solvent (C) include a compound containing a hydroxyl group and an epoxy group such as glycidol, methyldaricidyl ether, butyldaricidyl ether, phenyldaricidyl Examples thereof include compounds having an epoxy group such as ether, and compounds having a hydroxyl group such as ethylene glycol, propylene glycol, and polypropylene glycol.
  • plasticizers as the organic solvent (C).
  • the reason for this is that many of the plasticizers currently on the market have sufficiently high compatibility with the acrylic polymer fine particles (A) and gelate quickly when the two liquids are mixed. This is because it has only the dissolving power and its volatility is sufficiently low that even if it remains in the gelled product, it is effective in controlling VOCs.
  • the type of the plasticizer that can be used as the organic solvent (C) is not particularly limited.
  • a preferable plasticizer include: (1) having a large number of hetero atoms such as an oxygen atom (preferably an ether bond); (2) The number of bulky substituents is small (for example, a linear alkyl chain is more preferable than a branched alkyl chain), and (3) The molecular weight is as low as possible.
  • Specific examples of preferred plasticizers include benzoate esters and phosphate esters, among which those having an alkylene glycol ether unit such as an ethylene glycol ether unit. Further, two or more of these plasticizers can be used in combination.
  • the dispersion medium (B) it is preferable to use various plasticizers as the dispersion medium (B).
  • the reason is that volatility is sufficiently low that volatilization from the gelled molded article to the atmosphere as V ⁇ C can be suppressed. If a plasticizer that is sufficiently compatible with the polymer fine particles is selected, flexibility and elongation can be imparted to the molded article after gelation, and this is preferred depending on the application. It is because it is new.
  • the type of the plasticizer that can be used as the dispersion medium (B) is not particularly limited, but is preferably sufficiently insoluble in the acryl-based polymer fine particles (A) at room temperature, more preferably. Or, after heating, it is sufficiently compatible with the acrylic polymer fine particles (A).
  • phthalate-based phthalates such as diisononyl phthalate, dioctyl phthalate, and didecyl phthalate. Diesters such as dioctyl succinate and dioctyl sebacate; trimellitates such as trioctyl trimellitate; and phenylalkyl sulfonates.
  • two or more of these plasticizers can be used in combination.
  • the mixing ratio of the acrylic polymer fine particles (A) and the dispersion medium (B) is not particularly limited, but the liquid composition (LA)
  • the amount is preferably 60 parts by mass or more, more preferably 80 parts by mass or more, based on 100 parts by mass of the acrylic polymer particles (A).
  • the amount of the dispersion medium (B) is excessively large, the desired gelation time may not be achieved even when the liquid composition (LA) and the liquid composition (LB) are mixed. It is preferable that 200 parts by mass or less, more preferably 150 parts by mass or less, be blended with respect to 100 parts by mass of the acrylic polymer fine particles (A).
  • the mixing ratio of the liquid composition (LA) and the liquid composition (LB) is appropriately determined according to the respective compositions of the liquid composition (LA) and the liquid composition (LB), and the target Gerich velocity.
  • the mixing ratio is good, and it cannot be generally limited by the type of the organic solvent (C), which is an essential component of the liquid composition (LB).
  • the acrylic polymer fine particles (A) 100 It is desirable that the organic solvent (C) is mixed so as to be preferably at least 10 parts by mass, more preferably at least 20 parts by mass with respect to parts by mass.
  • the organic solvent (C) is preferably 500 parts by mass or less relative to 100 parts by mass of the acrylic polymer fine particles (A). It is desirable to mix them so that the amount is preferably 200 parts by mass or less.
  • the two-pack plastisol composition of the present invention it is preferable that at least one of the liquid compositions (LA) to (LB) contains an epoxy resin.
  • an epoxy resin One reason for this is that the high adhesive strength of epoxy resin allows this material to be firmly bonded to inorganic materials. It is.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional epoxy resin, flexible epoxy resin, glycidyl ester type epoxy resin, polymer type epoxy resin, biphenyl type epoxy resin, etc.
  • a well-known epoxy resin is widely available and is not particularly limited.
  • a curing agent for an epoxy resin can be added to any of (LA) to (LB) as necessary.
  • Examples of curing agents for epoxy resins are listed below, but are not limited thereto.
  • Amine compounds such as aliphatic polyamines, polyaminoamides (polyamide resins), aromatic diamines, alicyclic diamines, imidazoles and tertiary amines.
  • Acid anhydride compounds such as maleic anhydride and phthalic anhydride.
  • a curing agent having a potential such as dicyandiamide / microcapsule type is preferable in view of the pot life before mixing.
  • a filler such as ash, fly ash, and shirasu balloon may be blended.
  • the purpose, type, amount, etc., of blending the filler are arbitrary.
  • pigments such as titanium oxide and carbon black, diluents such as mineral spirits and mineral spirits, defoamers, fungicides, deodorants, antibacterial agents Agents, surfactants, lubricants, ultraviolet absorbers, fragrances, foaming agents, leveling agents, adhesives such as block isocyanates, and hardeners thereof can be freely blended.
  • the two-part plastisol composition of the present invention can be used by mixing the liquid compositions (LA) to (LB) constituting the two-part plastisol composition immediately before use and applying the mixture to an arbitrary substrate. I like it.
  • the method of mixing is not particularly limited, and examples thereof include a static mixer that can be easily mixed in-line, and various sprays for two liquids.
  • the substrate is not particularly limited, but various types of steel plates, aluminum plates, stainless plates, iron plates, zinc plating plates, and chrome platings, which are preferably used for the purpose of adhering to inorganic substrates.
  • Examples include metal plates such as wood and tin plates, and inorganic building materials such as concrete, mortar, gypsum boards, ceramic tiles, ceramic plates, and slate plates.
  • These inorganic base materials can exert a force S to impart high adhesiveness particularly when an epoxy resin is blended.
  • Specific applications include, but are not limited to, various adhesives, sealing agents, coatings ij, vibration damping agents, soundproofing agents, backings and the like.
  • parts means parts by mass.
  • a transfer agent n-octyl mercaptan is 0.1 Olg per 100 g of monomer
  • an emulsifier sodium dioctyl sulfosuccinate 0.5 g per 100 g of monomer
  • a monomer 45 g of methyl methacrylate, 5 g of n-butyl methacrylate
  • a chain transfer agent n-octyl mercaptan, 0 ⁇ Olg per 100 g of monomer
  • an emulsifier dioctyl sulfosuccinic acid
  • the inlet temperature is 150 ° C.
  • the outlet temperature is 65 ° C.
  • the atomizer rotation speed is 25000 i ”using a spray dryer (L8 type, Okawara Kakohki Co., Ltd.).
  • a spray dryer L8 type, Okawara Kakohki Co., Ltd.
  • the monomer (28.5 g of methyl methacrylate, 1.5 g of methacrylic acid) and the emulsion 1J (0.5 g of sodium dioctyl sulfosuccinate per 100 g of monomer) were uniformly dissolved as a second drop.
  • the mixture was dropped at a rate of 20 g / hr.
  • stirring was continued at 80 ° C. for 1 hour to obtain a polymer latex.
  • the inlet temperature is 150 ° C.
  • the outlet temperature is 65 ° C.
  • the atomizer rotation speed is 25000 i ”using a spray dryer (L8 type, Okawara Kakoki Co., Ltd.).
  • spray drying at pm polymer fine particles (A2) were obtained.
  • an emulsifier n-octyl mercaptan, 0.005 g per 100 g of monomer
  • an emulsifier sodium dioctyl sulfosuccinate, 0.5 g per 100 g of monomer
  • the inlet temperature was set to 190 ° C
  • the outlet temperature was set to 85 ° C
  • the atomizer rotation speed was set to 25,000 rpm using a spray dryer (L8 type, Okawara Kakohki Co., Ltd.). And spray dried to obtain polymer fine particles (A3).
  • Al MMA / nBMA 60/40 M
  • a / nBMA 90/10 50/50
  • nBMA n-butyl methacrylate 2>
  • nBA n_butyl acrylate
  • a liquid composition (LA2) — (LA4) was prepared in the same manner as the liquid composition (LA1). However, the composition shown in Table 2 was changed as the polymer fine particles and the dispersion medium. The conditions for stirring by the mixer are the same as those for the liquid composition (LA1).
  • DINP diisononyl phthalate
  • GMA glycidyl methacrylate
  • glycidyl methacrylate 100 parts of 2-hydroxyethyl acrylate are used.
  • t-i-intyl peroxybenzoate manufactured by Kayaku Azo Co., Ltd., “KD — 1 ”
  • a liquid composition (LB2) — (LB11) was prepared in the same manner as the liquid composition (LB1). However, the composition was changed to the composition shown in Table 3 as the organic solvent and the radical polymerization initiator. The conditions for stirring with the mixer are the same as those for the liquid composition (LB1).
  • GMA glycidyl methacrylate
  • nBA n-butyl acrylate
  • PEG-A methoxy polyethylene glycol acrylate (molecular weight 482)
  • the obtained plastisol composition was evaluated according to the following items. The specific contents of the evaluation method are shown below.
  • the liquid composition was kept in a constant temperature room at 25 ° C., taken out 5 days later, and measured for viscosity again.
  • the viscosity increase rate of the liquid composition was calculated as follows, and the storage stability was evaluated.
  • liquid composition (LA4) a liquid composition was prepared using 100 parts of the polymer fine particles (A1) and 100 parts of glycidyl methacrylate as a dispersion medium.
  • this plastizonore began to thicken immediately after kneading, immediately gelled, and had poor storage stability.
  • Example 17 is a (LA) polymer particles (A) as a core-shell structure (A1), dispersion medium (B)
  • A polymer particles
  • A1 a core-shell structure
  • B dispersion medium
  • C organic solvent
  • C an acrylic monomer having a radically polymerizable double bond
  • C radical polymerization initiator
  • Example 8 is a polymer particle (A) of (LA) having a core-shell structure (A1), diisononyl phthalate as a dispersion medium (B), and a glycidol containing a hydroxyl group and an epoxy group as an organic solvent (C) of (LB). This is an example using. When these two liquids were mixed, good geli-dani performance was exhibited.
  • Examples 9 and 10 are (LA) polymer particles (A) having a core-shell structure (A2), dispersion medium (B) as acetyltriptyl citrate, and (LB) as an organic solvent (C) as radical polymerizable polymer.
  • A2 polymer particles
  • B dispersion medium
  • C organic solvent
  • Examples 11 to 13 used (A1) having a core-shell structure and (A3) having a uniform structure as polymer particles (A) of (LA), diisononyl phthalate as a dispersion medium (B), and an organic solvent (LB).
  • A1 having a core-shell structure
  • A3 having a uniform structure as polymer particles (A) of (LA), diisononyl phthalate as a dispersion medium (B), and an organic solvent (LB).
  • LB organic solvent
  • Example 8 is an example in which (A1) having a core-shell structure was used as the polymer particles (A) of (LA), diisononyl phthalate was used as the dispersion medium (B), and di-2-ethylhexyl phthalate was used as (LB). . Even if these two liquids were mixed, gelation could not be carried out in less than 60 minutes, and the gelling performance was insufficient.
  • Example 8 the polymer particles (A2) having a core-shell structure were used as the polymer particles (A), diisononyl phthalate was used as the dispersion medium (B), and the radicals disclosed in JP-A-2002-30194 were used as (LB).
  • Comparative Example 3 is an example in which (A2) having a core-shell structure was used as the polymer particles (A) of (LA), and glycidyl methacrylate was used as the dispersion medium (B).
  • (A2) having a core-shell structure was used as the polymer particles (A) of (LA)
  • glycidyl methacrylate was used as the dispersion medium (B).
  • the storage stability of the liquid composition (LA4) is poor and does not meet the purpose of the present invention.
  • the two-part plastisol of the present invention can exhibit storage stability at room temperature and rapid gelation after mixing, and can be widely used in various industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 2種類の液状組成物(LA)及び(LB)とからなる2液系プラスチゾル組成物で、(LA)及び(LB)を混合後の組成物のゲル化時間が1時間以下(30°C測定時)であることを特徴とする2液系プラスチゾル組成物であれば、常温で1時間以下、好ましくは数分以下でゲル化して実用上十分な性能を発現できる新規な材料を提供することができる。  (LA)は、アクリル系重合体微粒子(A)及び、常温では(A)に対して実質的に非溶解性な分散媒(B)(ただし(B)は加熱時に(A)に対して溶解性であってよい)、(LB)は(A)に対して常温で十分に高い溶解性を有する有機溶媒(C)を使用することが好ましい。

Description

明 細 書
2液系プラスチゾル組成物およびその使用方法
技術分野
[0001] 本発明は熱可塑性重合体微粒子を可塑剤に分散させてなるプラスチゾル組成物 のうち 2液系の組成物に関する。更に詳しくは、 2液混合後のゲルィ匕速度がきわめて 速ぐ加熱をせずに十分なゲルィヒ状態が得られるプラスチゾル組成物、及び該プラス チゾル組成物の使用、及びこれを用いた物品等に関する。
背景技術
[0002] 熱可塑性樹脂の微粒子を可塑剤中に分散してなるプラスチゾルは、常温では高レ、 流動性を有するため塗布や注型などの作業が容易であり、かつ加熱により短時間で ゲル化して塗膜や成形体を与える。この特性を活かして様々な産業分野で広く使用 されており、その代表的なものは塩化ビニル系樹脂を用いた塩ィ匕ビニル系プラスチゾ ル (以下塩ビゾルと略)とアクリル系樹脂を用いたアクリル系プラスチゾル (以下アタリ ルゾノレと略)が挙げられる。
[0003] さらに、これらのプラスチゾノレでは、加熱ゲルィ匕後の塗膜に高強度が要求され、例 えば、特許文献 1 (特開 2002—30194号公報)には、塗膜強度と常温でのポットライ フを両立させるために、高分子量のアクリル単量体を配合したアクリルゾルが開示さ れている。
[0004] し力 近年ではプラスチゾルをカ卩ェする製造ラインの効率化 ·設備革新などに伴い 、従来のプラスチゾルのゲル化速度を大幅に上回る、きわめてゲル化速度の速い材 料が求められている。例えば、従来のプラスチゾルはポットライフの点から、常温では 数日から数ケ月に及ぶ長期間のゲルィ匕速度を有していたのに対して、近年の産業界 力もの要請は常温で数分一 1時間以下でゲルィ匕するという極めて速いゲル化性能へ と変化しつつある。特許文献 1記載の高分子量アクリル単量体を用いた場合では、常 温で 1時間以下でゲル化させることができず、製造ラインの効率化には限界がある。
[0005] こうした産業上の要請に対して、従来の技術範囲ではこのような極めて速いゲルィ匕 速度を有する材料を提供することができず、新しい材料の開発が求められていた。 [0006] 特許文献 1 :特開 2002— 30194号公報
発明の開示
発明が解決しょうとする課題
[0007] したがって本発明が解決しょうとする課題は、常温で 1時間以下、好ましくは数分以 下でゲル化して実用上十分な性能を発現できる新規な材料を提供することにある。 課題を解決するための手段
[0008] そこで本発明者らは上記課題に対して鋭意検討を行い、熱可塑性重合体の微粒 子を分散させたプラスチゾル組成物と、この重合体に対して高レ、溶解性を有する有 機溶媒とを併用することで、極めて速いゲル化速度を実現できることを見出し、本発 明に至った。
[0009] すなわち本発明の主旨とするところは、 2種類の液状組成物(LA)及び (LB)とから なる 2液系プラスチゾル組成物で、 (LA)及び (LB)を混合後の組成物のゲル化時間 力 時間以下(30°C測定時)であることを特徴とする 2液系プラスチゾル組成物及び、 該プラスチゾル組成物を使用直前に混合して吐出し、任意の基材に被着させる 2液 系プラスチゾル組成物の使用方法に関するものである。
発明の効果
[0010] 本発明では、 2液系プラスチゾルを用いることで、室温での貯蔵安定性と混合後の 速やかなゲルィ匕性を発現することが可能となる。
また更に、ゲル化させる有機溶剤として反応性官能基を有するものを用いることで 速やかなゲルィヒ性と、加熱時の揮発性低減の両立が可能となる。
よって本発明の工業的意義および地球環境保全にもたらす効果は著大である。 発明を実施するための最良の形態
[0011] 以下、本発明について詳細に説明する。
まず本発明における用語の定義であるが、本発明で「ゲル化時間」という場合、以 下の手法によって測定された時間を意味する。一般に材料の動的粘弾性測定にお いて損失弾性率 G"と貯蔵弾性率 G'の比、すなわち G"ZG' (=tan δ )が 1となる時 点をもってゲルィ匕点と定義できるため、本発明においては 2液系プラスチゾノレを混合 した直後(この時点での tan δは 1よりも大である)力 経時的に動的粘弾性の測定を 開始し、 tan δが初めて 1となるのに要した時間をもって「ゲル化時間」と定義する。 なおゲルィ匕速度があまりに速すぎて動的粘弾性の測定が間に合わない場合には、 混合後 10分後、 5分後など一定時間経過後に動的粘弾性を測定し、その時点での t an δ力 Si以下であれば、その試料のゲル化時間は 10分以下、 5分以下、という具合 に上限値をもって定めることができる。
また、本発明におけるゲルィ匕時間は、 30°Cでの測定値を用いる。
[0012] 本発明では、ゲル化時間が 1時間以下という極めて速いゲル化速度を実現するた めに、プラスチゾノレを 2液化して用いることを必須としている。 1液のプラスチゾノレは塩 ビゾルやアクリルゾルなど従来技術により多数が公知であるが、この場合には貯蔵時 のポットライフが重視されているためゲルィ匕速度は遅ぐ常温では通常数ケ月、速くて も数日程度を要するため、 1時間以下という要請に対して遥かに及ばない。
[0013] ゲル化時間は混合後 1時間以下であることが必須である。好ましくは 10分以下、更 に好ましくは 3分以下である。この理由は当然のことながらゲルィ匕速度がそのまま製 品の生産速度に反映されるためであり、 10分以下の場合にはライン生産をしている 製品についても使用することができるし、 3分以下の場合にはライン速度を現状の速 度から低下させることが多くの場合不必要となるためである。
[0014] 2液系プラスチゾノレの各々の液状組成物(LA)及び (LB)の好ましい組み合わせに ついて、以下に順に説明する。
[0015] まず液状組成物(LA)は、熱可塑性重合体微粒子、特にアクリル系重合体微粒子( A)を、常温では該微粒子 (A)に対して実質的に非溶解性な分散媒 (B)に分散させ た液状組成物であることが好ましい。ただし分散媒 (B)は、常温よりも十分に高い任 意の温度に加熱した際には、重合体微粒子 (A)に対して溶解性を有するものであつ て良い。
[0016] なおここで常温とは、本材料を使用する室内の雰囲気温度全般を広く意味するが、 一般的には 25°Cを代表値とし、季節的変動を考慮すると 40°C程度を上限とする。本 明細書中では 25°Cでの測定値をもって常温での物性と扱う。
[0017] アクリル系重合体微粒子を用いることが好ましい理由は、プラスチゾル分野におい て最も一般的である塩化ビニル系重合体に比べて、アクリル系重合体の方が分子間 の凝集力が弱ぐより少ない熱的エネルギーにより溶解'ゲル化できるため、すなわち ゲル化速度をより速く設計することができるためである。
[0018] 分散媒 (B)が重合体微粒子 (A)に対して少なくとも常温では非溶解性であることが 好ましい理由は、 2液の材料を混合する前の時点においては、十分に長いポットライ フが要求されるためであり、分散媒が重合体微粒子に対して溶解性を有する場合に は貯蔵中にゲル化が進行し、使用ができなくなるためである。本発明において、実質 的に非溶解性とは、重合体微粒子 (A)と分散媒 (B)とを後述する所定の量比で混合 して得られる液状組成物(LA)を、常温で 5日間保存した場合の増粘率が 50%以下 である状態を言う。なお分散媒が非溶解性であるのは少なくとも常温においてのみで 良ぐ常温よりも十分に高い温度に加熱した場合には重合体微粒子に対して溶解性 を有していても構わない。
[0019] 次に液状組成物(LB)については、常温においてアクリル系重合体微粒子 (A)に 対して常温で十分に高い溶解性を有する有機溶媒 (C)を必須成分とするものである ことが好ましい。有機溶媒(C)が重合体微粒子を常温において迅速に溶解すること ができなレ、場合、 1時間以下とレ、うゲル化速度を発現させることができなレ、ためである 。本発明における、常温で十分に高い溶解性とは、重合体微粒子 (A)と有機溶媒 (C )とを後述する所定の量比で混合した場合、常温において 1時間以下でゲル化する 状態を言う。
[0020] アクリル系重合体微粒子 (A)としては特に限定せず、任意のアルキルメタタリレート 及び Z又はアルキルアタリレートの単独及び Zまたは共重合体や、必要に応じて各 種のコモノマーを共重合したものを広く用いることが可能である。使用可能なモノマー の具体例については後述する。
[0021] アクリル系重合体微粒子 (A)の粒子構造は特に限定せず、均一構造、コア シェ ル構造、グラディエント構造、その他の異相構造など広く利用することが可能である。 また、これら 2種類以上の構造の粒子を併用することもできる。ただし 2液を混合する 前のポットライフについて長期間を要求される場合には、コア/シェル構造を有する ことが好ましい。これは、コア重合体により高い溶解性を発現し、シェル重合体におい て貯蔵中のポットライフを発現するという、機能分担によって高性能化しやすい為で ある。また、ゲルィ匕速度をさらに高めるために、コア/シェル構造の粒子とゲル化性 の高い均一構造粒子を併用することも出来る。
[0022] アクリル系重合体微粒子 (A)の製造方法は特に限定せず、乳化重合法、ソープフ リー重合法、縣濁重合法、微細縣濁重合法、分散重合法、等が挙げられ、中でも好 ましくは乳化重合法あるいはソープフリー重合法であり、この場合にはコアシェル構 造など粒子の構造を制御することが容易である。例えば、乳化重合法を適用する場 合、各種公知の乳化剤が使用できる。具体的には、ジォクチルスルホコハク酸ナトリ ゥムなど力 S挙げられる。
[0023] アクリル系重合体微粒子 (A)を得るために使用可能なモノマーの例を以下に列挙 する。ただし、これらに限定されるものではない。
[0024] メチル (メタ)アタリレート、ェチル (メタ)アタリレート、 n-ブチル (メタ)アタリレート、 i- ブチル (メタ)アタリレート、 t-ブチル (メタ)アタリレート、へキシル (メタ)アタリレート、 2 —ェチルへキシル(メタ)アタリレート、ォクチル(メタ)アタリレート等の直鎖アルキルァ ルコールの(メタ)アタリレート類、あるいはシクロへキシル (メタ)アタリレート等の環式 アルキルアルコールの(メタ)アタリレート類。
[0025] メタクリル酸、アクリル酸、ィタコン酸、クロトン酸、マレイン酸、フマノレ酸、 2-メタクリロ ィルォキシェチルコハク酸、 2_メタクリロイルォキシェチルマレイン酸、 2—メタクリロイ ノレォキシェチルフタル酸、 2—メタクリロイルォキシェチルへキサヒドロフタル酸等の力 ルボキシル基含有モノマー、ァリルスルホン酸等のスルホン酸基含有モノマー、 2- ( メタ)アタリロイキシェチルアシッドフォスフェート等のリン酸基含有 (メタ)アタリレートな どの酸基含有モノマー類。
[0026] 2—ヒドロキシェチル(メタ)アタリレート、 2—ヒドロキシプロピル(メタ)アタリレート等の ヒドロキシル基含有 (メタ)アタリレート類、ァセトァセトキェチノレ (メタ)アタリレート等の カルボニル基含有(メタ)アタリレート類、 N—ジメチルアミノエチル (メタ)アタリレート、 N—ジェチルアミノエチル (メタ)アタリレート等のアミノ基含有 (メタ)アタリレート類など の各種官能基含有モノマー類。
[0027] (ポリ)エチレングリコールジ(メタ)アタリレート、プロピレングリコールジ(メタ)アタリレ ート、 1 , 6—へキサンジオールジ(メタ)アタリレート、トリメチロールプロパントリ(メタ)ァ タリレート等の多官能 (メタ)アタリレート類などの多官能モノマー類。
[0028] アクリルアミド及びその誘導体として例えばジアセトンアクリルアミド、 N—メチロール アクリルアミド、 N—メトキシメチルアクリルアミド、 N—エトキシメチルアクリルアミド、 N- ブトキシメチルアクリルアミド等、さらにはスチレン及びその誘導体、酢酸ビュル、ウレ タン変性アタリレート類、エポキシ変性アタリレート類、シリコーン変性アタリレート類な どの特殊モノマー類。
[0029] ところで、本発明の 2液系プラスチゾル組成物は混合によって常温でも迅速にゲル 化が進行し、実用上十分なレベルの弾性率を得ることができるものだ力 用途によつ ては更に弾性率や強度などの機械的特性を付与したいという要請もある。
[0030] またゲル化後の材料中に揮発性の有機溶剤が含まれる場合、大気中へ放出される 揮発性有機化合物 (VOC)の量が増加するため、環境面への適合性という点を考慮 するとできるだけ VOC量を低減したいとレ、う要請もある。
[0031] 以上のような理由により、 2液系プラスチゾル組成物に含まれる有機溶媒 (C)は、初 期においては重合体微粒子を迅速に溶解できる良溶媒であるが、後期においては 揮発せずに材料中にとどまることが好まれる。
[0032] こうした要求をも満足するために、本発明で用いる有機溶媒(C)はラジカル重合性 の二重結合を有する化合物、エポキシ基もしくは水酸基を含有する化合物、または、 重合体に対して溶解性の高い可塑剤を用いることが好ましい。あるいは、これらを併 用することも可能である。
[0033] なかでも、ラジカル重合性の二重結合を有する化合物を用いる場合、ラジカル重合 性であることによって、種々の開始剤系の選択により任意の条件で重合させて高分 子量化し、揮発性を抑制することが可能となるし、またゲル化後の成形物の弾性率や 強度など機械的特性を向上させることが可能となるため好ましい。
[0034] またラジカル重合性の二重結合を有する化合物は、概してアクリル系重合体微粒 子に対する溶解度が高ぐこれを液状組成物(LB)中に含有することにより、極めて 迅速なゲル化速度を実現することが可能となり好ましい。
[0035] またこの場合、液状組成物(LA)及び (LB)のいずれかにラジカル重合開始剤を含 有することが好ましい。ラジカル重合開始剤の種類や量は特に限定しないが、有機 溶媒(C)としてのラジカル重合性の二重結合を有する化合物 100質量部に対して、 0. 1— 5質量部、好ましくは 0. 5-2 質量部の範囲で使用するのが望ましい。 また分解速度すなわち 10時間半減期温度も任意に選択することができる。
[0036] ただし、 2液を混合する前のポットライフが長期間要求される場合でかつラジカル重 合開始剤を液状組成物 (LB)中に配合する場合、その 10時間半減期温度は要求さ れるポットライフに応じて適正に選ぶ必要があり、 10時間半減期温度が過度に低い ものを用いると液状組成物(LB)単独でのポットライフが短くなるため注意を要する。
[0037] また、ラジカル重合開始剤を液状組成物(LA)中に配合する場合には、ラジカル重 合開始剤の種類によってはアクリル系重合体微粒子に対して高い溶解性を有する場 合もあり、この場合には液状組成物(LA)単独でのポットライフが短くなるため注意を 要する。
[0038] ラジカル重合開始剤の例として以下に列挙するがこれに限定されるものではない。
[0039] ラウロイルパーオキサイド(10時間半減期温度 = 62°C)、ステアロイルパーォキサイ ド(10時間半減期温度 = 62°C)、 1, 1, 3, 3—テトラメチルブチルパーォキシ一 2—ェ チルへキサノエート(10時間半減期温度 = 65°C)、 t一へキシルパーォキシ一 2—ェチ ルへキサノエート(10時間半減期温度 = 70°C)、 t一ブチルパーォキシ一 2—ェチルへ キサノエ一ト( 10時間半減期温度 = 72°C)、ベンゾィルパーオキサイド( 10時間半減 期温度 = 73°C)、ジ _t_ブチルパーォキシ一 2—メチルシクロへキサン(10時間半減 期温度 = 83°C)、 1, 1_ビス(t—へキシルパーォキシ )_3, 3, 5—トリメチルシクロへキ サン(10時間半減期温度 = 87°C)、 1, 1_ビス(t—へキシルパーォキシ)シクロへキ サン(10時間半減期温度 = 87°C)、 1, 1—ビス (t一ブチルパーォキシ )_3, 3, 5—トリ メチルシクロへキサン(10時間半減期温度 = 90°C)、 1, 1_ビス(t_ブチルパーォキ シ)シクロへキサン(10時間半減期温度 = 91°C)、 1, 1_ビス(t一ブチルパーォキシ) シクロドデカン(10時間半減期温度 = 95°C)、 t一へキシルパーォキシイソプロピル力 ーボネート(10時間半減期温度 = 95°C)、 t一ブチルパーォキシ一 3, 5, 5_トリメチル へキサノエート( 10時間半減期温度 = 97°C)、 t一ブチルパーォキシラウレート( 10時 間半減期温度 = 98°C)、 t一ブチルパーォキシイソプロピルカーボネート(10時間半 減期温度 = 99°C)、 t一ブチルパーォキシ一 2_ェチルへキシルカーボネート(10時間 半減期温度 = 99°C)、 t一へキシルパーォキシベンゾエート(10時間半減期温度 = 9 9°C)、 t—ペンチルパーォキシベンゾエート(10時間半減期温度 = 100°C)、 2, 2—ビ ス(t_ブチルパーォキシ)ブタン(10時間半減期温度 = 103°C)、 t一ブチルパーォキ シベンゾエート(10時間半減期温度 = 104°C)、 n—ブチルー 4, 4_ビス(t—ブチルバ 一才キシ)バレレート(10時間半減期温度 = 105°C)、ジクミルパーオキサイド(10時 間半減期温度 = 116°C)等の有機過酸化物; 2, 2'—ァゾビス(2, 4—ジメチルバレロ 二トリル)(10時間半減期温度 = 51°C)、 2, 2'—ァゾビスイソブチロニトリル(10時間 半減期温度 = 65°C)、 2, 2'—ァゾビス(2—メチルプチロニトリル)(10時間半減期温 度 = 67。C)、 1, 1,ーァゾビス(シクロへキサン一 1_カーボ二トリル)(10時間半減期温 度 = 88°C)等のァゾ化合物等の開始剤。
[0040] 有機溶媒(C)として使用可能なラジカル重合性の二重結合を有する化合物は特に 限定しないが、好ましくは、(1)分子量が 200以下であること、 (2)酸素原子などのへ テロ原子を多く有すること、 (3)エポキシ基や水酸基など反応性の高レ、官能基を有す ること、の条件を満足する化合物、特にメタタリレート乃至アタリレート類が好ましい。 上記(1)から(3)の条件のいずれかを満たす場合、アクリル系重合体微粒子に対す る溶解度がきわめて高ぐゲルィヒ時間は 1時間よりも大幅に短縮できる可能性が高い ためである。また(3)の条件を満足する場合、プラスチゾル組成物中にこれらの官能 基を反応する化合物を更に配合することにより、これらを反応させてより一層分子量 を上げることができ、結果的に V〇Cの更なる低減やゲル化物の更なる機械的特性の 向上に寄与できるためである。さらに、これらのラジカル重合性化合物を 2種類以上 併用することも出来る。
[0041] 上記(1)から(3)の条件のいずれ力、を満足する、きわめて好ましい有機溶媒(C)の 例を以下に列挙する。
[0042] メチル (メタ)アタリレート、ェチル (メタ)アタリレート、ブチル (メタ)アタリレート、グリシ ジル(メタ)アタリレート、 2—ヒドロキシェチル(メタ)アタリレート、 2—ヒドロキシプロピル( メタ)アタリレート、 2_ェチルへキシル(メタ)アタリレート、テトラヒドロフルフリル(メタ) アタリレート、ベンジル(メタ)アタリレート、メタクリル酸ァリル、ポリエチレングリコール -ト。
[0043] 有機溶媒 (C)としてラジカル重合性の二重結合を有する化合物を用いる場合、 2液 を混合していったんゲルィ匕させた後、更に加熱を加えることが可能であれば極めて 好ましい。例として、製造ラインの前半において本材料をいつたんゲル化をさせてお き、ライン通過に要する最低限の機械的特性を付与させておき、製造ラインの後半に おいて改めて加熱を行うことで高い材料強度を得ることが出来る。
[0044] 有機溶媒 (C)として使用可能なエポキシ基もしくは水酸基を含有する化合物として は、グリシドール等の水酸基とエポキシ基を含有する化合物、メチルダリシジルエー テル、ブチルダリシジルエーテル、フエニルダリシジルエーテル等のエポキシ基を含 有する化合物、エチレングリコール、プロピレングリコール、ポリプロピレングリコール 等の水酸基を含有する化合物等が挙げられる。
[0045] 本発明では、有機溶媒 (C)として各種の可塑剤を用いることも好ましい。この理由 は、現在市販されている可塑剤類の多くはアクリル系重合体微粒子 (A)に対して十 分に高い相溶性を有するものであり、 2液を混合した際に迅速にゲル化させるだけの 溶解力を有しており、なおかつ揮発性が十分に低いためにゲル化後の製品中に残 存していても VOC抑制に有効だからである。
[0046] 有機溶媒 (C)として使用可能な可塑剤の種類は特に限定しないが、好ましい可塑 剤の例としては、(1)酸素原子などのへテロ原子を多く有すること(中でも好ましくは エーテル結合を多く有すること)、 (2)嵩高い置換基が少ないこと(例えば分岐アルキ ル鎖よりも直鎖アルキル鎖のほうが好ましい)、(3)できるだけ低分子量であること、で ある。好ましい可塑剤の具体的な例としては、安息香酸エステル系、リン酸エステル 系、であり、中でもエチレングリコールエーテル単位などのアルキレングリコールエー テル単位を有するものが挙げられる。さらに、これらの可塑剤を 2種類以上併用する ことも出来る。
[0047] 本発明では、分散媒 (B)として各種の可塑剤を用いることが好ましい。この理由は、 揮発性が十分に低いためにゲル化後の成形品から V〇Cとして大気中へ揮発するこ とが抑制できるためである。また重合体微粒子と十分に相溶する可塑剤を選択すれ ば、ゲル化後の成形品に柔軟性や伸度を付与することができ、用途によっては好ま しいためである。
[0048] 分散媒 (B)として使用可能な可塑剤の種類は特に限定しないが、常温においてァ クリル系重合体微粒子 (A)に対して十分に非溶解性であることが好ましぐ更に好ま しくは加熱後にはアクリル系重合体微粒子 (A)に対して十分に相溶性であるもので ある。具体的には、ジイソノニルフタレート、ジォクチルフタレート、ジデシルフタレート 等のフタレート系。ジォクチルサクシネート、ジォクチルセバケート等の二塩基酸エス テル系、トリオクチルトリメリテート等のトリメリテート系、フヱニルアルキルスルフォネー ト、等が挙げられる。さらに、これらの可塑剤を 2種類以上併用することも出来る。
[0049] 本発明の液状組成物(LA)におレ、て、アクリル系重合体微粒子 (A)と分散媒 (B)の 配合比は特に限定されるものではないが、液状組成物(LA)の取り扱い性等を考慮 してアクリル系重合体微粒子 (A) 100質量部に対して、好ましくは 60質量部以上、よ り好ましくは 80質量部以上配合するのが望ましい。一方、分散媒 (B)の量が過度に 多くなると、液状組成物(LA)と液状組成物(LB)とを混合しても目的とするゲル化時 間を達成できなくなる場合があり、上限として、好ましくはアクリル系重合体微粒子 (A ) 100質量部に対して 200質量部以下、より好ましくは 150質量部以下配合するのが 望ましい。
[0050] 液状組成物(LA)と液状組成物(LB)の混合比は、液状組成物(LA)と液状組成 物(LB)のそれぞれの組成、 目的とするゲルィヒ速度に応じて適宜適切な混合比とす れば良ぐまた、液状組成物(LB)の必須成分となる有機溶媒(C)の種類によって一 概に限定することはできないが、概ね、アクリル系重合体微粒子 (A) 100質量部に対 して、有機溶媒(C)は好ましくは 10質量部以上、より好ましくは 20質量部以上となる ように混合するのが望ましい。上限については、必要以上に使用するとプラスチゾル 本来の特性が損なわれる場合があるため、アクリル系重合体微粒子 (A) 100質量部 に対して、有機溶媒 (C)は好ましくは 500質量部以下、より好ましくは 200質量部以 下となるように混合するのが望ましい。
[0051] 本発明の 2液プラスチゾル組成物では、液状組成物(LA)乃至(LB)の少なくとも 1 つにエポキシ樹脂を含有することが好ましい。この理由として、 1つにはエポキシ樹脂 の有する高い接着力により本材料を無機材料に強固に接着させることができるため である。エポキシ樹脂の例としては、ビスフエノール A型エポキシ樹脂、ビスフエノー ル F型エポキシ樹脂、多官能エポキシ樹脂、可撓性エポキシ樹脂、グリシジルエステ ル型エポキシ樹脂、高分子型エポキシ樹脂、ビフヱニル型エポキシ樹脂等、公知の エポキシ系樹脂が広く利用可能であり、特に限定されない。
[0052] またこの場合、必要に応じてエポキシ樹脂用の硬化剤を (LA)乃至(LB)のいずれ かに配合することが可能である。エポキシ樹脂用硬化剤の例を以下に列挙するが、こ れらに限定されるものではない。
[0053] 脂肪族ポリアミン、ポリアミノアミド(ポリアミド樹脂)、芳香族ジァミン、脂環族ジァミン 、イミダゾール、 3級ァミン、等のアミン系化合物。無水マレイン酸や無水フタル酸等 の酸無水物系化合物。その他、フエノール樹脂、アミノ榭脂、メルカブタン系化合物、 ジシアンジアミド、ルイス酸錯化合物、マイクロカプセル型、等。中でもジシアンジアミ ドゃマイクロカプセル型など潜在性を有する硬化剤は、混合前のポットライフの点から 好ましい。
[0054] 本発明では必要に応じてさらに炭酸カルシウム、水酸化アルミニウム、マイクロバル ーン、コロイダルシリカ粉末、パーライト、クレー、マイ力粉、珪砂、珪藻土、カオリン、 タルク、ベントナイト、ガラス粉末、酸化アルミニウム、フライアッシュ、シラスバルーン などの充填材を配合しても良い。充填材を配合する目的や種類、量などは任意であ る。
[0055] 本発明では更に必要に応じて、酸化チタン、カーボンブラック等の顔料、さらにミネ ラルタ一^;ン、ミネラルスピリット等の希釈剤、さらに消泡斉 lj、防黴剤、防臭剤、抗菌 剤、界面活性剤、滑剤、紫外線吸収剤、香料、発泡剤、レべリング剤、ブロックイソシ ァネート等の接着剤およびその硬化剤、等を自由に配合することが可能である。
[0056] 本発明の 2液系プラスチゾル組成物は、これを構成する液状組成物(LA)乃至(LB )を使用の直前に混合し、任意の基材に被着させることによって使用することが好まし レ、。混合の方法は特に限定しないが、インラインで容易に混合できるスタティックミキ サーや、 2液用の各種スプレー等が挙げられる。
[0057] 基材としては特に限定しないが、無機基材に対する付着を目的として使用すること が好ましぐ各種の鋼板、アルミニウム板、ステンレス板、鉄板、亜鉛メツキ板、クロムメ ツキ板、ブリキ板などの金属板や、コンクリート、モルタル、石膏ボード、陶磁器タイル 、セラミック板、スレート板などの無機建材などが挙げられる。
[0058] これらの無機基材に対しては、特にエポキシ樹脂を配合した場合に高い接着性を 付与すること力 Sできる。
[0059] 具体的な用途としては、各種の接着剤、シーリング剤、コーティング斉 ij、制振剤、防 音剤、バッキング斉 lj、等が挙げられるがこれらに限定されるものではない。
実施例
[0060] 以下に、本発明を実施例を用いて説明するが、本発明はこれらの実施例のみに限 定されるものではなレ、。なお以下の記載で「部」は質量部のことを意味するものとする
[0061] [重合体 (A1)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した 500mlの 4つ口 フラスコに純水 100gを入れ、 30分間十分に窒素ガスを通気し、純水中の溶存酸素 を置換した。窒素ガス通気を停止した後、 200rpmで攪拌しながら 80°Cに昇温した。 内温が 80°Cに達した時点で、過硫酸カリウム 0. 30gを添加し、引き続き、第 1滴下と してモノマー(メチノレメタタリレート 30g、 n—ブチノレメタタリレート 20g)と連鎖移動剤(n ーォクチルメルカプタンをモノマー 100gに対して 0. Olg)と乳化剤(ジォクチルスルホ コハク酸ナトリウムをモノマー 100gに対して 0. 5g)を均一に溶解した混合液を 20g/ hrの速度で滴下した。引き続き、第 2滴下としてモノマー(メチルメタタリレート 45g、 n -ブチルメタタリレート 5g)と連鎖移動剤(n-ォクチルメルカプタンをモノマー 100gに 対して 0· Olg)と乳化剤(ジォクチルスルホコハク酸ナトリウムをモノマー 100gに対し て 0. 5g)を均一に溶解した混合液を 20g/hrの速度で滴下した。滴下終了後、引き 続き 80°Cにて 1時間攪拌を継続して、重合体ラテックスを得た。
[0062] 得られた重合体ラテックスを室温まで冷却した後、スプレードライヤー(大河原化工 機 (株) L8型)を用いて、入口温度 150°C、出口温度 65°C、アトマイザ回転数 25000 i"pmにて噴霧乾燥し、重合体微粒子 (A1)を得た。
[0063] [重合体 (A2)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した 500mlの 4つ口 フラスコに純水 lOOgを入れ、 30分間十分に窒素ガスを通気し、純水中の溶存酸素 を置換した。窒素ガス通気を停止した後、 200rpmで攪拌しながら 80°Cに昇温した。 内温が 80°Cに達した時点で、過硫酸カリウム 0. 30gを添加し、引き続き、第 1滴下と してモノマー(メチノレメタタリレート 42g、 n—ブチノレメタタリレート 28g)と乳化剤(ジオタ チルスルホコハク酸ナトリウムをモノマー 100gに対して 0. 5g)を均一に溶解した混合 液を 20g/hrの速度で滴下した。引き続き、第 2滴下としてモノマー(メチルメタクリレ ート 28. 5g、メタクリル酸 1. 5g)と乳化斉 1J (ジォクチルスルホコハク酸ナトリウムをモノ マー 100gに対して 0. 5g)を均一に溶解した混合液を 20g/hrの速度で滴下した。 滴下終了後、引き続き 80°Cにて 1時間攪拌を継続して、重合体ラテックスを得た。
[0064] 得られた重合体ラテックスを室温まで冷却した後、スプレードライヤー(大河原化工 機 (株) L8型)を用いて、入口温度 150°C、出口温度 65°C、アトマイザ回転数 25000 i"pmにて噴霧乾燥し、重合体微粒子 (A2)を得た。
[0065] [重合体 (A3)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した 500mlの 4つ口 フラスコに純水 100gを入れ、 30分間十分に窒素ガスを通気し、純水中の溶存酸素 を置換した。窒素ガス通気を停止した後、 200rpmで攪拌しながら 80°Cに昇温した。 内温が 80°Cに達した時点で、過硫酸カリウム 0. 30gを添加し、引き続き、第 1滴下と してモノマー(メチノレメタタリレート 85g、 n—ブチノレアタリレート 15g)と連鎖移動剤(n_ ォクチルメルカプタンをモノマー 100gに対して 0. 005g)と乳化剤(ジォクチルスルホ コハク酸ナトリウムをモノマー 100gに対して 0. 5g)を均一に溶解した混合液を 20g/ hrの速度で滴下した。滴下終了後、弓 Iき続き 80°Cにて 1時間攪拌を継続して、重合 体ラテックスを得た。
[0066] 得られた重合体ラテックスを室温まで冷却した後、スプレードライヤー(大河原化工 機 (株) L8型)を用いて、入口温度 190°C、出口温度 85°C、アトマイザ回転数 25000 rpmにて噴霧乾燥し、重合体微粒子 (A3)を得た。
[0067] [表 1] コア組成 シェル組成 コア Z
(質量 ¾>) シェル比
Al MMA/nBMA=60/40 M A/nBMA=90/10 50/50
A2 MMA/nBMA=60/40 MA/MAA=95/5 70/30
A3 MA/nBA=85/15
[0068] 表中の略号は、下記を意味する。
MMA:メチルメタタリレート 二 Q
nBMA:n—ブチルメタタリレート 2 >
MAA:メタクリル酸
nBA:n_ブチルアタリレート
[0069] [液状組成物(LA1)の調製]
重合体微粒子 (A1) 100部あたり、分散媒として可塑剤であるジイソノニルフタレー ト 100部を投入し、真空ミキサー((株)シンキー製 ARV-200)にて脱泡攪拌(10秒 間大気圧で混合した後、 2.67kPa(20mmHg)に減圧して 50秒間混合)を行レ、、液 状組成物 (LA1)を得た。
[0070] [液状組成物(LA2)—(LA4)の調製]
液状組成物(LA1)と同様にして液状組成物 (LA2)— (LA4)を調製した。ただし 重合体微粒子、分散媒として表 2に記載の組成に変更した。ミキサーによる撹拌条件 などは液状組成物(LA1)の場合と同一である。
[0071] [表 2] 重合体微粒子 分散媒 粘度 貯蔵安定性
(部) (部) (mPa-s) (¾)
A1 DINP
L A1 4500 ©(15)
(100) (100)
A2 ATBC
L A2 3200 0(30)
(100) (100)
Al /A3 DINP
L A3 1580 0(22〕
(50/50) (100)
A1
L A4 x(ゲル化)
(100) [0072] 表中の略号は、下記を意味する。
DINP:ジイソノニルフタレート
GMA:グリシジルメタタリレート
[0073] [液状組成物(LB 1 )の調製]
有機溶剤として、グリシジルメタタリレート 100部と 2—ヒドロキシェチルアタリレート 10 0部、更にラジカル重合開始剤として t一^ iンチルペルォキシベンゾエート(化薬ァク ゾ (株)製「KD— 1」)2· 0部を投入し、真空ミキサー((株)シンキー製 ARV— 200)に て脱泡攪拌(10秒間大気圧で混合した後、 2. 67kPa (20mmHg)に減圧して 50秒 間混合)を行い、液状組成物 (LB1)を得た。
[0074] [液状組成物(LB2)—(LB11)の調製]
液状組成物(LB1)と同様にして液状組成物(LB2)— (LB11)を調製した。ただし 有機溶剤、ラジカル重合開始剤として表 3に記載の組成に変更した。ミキサーによる 撹拌条件などは液状組成物(LB1)の場合と同一である。
[0075] [表 3]
Figure imgf000017_0001
表中の略号は、下記を意味する。
GMA:グリシジルメタタリレート
nBA : n—ブチルアタリレート
HEA: 2—ヒドロキシェチルアタリレート
HEMA: 2—ヒドロキシェチルメタタリレート
HPMA: 2—ヒドロキシプロピルメタタリレート
EHMA: 2_ェチルへキシルメタタリレート
PEG—A:メトキシポリエチレングリコールアタリレート(分子量 482)
DOP:ジ— 2—ェチルへキシルフタレート
KD—1 : t—ペンチルパーォキシベンゾエート
AN : t—ペンチルパーォキシ _3, 5, 5_トリメチルへキサノエート BPO:ベンゾィルパーオキサイド
[0077] 得られたプラスチゾル組成物は以下に示す項目につレ、て評価を行った。評価方法 の具体的内容を以下に示す。
[0078] [粘度]
(LA)液状組成物を調製してから 1時間後に、 Brookfield型粘度計 (東機産業 (株) 製、 BH型粘度計、 7号ロータ)を用いて、測定温度 25°C、回転数 2rpmにおいて粘 度を測定した。
(LB)液状組成物を調製してから 1時間後に、 Brookfield型粘度計 (東機産業 (株) 製、 BL型粘度計、 BLアダプター)を用いて、測定温度 25°C、回転数 30rpmにおい て粘度を測定した。
[0079] [貯蔵安定性]
液状組成物を 25°Cの恒温室にて保温し、 5日後に取り出して再び粘度を測定した 。液状組成物の増粘率を以下のようにして計算し貯蔵安定性を評価した。
[0080] { (貯蔵後の粘度/初期の粘度)一 1 } X 100 (%)
◎ : 20%未満
〇: 20%以上 50%未満
△ : 50%以上
X:粘度測定不能 (ゲル化)
[0081] [ゲル化時間]
液状組成物を 30°Cに調整し、 (LA): (LB) = 2 : 1となるようにスタティックミキサー で混練しながら、キュラストメーター (日合商事株式会社、キュラストメーター WP型)に 10gをチャージした。すぐに測定を開始し、 tan δく 1となるまでの時間をゲル化時間 とした。
[0082] 測定条件:ダイス = φ 40mm,ダイス温度 = 30°C、振幅角 = ± 1° 。
◎ : 10分以下
〇:60分以下
X : 60分を超える。
[0083] [実施例 1] 液状組成物として、 (LA1)及び (LB1)を 30°Cに調整し、 (LAI) / (LB1) = 2/1 となるようにスタティックミキサーで混練しながらキュラストメーターにチャージし、ゲル 化時間を測定した。ゲル化時間は 2. 0分で、良好なゲル化性を示した。
[0084] [実施例 2 13、比較例 1、 2]
液状組成物として表 4に示した組成物を用いて、ゲル化時間を測定した。測定結果 を表 4に示す。
[0085] [比較例 3]
液状組成物(LA4)として、重合体微粒子 (A1) 100部及び、分散媒としてグリシジ ルメタタリレート 100部を用いて、液状組成物を調製した。し力 ながら、このプラスチ ゾノレは混練直後から増粘を始め、すぐにゲル化し、貯蔵安定性が不良であった。
[0086] [表 4]
Figure imgf000019_0001
[0087] [各例の考察]
以下に各実施例および比較例について考察する。
[0088] <実施例 1一 7〉
実施例 1一 7は (LA)の重合体粒子 (A)としてコアシェル構造の (A1)、分散媒 (B) としてジイソノニルフタレート、 (LB)の有機溶媒(C)としてラジカル重合性の二重結 合を有するアクリル系モノマー及びラジカル重合開始剤を用いた例である。これらの 2液を混合すると良好なゲルィヒ性能を示した。
[0089] <実施例 8 >
実施例 8は (LA)の重合体粒子 (A)としてコアシェル構造の (A1)、分散媒 (B)とし てジイソノニルフタレート、 (LB)の有機溶媒 (C)として水酸基及びエポキシ基を含有 するグリシドールを用いた例である。これらの 2液を混合すると良好なゲルィ匕性能を示 した。
[0090] <実施例 9、 10 >
実施例 9、 10は(LA)の重合体粒子 (A)としてコアシェル構造の (A2)、分散媒 (B) としてァセチルトリプチルシトレート、 (LB)の有機溶媒(C)としてラジカル重合性の二 重結合を有するアクリル系モノマー及びラジカル重合開始剤を用いた例である。これ らの 2液を混合すると良好なゲルィ匕性能を示した。
[0091] <実施例 11一 13 >
実施例 11一 13は (LA)の重合体粒子 (A)としてコアシェル構造の (A1)及び均一 構造の (A3)を併用し、分散媒 (B)としてジイソノニルフタレート、 (LB)の有機溶媒( C)としてラジカル重合性の二重結合を有するアクリル系モノマー及びラジカル重合 開始剤を用いた例である。これらの 2液を混合すると良好なゲル化性能を示した。
[0092] <比較例 1 >
実施例 8は (LA)の重合体粒子 (A)としてコアシェル構造の (A1)、分散媒 (B)とし てジイソノニルフタレート、 (LB)としてジ一 2_ェチルへキシルフタレートを用いた例で ある。これらの 2液を混合しても 60分以下でゲル化できず、ゲルィ匕性能は不充分であ つた。
[0093] <比較例 2 >
実施例 8は (LA)の重合体粒子 (A)としてコアシェル構造の (A2)、分散媒 (B)とし てジイソノニルフタレート、(LB)として特開 2002—30194号公報で開示されているラ ジカル重合性の二重結合を有するアクリル系モノマー及びラジカル重合開始剤とし てベンゾィルパーオキサイドを用いた例である。これらの 2液を混合しても 60分以下 でゲル化できず、ゲル化性能は不充分であった。
[0094] <比較例 3 >
比較例 3は、 (LA)の重合体粒子 (A)としてコアシェル構造の (A2)、分散媒 (B)と してグリシジルメタタリレートを用いた例である。この場合は、液状組成物(LA4)の貯 蔵安定性が悪ぐ本発明の目的に合致しない。
産業上の利用可能性
[0095] 本発明の 2液系プラスチゾルによれば、室温での貯蔵安定性と混合後の速やかな ゲル化性を発現することが可能であり、様々な産業分野で広く利用可能である。

Claims

請求の範囲
[1] 2種類の液状組成物(LA)及び (LB)とからなる 2液系プラスチゾル組成物で、(LA )及び (LB)を混合後の組成物のゲル化時間が 1時間以下(30°C測定時)であること を特徴とする 2液系プラスチゾル組成物。
[2] (LA)及び (LB)がそれぞれ以下に示す液状組成物であることを特徴とする請求項 1記載の 2液系プラスチゾル組成物。
(LA):アクリル系重合体微粒子 (A)及び、常温では (A)に対して実質的に非溶解 性な分散媒 (B) (ただし (B)は加熱時に (A)に対して溶解性であってよい)、を必須 成分とする分散状の液状組成物
(LB): (A)に対して常温で十分に高い溶解性を有する有機溶媒 (C)、を必須成分 とする液状組成物
[3] 有機溶媒 (C)がラジカル重合性の二重結合を有する化合物であり、液状組成物 (L A)及び (LB)のレ、ずれかにラジカル重合開始剤を含有することを特徴とする請求項 2記載の 2液系プラスチゾル組成物。
[4] 有機溶媒(C)が可塑剤であること特徴とする請求項 2記載の 2液系プラスチゾル組 成物。
[5] 有機溶媒(C)がエポキシ基もしくは水酸基を含有することを特徴とする請求項 2乃 至 4のいずれ力 4項記載の 2液系プラスチゾル組成物。
[6] (LA)及び (LB)の少なくとも 1つにエポキシ樹脂を含有することを特徴とする請求 項 1乃至 5のレ、ずれ力ゝ 1項記載の 2液系プラスチゾル組成物。
[7] 請求項 1乃至 6のいずれか 1項記載の液状組成物(LA)及び (LB)を使用直前に 混合して吐出し、任意の基材に被着させる 2液系プラスチゾル組成物の使用方法。
[8] 無機物に対して接着させて使用する請求項 1乃至 6のいずれ力 1項記載の 2液系プ ラスチゾル組成物の使用。
PCT/JP2004/010668 2003-07-29 2004-07-27 2液系プラスチゾル組成物およびその使用方法 WO2005010095A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/566,277 US20070191535A1 (en) 2003-07-29 2004-07-27 Two-pack type acrylic sol compostion
EP04747981.1A EP1652883B1 (en) 2003-07-29 2004-07-27 Two-pack type acrylic sol composition
JP2005512057A JP4951239B2 (ja) 2003-07-29 2004-07-27 2液系プラスチゾル組成物およびその使用方法
US12/489,723 US20090260752A1 (en) 2003-07-29 2009-06-23 Two-pack type plastisol composition and method of use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003281725 2003-07-29
JP2003-281725 2003-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/489,723 Division US20090260752A1 (en) 2003-07-29 2009-06-23 Two-pack type plastisol composition and method of use thereof

Publications (1)

Publication Number Publication Date
WO2005010095A1 true WO2005010095A1 (ja) 2005-02-03

Family

ID=34100964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010668 WO2005010095A1 (ja) 2003-07-29 2004-07-27 2液系プラスチゾル組成物およびその使用方法

Country Status (5)

Country Link
US (2) US20070191535A1 (ja)
EP (1) EP1652883B1 (ja)
JP (1) JP4951239B2 (ja)
CN (1) CN100402601C (ja)
WO (1) WO2005010095A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005017045A1 (ja) * 2003-08-13 2007-10-04 サンスター技研株式会社 2液硬化性組成物
JP2007326859A (ja) * 2006-06-08 2007-12-20 Oxeno Olefinchemie Gmbh トリペンチルシトレートおよびその使用
JP2012052022A (ja) * 2010-09-01 2012-03-15 Honda Motor Co Ltd 2液型アクリル系プラスチゾル塗料組成物及びその使用方法
WO2016159047A1 (ja) * 2015-03-31 2016-10-06 株式会社日本触媒 制振性付与剤及び制振材用樹脂組成物
WO2018168954A1 (ja) * 2017-03-17 2018-09-20 株式会社クラレ 注型板とその製造方法、および二次成形品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703372B1 (ko) 2009-06-19 2017-02-06 쓰리엠 이노베이티브 프로퍼티즈 캄파니 저온 경화성 비정질 플루오로중합체
WO2012151202A2 (en) * 2011-05-02 2012-11-08 Polyone Corporation Two-pack plastisol ink compositions for screen printing of textiles
EP3486265B1 (en) * 2016-07-15 2022-06-01 Mitsubishi Chemical Corporation Acrylic resin powder and resin composition for hot melt adhesives, and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185772A (ja) * 1986-02-07 1987-08-14 チバ−ガイギ− アクチエンゲゼルシヤフト 亜リン酸バナジウム化合物を含む、アクリレ−トベ−ス2成分接着剤及び該接着剤による二つの基材を接着する方法
JPH01168776A (ja) * 1987-12-25 1989-07-04 Konishi Kk 二液主剤型アクリル系接着剤組成物
JPH03281683A (ja) * 1990-03-30 1991-12-12 Nippon Shokubai Co Ltd 速硬化接着剤組成物
JPH07331185A (ja) * 1994-06-06 1995-12-19 Daiabondo Kogyo Kk 二液性アクリル反応型接着剤組成物
JPH0953051A (ja) * 1995-06-09 1997-02-25 Okura Ind Co Ltd 二液主剤型アクリル系接着剤

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872429A (en) * 1956-08-15 1959-02-03 Minnie G Schwartz Method of preparing elastomeric plastigels
JPS53105556A (en) * 1977-02-23 1978-09-13 Ppg Industries Inc Additive interpolymer of modified stability and twoocomponent composition composed of sacd additive interpolymer and polyepoxide
US4119592A (en) * 1977-02-25 1978-10-10 The B. F. Goodrich Company Rubbery bladders from epoxy compositions
US4232135A (en) * 1978-01-10 1980-11-04 Imperial Chemical Industries Limited Coating compositions
US4195140A (en) * 1978-02-28 1980-03-25 Lord Corporation Adhesive-promoting compositions
AU539924B2 (en) * 1979-05-11 1984-10-25 Sunstar Giken Kabushiki Kaisha Two-part adhesive
US4426243A (en) * 1981-12-01 1984-01-17 Illinois Tool Works Inc. Room-temperature-curable, quick-setting acrylic/epoxy adhesives and methods of bonding
DE3229656A1 (de) * 1982-08-09 1984-02-09 Henkel KGaA, 4000 Düsseldorf Haftklebrige vorgelierte plastisole
DE3445325A1 (de) * 1984-12-12 1986-06-12 Teroson Gmbh, 6900 Heidelberg Haftklebrige formteile und deren verwendung
GB2212165B (en) * 1987-11-09 1992-07-01 Kansai Paint Co Ltd Resin composition curable at low temperature
JPH02133421A (ja) * 1988-11-14 1990-05-22 Sunstar Eng Inc エポキシ樹脂組成物
US4939212A (en) * 1989-03-31 1990-07-03 The B. F. Goodrich Company Elasticized vinyl dispersion resins having outstanding stability
US5288804A (en) * 1992-01-03 1994-02-22 Reichhold Chemicals, Inc. Acetoacetate aromatic aldimine resin composition
ES2173337T3 (es) * 1996-12-31 2002-10-16 Avecia Ltd Composiciones de plastisoles.
DE10043868A1 (de) * 2000-09-04 2002-04-04 Roehm Gmbh PMMA Formmassen mit verbesserter Schlagzähigkeit
JP4629315B2 (ja) * 2003-05-06 2011-02-09 株式会社クラレ アクリル系重合体粉末、アクリルゾル及び成形物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185772A (ja) * 1986-02-07 1987-08-14 チバ−ガイギ− アクチエンゲゼルシヤフト 亜リン酸バナジウム化合物を含む、アクリレ−トベ−ス2成分接着剤及び該接着剤による二つの基材を接着する方法
JPH01168776A (ja) * 1987-12-25 1989-07-04 Konishi Kk 二液主剤型アクリル系接着剤組成物
JPH03281683A (ja) * 1990-03-30 1991-12-12 Nippon Shokubai Co Ltd 速硬化接着剤組成物
JPH07331185A (ja) * 1994-06-06 1995-12-19 Daiabondo Kogyo Kk 二液性アクリル反応型接着剤組成物
JPH0953051A (ja) * 1995-06-09 1997-02-25 Okura Ind Co Ltd 二液主剤型アクリル系接着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1652883A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005017045A1 (ja) * 2003-08-13 2007-10-04 サンスター技研株式会社 2液硬化性組成物
JP2007326859A (ja) * 2006-06-08 2007-12-20 Oxeno Olefinchemie Gmbh トリペンチルシトレートおよびその使用
JP2012052022A (ja) * 2010-09-01 2012-03-15 Honda Motor Co Ltd 2液型アクリル系プラスチゾル塗料組成物及びその使用方法
WO2016159047A1 (ja) * 2015-03-31 2016-10-06 株式会社日本触媒 制振性付与剤及び制振材用樹脂組成物
JP2017048363A (ja) * 2015-03-31 2017-03-09 株式会社日本触媒 制振材用樹脂組成物
JP2017048364A (ja) * 2015-03-31 2017-03-09 株式会社日本触媒 制振材用樹脂組成物
JPWO2016159047A1 (ja) * 2015-03-31 2018-02-08 株式会社日本触媒 制振性付与剤及び制振材用樹脂組成物
US11118074B2 (en) 2015-03-31 2021-09-14 Nippon Shokubai Co., Ltd. Damping-imparting agent and resin composition for damping material
WO2018168954A1 (ja) * 2017-03-17 2018-09-20 株式会社クラレ 注型板とその製造方法、および二次成形品

Also Published As

Publication number Publication date
EP1652883A1 (en) 2006-05-03
EP1652883B1 (en) 2016-10-05
JP4951239B2 (ja) 2012-06-13
US20070191535A1 (en) 2007-08-16
EP1652883A4 (en) 2006-07-12
CN1829770A (zh) 2006-09-06
CN100402601C (zh) 2008-07-16
US20090260752A1 (en) 2009-10-22
JPWO2005010095A1 (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
CA2677728C (en) Thermally crosslinking polyacrylates and method for producing the same
US20090260752A1 (en) Two-pack type plastisol composition and method of use thereof
US9000069B1 (en) Self-stratifying coatings
US20130131220A1 (en) Emulsion or redispersible polymer powder of a polymer comprising a biomonomer, a process to prepare them, and the use thereof in building material compositions
CN101171316A (zh) 含硅聚合物作为结构粘合剂的用途
CZ20014461A3 (cs) Bimodální poly(meth)akrylátové plastisoly a způsob jejich přípravy
CN103946323B (zh) 羟乙基纤维素接枝的丙烯酸胶乳
JP2008503621A (ja) メチルメタクリラート混合ポリマーをベースとするプラスチゾル
JP2019116594A (ja) 塗料用樹脂エマルション及びその製造方法
EP3853316A1 (en) Contact adhesives
EP2784098B1 (en) Method for producing acrylic polymer, acrylic polymer, and plastisol composition
JPH02289662A (ja) 非水性プラスチック組成物
CN102060955A (zh) 一种核壳结构的多功能粉末涂料助剂的制备方法
JP2006219559A (ja) アクリル系重合体微粒子及びそれを用いたプラスチゾル組成物
JP5793985B2 (ja) シラップ樹脂組成物、樹脂モルタル組成物、およびそれらの硬化体とその製造方法
KR20210061889A (ko) Pvc 인테리어 시트용 수성형 아크릴계 점착제 및 이의 제조방법
JPH08231616A (ja) 硬化性水性樹脂組成物
JPS60166366A (ja) 一液型水性エマルジヨン接着剤組成物
JP5219773B2 (ja) 無機系基材塗装用の水性樹脂分散体
CN109957072A (zh) 一种具有高密度表面紫外交联效果的弹性乳液及其制备方法和用途
JP2001335670A (ja) 水性樹脂組成物及び架橋剤
JP4155736B2 (ja) 接着剤用の水性エマルジョン
JP5224904B2 (ja) 合成樹脂エマルジョン組成物およびこれを用いた窯業系サイディングボード用塗料組成物
JP7168595B2 (ja) 窯業建材用樹脂エマルション
CN109111772B (zh) 一种用于双(多)组分反应型甲基丙烯酸树脂类涂料的自引发体系及引发方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021808.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005512057

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004747981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004747981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10566277

Country of ref document: US

Ref document number: 2007191535

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004747981

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10566277

Country of ref document: US