WO2005001155A1 - SINTERKÖRPER AUS ZnO - Google Patents

SINTERKÖRPER AUS ZnO Download PDF

Info

Publication number
WO2005001155A1
WO2005001155A1 PCT/EP2004/006992 EP2004006992W WO2005001155A1 WO 2005001155 A1 WO2005001155 A1 WO 2005001155A1 EP 2004006992 W EP2004006992 W EP 2004006992W WO 2005001155 A1 WO2005001155 A1 WO 2005001155A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
sintered body
weight
component
body according
Prior art date
Application number
PCT/EP2004/006992
Other languages
English (en)
French (fr)
Inventor
Grit HÜTTL
Original Assignee
FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH filed Critical FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH
Publication of WO2005001155A1 publication Critical patent/WO2005001155A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to an electrically conductive doped sintered body made of zinc oxide (ZnO), a process for its production and its use, in particular as a sputtering target for the production of electrically highly conductive transparent layers, so-called TCO layers (transparent conductive oxide layers).
  • ZnO zinc oxide
  • TCO layers transparent conductive oxide layers
  • Such layers have transparency in the visible light range and z.
  • B. as transparent electrodes for EL (electroluminescence) display devices and liquid crystal display devices and plasma luminescence devices, used as electrode films for solar cells and all types of light-receiving elements. They are also widely used in layer systems for heat-reflecting films for automobiles and buildings, as antistatic films for photomasks or as transparent heating elements for various anti-fogging devices, including freezer showcases. In addition, they are useful as substrates for electrochromic devices such as light control glass.
  • DE-T-689 19 299 discloses a zinc oxide sintered body which contains 0.1 to 20% by weight of an oxide of an at least positive trivalent element, based on the amount of zinc oxide, and a sintered density of at least 5 g / cm 3 and has a specific resistance of less than 1 ⁇ ⁇ cm. If this sintered body is used as a sputtering target for the production of TCO layers, then the so obtained However, layers of an unsatisfactory concentration of charge carriers for various applications.
  • the object of the present invention is therefore to provide a sintered body based on zinc oxide, from which TCO layers can be deposited by sputtering, which do not have the disadvantages of the layers known in the prior art.
  • layers with improved electrical properties compared to the prior art are sought.
  • the object is achieved according to the invention by a zinc oxide sintered body containing a) 0.1 to 20% by weight of an oxide of an at least trivalent positively charged metal, and b) 0.1 to 20% by weight of a - different from a) Oxides of at least trivalent positively charged metal, and / or c) at least 0.05% by weight of a monovalent negatively charged element, each based on the weight of zinc oxide.
  • the zinc oxide sintered body according to the invention has a sintered density of at least 5 g / cm 3 .
  • the ZnO sintered body according to the invention is therefore doped with the constituents a) and b), a) and c) or a), b) and c). These components / doping elements will be explained in more detail below. Components a) and b)
  • An at least trivalent positively charged metal is a metal cation, the valence of which is three or higher.
  • the oxides of the at least trivalent positively charged metals are oxides of the elements from groups IIIA to VIIA and IIIB to VIIIB of the Periodic Table of the Elements (PSE) and oxides of the lanthanides.
  • Examples are the oxides of B, Al, Ga, In, Tl (group purple of the PSE), Si, Ge, Sn, Pb (group IVa of the PSE), As, Sb, Bi (group Va of the PSE), Se, Te (Group Via des PSE), Sc, Y, La, (group Illb des PSE), Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu (lanthanoids), Ti , Zr, Hf (group IVb of the PSE), V, Nb, Ta (group Vb of the PSE), Cr, Mo, W (group VIb of the PSE), Mn, Re (group Vllb of the PSE), and the oxides of Fe , Ru, Os, Co, Rh, Ir, Ni, Pd, Pt (Group VHIb of the PSE).
  • a component of components a) and b) is preferably selected from the group of the oxides of Al, Ga, In, Sn, Si, Ge, Zr and Ti, components a) and b) being different. Both components a) and b) are particularly preferably selected from this group, components a) and b) differing.
  • the preferred amount of constituents a) and b) is, independently of one another, 0.1 to 5.0% by weight, based on the weight of zinc oxide. Both constituents a) and b) are particularly preferably present in an amount of 0.1 to 5.0% by weight, based on the weight of zinc oxide.
  • Component c) is a monovalent negatively charged element. It is an anion of an element from group VIIA of the PSE. Examples are F, Cl, Br or I, with fluorine being particularly preferred.
  • the component c) is fed to the sintered body in the form of a chemical compound which contains the anion and at least one cation, in particular a metal cation.
  • the cation of the compound is preferably an element of constituents a) or b) and preferably Zn 2+ or Al 3+ .
  • a particularly preferred compound is AIF3.
  • the compound of component c) may have other components, for example an oxygen fraction.
  • An example of such compounds is AlO x F y .
  • the component c) is either added to the components a) and b) or replaces the component b). It preferably replaces component b).
  • Component c) is preferably present in an amount of at least 0.1% by weight, based on the weight of zinc oxide.
  • the ZnO sintered bodies according to the invention are preferably doped with two constituents, ie they contain either constituents a) and b) or constituents a) and c).
  • the invention also relates to the use of a zinc oxide sintered body according to the invention as a sputtering target for the production of electrically conductive, transparent layers.
  • the layers obtainable in this way have improved electrical properties compared to the layers known in the prior art.
  • Both the medium-frequency sputtering technique and the direct current sputtering technique can be used to produce the layers.
  • the ZnO sintered body of the present invention is used, the discharge process is stable in each of the sputtering methods, and transparent electrically conductive layers are obtained which have a very low resistance and have excellent transparency.
  • the ZnO sintered body according to the invention can be produced by conventional processes known to the person skilled in the art, for example by the process described in DE-T-689 19 299.
  • the doping elements a) and b) can be dispersed both mechanically and chemically, for example by co-precipitating corresponding starting compounds.
  • two variants can be traced for the production of the ZnO sintered body according to the invention: According to a first variant, component c) is already present in a ZnO green body before sintering, while component c) in the second variant is only present in the ZnO during sintering -Green body is introduced.
  • a green body containing component c) can be produced, for example, using chemical precipitation procedures. For example, a suspension of ZnO grains and a soluble aluminum salt is formed. By adding hydrofluoric acid Aluminum fluoride precipitated, which attaches to the ZnO grains. These ZnO grains provided with aluminum fluoride are then dried and pressed into a ceramic molded part, a so-called green body.
  • the green body is placed in a closable sintering vessel.
  • the sintered vessel also has its own material and a portion of component c).
  • the sintering takes place under pressure and temperature conditions at which the additional component c) changes into the gas phase and prevents the component c) from evaporating, i.e. prevents the component c) already introduced into the green body from escaping from the sintered body.
  • the production method according to the second variant is preferred over the first variant and is also the subject of the present invention.
  • ZnO is sintered in the presence of the constituents / doping elements a), b) or / and c) at a temperature and a pressure, ie heated to a certain temperature for a certain duration.
  • the sintering temperature and the pressure are selected such that a certain proportion of at least one of the components a), b) or / and c) is in gaseous form, the doping element c) preferably being volatile at this temperature and the gas phase being enriched with the doping element c) is.
  • the gas space surrounding the sintered body is preferably separated from the surrounding furnace atmosphere by a closable sintered vessel, so that the concentration of the doping elements in the gas phase in the sintered vessel is higher than in the surrounding furnace space.
  • This method is preferably used for doping with component c).
  • the starting point is a green body that contains only the components a) or a) and b) in addition to ZnO, but not the component c).
  • the green body is placed in a closable sintered vessel, in which, in addition to the green body, there is also material of its own type and a portion of component c).
  • the sintering is preferably carried out under pressure and temperature conditions in which the additional component c) present in the gas phase diffuses into the green body during the sintering.
  • the additional component c) thus serves as a diffusion source for doping the sintered body with the component c), while during the sintering in the first method variant it merely serves as an outlet for the component c already previously introduced into the green body ) prevented.
  • the production of a ZnO sintered body according to the invention by means of the method according to the second variant is described below.
  • the starting point is a green body that contains only Al 3+ , for example in the form of Al2O3, but no fluorine ions, in addition to ZnO.
  • the green body is embedded in a powder made of burnt ZnO, which is located in a closable crucible made of AI2O3.
  • the ZnO powder is enriched with AIF3, the AIF3 being present in an amount of approximately 5% by weight based on the amount of the powdered ZnO. In addition to the AIF3, there is also a small amount of AI2O3 in the crucible.
  • Sintering takes place over a period of five hours at normal pressure and at a sintering temperature of 1300 ° C to 1400 ° C.
  • the fluorine present in the gas phase in the form of AIF3 or HF diffuses into the green body during sintering.
  • Al 3+ and F- are installed in the ZnO grid.
  • the result of the sintering process is a ZnO sintered body according to the invention which contains Al 3+ and F- in the ZnO lattice.
  • the sintered body can contain a proportion of Al 2 O 3 which is present in an amount of less than about 10% by weight, based on the mass of the zinc oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Die vorliegende Erfindung betrifft Zinkoxid-Sinterkörper, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Sputter-Targets zur Herstellung von elektrisch hochleitfähigen transparenten Schichten. Ein erfindungsgemäßer ZnO-Sinterkörper enthält a) 0,1 bis 20 Gew.-% eines Oxides eines mindestens dreiwertigen positiv geladenen Metalls, sowie b) 0, 1 bis 20 Gew.-% eines - von a) unterschiedlichen - Oxides eines mindestens dreiwertigen positiv geladenen Metalls, oder c) mindestens 0,05 Gew.-% einer Verbindung, die ein einwertiges negativ geladenes Element enthält, -jeweils bezogen auf das Gewicht von Zinkoxid.

Description

Sinterkörper aus Z O
Die vorliegende Erfindung betrifft einen elektrisch leitenden dotierten Sinterkörper aus Zinkoxid (ZnO), ein Verfahren zu seiner Herstellung und seine Verwendung, insbesondere als Sputter-Target zur Herstellung von elektrisch hochleitfähigen transparenten Schichten, sogenannten TCO- Schichten (transparent conductive oxide-Schichten).
Derartige Schichten besitzen Transparenz im Bereich sichtbaren Lichts und werden z. B. als transparente Elektroden für EL (Elektrolumines- zenz) -Anzeigevorrichtungen sowie Flüssigkristall- Anzeigevorrichtungen und Plasmalumineszenz- Vorrichtungen, als Elektrodenfilme für Solarzellen und alle Arten von Licht empfangenden Elementen verwendet. Weitverbreitet ist auch ihr Einsatz in Schichtsystemen bei Wärme strahlen reflektierenden Filmen für Automobile und Gebäude, als antistatische Filme für Photomasken oder als transparente Heizelemente für verschiedene Beschlagsverhinderungseinrichtungen einschließlich Gefriervitrinen. Darüber hinaus sind sie als Substrate für Elektrochromie-Vorrichtungen, wie Licht kontrollierendes Glas, brauchbar.
Aus der DE-T-689 19 299 ist ein Zinkoxid- Sinterkörper bekannt, welcher 0, 1 bis 20 Gew.-% eines Oxids eines mindestens positiv-dreiwertigen Elements - bezogen auf die Zinkoxidmenge - enthält und eine Sinterdichte von mindestens 5 g/cm3 und einen spezifischen Widerstand von kleiner als 1 Ω cm aufweist. Wird dieser Sinterkörper als Sputter-Target zum Herstellen von TCO-Schichten eingesetzt, so weisen die so erhaltenen Schichten jedoch für verschiedene Anwendungen eine noch nicht zufriedenstellende Konzentration an Ladungsträgern auf.
Aufgabe der vorliegenden Erfindung ist es daher, einen Sinterkörper auf der Basis von Zinkoxid bereitzustellen, aus dem durch Sputtern TCO- Schichten abgeschieden werden können, welche nicht die Nachteile der im Stand der Technik bekannten Schichten aufweisen. Insbesondere werden Schichten mit - im Vergleich zum Stand der Technik - verbesserten elektrischen Eigenschaften angestrebt.
Die Aufgabe wird erfindungsgemäß gelöst durch einen Zinkoxid-Sinterkörper enthaltend a) 0, 1 bis 20 Gew.-% eines Oxides eines mindestens dreiwertigen positiv geladenen Metalls, sowie b) 0,1 bis 20 Gew.-% eines - von a) unterschiedlichen - Oxides eines mindestens dreiwertigen positiv geladenen Metalls, und/ oder c) mindestens 0,05 Gew.-% eines einwertigen negativ geladenen Elements, -jeweils bezogen auf das Gewicht von Zinkoxid. Der erfindungsgemäße Zinkoxid-Sinterkörper weist eine Sinterdichte von mindestens 5 g/cm3 auf.
Der erfindungsgemäße ZnO -Sinterkörper ist also mit den Bestandteilen a) und b), a) und c) oder a), b) und c) dotiert. Diese Bestandteile/ Dotierungs- elemente sollen im folgenden näher erläutert werden. Bestandteile a) und b)
Ein mindestens dreiwertiges positiv geladenes Metall ist ein Metallkation, dessen Wertigkeit drei oder höher ist. Bei den Oxiden der mindestens dreiwertigen positiv geladenen Metalle handelt es sich um Oxide der Elemente der Gruppen IIIA bis VIIA und IIIB bis VIIIB des Periodensystems der Elemente (PSE) sowie um Oxide der Lanthanide. Beispiele sind die Oxide von B, AI, Ga, In, Tl (Gruppe lila des PSE), Si, Ge, Sn, Pb (Gruppe IVa des PSE), As, Sb, Bi (Gruppe Va des PSE), Se, Te (Gruppe Via des PSE), Sc, Y, La, (Gruppe Illb des PSE), Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu (Lanthanoiden), Ti, Zr, Hf (Gruppe IVb des PSE), V, Nb, Ta (Gruppe Vb des PSE), Cr, Mo, W (Gruppe VIb des PSE), Mn, Re (Gruppe Vllb des PSE), sowie die Oxide von Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt (Gruppe VHIb des PSE).
Bevorzugt ist ein Bestandteil der Bestandteile a) und b) ausgewählt aus der Gruppe der Oxide von AI, Ga, In, Sn, Si, Ge, Zr und Ti, wobei die Bestandteile a) und b) unterschiedlich sind. Besonders bevorzugt sind beide Bestandteile a) und b) aus dieser Gruppe ausgewählt, wobei sich die Bestandteile a) und b) unterscheiden.
Die bevorzugte Menge der Bestandteile a) und b) beträgt unabhängig voneinander 0, 1 bis 5,0 Gew.-% - bezogen auf das Gewicht von Zinkoxid. Besonders bevorzugt liegen beide Bestandteile a) und b) in einer Menge von 0, 1 bis 5,0 Gew.-% - bezogen auf das Gewicht von Zinkoxid - vor. Bestandteil c)
Der Bestandteil c) ist ein einwertiges negativ geladenes Element. Es handelt sich dabei um ein Anion eines Elementes der Gruppe VIIA des PSE. Beispiele sind F, Cl, Br oder I, wobei Fluor besonders bevorzugt ist.
Der Bestandteil c) wird dem Sinterkörper in Form einer chemischen Verbindung zugeführt, die das Anion und mindestens ein Kation, insbesondere ein Metallkation, enthält. Das Kation der Verbindung ist vorzugsweise ein Element der Bestandteile a) oder b) und bevorzugt Zn2+ oder Al3+. Eine besonders bevorzugte Verbindung ist AIF3. Zusätzlich kann die Verbindung des Bestandteils c) weitere Bestandteile aufweisen, z.B. einen Sauerstoffanteil. Ein Beispiel für solche Verbindungen ist AlOxFy.
Der Bestandteil c) wird entweder zu den Bestandteilen a) und b) dazu dotiert oder ersetzt den Bestandteil b) . Bevorzugt ersetzt er den Bestandteil b).
Bevorzugt liegt der Bestandteil c) in einer Menge von mindestens 0, 1 Gew.-% - bezogen auf das Gewicht von Zinkoxid - vor.
Bevorzugt sind die erfindungsgemäßen ZnO-Sinterkörper mit zwei Bestandteilen dotiert, enthalten also entweder die Bestandteile a) und b) oder die Bestandteile a) und c).
Verwendung des Zinkoxid-Sinterkörpers als Sputter-Target
Gegenstand der Erfindung ist auch die Verwendung eines erfindungsgemäßen Zinkoxid-Sinterkörpers als Sputter-Target zur Herstellung von elektrisch leitfähigen, transparenten Schichten. Die so erhältlichen Schichten weisen im Vergleich zu den im Stand der Technik bekannten Schichten verbesserte elektrische Eigenschaften auf. Zur Herstellung der Schichten kann sowohl die Mittelfrequenz- Sputtertechnik als auch die Gleichstrom-Sputtertechnik angewandt werden. Wenn der ZnO-Sinter- körper der vorliegenden Erfindung eingesetzt wird, ist bei jedem der Sputter- Verfahren der Entladungsvorgang stabil, und es werden transparente elektrisch leitfähige Schichten erhalten, die einen sehr niedrigen Widerstand aufweisen und eine ausgezeichnete Transparenz haben.
Herstellung des Zinkoxid-Sinterkörpers
Der erfindungsgemäße ZnO-Sinterkörper lässt sich nach herkömmlichen, dem Fachmann bekannten Verfahren, beispielsweise nach dem in DE-T- 689 19 299 beschriebenen Verfahren, herstellen. Die Dispergierung der Dotierungselemente a) und b) kann sowohl mechanisch als auch chemisch, beispielsweise durch gemeinsame Fällung entsprechender Ausgangsverbindungen, erfolgen.
Zur Herstellung des erfindungsgemäßen ZnO-Sinterkörpers lassen sich grundsätzlich zwei Varianten verfolgen: Gemäß einer ersten Variante liegt der Bestandteil c) bereits vor dem Sintern in einem ZnO -Grünkörper vor, während der Bestandteil c) bei der zweiten Variante erst während des Sinterns in den ZnO-Grünkörper eingebracht wird.
Bei der Herstellung des erfindungsgemäßen ZnO-Sinterkörpers gemäß der ersten Variante kann ein den Bestandteil c) enthaltender Grünkörper beispielsweise unter Verwendung von chemischen Fällprozeduren erzeugt werden. Dazu wird z.B. eine Suspension aus ZnO-Körnern und einem löslichen Aluminiumsalz gebildet. Durch Zugabe von Flusssäure wird Aluminiumfluorid ausgefällt, das sich an den ZnO-Körnern anlagert. Diese mit Aluminiumfluorid versehenen ZnO -Körner werden anschließend getrocknet zu einem keramischen Formteil, einem so genannten Grünkörper, gepresst.
Für den Sintervorgang wird der Grünkörper in ein verschließbares Sintergefäß gelegt. Neben dem Grünkörper befindet sich in dem Sintergefäß zusätzlich arteigenes Material sowie ein Anteil des Bestandteils c) .
Die Sinterung erfolgt bei Druck- und Temperaturbedingungen, bei denen der zusätzliche Bestandteil c) in die Gasphase übergeht und ein Abdampfen des Bestandteils c) verhindert, d.h. einen Austritt des bereits in den Grünkörper eingebrachten Bestandteils c) aus dem Sinterkörper verhindert.
Das Herstellungsverfahren gemäß der zweiten Variante ist gegenüber der ersten Variante bevorzugt und auch Gegenstand der vorliegenden Erfindung. Bei dieser Variante wird ZnO in Gegenwart der Bestandteile/Dotierungselemente a), b) oder/und c) bei einer Temperatur und einem Druck gesintert, d. h. für eine gewisse Dauer auf eine gewisse Temperatur erhitzt. Die Sintertemperatur und der Druck werden so gewählt, dass ein gewisser Anteil zumindest eines der Bestandteile a), b) oder/und c) gasförmig vorliegt, wobei vorzugsweise das Dotierungselement c) bei dieser Temperatur flüchtig ist und die Gasphase mit dem Dotierungselement c) angereichert ist. Bevorzugt wird der den Sinterkörper umgebende Gasraum von der umgebenden Ofenatmosphäre durch ein verschließbares Sintergefäß getrennt, so dass die Konzentration der Dotierungselemente in der Gasphase im Sintergefäß höher als im umgebenden Ofenraum ist. Dieses Verfahren wird bevorzugt bei der Dotierung mit dem Bestandteil c) angewendet. Ausgangspunkt ist hierbei ein Grünkörper der neben ZnO nur die Bestandteile a) bzw. a) und b), nicht aber den Bestandteil c) enthält. Wie bei dem Verfahren gemäß der ersten Variante wird der Grünkör- per in ein verschließbares Sintergefäß gelegt, in dem sich neben dem Grünkörper zusätzlich arteigenes Material sowie ein Anteil des Bestandteils c) befindet.
Die Sinterung erfolgt vorzugsweise bei Druck- und Temperaturbedingun- gen, bei denen der in der Gasphase vorliegende zusätzliche Bestandteil c) während der Sinterung in den Grünkörper eindiffundiert.
Der zusätzliche Bestandteil c) dient bei der Sinterung in der zweiten Verfahrensvariante also als Diffusionsquelle für eine Dotierung des Sinter- körpers mit dem Bestandteil c), während er bei der Sinterung in der ersten Verfahrensvariante lediglich einen Austritt des zuvor bereits in den Grünkörper eingebrachten Bestandteils c) verhindert.
Beispiel
Nachfolgend wird die Herstellung eines erfindungsgemäßen ZnO-Sinterkörpers mittels des Verfahrens gemäß der zweiten Variante beschrieben. Ausgangspunkt ist hierbei ein Grünkörper, der neben ZnO nur Al3+, beispielsweise in Form von AI2O3, aber keine Fluorionen enthält. Der Grün- körper wird in ein Pulver aus tot gebranntem ZnO eingebettet, das sich in einem verschließbaren Tiegel aus AI2O3 befindet. Das ZnO-Pulver ist mit AIF3 angereichert, wobei das AIF3 in einer Menge von etwa 5 Gew.-% bezogen auf die Menge des pulverförmigen ZnO vorliegt. Neben dem AIF3 befindet sich auch ein geringer Anteil von AI2O3 in dem Tiegel. Die Sinterung erfolgt über einen Zeitraum von fünf Stunden bei Normaldruck und bei einer Sintertemperatur von 1300°C bis 1400°C. Das bei diesen Bedingungen in der Gasphase in Form von AIF3 bzw. HF vorliegende Fluor diffundiert während der Sinterung in den Grünkörper ein. Dabei werden Al3+ und F- im Gitter des ZnO eingebaut.
Das Ergebnis des Sintervorgangs ist ein erfindungsgemäßer ZnO-Sinter- körper, der Al3+ und F- im ZnO-Gitter enthält. Zusätzlich kann der Sinterkörper einen Anteil von AI2O3 enthalten, der in einer Menge von weniger als etwa 10 Gew.-% - bezogen auf die Masse des Zinkoxids - vorliegt.

Claims

Ansprüche
1. Zinkoxid-Sinterkörper, enthaltend a) 0,1 bis 20 Gew.-% eines Oxides eines mindestens dreiwertigen positiv geladenen Metalls, sowie b) 0,1 bis 20 Gew.-% eines - von a) unterschiedlichen - Oxides eines mindestens dreiwertigen positiv geladenen Metalls, und/ oder c) mindestens 0,05 Gew.-% eines einwertigen negativ geladenen Elements, -jeweils bezogen auf das Gewicht von Zinkoxid, wobei der Sinterkörper eine Sinterdichte von mindestens 5 g/ cm3 aufweist.
2. Zinkoxid-Sinterkörper nach Anspruch 1, dadurch g e k e n n z e i c h n e t , dass er die Bestandteile a), b) und c) enthält.
3. Zinkoxid-Sinterkörper nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t , dass der Bestandteil a) in einer Menge von 0,1 bis 5,0 Gew.-% - bezogen auf das Gewicht von Zinkoxid - vorliegt.
4. Zinkoxid-Sinterkörper nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t , dass der Bestandteil b) in einer Menge von 0,1 bis 5,0 Gew.-% - bezogen auf das Gewicht von Zinkoxid - vorliegt.
5. Zinkoxid-Sinterkörper nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t , dass der Bestandteil c) in einer Menge von mindestens 0,1 Gew.-% - bezogen auf das Gewicht von Zinkoxid - vorliegt.
6. Zinkoxid-Sinterkörper nach einem der Ansprüche 1 bis 5, dadurch g e k e n n z e i c h n e t , dass der Bestandteil a) und/ oder b) ausgewählt ist aus der Gruppe der Oxide von AI, Ga, In, Sn, Si, Ge, Zr und Ti, wobei die Bestandteile a) und b) unterschiedlich sind.
7. Zinkoxid-Sinterkörper nach einem der Ansprüche 1 bis 6, dadurch g e k e n n z e i c h n e t , dass der spezifische Widerstand des ZnO-Sinterkörpers kleiner als 0,1 Ω cm ist.
8. Verwendung eines Zinkoxid-Sinterkörpers nach einem der Ansprüche 1 bis 7 als Sputter-Target zur Herstellung von elektrisch leitfähigen, transparenten Schichten.
9. Verfahren zur Herstellung eines Zinkoxid-Sinterkörpers nach einem der Ansprüche 1 bis 7, wobei ZnO in Gegenwart der Bestandteile a), b) oder/und c) bei einer Temperatur und einem Druck gesintert wird, bei der Anteile der Bestandteile a), b) oder/und c) gasförmig vorliegen.
PCT/EP2004/006992 2003-06-30 2004-06-28 SINTERKÖRPER AUS ZnO WO2005001155A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003129338 DE10329338A1 (de) 2003-06-30 2003-06-30 Sinterkörper aus ZnO
DE10329338.8 2003-06-30

Publications (1)

Publication Number Publication Date
WO2005001155A1 true WO2005001155A1 (de) 2005-01-06

Family

ID=33546726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006992 WO2005001155A1 (de) 2003-06-30 2004-06-28 SINTERKÖRPER AUS ZnO

Country Status (2)

Country Link
DE (1) DE10329338A1 (de)
WO (1) WO2005001155A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194158A1 (de) * 2007-09-27 2010-06-09 Mitsubishi Materials Corporation ZnO-AUFDAMPFUNGSMATERIAL, HERSTELLUNGSVERFAHREN DAFÜR UND ZnO-SCHICHT
CN102534501A (zh) * 2012-03-29 2012-07-04 山东理工大学 太阳电池用共掺杂氧化锌透明导电薄膜的制备方法
WO2019068807A1 (de) * 2017-10-04 2019-04-11 Ceramtec Gmbh Teilstabilisierter zirkonoxid-werkstoff mit hoher sinteraktivität

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128743A (ja) * 1992-09-04 1994-05-10 Mitsubishi Materials Corp 透明導電膜とその製造方法およびそれに用いるターゲット
JPH06293956A (ja) * 1993-04-06 1994-10-21 Japan Energy Corp 酸化亜鉛系透明導電膜及びその作製法並びにそれに使用するスパッタリングターゲット
JPH11171539A (ja) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd ZnO系焼結体およびその製法
US6146765A (en) * 1994-08-17 2000-11-14 Asahi Glass Company Ltd. Transparent conductive film and method for its production, and sputtering target
EP1063317A1 (de) * 1998-03-05 2000-12-27 Asahi Glass Company Ltd. Sputtertarget, transparenter leitender film und verfahren zu dessen herstellung
EP1211679A1 (de) * 1999-08-12 2002-06-05 Nikko Materials Company, Limited Lichtdurchlassende schicht und sputtertarget zur herstellung dieser schicht
WO2004075212A1 (de) * 2003-02-19 2004-09-02 GfE Gesellschaft für Elektrometallurgie mbH Pvd-beschichtungsmaterial

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128743A (ja) * 1992-09-04 1994-05-10 Mitsubishi Materials Corp 透明導電膜とその製造方法およびそれに用いるターゲット
JPH06293956A (ja) * 1993-04-06 1994-10-21 Japan Energy Corp 酸化亜鉛系透明導電膜及びその作製法並びにそれに使用するスパッタリングターゲット
US6146765A (en) * 1994-08-17 2000-11-14 Asahi Glass Company Ltd. Transparent conductive film and method for its production, and sputtering target
JPH11171539A (ja) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd ZnO系焼結体およびその製法
EP1063317A1 (de) * 1998-03-05 2000-12-27 Asahi Glass Company Ltd. Sputtertarget, transparenter leitender film und verfahren zu dessen herstellung
EP1211679A1 (de) * 1999-08-12 2002-06-05 Nikko Materials Company, Limited Lichtdurchlassende schicht und sputtertarget zur herstellung dieser schicht
WO2004075212A1 (de) * 2003-02-19 2004-09-02 GfE Gesellschaft für Elektrometallurgie mbH Pvd-beschichtungsmaterial

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0184, no. 30 (C - 1236) 11 August 1994 (1994-08-11) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 01 28 February 1995 (1995-02-28) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11 30 September 1999 (1999-09-30) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194158A1 (de) * 2007-09-27 2010-06-09 Mitsubishi Materials Corporation ZnO-AUFDAMPFUNGSMATERIAL, HERSTELLUNGSVERFAHREN DAFÜR UND ZnO-SCHICHT
US20100243966A1 (en) 2007-09-27 2010-09-30 Mitsubishi Materials Corporation ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
EP2194158A4 (de) * 2007-09-27 2011-07-27 Mitsubishi Materials Corp ZnO-AUFDAMPFUNGSMATERIAL, HERSTELLUNGSVERFAHREN DAFÜR UND ZnO-SCHICHT
US8231812B2 (en) 2007-09-27 2012-07-31 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film
EP2508497A1 (de) * 2007-09-27 2012-10-10 Mitsubishi Materials Corporation ZnO-Aufdampfungsmaterial, Verfahren zu dessen Herstellung
US8409477B2 (en) 2007-09-27 2013-04-02 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film
CN102534501A (zh) * 2012-03-29 2012-07-04 山东理工大学 太阳电池用共掺杂氧化锌透明导电薄膜的制备方法
WO2019068807A1 (de) * 2017-10-04 2019-04-11 Ceramtec Gmbh Teilstabilisierter zirkonoxid-werkstoff mit hoher sinteraktivität

Also Published As

Publication number Publication date
DE10329338A1 (de) 2005-02-10

Similar Documents

Publication Publication Date Title
DE2845782C2 (de)
EP2912500B1 (de) Hoch absorbierendes schichtsystem, verfahren zur herstellung des schichtsystems und dafür geeignetes sputtertarget
DE60029706T2 (de) Transparentes leitendes laminat, sein herstellungsverfahren, und anzeigevorrichtung mit transparentem leitendem laminat
DE1909910A1 (de) Verfahren zum UEberziehen von Substraten mit leitenden Metalloxidfilmen durch kathodische Zerstaeubung
EP1284302B1 (de) Sputtertarget auf Basis von Titandioxid
DE112011100972T5 (de) Transparenter leitender Film
DE102014111935A1 (de) Zweilagiges Schichtsystem mit teilabsorbierender Schicht sowie Verfahren und Sputtertarget zur Herstellung dieser Schicht
DE60320375T2 (de) Nichtstöchiometrisches niox-keramik-target
DE112014001540T5 (de) Sinterkörper auf Zinkoxid-Basis, Verfahren zu dessen Herstellung, sowie Sputtertarget und transparenter, elektrisch leitfähiger Film
DE2228770A1 (de) Festelektrolyt mit Elektrode
DE2364320A1 (de) Leuchtstoffe aus oxysulfiden seltener erden
EP2947508A1 (de) Elektrochrome zelle und verfahren zu deren herstellung
WO2005001155A1 (de) SINTERKÖRPER AUS ZnO
EP0044326A1 (de) Transparente leitschicht, verfahren zu ihrer herstellung und ihre verwendung
DE1204738B (de) Elektrischer Schichtwiderstand
DE3205919C1 (de) Verfahren zur Herstellung von Festelektrolytschichten fuer galvanische Zellen
DE2102243A1 (de)
DE69820639T2 (de) Substrat mit einem durchsichtigen, leitfähigen Film beschichtet ist und Sputtertarget zur Abscheidung des Films
DE4329651A1 (de) Verfahren zur Herstellung elektrisch leitfähiger, infrarotreflektierender Schichten auf Glas-, Glaskeramik- oder Emailoberflächen
DE1909869A1 (de) Verfahren zur Herstellung leitender Metalloxidueberzuege
DE10055636C2 (de) Transparenter leitfähiger Film und Verfahren zur Herstellung des Films
DE10306925A1 (de) PVD-Beschichtungsmaterial
DE1816105B2 (de) Elektrisch leitfaehiges wismutruthenium-oxid und dessen verwendung zur herstellung eines elektrischen widerstands
DE102010051259B4 (de) Verfahren zum Aufbringen einer elektrisch leitfähigen und optisch transparenten Metallschicht, ein Substrat mit dieser Metallschicht sowie dessen Verwendung
DE102012203055B4 (de) Sputtertarget aus einem galliumdotiertes Zink enthaltenden Material und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase