WO2005000752A1 - 光ファイバ母材の製造方法及びその装置 - Google Patents

光ファイバ母材の製造方法及びその装置 Download PDF

Info

Publication number
WO2005000752A1
WO2005000752A1 PCT/JP2004/009229 JP2004009229W WO2005000752A1 WO 2005000752 A1 WO2005000752 A1 WO 2005000752A1 JP 2004009229 W JP2004009229 W JP 2004009229W WO 2005000752 A1 WO2005000752 A1 WO 2005000752A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
less
pipe
fiber preform
dehydrating agent
Prior art date
Application number
PCT/JP2004/009229
Other languages
English (en)
French (fr)
Inventor
Manabu Saitou
Shunichirou Hirafune
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to EP04746698A priority Critical patent/EP1650171A4/en
Priority to JP2005511097A priority patent/JP4198714B2/ja
Publication of WO2005000752A1 publication Critical patent/WO2005000752A1/ja
Priority to US11/312,363 priority patent/US7921676B2/en
Priority to US12/398,529 priority patent/US7946132B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Definitions

  • the present invention relates to a method for manufacturing an optical fiber preform capable of obtaining an optical fiber with reduced transmission loss due to hydroxyl groups in a wavelength region of 1280 to 160 nm, and an apparatus therefor.
  • OVD method vapor-phase synthesis method
  • C 1 2, SOC l 2, CC 1 4 vapor-phase synthesis method
  • a dehydrating agent containing a chlorine-based compound gas is supplied, and the optical fiber preform is heated to about 1000 to 1300 ° C. to remove moisture adsorbed in the porous glass.
  • an object of the present invention is to provide a method and apparatus for manufacturing an optical fiber preform that can reduce hydroxyl groups in an optical fiber preform to a sufficient level and that does not require special equipment or operating conditions.
  • the invention according to claim 1 is characterized in that, when a porous glass base material obtained by a gas phase synthesis method is subjected to a dehydration treatment with a dehydrating agent, the dehydration treatment is performed with a moisture permeability coefficient of 1.0 X 10 _ gcm. / cm 2 ⁇ s ⁇ cmHg (value at 40 ° C; the same applies hereinafter).
  • the invention according to claim 2 is characterized in that the ambient humidity of the pipe having the moisture permeability coefficient of 1.0 X 10—cm / cm 2 • s cmHg or less is maintained at 40% or less. This is a method for producing an optical fiber preform.
  • the invention according to claim 3 is the method for producing an optical fiber preform according to claim 1 or 2, wherein the dehydrating agent is supplied together with a carrier gas having a dew point of ⁇ 85 ° C. or less.
  • the invention according to claim 4 is the method for producing an optical fiber preform according to claim 3, wherein an inert gas having a dew point of 90 ° C or less is additionally supplied.
  • the invention according to claim 5 permeance through the dehydrating agent 1. 0 X 1 0- ng * cm / cm 2 - s ⁇ cmHg outer following pipe is surrounded by an external pipe at a gap, 2.
  • the gas having a dew point of ⁇ 80 ° C. or less flowing into the gap is a gas containing at least one of air, nitrogen, oxygen, carbon dioxide, argon, and helium. 6.
  • the invention according to claim 7 is an optical fiber preform manufacturing apparatus provided with a dehydrator for dehydrating a porous glass preform obtained by a gas phase synthesis method with a dehydrating agent.
  • the pipe for supplying the dehydrating agent of the dewatering device permeance 1. 0 X 1 0- 1 x g ⁇ cmXcm light off Aiba, characterized in that it uses less piping 2 ⁇ s ⁇ c mH g This is a base material manufacturing device.
  • the external pipe has a moisture permeability coefficient of 1.0 X 1 o- 10 g.
  • the moisture permeability coefficient in the present invention is defined as a value represented by a product of a diffusion coefficient and a solubility coefficient of water vapor for a pipe material.
  • FIG. 1 is a process flow chart illustrating an example of a method for manufacturing an optical fiber preform.
  • FIG. 2 is a schematic configuration diagram showing an example of the sintering and dewatering apparatus of the present invention.
  • FIG. 3 is a schematic configuration diagram illustrating another example of a supply pipe for a dehydrating agent.
  • dehydrating agent used in the dehydration process chlorine (C l 2), fluorine (F 2), salts of thionyl (SOC l 2), carbon tetrachloride (CC 1 4) is the reduction compounds selected from the like are used
  • dehydrating agents are used together with a carrier gas composed of an inert gas such as helium (He) gas or argon (Ar) gas. Since these dehydrating agents are corrosive to metals, it is common to use piping using synthetic resin as piping for supplying these dehydrating agents.
  • FIG. 1 is a process flow chart illustrating an example of a method for manufacturing an optical fiber preform.
  • a core rod Mc is prepared, and then glass fine particles are deposited on the outer peripheral surface of the core rod Mc, dehydrated, and sintered to obtain an optical fiber preform Z. This will be described below.
  • the tip of the rotatable and liftable seed rod 12 is placed in the oxyhydrogen flame of the core burner 13 and the clad burner 14, for example, silicon tetrachloride. (S i C 1 4) and tetrachloride germanium beam (Ge C l 4) is reacted a glass raw material Mo for the core rod such as to produce a porous Koa preform M 1 and allowed deposition of these fine glass particles.
  • the porous core base material M 1 is subjected to dehydration treatment by the dehydration sintering device 2. This is because at a temperature of about 1200 ° C, a carrier gas such as argon gas or helium gas containing 0.1 to 10% by volume of a dehydrating agent such as chlorine, thionyl chloride, or carbon tetrachloride. In an atmosphere of 0.1 to 10% by volume of oxygen, if necessary, the porous core base material M1 is brought into contact with a dehydrating agent to remove water, and the porous core base material is removed. It reduces the hydroxyl groups inside M1.
  • a carrier gas such as argon gas or helium gas containing 0.1 to 10% by volume of a dehydrating agent such as chlorine, thionyl chloride, or carbon tetrachloride.
  • a dehydrating agent such as chlorine, thionyl chloride, or carbon tetrachloride.
  • the dehydrated porous core base material M 1 is heated to about 1400 ° C. in a helium atmosphere (chlorine, fluorine, etc. may be added as necessary). 1 Heat at a temperature of 600 ° C and sinter to obtain a transparent glass core material M. Then, in the stretching device 3, the transparent vitrified core base material M is heated to about 1800: to 2000 ° C. in an inert gas atmosphere to be stretched and reduced in diameter to produce a desired core rod Mc. I do.
  • the core rod Mc obtained through the above steps is then horizontally (or vertically) rotated about the longitudinal axis by the optical fiber preform manufacturing apparatus 4, for example.
  • four glass raw material gas such as silicon chloride (S i C 1 4), are reacted in bar one Na 1 5 oxyhydrogen flame which moves along the longitudinal direction of the core rod M c, as glass particles Z o, said
  • the porous optical fiber preform Z1 is manufactured by uniformly depositing the core rod Mc on the outer peripheral surface.
  • the porous optical fiber preform Z1 is heated to about 1400 ° C. to 160 ° C. in a helium atmosphere (chlorine, fluorine, etc. may be added as necessary). Heating at a temperature of ° C and sintering to obtain a transparent vitrified optical fiber preform Z. At this time, if necessary, a dehydration treatment may be performed before the sintering treatment, as in the case of manufacturing the core rod.
  • a dehydration treatment may be performed before the sintering treatment, as in the case of manufacturing the core rod.
  • the optical fiber preform Z obtained in this manner is heated at about 800 ° C. to 2200 ° C. in an inert gas atmosphere by a wire drawing device under an inert gas atmosphere, and drawn.
  • a bare optical fiber with an outer diameter of 125 m Use a bare optical fiber with an outer diameter of 125 m.
  • resin coating is applied to the bare optical fiber to form an optical fiber with an outer diameter of 250 (can be changed as necessary).
  • a pipe for supplying a dehydrating agent to the dehydrating device 2 is a pipe made of a material having a moisture permeability of 1.0 X 10 _11 g ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less, more preferably 3.0 X 1 is to use a pipe made of 0_ 12 g ⁇ cmZcm 2 ⁇ s ⁇ cmHg or less of the material. This will be described with reference to the schematic diagram of the dehydrator illustrated in FIG.
  • the sintering and dewatering apparatus 2 of the present invention comprises an electric furnace 20 provided with an electric heater 21.
  • a supply pipe P1 for introducing a dehydrating agent is connected via a valve V1. And merges with the pipe P 2 through which inert gas such as a helium flows.
  • the main supply pipe P is connected to the main supply pipe P so as to communicate with the electric furnace 20.
  • the dehydrating agent supply pipe P 1 and the main supply pipe P also referred to as collectively for convenience the supply conduit dewatering agent flows "P d"
  • the moisture transmission coefficient 1. 0 X 10 - 11 ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less, more preferably 3. 0 X 1 0 - 12 g ⁇ cm / cm 2 ⁇ s ⁇ cmHg Ru der that the pipe made of the following materials.
  • a piping material having such a moisture permeability coefficient for example, polytetrafluoroethylene, high-density polyethylene, or the like is suitably used, and the wall thickness of the piping is preferably about 0.5 to 1.5 mm.
  • a pipe in which a corrosion-resistant resin such as a fluororesin, polyethylene, or vinyl chloride resin is coated on the inner surface of a metal pipe such as a stainless steel pipe can be used.
  • a pipe P5 is a discharge pipe for discharging the remaining dehydrating agent and carrier gas after the reaction from the electric furnace 20.
  • the electric heater 21 is energized to bring the inside of the furnace 20 to a temperature of about 1200 ° C., and the moisture permeability coefficient is 1.0 X 1 O—g ⁇ cm / cm 2 ⁇ s ⁇ cmHg
  • a mixed gas of a dehydrating agent and a carrier gas made of helium or the like is supplied to the supply pipe P1 made of the following material, and at the same time, a gas such as helium gas is discharged from the pipe P2.
  • An active gas is flowed, and these are combined at the main supply pipe P and supplied into the electric furnace 20.
  • the porous core preform Ml (or the porous optical fiber preform Z1) accommodated in the electric furnace 20 is exposed to a high-temperature dehydrating agent, and the internal hydroxyl groups are removed and reduced. .
  • a feed pipe permeance to supply the dehydrating agent in the baking and dehydration apparatus consists of 1. 0 X 1 0 one 1 x ⁇ cm / cm 2 ⁇ s ⁇ cmHg material following low value
  • the penetration of moisture from the surroundings into the supply pipe is reduced, and the effect of removing hydroxyl groups from the porous core preform Ml (or the porous optical fiber preform Z1) is significantly reduced.
  • an optical fiber preform having a significantly improved hydroxyl group can be obtained.
  • the gas used as the carrier gas is preferably an inert gas such as helium or argon having a dew point of ⁇ 85 ° C. or lower, more preferably ⁇ 90 ° C. or lower.
  • each of the pipes P 1 and P through which the dehydrating agent is flowed and supplied has an improved effect of removing hydroxyl groups when placed in an atmosphere having a humidity of 40% or less, more preferably 25% or less. I can do it.
  • an inert gas having a dew point of not more than 190 ° C. as the inert gas supplied from the pipe P2 also enhances the effect of removing hydroxyl groups.
  • a gas may be allowed to flow.
  • the gas having a dew point of not more than 80 ° C. flowing in the space 22 for example, one or more mixed gas selected from air, nitrogen, oxygen, carbon dioxide, argon, helium, etc. is used. be able to.
  • Piping P1 and P (for convenience, these are collectively referred to as "dehydrating agent supply piping Pd”. ) Material, 2 Humidity of surrounding environment to be installed, 3 Carrier gas flowing through this, ⁇ Dew point of inert gas, ⁇ Difference between single pipe and double pipe, etc.
  • the optical fiber manufactured under these conditions was measured for transmission loss (dB / km) at a wavelength of 1385 nm, and the effect was confirmed. In addition, the optical characteristics of the manufactured optical fibers were kept within a predetermined range except for optical transmission loss at a wavelength of 1385 nm.
  • Dehydrating agent supply pipe Pd is fired using a pipe made of a material with a different moisture permeability coefficient, and supplied to the dehydration unit 2 to obtain an optical fiber preform Z, which is drawn.
  • the transmission loss (dBZkm) of the obtained optical fiber (125 m outside diameter) at a wavelength of 1385 nm was measured.
  • the supply pipe Pd for the dehydrating agent used was 5 m in length and 6.3 mm in outer diameter.
  • PTFE e. Retainer Bok Rahul old Roechiren
  • the moisture permeation coefficient of 10 X 10- 12 g ⁇ cmZcm 2 ⁇ s • cmHg or more pipes, rapidly to transmission loss is 0. 30 dBZkm or more at a wavelength of 1385 nm To rise.
  • the moisture permeation coefficient of 10 X 10- 12 g ⁇ c mXcm 2 ⁇ s ⁇ cmHg or less of the pipe the transmission loss at a wavelength of 1385 nm is remained low below 0. 30 dBZkm, especially permeance Is 3.
  • 0 X 10- 12 In the g ⁇ cm / cm 2 ⁇ s ⁇ c mH g or less of the pipe, the transmission loss was found to retain an extremely low value of 0. 28 dB / km.
  • moisture permeation coefficient is 1. 0 X 10- ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less of the pipe, more preferably permeance 3. 0 X 10- 12 g ⁇ cm / cm 2 ⁇ s ⁇ cmHg be less piping, it was confirmed to be effective to allowed to reduce the transmission loss at a wavelength of 1385 nm.
  • the dehydrating agent supply pipe P d change the moisture permeability coefficient X surface area in consideration of the moisture permeability coefficient and the surface area (related to the length and outer diameter) of the pipe with which the dehydrating agent comes into contact.
  • the sintering dehydrating agent is supplied to the dehydrating unit 2 using pipes with different values, and an optical fiber preform Z is obtained.
  • the optical fiber wavelength obtained by drawing this is 1385 nm. Was measured for the transmission loss.
  • moisture permeation coefficient X surface area 10 X 10_ 9 g ⁇ cmZc As apparent from Table 2, moisture permeation coefficient X surface area 10 X 10_ 9 g ⁇ cmZc. The m 2 ⁇ s ⁇ cmHg or more pipes, the transmission loss at a wavelength of 1385 nm is rapidly increased to 0. 30 dBZkm more . And the moisture permeability x surface area is 1 0 The X 10- 9 g ⁇ c / cm 2 ⁇ s ⁇ c mH g or less of the pipe, the transmission loss at a wavelength of 1385 eta m was found to retain the following low value 0. 3 dBZ km.
  • permeance X table area 1 0 X 10- 8 g ⁇ cm / cm 2 ⁇ s ⁇ c mH g so that the following values It was confirmed that supply with a simple pipe is effective in reducing transmission loss at a wavelength of 1385 nm.
  • the transmission loss of the manufactured optical fiber at a wavelength of 1385 nm becomes 0.29 dB / km or more, and in an environment with a humidity of 40% or less.
  • the transmission loss of the manufactured optical fiber is less than 0.29 dBZkm, especially when the humidity is less than 25%, the transmission loss is less than 0.28 dBBZkm. It has been found.
  • the supply of the dehydrating agent to the sintering and dehydrating apparatus 2 can be performed with the supply pipe Pd arranged in an environment with a humidity of 4.0% or less, and the wavelength of the optical fiber to be manufactured is 1385 nm. It was confirmed that it was effective in reducing the transmission loss in, and that it was more effective if the humidity was kept at 25% or less.
  • the transmission loss of the manufactured optical fiber becomes 0.30 dBZkm or more, and when the dew point is less than 85, it is manufactured. It was found that the transmission loss of the optical fiber was less than 0.30 dBZkm, and that the transmission loss was less than 0.28 dB / km when the dew point was less than 95 ° C.
  • the inert gas serving as the carrier gas supplied to the sintering and dewatering apparatus 2 can be kept at a dew point of not more than 90, preferably not more than -95 ° C, to reduce the transmission loss of the manufactured optical fiber. It was confirmed that it was effective to reduce
  • the supply pipe P d for supplying the dehydrating agent to the sintering dewatering device 2 is connected to an internal pipe P x made of a material with a moisture permeability of 1.0 X 10—g ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less.
  • a dehydrating agent was circulated in Px and supplied to the sintering and dewatering device 2, and the transmission loss of the optical fiber manufactured at that time was measured.
  • moisture transmission coefficient is similar 3.
  • X 1 0 one 1 2 ⁇ cm / cm 2 ⁇ s ⁇ cmHg, length 5 m, the outer diameter 6. 3 mm
  • the dehydrating agent was supplied to the sintering dehydrator 2 using only a single tube Px, and the transmission loss was compared with that of the optical fiber manufactured at that time.
  • Table 6 As is evident from Table 6, the dehydrating agent was burned in a double pipe with the inner pipe Px surrounding the outer pipe Po with a gap kept around it and a nitrogen gas with a dew point of 88 ° C flowing through the gap.
  • the transmission loss of the optical fiber manufactured when supplied to the condensing and dewatering device 2 is about 0.273 dBZkm, which is a single tube with only the inner tube Px without the outer tube Po, and It was confirmed that the transmission loss when supplied to the sintering and dewatering unit 2 was smaller than about 0.278 dBZkm, and was effective in reducing the transmission loss.
  • an optical fiber preform having a very small hydroxyl group content it is possible to obtain an optical fiber preform having a very small hydroxyl group content, and thus to manufacture an optical fiber having a very small transmission loss at a wavelength of about 1385 nm due to hydroxyl groups. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

光ファイバ母材中の水酸基を十分なレベルまで低減でき、しかも特別の装置や操作条件を必要とすることのない脱水方法とそのための装置を得る。気相合成法により光ファイバ母材を製造するに当たって、ガラス微粒子を堆積せしめて得られる多孔質コア母材を脱水剤で脱水処理する際、透湿係数が1.0×10-11g・cm/cm2・s・cmHg以下の材料からなる供給配管及び主供給管を通して脱水剤を脱水装置へ供給して脱水処理を行い、光ファイバ母材を製造する。

Description

光ファイバ母材の製造方法及びその装置 冃景技術
本発明は、 波長 1 28 0〜 1 60 0 nmの領域での水酸基に起因する伝送 損失を低減した光ファイバを得ることができる光ファイバ母材の製造方法及 びその装置に関するものである。
光ファイバを構成するガラス中に水酸基が存在すると、 この水酸基に起因 して波長 1 38 5 nm付近に吸収が現れ、 これが光ファイバの伝送損失の一 因となっている。
このため、 従来より、 例えば日本特開昭 57— 1 7433号公報にあるよ うに光ファイバ母材を製造する過程において、 脱水工程を設けて光ファイバ 母材中に含まれる水酸基を低減することが行われている。
この脱水方法は、 VAD法、 OVD法などの気相合成法により得られた多 孔質ガラス母材を脱水装置に収め、 この脱水装置内に C 12、 SOC l 2、 C C 14などの塩素系化合物ガスを含む脱水剤を供給し、 光ファイバ母材を 1 0 00〜 1 3 00°C程度の加熱し、 多孔質ガラス中に吸着している水分を除去 するものである。
しかしながら、 この従来の脱水方法では、 脱水効果が不十分な場合があ り、 その改善が求められていた。 ― · このためのものとして、 日本特開平 1 1一 1 7 1 57 5号公報、 日本特開 2002 - 1 87 733号公報に開示の方法などがある。
しかし、 これらの方法は、 特別の設備、 例えばプラズマエッチング装置を 必要としたり、 大型の光ファイバ母材を製造することが困難で、 操作条件が 複雑であ たりして、 実用性に乏しい欠点があった。
また、 このような光ファイバ母材の脱水処理に関する先行特許としては、 上述のもの以外に、 米国特許第 6 1 3 145号、 米国特許公開第 2002 - 007 3741号など、 多数のものがある。
よって、 本発明における課題は、 光ファイバ母材中の水酸基を十分なレべ ルまで低減でき、 しかも特別の装置や操作条件を必要とすることのない光フ アイバ母材の製造方法とその装置を得ることにある。 発明の開示
かかる課題を解決するため、
請求項 1にかかる発明は、 気相合成法により得られた多孔質ガラス母材に 脱水剤による脱水処理を施す際に、 この脱水処理を、 透湿係数 1. 0 X 1 0 _ g · cm/cm2 · s · cmHg (40°Cにおける値、 以下同じ) 以下の 配管を通して供給される脱水剤によって行うことを特徴とする光ファイバ母 材の製造方法である。
請求項 2にかかる発明は、 前記透湿係数 1. 0 X 1 0— · cm/cm2 • s · cmHg以下の配管の周囲湿度を 40%以下に保持することを特徴と する請求項 1記載の光フアイパ母材の製造方法である。
請求項 3にかかる発明は、 前記脱水剤が、 露点が— 8 5°C以下のキャリア ガスと共に供給されることを特徴とする請求項 1または 2記載の光ファイバ 母材の製造方法である。
請求項 4にかかる発明は、 露点一 90°C以下の不活性ガスをさらに追加し て供給することを特徴とする請求項 3記載の光ファイバ母材の製造方法であ る。
請求項 5に係る発明は、 前記脱水剤を通す透湿係数 1. 0 X 1 0— ng * c m/cm2 - s · cmHg以下の配管の外側が空隙を隔てて外部配管で囲繞さ れ、 前記空隙に露点一 80°C以下のガスを流すことを特徴とする請求項 1記 載の光ファイバ母材の製造方法である。 請求項 6にかかる発明は、 前記空隙に流す露点— 80°C以下のガスは、 空 気、 窒素、 酸素、 二酸化炭素、 アルゴン及びヘリウムの種類のうちの少なく とも 1種類のガスを含むガスであることを特徴とする請求項 5記載の光ファ ィパ母材の製造方法である。
請求項 7にかかる発明は、 気相合成法により得られた多孔質ガラス母材を 脱水剤により脱水する脱水装置を備えた光ファイバ母材の製造装置におい て、
前記脱水装置の脱水剤を供給するための配管に、 透湿係数 1. 0 X 1 0—1 xg · cmXcm2 · s · c mH g以下の配管を用いたことを特徴とする光フ ァィバ母材の製造装置である。
請求項 8にかかる発明は、 前記透湿係数 1. 0 X 1 0— n g · cmZcm2
• s · cmHg以下の配管が、 透湿係数と配管の表面積との積が 1. 0 X 1 0一8 g · cm/s · cmHg以下を保持するように配管されていることを特 徴とする請求項 7記載の光ファイバ母材の製造装置である。
請求項 9にかかる発明は、 前記透湿係数 1. 0 X 1 0— · cm/cm2
• s · cmHg以下の配管が、 その外側が空隙を隔てて外部配管で囲繞され ていることを特徴とする請求項 7または 8に記載の光ファイバ母材の製造装 置である。
請求項 1 0にかかる発明は、 前記外部配管は、 透湿係数 1. 0 X 1 o-10g
• cm/cm2 * s · cmHg以下の配管であることを特徴とする請求項 9記 載の光ファイバ母材の製造装置である。
本発明における透湿係数とは、 水蒸気の配管材料に対する、 拡散係数と溶 解度係数の積で表される値として定義される。
本発明の光ファイバ母材の製造方法及ぴその装置によれば、 脱水装置に脱 水剤を供給する配管内に外部から侵入する水分が減少するので、 脱水処理時 の雰囲気中の水分が減少し、 多孔質ガラス母材中の水分をよく除去でき、 脱 水効果が十分となり、 水分量の少ない多孔質ガラス母材を得ることができ る。 また、 装置構成として高価な装置を用いることがなく、 簡単な装置の改 良で済む。 さらに、 時間を要する複雑な操作管理をする必要もない。
その結果、 シングルモード光ファイバの波長 1 3 8 5 n mの水酸基に起因 する伝送損失ピークを低減せしめることが可能となり、 例えば 1 2 8 0 n m 〜1 6 0 0 n mの波長領域で望ましい伝送特性を有する光ファイバを安定し て、 容易に製造することが可能となる。 図面の簡単な説明
図 1は、 光ファイバ母材の製造方法の一例を説明する工程系統図である。 図 2は、 本発明の焼結脱水装置の一例を示す概略構成図である。
図 3は、 脱水剤の供給配管の他の一例を示す概略構成図である。 発明を実施するための最良の形態
以下、 本発明を詳しく説明する。
脱水処理に用いられる脱水剤として、 塩素 (C l 2) 、 フッ素 (F 2) 、 塩 化チオニール (S O C l 2) 、 四塩化炭素 (C C 1 4) などから選択される化 合物が用いられ、 これら脱水剤は、 ヘリウム (H e ) ガスやアルゴン (A r ) ガスなどの不活性ガスからなるキヤリアガスに同伴されて使用されてい る。 これらの脱水剤は、 金属に対して腐食性を有するため、 これら脱水剤を 供給するための配管として、 合成樹脂を使用した配管を使用するのが一般的 である。
しかしながら、 これらの配管が合成樹脂製であることから、 その透湿性が 金属よりも高く、 外部から微量の水分が配管内部に侵入して、 配管内を流れ る脱水剤に混入し、 水分が微量に混入した脱水剤によって脱水処理が行われ ることになり、 脱水効果が低下することがある。 本発明者はかかる事実に着目してこの発明を完成させたものである。
以下、 本発明の光ファイバ母材の製造方法の実施形態を図面を参照して説 明する。
図 1は、 光ファイバ母材の製造方法の一例を説明する工程系統図である。 光ファイバ母材 Zの作製に当たっては、 先ずコアロッド Mcを用意し、 次い で該コアロッド Mcの外周面にガラス微粒子を堆積し、 脱水、 焼結せしめて 光ファイバ母材 Zとするものであり、 これを以下に説明する。
[ I ] コアロッド M cの作製 '
先ず VAD法によるコア母材作製装置 1で、 反応容器 1 1中で、 回転かつ 引き上げ可能な種棒 1 2の先端に、 コアバーナー 1 3及びクラッドバーナー 14の酸水素火炎中で例えば四塩化珪素 (S i C 14) 及び四塩化ゲルマニウ ム (Ge C l 4) などのコアロッド用ガラス原料 Moを反応させて、 これらの ガラス微粒子を堆積せしめて多孔質コァ母材 M 1を作製する。
次いで、 前記多孔質コア母材 M 1を脱水焼結装置 2により脱水処理する。 これは、 およそ 1 200°Cの温度下で、 0. 1〜 1 0容量%の塩素、 塩化チ オニール、 四塩化炭素などの脱水剤が含まれたアルゴンガス、 ヘリウムガス などのキャリアガス (なお、 必要に応じて 0. 1〜 1 0容量%の酸素を添加 してもよい) の雰囲気下で、 多孔質コア母材 M 1を脱水剤と接触せしめて脱 水し、 多孔質コア母材 M 1の内部の水酸基を減少させるものである。
続いて、 脱水焼結処理装置 2で、 前記脱水処理された多孔質コア母材 M 1 を、 ヘリウム雰囲気 (必要に応じて塩素、 フッ素等を添加しても良い) で、 およそ 1400°C〜 1 600°Cの温度で加熱して焼結処理せしめて、 透明ガ ラス化したコア母材 Mを得る。 そして、 延伸装置 3で、 前記透明ガラス化し たコア母材 Mを不活性ガス雰囲気下で、 約 1 800 :〜 2000°Cに加熱し て延伸、 縮径せしめて、 所望するコアロッド M cを製作する。
[ I I ] 光ファイバ母材 Zの作製 引き続いて、 上記工程を経て得られたコアロッド M cは、 次いで、 光ファ ィバ母材作製装置 4により、 水平 (又は垂直) にして長手方向の軸を中心に して回動せしめて、 例えば四塩化珪素 (S i C 14) などのガラス原料ガス を、 コアロッド M cの長手方向に沿って移動するバ一ナ 1 5の酸水素火炎中 で反応させて、 ガラス微粒子 Z oとして、 前記コアロッド Mcの外周面に均 一に堆積せしめて多孔質光ファイバ母材 Z 1を作製する。
続いて、 焼結処理装置 5で、 前記多孔質光ファイバ母材 Z 1を、 ヘリウム 雰囲気 (必要に応じて塩素、 フッ素等を添加しても良い) で、 およそ 140 0°C〜 1 6 00°Cの温度で加熱して焼結処理せしめて、 透明ガラス化した光 ファイバ母材 Zを得る。 この時、 必要に応じて、 焼結処理の前にコアロッド 作製の時と同様、 脱水処理を行っても良い。
かくして、 このようにして得られた光ファイバ母材 Zは、 線引き装置で、 不活性ガス雰囲気下でその先端部を約 1 8 00°C〜 2200°Cに加熱し、 線 引き加工して、 外径 1 2 5 mの光ファイバ裸線とする。 さらに、 この光フ アイバ裸線上に樹脂被覆を施して、 外径が 250 (必要に応じて変更可 能) の光ファイバ素線とする。
そして、 本発明では、 上記各工程よりなる光ファイバ母材の製造方法にお いて、 前記多孔質コア母材 M 1及び多孔質光ファイバ母材 Z 1を脱水処理す る際、 それぞれの焼結脱水装置 2に脱水剤を供給する配管を、 透湿係数が 1. 0 X 1 0 _11 g · c m/ c m2 · s · c mH g以下の材料からなる配管、 より好ましくは 3. 0 X 1 0_12g · cmZcm2 · s · cmHg以下の材料 からなる配管を使用するものである。 これを図 2に図示する脱水装置の説明 概略図により説明する。
図 2において、 本発明の焼結脱水装置 2は、 電気ヒータ 2 1を設けた電気 炉 20よりなり、 この電気炉 20には、 脱水剤を導入する供給配管 P 1が、 弁 V 1を介して、 ヘリゥム等の不活性ガスが流れる配管 P 2と合流したう え、 主供給管 Pに合流連結し、 電気炉 20内に連通するように配設されてい る。 そして、 前記脱水剤供給配管 P 1及び主供給管 P (これら脱水剤が流通 する供給管路を便宜上まとめて 「P d」 とも記す) を、 透湿係数が 1. 0 X 10 -11 · cm/cm2 · s · cmHg以下、 より好ましくは 3. 0 X 1 0 -12g · cm/cm2 · s · cmHg以下の材料からなる配管としたものであ る。
そしてこのような透湿係数を有する配管材料として、 例えばポリテトラフ ルォロエチレン、 高密度ポリエチレンなどが好適に用いられ、 配管の肉厚を 0. 5〜1. 5 mm程度とすることが好ましい。 また、 配管材料として、 ス テンレス鋼などの金属パイプ内面に、 フッ素樹脂、 ポリエチレン、 塩化ビニ ル樹脂などの耐食性樹脂のコーティングを施したパイプも使用可能である。 また、 図 2において、 管 P 5は、 電気炉 20内から反応後の残余の脱水剤 やキヤリアガスを排出するための排出管である。
次いで、 電気ヒーター 2 1を通電して炉 20内を約 1 200°Cの温度にす るとともに、 前記透湿係数が 1. 0 X 1 O— g · cm/cm2 · s · c mH g以下の材料からなる供給配管 P 1に脱水剤とヘリウムなどからなるキヤリ ァガス (必要に応じて酸素を添加してもよい) との混合ガスを流し、 これと 同時に配管 P 2からヘリゥムガスなどの不活性ガスを流し、 主供給管 Pにお いてこれらを合流させて電気炉 20内に供給する。
そして、 電気炉 20内に収容した多孔質コア母材 M l (又は多孔質光ファ ィバ母材 Z 1) は、 高温の脱水剤に曝されて、 内部の水酸基が除去されて減 少する。
このように、 焼結脱水装置での脱水剤の供給に透湿係数が 1. 0 X 1 0一1 x · cm/cm2 · s · cmHg以下の低い値の材料からなる供給配管を使 用したので、 周囲からの水分の供給配管内への侵入が低減され、 多孔質コア 母材 M l (又は多孔質光ファイバ母材 Z 1) からの水酸基の除去効果を著し く向上し、 水酸基を著しく低減した光フアイバ母材が得られる。
その結果、 この光ファイバ母材から得られたシングルモード光ファイバで は、 波長 1 385 nmでの水酸基の存在に起因する伝送損失を低減させるこ とが可能となり、 しかも高価な設備を付加したり、 複雑な製造条件をもって 加工することなく、 安価な装置をもって、 安定した品質を保持した製品を容 易に製造することが可能となる。
また、 前記キャリアガスとして使用するガスは、 その露点が— 85°C以 下、 より好ましくは— 90°C以下のヘリウム、 アルゴンなどの不活性ガスで あることが好ましい。
その上、 前記脱水剤を流して供給する各配管 P 1及び Pは、 湿度が 40 % 以下、 より好ましくは 25 %以下の雰囲気下に配置されるとより一層、 水酸 基の除去効果を向上せしめることが出来る。
また、 配管 P 2から供給する不活性ガスとして、 その露点が一 90 °C以下 の不活性ガスを用いることも水酸基除去効果を高めることになる。
更に、 前記脱水剤を供給する主供給配管 P 1及び配管 P 2の他の態様とし て、 図 3に図示するように、 透湿係数が 1. O X I O—n g ' cmZcm2. s · cmHg以下の材料からなる内部管 P Xの外側に空隙 22を隔てて外部 管 P oで囲繞した、 いわゆる二重管とし、 前記空隙 22に露点一 80°C以 下、 より好ましくは— 8 5 °C以下のガスを流すようにしてもよい。 この場 合、 前記空隙 22に流す露点一 80°C以下のガスとしては例えば、 空気、 窒 素、 酸素、 二酸化炭素、 アルゴン、 ヘリウム等から選ばれた 1種又はそれ以 上の混合ガスを用いることができる。
(実施例)
本発明の実施例として、 本発明の作用効果を検証するため、 以下の実験を 試みた。
配管 P 1及び P (便宜上これらをまとめて 「脱水剤供給配管 P d」 と記 す) の①材質、 ②配設される周囲環境の湿度、 ③これに流すキャリアガス及 ぴ不活性ガスの露点、 ④一重管と二重管との差異、 等の条件の変えて光ファ ィバを製造し、 この条件の違いによって製造された光ファイバについて、 波 長 1385 nmにおける伝送損失 (dB/km) を測定して、 効果を確認し た。 なお、 上記製造した各光ファイバは、 波長 1385 nmにおける伝送損 失以外の光学特性は、 所定の範囲内に保たれるようにした。
<実施例 1 >
脱水剤の供給配管 P dとして、 透湿係数の異なる材料からなる配管を使用 して脱水剤を焼.結脱水装置 2に供給して、 光ファイバ母材 Zを得、 これを線 引きして得た光ファイバ (外径 125 m) の波長 1385 nmにおける伝 送損失 (dBZkm) を測定した。 なお、 用いた脱水剤の供給配管 P dは、 長さ 5m、 外径 6. 3mmとした。
その結果、 得られたデータを表 1に表示する。 表 1
Figure imgf000011_0001
PTFE:ホ。リテ卜ラフル才ロェチレン 表 1から明らかなように、 透湿係数が 10 X 10— 12g · cmZcm2 · s • cmHg以上の配管では、 波長 1385 nmにおける伝送損失が 0. 30 dBZkm以上に急激に上昇する。 そして、 透湿係数が 10 X 10— 12g · c mXcm2 · s · cmHg以下の配管では、 波長 1385 nmにおける伝送損 失は 0. 30 dBZkm以下の低い値に留まっており、 特に透湿係数が 3. 0 X 10— 12g · cm/ cm2 · s · c mH g以下の配管にあっては、 伝送損 失は 0. 28 dB/ kmと極めて低い値を保持することが判明した。
かかる結果から、 焼結脱水装置 2に脱水剤を供給するには、 透湿係数が 1. 0 X 10— · cm/cm2 · s · cmHg以下の配管、 より好ましく は透湿係数が 3. 0 X 10— 12g · cm/cm2 · s · cmHg以下の配管と することが、 波長 1385 nmにおける伝送損失を低減せしめるのに効果的 であることが確認された。
<実施例 2 >
脱水剤の供給配管 P dとして、 透湿係数と脱水剤が接触する管の表面積 (長さと、 外径に関係) を考慮して、 透湿係数 X表面積を変化せしめ (長さ や、 外径を変えて) 、 それぞれこの値が異なる配管を使用して脱水剤を焼結 脱水装置 2に供給して、 光ファイバ母材 Zを得、 これを線引きして得た光フ アイバの波長 1385 nmにおける伝送損失を測定した。
その結果、 得られたデータを表 2に表示する。
Figure imgf000012_0001
表 2から明らかなように、 透湿係数 X表面積が 10 X 10_9g · cmZc. m2 · s · cmHg以上の配管では、 波長 1385 nmにおける伝送損失が 0. 30 dBZkm以上に急激に上昇する。 そして、 透湿係数 x表面積が 1 0 X 10— 9 g · c / cm2 · s · c mH g以下の配管では、 波長 1385 η mにおける伝送損失は 0. 3 dBZ km以下の低い値を保持することが判明 した。
かかる結果から、 焼結脱水装置 2に脱水剤を供給するには、 透湿係数 X表 面積が 1. 0 X 10—8 g · c m/cm2 · s · c mH g以下の値になるような 配管にして供給することが、 波長 1385 nmにおける伝送損失を低減せし めるのに効果的であることが確認された。
<実施例 3 >
焼結脱水装置 2に供給する脱水剤の供給配管 P dが配置される周囲環境、 特に環境の湿度の差異で、 製造される光ファイバの波長 1385 nmにおけ る伝送損失にどのように影響するかを検証した。 脱水剤の供給配管 P とし て、 透湿係数が 2. 5 X 10— 12g · cm/cm2 · s · cmHgで、 長さ 5 m、 外径 6. 3mmの配管を使用し、 この脱水剤の供給配管 P dを配置した 室内の湿度を変化せしめて、 それぞれの湿度の環境下に配置された供給配管 Pdを有する焼結脱水装置 2を用いて製造された光ファイバの波長 1385 nmにおける伝送損失を測定した。
その結果、 得られたデータを表 3に表示する。 表 3
配管が設置された 波長 1385nmにおける損失 室内の湿度 % dB/km
19.5 0.276
24.8 0.276
27.0 0.277
35.4 0.283
40.1 0.285
45.7 0.290
58.3 0.293 表 3から明らかなように、 周囲の湿度が 40 %以上になると、 製造された 光ファイバの波長 1385 nmにおける伝送損失が 0. 29 dB/km以上 の値となり、 そして湿度 40 %以下の環境下での配管 P dの配置で、 製造さ れた光ファイバの伝送損失は 0. 29 dBZkm以下の値となり、 特に 25 %以下の湿度では、 その伝送損失は 0. 28 d BZkm以下の値となること が判明した。
かかる結果から、 焼結脱水装置 2に脱水剤を供給するには、 湿度 4.0%以 下の環境下に配設せしめた供給配管 P dで行うことが、 製造される光フアイ バの波長 1385 nmにおける伝送損失を低減せしめるのに効果的であり、 更に湿度 25 %以下に保持すればより一層効果的であることが確認された。 <実施例 4>
焼結脱水装置 2に脱水剤を供給するためのキャリアガスの露点が、 製造さ れる光ファイバの波長 1385 nmにおける伝送損失にどのように影響する かを検証した。 脱水剤の供給配管 Pdとして、 透湿係数が 3. 1 X 10— 12g • cm/cm2 - s · cmHgで、 長さ 5m、 外径 6. 3mmの配管を使用 し、 この配管 P dを通して脱水剤を、 ヘリゥムガスからなるキヤリァガスに 同伴させて、 脱水装置 2及び脱水装置 6に供給し、 そのキャリアガスの露点 を変化せしめて、 光ファイバを製造した。 そしてそれぞれの露点の異なるキ ャリァガスで脱水剤を送給した時に、 それぞれ製造された光ファイバの波長 1385 nmにおける伝送損失を測定した。
その結果、 得られたデータを表 4に表示する。
(以下、 余白) 表 4
Figure imgf000015_0001
表 4から明らかなように、 キヤリァガスの露点が— 85°C以上になると、 製造された光ファイバの伝送損失が 0. 30 d BZkm以上の値となり、 そ して露点を一 85°C以下にすると、 製造された光ファイバの伝送損失が 0. 30 d BZkm以下の値となり、 更に露点を— 90 以下にすると、 伝送損 失は 0. 28 d BZkm以下の値となることが判明した。
かかる結果から、 '靡結脱水装置 2に脱水剤を供給するのに使用されるキヤ リアガスの露点を _85°C以下、 より好ましくは一 90°C以下に保持せしめ ることが、 製造される光ファイバの伝送損失を低減せしめるのに効果的であ ることが確認された。
<実施例 5>
焼結脱水装置 2に供給されるガスの大部分を占める配管 P 2からの不活性 ガスの露点が、 製造される光ファイバの波長 1385 nmにおける伝送損失 にどのように影響するかを検証した。
脱水剤の供給配管は、 透湿係数が 3. 1 X 10— 12g · cmZcm2 · s · cmHgで、 長さ 5m、 外径 6. 3mmの配管を使用し、 キャリアガスとし て露点— 97°Cのヘリウムを使用した。 配管 P 2から供給されるヘリウムガ スの露点を変化させて、 光ファイバを製造した。
そして、 それぞれの露点の異なるヘリウムガスを供給したときに、 それぞ れ製造された光ファイバの波長 1385 nmにおける伝送損朱を測定した。 結果を表 5に示す。 表 5
Figure imgf000016_0001
表 5から明らかなように、 キャリアガスのヘリウムガスの露点が— 90°C 以上となると、 製造された光ファイバの伝送損失が 0. 30 dBZkm以上 となり、 そして露点を一 85 以下にすると製造された光ファイバの伝送損 失が 0. 30 d BZkm以下の値となり、 さらに露点を一 95 °C以下にする と伝送損失は 0. 28 dB/km以下の値となることが判明した。
かかる結果から、 焼結脱水装置 2に供給されるキャリアガスとなる不活性 ガスは、 その露点を一 90 以下、 好ましくは— 95 °C以下に保持せしめる ことが、 製造される光ファイバの伝送損失を低減させるのに効果的であるこ とが確認された。
<実施例 6>
焼結脱水装置 2に脱水剤を供給するための供給配管 P dを、 透湿係数が 1. 0 X 10— g · cm/cm2 · s · c mH g以下の材料でなる内部管 P xの外側に空隙 22を隔てて外部管 P oで囲繞した、 いわゆる二重管とする こと、 そして、 前記空隙 22に露点一 80°C以下のガスを流すようにした場 合の効果について検証した、
検証は、 透湿係数が 3. 1 X 10— 12g · cm/ cm2 · s · cmHgであ る、 長さ 5m、 外径 6. 3 mmの管を内部管 P xとして、 その外側に空隙を 保って塩化ビニル樹脂製の外部管 P oを囲繞した二重管とし (図 3参照) 、 前記空隙 22に露点一 88°Cの窒素ガスを流した配管を使用して、 前記内部 管 Px内に脱水剤を流通せしめて、 これを焼結脱水装置 2に供給して、 その 時に製造された光ファイバの伝送損失を測定した。
そして、 前記外部管 P oを配置しない、 透湿係数が同様の 3. 1 X 1 0一1 2 · cm/cm2 · s · cmHgである、 長さ 5m、 外径 6. 3 mmを内部 管 P xのみの単管で、 脱水剤を焼結脱水装置 2に供給して、 その時に製造さ れた光フアイパの伝送損失と比較した。
その結果、 得られたデータを表 6に表示する。 表 6
Figure imgf000017_0001
表 6から明らかなように、 内部管 Pxとして、 その外側に空隙を保って外 部管 P oを囲繞し、 空隙に露点一 88°Cの窒素ガスを流した二重管で脱水剤 を焼結脱水装置 2に供給した場合に製造された光ファイバの伝送損失は、 約 0. 2 73 dBZkmであり、 これは外部管 P oを配置しない、 内部管 Px のみの単管で、 脱水剤を焼結脱水装置 2に供給した場合での伝送損失約 0. 278 dBZkmより小さく、 伝送損失の低減に効果があることが確認され た。 産業上の利用分野
この発明によれば、 水酸基含有量の極めて少ない光ファイバ母材を得るこ とができ、 したがって水酸基に起因する波長 1 3 8 5 n m付近での伝送損失 の極めて少ない光ファイバを製造することができる。

Claims

請求の範囲
1. 気相合成法により得られた多孔質ガラス母材に脱水剤による脱水処理を 施す際に、
この脱水処理を、 40でにおける透湿係数 1. 0 X 10— 11 g · cmZcm 2 · s · cmHg以下の配管を通して供給される脱水剤によって行うことを特 徴とする光ファイバ母材の製造方法。
2. 前記透湿係数 1. 0 X 10— · cmZcm2 · s · cmHg以下の配 管の周囲湿度を 40 %以下に保持することを特徴とする請求項 1記載の光フ アイバ母材の製造方法。
3. 前記脱水剤は、 露点が一 85°C以下のキャリアガスと共に供給されるこ とを特徴とする請求項 1または 2記載の光ファイバ母材の製造方法。
4. 露点が一 90°C以下の不活性ガスをさらに追加して供給することを特徴 とする請求項 3記載の光ファイバ母材の製造方法。
5. 前記脱水剤を通す透湿係数 1. 0 X 10— n g · cm/ cm2 · s · cm
Hg以下の配管の外側が空隙を隔てて外部配管で囲繞され、 前記空隙に露点 -80 以下のガスを流すことを特徴とする請求項 1記載の光ファイバ母材 の製造方法。
6. 前記空隙に流す露点一 80で以下のガスは、 空気、 窒素、 酸素、 二酸化 炭素、 アルゴン、 ヘリウムの少なくとも 1種類のガスを含むガスであること を特徴とする請求項 5記載の光ファイバ母材の製造方法。
7. 気相合成法により得られた多孔質ガラス母材を脱水剤により脱水する脱 水装置を備えた光ファイバ母材の製造装置において、
前記脱水装置へ脱水剤を供給するための配管に、 40°Cにおける透湿係数 1. 0 X 10 -11 g - cm/cm2 · s · c mH g以下の配管を用いたことを 特徴とする光ファイバ母材の製造装置。
8. 前記透湿係数 1. 0 X 10— n g · cm/cm2 · s · cmHg以下の配 管は、 透湿係数と配管の表面積との積が 1. 0 X 10— 8g · cm/s · cm Hg以下を保持するように配管されていることを特徴とする請求項 7記載の 光ファイバ母材の製造装置。
9. 前記透湿係数 1. 0 X 10— g · cm/ cm2 · s · cmHg以下の配 管は、 その外側が空隙を隔てて外部配管で囲繞されてい ることを特徴と する請求項 7または 8記載の光ファイバ母材の製造装置。
10. 前記外部配管は、 透湿係数 1. 0X 10— 1Qg * cmZcm2. s . c. mH g以下の配管であることを特徴とする請求項 9記載の光ファイバ母材の
PCT/JP2004/009229 2003-06-25 2004-06-23 光ファイバ母材の製造方法及びその装置 WO2005000752A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04746698A EP1650171A4 (en) 2003-06-25 2004-06-23 METHOD AND DEVICE FOR PRODUCING LIGHT FIBER BASIC MATERIAL
JP2005511097A JP4198714B2 (ja) 2003-06-25 2004-06-23 光ファイバ母材の製造方法
US11/312,363 US7921676B2 (en) 2003-06-25 2005-12-21 Method for manufacturing optical fiber preform and optical fiber preform apparatus
US12/398,529 US7946132B2 (en) 2003-06-25 2009-03-05 Method for manufacturing optical fiber preform and optical fiber preform apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003/181365 2003-06-25
JP2003181365 2003-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/312,363 Continuation US7921676B2 (en) 2003-06-25 2005-12-21 Method for manufacturing optical fiber preform and optical fiber preform apparatus

Publications (1)

Publication Number Publication Date
WO2005000752A1 true WO2005000752A1 (ja) 2005-01-06

Family

ID=33549527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009229 WO2005000752A1 (ja) 2003-06-25 2004-06-23 光ファイバ母材の製造方法及びその装置

Country Status (5)

Country Link
US (2) US7921676B2 (ja)
EP (1) EP1650171A4 (ja)
JP (2) JP4198714B2 (ja)
CN (1) CN100572314C (ja)
WO (1) WO2005000752A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284302A (ja) * 2006-04-18 2007-11-01 Shin Etsu Chem Co Ltd 低損失光ファイバ母材の製造方法
CN102531379A (zh) * 2006-02-06 2012-07-04 古河电气工业株式会社 石墨加热炉
JP2020152624A (ja) * 2019-03-22 2020-09-24 古河電気工業株式会社 加熱炉の腐食防止方法および加熱炉

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103858A1 (ja) 2009-03-12 2010-09-16 株式会社フジクラ 光ファイバ母材の製造方法
EP3390302B1 (de) 2015-12-18 2023-09-20 Heraeus Quarzglas GmbH & Co. KG Herstellung eines quarzglaskörpers in einem schmelztiegel aus refraktärmetall
TWI794150B (zh) 2015-12-18 2023-03-01 德商何瑞斯廓格拉斯公司 自二氧化矽顆粒製備石英玻璃體
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass
KR20180095616A (ko) * 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 용융 가열로에서 이슬점 조절을 이용한 실리카 유리체의 제조
KR20180095624A (ko) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 불투명 실리카 유리 제품의 제조
WO2017103131A1 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Verringern des erdalkalimetallgehalts von siliziumdioxidgranulat durch behandlung von kohlenstoffdotiertem siliziumdioxidgranulat bei hoher temperatur
EP3390304B1 (de) 2015-12-18 2023-09-13 Heraeus Quarzglas GmbH & Co. KG Sprühgranulieren von siliziumdioxid bei der herstellung von quarzglas
TW201731782A (zh) 2015-12-18 2017-09-16 何瑞斯廓格拉斯公司 在多腔式爐中製備石英玻璃體
JP7419670B2 (ja) * 2019-05-23 2024-01-23 住友電気工業株式会社 光ファイバの製造方法、および光ファイバの製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196045A (ja) * 1989-01-23 1990-08-02 Sumitomo Electric Ind Ltd 高純度石英母材製造用加熱炉
JPH0537928U (ja) * 1991-10-30 1993-05-21 古河電気工業株式会社 石英系多孔質ガラス体の熱処理装置
JP2000256029A (ja) * 1999-03-09 2000-09-19 Shin Etsu Chem Co Ltd 光ファイバ母材の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858299B2 (ja) * 1980-05-24 1983-12-24 日本電信電話株式会社 低損失光ファイバ用多孔質母材の脱水焼結方法
JPH01145346A (ja) 1987-12-02 1989-06-07 Sumitomo Electric Ind Ltd 光フアイバ用母材の製造方法
JPH0230635A (ja) 1988-04-14 1990-02-01 Sumitomo Electric Ind Ltd フッ化物ガラス光ファイバの製造方法
US5259856A (en) * 1989-09-06 1993-11-09 Sumitomo Electric Industrial, Ltd. Method of producing glass preform in furnace for heating glass
JPH05301720A (ja) 1992-04-28 1993-11-16 Tosoh Corp ガラスバーナー接続用ホース及びこれを用いた原料ガスの供給方法
JP3647917B2 (ja) * 1995-01-13 2005-05-18 株式会社フジクラ 光ファイバ母材の加熱炉
EP1001912B1 (en) * 1997-03-27 2003-06-25 Samsung Electronics Co., Ltd. Apparatus and method for overcladding optical fiber preform rod and optical fiber drawing method
US6131415A (en) 1997-06-20 2000-10-17 Lucent Technologies Inc. Method of making a fiber having low loss at 1385 nm by cladding a VAD preform with a D/d<7.5
JP2000159532A (ja) 1998-11-19 2000-06-13 Furukawa Electric Co Ltd:The 光ファイバ用多孔質ガラス母材の製造装置
US20020007374A1 (en) 1998-12-16 2002-01-17 Joshua K. Marks Method and apparatus for supporting a multicast response to a unicast request for a document
JP2001072431A (ja) 1999-09-01 2001-03-21 Shin Etsu Chem Co Ltd 光ファイバ用母材の製造方法及び製造装置
JP4379554B2 (ja) * 2000-09-01 2009-12-09 住友電気工業株式会社 光ファイバ母材の脱水焼結方法
JP3872952B2 (ja) * 2000-10-27 2007-01-24 東京エレクトロン株式会社 熱処理装置及び熱処理方法
JP2002187733A (ja) 2000-12-14 2002-07-05 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法および光ファイバの製造方法
JP4358088B2 (ja) 2004-01-14 2009-11-04 株式会社フジクラ 光ファイバ用多孔質ガラス母材の製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196045A (ja) * 1989-01-23 1990-08-02 Sumitomo Electric Ind Ltd 高純度石英母材製造用加熱炉
JPH0537928U (ja) * 1991-10-30 1993-05-21 古河電気工業株式会社 石英系多孔質ガラス体の熱処理装置
JP2000256029A (ja) * 1999-03-09 2000-09-19 Shin Etsu Chem Co Ltd 光ファイバ母材の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531379A (zh) * 2006-02-06 2012-07-04 古河电气工业株式会社 石墨加热炉
CN102531379B (zh) * 2006-02-06 2015-04-08 古河电气工业株式会社 石墨加热炉
US9458051B2 (en) 2006-02-06 2016-10-04 Furukawa Electric Co., Ltd. Graphite heating furnace
JP2007284302A (ja) * 2006-04-18 2007-11-01 Shin Etsu Chem Co Ltd 低損失光ファイバ母材の製造方法
JP2020152624A (ja) * 2019-03-22 2020-09-24 古河電気工業株式会社 加熱炉の腐食防止方法および加熱炉
JP7019622B2 (ja) 2019-03-22 2022-02-15 古河電気工業株式会社 加熱炉

Also Published As

Publication number Publication date
JPWO2005000752A1 (ja) 2006-07-27
JP4198714B2 (ja) 2008-12-17
JP4536805B2 (ja) 2010-09-01
US7946132B2 (en) 2011-05-24
CN1812938A (zh) 2006-08-02
US7921676B2 (en) 2011-04-12
EP1650171A4 (en) 2011-08-10
CN100572314C (zh) 2009-12-23
JP2008247741A (ja) 2008-10-16
US20090165502A1 (en) 2009-07-02
EP1650171A1 (en) 2006-04-26
US20060117801A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4536805B2 (ja) 光ファイバ母材の製造方法及びその装置
TW476738B (en) Large MCVD preform for singlemode fiber and method for making same
TW575529B (en) Method of making a tubular member for optical fiber production using plasma outside vapor deposition
KR20010053022A (ko) 희토류 금속이 도핑된 광섬유 모재를 제조하기 위한 방법및 장치
JP2009515217A (ja) 微細構造光ファイバとその製造方法
WO2011136325A1 (ja) ガラス母材製造方法
JP6185560B2 (ja) フッ素含有合成石英ガラスからなる円筒型部品を製造する方法
JP2010526756A (ja) 空洞を含む微細構造光ファイバの製造方法
JP5242006B2 (ja) 光ファイバ母材の製造方法及び光ファイバの製造方法
WO2007122630A2 (en) Single mode optical fiber having reduced macrobending and attenuation loss and method for manufacturing the same
JPH04317431A (ja) 光ファイバ伝送路の製造方法
KR20070065245A (ko) 광섬유 제조 방법들
JPH04132631A (ja) 光ファイバの製造方法及びフッ素をドープしたガラスの製造方法
US20050144988A1 (en) Apparatus for heating optical fiber preform and method for manufacturing optical fiber preform
CN112805252A (zh) 用于光纤的卤素掺杂二氧化硅预制件的制造方法
US9002162B2 (en) Large core multimode optical fibers
KR100582800B1 (ko) 저 수산기 함유 광섬유 모재 및 광섬유의 제조방법 및 장치
JP7105682B2 (ja) 光ファイバ母材の製造方法及びこれを用いた光ファイバの製造方法
JP2004284944A (ja) ガラス加工方法及びガラス加工装置
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JP2021035891A (ja) 光ファイバ母材の製造方法及びこれを用いた光ファイバの製造方法
JPH06263468A (ja) ガラス母材の製造方法
KR100619342B1 (ko) 광섬유 제조방법
JPS63248733A (ja) シングルモ−ド光フアイバ母材の製造法
JPS6065742A (ja) Vad法による光フアイバ用多孔質ガラス母材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005511097

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11312363

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048177311

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004746698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004746698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11312363

Country of ref document: US