WO2004111456A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2004111456A1
WO2004111456A1 PCT/JP2004/008373 JP2004008373W WO2004111456A1 WO 2004111456 A1 WO2004111456 A1 WO 2004111456A1 JP 2004008373 W JP2004008373 W JP 2004008373W WO 2004111456 A1 WO2004111456 A1 WO 2004111456A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
scroll compressor
lubricating oil
outer region
spiral part
Prior art date
Application number
PCT/JP2004/008373
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Sawai
Noboru Iida
Yoshiyuki Futagami
Akira Hiwata
Teruyuki Akazawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/560,037 priority Critical patent/US7614859B2/en
Priority to KR1020057023664A priority patent/KR101082710B1/ko
Publication of WO2004111456A1 publication Critical patent/WO2004111456A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Definitions

  • the present invention relates to a scroll compressor used in refrigeration cycle apparatus such as, in particular, R 4 1 OA boiled carbon dioxide (C 0 2) scroll compressor which is suitable for vapor compression refrigeration cycle using a refrigerant such as.
  • a scroll compressor used in refrigeration cycle apparatus such as, in particular, R 4 1 OA boiled carbon dioxide (C 0 2) scroll compressor which is suitable for vapor compression refrigeration cycle using a refrigerant such as.
  • FIG. 5 shows an example of a conventional configuration described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2-280252). That is, in the conventional scroll compressor, the back pressure chamber 12 is provided on the surface of the orbiting spiral part 5 on the side opposite (back side) to the orbiting spiral blade surface, and the back pressure chamber 12 is formed in the inner area by the annular seal 11.
  • the refrigerant is a high-pressure refrigerant such as carbon dioxide (co 2 )
  • the absolute value of the thrust force pressing the swirling spiral part 5 against the fixed spiral part 4 increases, and the set back pressure ⁇ ⁇ Since the absolute value of (2 P m—P s) also increases, the delay in refueling is longer than in the case of refrigerant R 410 A, so that the fixed spiral part 4 and swirl spiral part 5 There has been a problem that sticking is more likely to occur.
  • an object of the present invention is to provide a highly reliable scroll compressor that prevents a delay in refueling at the time of startup. Disclosure of the invention
  • the scroll compressor according to the first embodiment of the present invention includes a plurality of compression units that combine a fixed spiral component having fixed spiral blades on a fixed head plate and a revolving spiral component having revolving spiral blades on a revolving head plate.
  • a space is formed, and a back pressure chamber is provided on the surface opposite to the swirling blade surface of the swirling spiral part.
  • the back pressure chamber is divided into an inner area and an outer area by an annular seal, and discharge pressure is applied to the inner area of the annular seal.
  • the lubricating oil in a state is supplied, a part of the lubricating oil is decompressed by the throttle portion and supplied to the outer region, and the lubricating oil in the outer region is supplied to the suction space.
  • the swirling spiral part can be brought into contact with the fixed spiral part by only the discharge pressure Pd acting on the inner area of the annular seal.
  • the pressure Pm acting on the outer region of the annular seal can be set to a suction pressure Ps or a pressure close to Ps.
  • the ratio ( ⁇ ⁇ / ⁇ o) is set to be substantially constant and 0.2 or less.
  • the pressure Pm in the outer region of the annular seal rises due to the inflow of the lubricating oil from the inner region of the annular seal, but the set pressure Pm is lower (i.e., the suction pressure Pm). s or a pressure close to P s), the saturation vapor pressure P at 0 ° C of the refrigerant used to reach that value in a short time.
  • the saturation vapor pressure P at 0 ° C of the refrigerant used to reach that value in a short time.
  • a scroll compressor according to the first or second embodiment, wherein the refrigerant gas sucked into the suction space includes a liquid cooling medium having a dryness of 0.5 or less. It is a gas.
  • the present embodiment when the refrigerant gas containing the liquid refrigerant is sucked in at the time of startup, and when the dryness of the refrigerant gas is 0.5 or less, lubricating oil can be supplied quickly at the time of startup. As a result, the reliability of the scroll compressor can be ensured.
  • the fourth embodiment of the present invention is the scroll compressor according to the first or second embodiment, wherein carbon dioxide is used as a refrigerant.
  • FIG. 1 is a longitudinal sectional view showing a scroll compressor according to a first embodiment of the present invention.
  • Fig. 2 is a partial perspective view showing the orbiting spiral parts and the annular seal of the scroll compressor shown in Fig. 1.
  • Fig. 3 is a diagram showing the relationship between the diameter ratio (dZD) of the scroll compressor shown in Fig. 1 and the thrust force.
  • FIG. 4 is a diagram showing a time and a pressure change after the start of the scroll compressor according to the second embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a conventional scroll compressor.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to a first embodiment of the present invention, and a compression target is a refrigerant gas.
  • the scroll compressor includes a main bearing member 7 of a crankshaft 6 fixed in a closed container 1 by welding or shrink fitting, and a bolt mounted on the main bearing member.
  • a scroll type compression mechanism 2 is configured by sandwiching a revolving spiral part 5 that interlocks with the fixed spiral part 4 between the fixed spiral part 4 that has been stopped.
  • a rotation restraining part 1 mm such as an Oldham ring is provided between the swirling spiral part 5 and the main bearing member to prevent rotation of the swirling spiral part 5 and guide the swirling spiral part 5 to move in a circular orbit.
  • the orbiting spiral part 5 is eccentrically driven by the eccentric part at the upper end to make the orbiting spiral part 5 make a circular orbital motion.
  • the compression formed by combining the fixed spiral blade 4b provided on the fixed end plate 4a of the fixed spiral component 4 and the swirling spiral blade 5b provided on the swivel end plate 5a of the spiral component 5 Take advantage of the fact that space 8 becomes smaller while moving from the outer Then, the refrigerant gas is sucked from the suction vessel 1 and the suction space 9 on the outer periphery of the fixed spiral part 4 and compressed, and the medium gas that has reached a predetermined pressure or higher is discharged from the suction pipe 18 and the fixed spiral part 4 to the fixed spiral part 4. This is a configuration in which discharge from the central discharge port into the closed container 1 is repeated.
  • the lower end of the crankshaft 6 reaches the lubricating oil reservoir 1 at the lower end of the closed casing 1 and is supported by the auxiliary bearing member 15 to rotate stably.
  • the sub-bearing member 15 is attached to a sub-bearing holding member 14 that is welded or shrink-fitted and fixed in the sealed container 1.
  • the electric motor 3 is located between the main bearing member R and the sub bearing member 14, and is integrally fixed around the outer periphery of the crankshaft 6 with the stator 3 a fixed to the closed casing 1 by welding or shrink fitting.
  • the rotating spiral part 5 makes a circular orbital movement when the rotor 3a and the crankshaft 6 rotate.
  • a back pressure chamber 12 is provided at the back of the swirling spiral part 5.
  • an annular seal 11 is arranged in an annular groove provided in the main bearing member, and the annular seal 11 divides the back pressure chamber 12 into two parts.
  • a high discharge pressure Pd is applied to one inner region 12 a divided by the annular seal 11.
  • a predetermined intermediate pressure Pm between the suction pressure Ps and the discharge pressure Pd is applied to the outer region 12b.
  • the swirling spiral part 5 has a configuration in which a thrust force is applied by the pressure of the back pressure chambers 12 and is stably pressed against the fixed spiral part 4 to reduce leakage and, at the same time, stably operate in a circular orbit. is there.
  • a positive displacement oil pump 16 is attached to the auxiliary bearing holding member 14.
  • the oil pump 16 is driven at the lower end of the crankshaft 6.
  • the lubricating oil sucked up from the lubricating oil reservoir 1 by the oil pump 16 is supplied to each sliding portion of the compression mechanism 2 through a lubricating oil supply hole 6 a penetrating through the crankshaft 6.
  • Most of the lubricating oil supplied to the upper end of the crankshaft 6 through the lubricating oil supply 6 6a flows under the main bearing member 7 after lubricating the eccentric bearing portion and the main bearing portion a of the crankshaft 6 Finally, return to the lubricating oil pool.
  • a part of the lubricating oil supplied to the upper end of the crankshaft 6 passes through a passage provided inside the swirling spiral part 5 and a throttle part 13, and is decompressed there, thereby forming a region outside the annular seal 11. Supplied to 1 2b.
  • a rotation restraining part 1 mm is disposed in the outer region 12 b, and the supplied fluid is provided. Lubrication is provided by lubricating oil. As the lubricating oil supplied to the outer region 1 2b accumulates, the pressure in the outer region 1 2b increases, but in order to keep the pressure constant, the outer region 1 2b of the annular seal 1 1 A pressure adjusting mechanism 20 is arranged between the suction spaces 9.
  • the pressure adjusting mechanism 20 When the pressure of the outer region 1 2 b becomes higher than the set back pressure ⁇ (2 P m— P s), the pressure adjusting mechanism 20 is activated, and the lubricating oil in the outer region 12 b is drawn into the suction space. 9 and the pressure in the outer region 1 2b is kept almost constant.
  • the lubricating oil supplied to the suction space 9 enters the compression space 8 and plays a role of a seal for preventing refrigerant gas from leaking in the compression space 8 and a role of lubricating the sliding surfaces of the fixed spiral part 4 and the swirl spiral part 5.
  • the configuration of the scroll compressor according to the first embodiment is as follows.
  • the relationship of the ratio (d ZD) between the diameter D of the revolving end plate 5 a of the revolving spiral part 5 and the outer diameter d of the annular seal 11 shown in FIG. Set to a value larger than 5.
  • the annular seal 11 is disposed on the side of the swirling spiral part 5 opposite to the surface of the swirling spiral blade 5b, that is, on the back pressure chamber 12 side.
  • the pressure ratio PdZPs of the discharge pressure Pd and the suction pressure Ps varies in the range of about 2 to 6 depending on the operating conditions.
  • Fig. 3 shows the operation in the case where Pd acts on the inner area 12a of the annular seal 11 in the back pressure chamber 12 of the swirling spiral part 5, and Ps acts on the outer area 12b.
  • the thrust force was calculated from the pressure balance acting on the swivel head 5a of the swirling spiral part 5 by changing the conditions, and the relationship between the thrust force and the diameter ratio d ZD is shown.
  • the thrust force is always changed when the pressure ratio PdZPs changes in the range of about 2 to 6 in order to slide the swirling spiral part 5 into contact with the fixed spiral part 4. Since it is sufficient if it is plus (+), it can be seen that the outer diameter of the annular seal 11 should be set to be larger than about 0.5 times the diameter of the revolving end plate 5a of the revolving spiral part 5.
  • the diameter ratio d ZD is set to be larger than 0.5, a positive (+) thrust force is always obtained regardless of the magnitude of the discharge pressure, so that it acts on the inner region 12 a of the annular seal 11.
  • the intermediate pressure Pm acting on the outer region 12b of the annular seal 11 can be set to a suction pressure Ps or a pressure close to Ps.
  • the pressure adjusting mechanism 20 is set so as to operate even when the back pressure ⁇ is close to about zero.
  • the lubricating oil supplied to the outer region 12 b of the annular seal 11 is supplied to the suction space 9 without time delay. Become. Therefore, even if a large amount of refrigerant liquid is sucked into the suction space 9 at the beginning of startup and the refrigerant liquid flushes the lubricating oil, new lubricating oil is immediately supplied to the suction space 9 and seizure occurs on the sliding surface. A great effect that the phenomenon does not occur can be obtained.
  • the pressure in the outer region 1 2b of the annular seal 11 rises due to the flow of lubricating oil from the inner region 12a of the annular seal 11, but reaches the value in a shorter time as the set back pressure is lower .
  • the lubricating oil is supplied to the suction space 9 of the compression mechanism 2. Therefore, in the present embodiment, the back pressure ⁇ and the saturated vapor pressure P of the refrigerant used at 0 ° C.
  • the value of the back pressure ⁇ ⁇ is defined by the pressure adjusting mechanism 20 embedded in the fixed spiral part 4 so that the ratio ( ⁇ ⁇ ⁇ ⁇ ) to the pressure is approximately constant and not more than 0.2. I have.
  • the lubricating oil is supplied to the suction space 9 immediately at startup. Will be done. That is, when the delay in supplying the lubricating oil to the suction space 9 is reduced, an effect is obtained in which the refrigerant liquid is sucked into the suction space from the initial stage of the start and the seizure phenomenon on the sliding surface does not occur.
  • the back pressure reaches ⁇ . 5MPa after about 3 ⁇ seconds from the start of operation, and 1. 45MPa after about 45 seconds and 1.5MPa. It took about 60 seconds to reach a.
  • the back pressure ⁇ is set to 0.5MPa
  • lubricating oil is supplied to the suction space 9 about 3 ⁇ seconds after the start of operation, but the back pressure ⁇ P is set to 1.
  • the lubricating oil will not be supplied to the suction space 9 until approximately 45 seconds have elapsed since the start of operation.
  • the size of the outer diameter d of the annular seal 11 is set to ⁇ .5 or more of the turning head 5a of the turning spiral part 5a and the diameter D. It is desirable to do that.
  • the back pressure ⁇ is set to be small, even if a large amount of refrigerant liquid (that is, a refrigerant having a dryness of 0.5 or less) is sucked into the suction space 9, the swirling spiral portion It has been confirmed that no seizure occurred on the sliding surfaces of the product 5 and the fixed spiral component 4.
  • the ratio (d ZD) of the diameter D of the rotating end plate of the swirling spiral part to the outer diameter d of the annular seal is set to be larger than 0.5.
  • the pressure Pm acting on the outer area of the ring seal may be set to a pressure close to the suction pressure Ps or Ps.
  • the back pressure ⁇ is set to a small value so that the ratio ( ⁇ ⁇ ⁇ ⁇ ) is approximately constant and not more than 0.2, so that the pressure in the outer region of the annular seal is short.
  • the set value is reached, and the lubricating oil is promptly supplied to the suction space of the compressor mechanism, that is, the supply delay of the lubricating oil to the suction space is reduced.
  • an effect is obtained in which the refrigerant having a dryness of 0.5 or less is sucked into the suction space from the initial stage of the startup and the seizure phenomenon on the sliding surface does not occur.
  • the refrigerant sucked into the suction space is a refrigerant gas containing a liquid refrigerant having a dryness of 0.5 or less
  • the reliability of the scroll compressor can be improved.
  • C 0 2 to the refrigerant since a high absolute value of the pressure of C_ ⁇ 2 itself, but generally tends to occur sticking phenomenon in correspondingly sliding surface of the annular seal in the outer regions
  • the back pressure ⁇ ⁇ ⁇ ⁇ By setting the back pressure ⁇ ⁇ ⁇ ⁇ to a small value, at startup, the back pressure rises to the set value in a short time, and the lubricating oil is quickly supplied to the suction space. The phenomenon can be prevented.

Abstract

旋回渦巻部品5の背面に設けられた背圧室12を内側領域12aと外側領域12bとに区画する、環状シール11の直径dを旋回鏡板5aの直径Dの0.5倍以上に設定することにより、内側領域12aに作用する吐出圧力Pdの大きさに拘わらず旋回渦巻部品5にプラスのスラスト力を与えることができるので、吐出圧力の背圧のみで旋回渦巻部品5を固定渦巻部品4に押し付けることが可能となり、外側領域12bの設定圧力Pmを吸入圧力Psに近い値に小さくして、起動後に速やかに圧力調整機構20を開口させることによって、潤滑油は外側領域12bから吸入空間9へ時間遅れがなく供給される。

Description

明細書
スクロール圧縮機 技術分野
本発明は、 冷凍サイクル装置等に用いられるスクロール圧縮機に関し、 特に R 4 1 O Aゆ二酸化炭素 (C 0 2 ) 等の冷媒を使用する蒸気圧縮冷凍サイクルに適 したスクロール圧縮機に関する。 背景技術
従来、 この種のスクロール圧縮機は、 圧縮空間での漏れ損失を低減して高い効 率を得るために、 旋回渦巻部品を固定渦巻部品に接触摺動させ、 圧縮空間の密封 を図るという構成が用いられることが多い。 例えば、 図 5は特許文献 1 (特開 2 〇〇 1 - 2 8 0 2 5 2号公報) に記載された従来の構成例を示しだものである。 すなわち、 従来のスクロール圧縮機では、 旋回渦巻部品 5の旋回渦巻羽根面と反 対 (背面) 側の面に背圧室 1 2を設け、 この背圧室 1 2を環状シール 1 1 により 内側領域 1 2 aと外側領域 1 2 bに区画し、 環状シール 1 1 の内側領域 1 2 aに は吐出圧力状態にある潤滑油を供給し、 さらにこの潤滑油の一部を絞り部 1 3を 経由して外側領域 1 2 bに供給し、 そして外側領域 1 2 bの潤滑油を吸入空間 9 に供給することにより、 外側領域 1 2 bを吸入圧力 P sと吐出圧力 P d間の中間 圧力 P mに設定し、 旋回渦巻部品 5の背面にスラス卜力を印加することで、 旋回 渦巻部品 5を固定渦巻部品 4に接触摺動させる構成となっている。 しかしながら上記構成において、 起動時、 潤滑油はまず環状シ一ル 1 1の内側 空間 1 2 aに供給され、 その後外側空間 1 2 bに供給されるが、 その外側空間 1 2 bの圧力が設定の中間圧力 P m ( = P s + Δ Ρ ) になるまで、 両渦巻部品で形 成される吸入空間 9には供給されないことになる。 起動時、 吸入空間 9へ潤滑油 が供給されない時期に、 冷媒ガスとともに多量の冷媒液が冷凍サイクルから吸入 空間 9に戻ってきた場合には、 摺動面に残っていた潤滑油が冷媒液で洗い流され てしまい、 その結果、 固定渦巻部品 4ゆ旋回渦巻部品 5が傷付いたり、 焼付いた りするといラ問題が生じていた。
特に、 冷媒が二酸化炭素 (c o 2) のような高い圧力の冷媒の場合には、 旋回 渦巻部品 5を固定渦巻部品 4に押し付けるスラス卜力の絶対値が大きくなること、 および設定背圧 Δ Ρ (二 P m— P s ) の絶対値も大きくなるので、 冷媒 R 4 1 0 Aの場合に比べてさらに給油遅れの時間が長くなることから、 固定渦巻部品 4や 旋回渦巻部品 5に、 焼付きがさらに発生しゆすいという問題が生じていた。
そこで本発明は、 起動時の給油遅れを防止し、 信頼性の高いスクロール圧縮機 を提供することを目的とする。 発明の開示
本発明の第 1 の実施の形態によるスクロール圧縮機は、 固定鏡板上に固定渦巻 羽根を有する固定渦巻部品と、 旋回鏡板上に旋回渦巻羽根を有する旋回渦巻部品 とを嚙み合わせて複数の圧縮空間を形成し、 旋回渦巻部品の旋回渦巻羽根面と反 対側の面に背圧室を設け、 背圧室を環状シールにより内側領域と外側領域に区画 し、 環状シールの内側領域に吐出圧力状態にある潤滑油を供給し、 該潤滑油の一 部を絞り部で減圧して外側領域に供給し、 該外側領域の潤滑油を吸入空間に供給 するとともに、 外側領域を吸入圧力 P sと吐出圧力 P d間の所定圧力 P mに設定 し、 旋回渦巻部品の背面にスラス卜力を印加することで、 旋回渦巻部品を固定渦 巻部品に接触させ、 旋回渦巻部品の自転を自転拘束部品によって拘束し、 旋回渦' 巻部品を旋回運動させることにより、 圧縮空間を渦巻の中心に向かって容積を減 少させながら移動させ、 冷媒ガスを圧縮空間に吸い込んで圧縮するスクロール圧 縮機であって、 旋回渦巻部品の旋回鏡板の直径 Dと環状シールの外径 dとの比 ( d Z D ) を、 〇. 5より大きく設定しだものである。
本実施の形態によれば、 比 (d Z D ) を 0. 5より大きく設定すると、 運転条 件により吐出圧力の大きさが変化しても、 にプラス (+ ) のスラス卜力が得ら れるので、 環状シールの内側領域に作用する吐出圧力 P dのみで旋回渦巻部品を 固定渦巻部品に接触摺動させることが可能となる。 これにより、 環状シールの外 側領域に作用する圧力 P mを、 吸入圧力 P s又は P sに近い圧力に設定すること ができる。 その結果、 圧縮機の起動時に、 環状シールの外側領域に供給された潤 滑油はほぽ同時に吸入空間へと供給されることになり、 潤滑油の供給遅れがな < なって、 たとえ起動初期から冷媒液が吸入空間に吸い込まれてち、 摺動表面での 焼付き現象が起こらなくなる。
本発明の第 2の実施の形態は、 第 1 の実施の形態によるスクロール圧縮機にお いて、 環状シールで区画され 外側領域に印加される背圧 Δ Ρ ( = P m— P s ) を、 当該背圧 Δ Ρと冷媒ガスの〇°Cにおける飽和蒸気圧 P。との比 (Δ Ρ / Ρ o) が略一定値でかつ 0. 2以下になるように設定したものである。
本実施の形態によれば、 環状シールの外側領域の圧力 P mは、 環状シールの内 側領域から潤滑油が流れ込 ことで上昇するが、 その設定圧力 P mが低い圧力 (即ち吸入圧力 P s又は P sに近い圧力) であれば短時間にその値に到達するた め、 使用する冷媒の 0 °Cにおける飽和蒸気圧 P。 (一定值) を用いて、 0. 2≥ Δ P / P 0≥ O 即ち、 P s +〇. 2 X P。≥ P m≥ P sに規定する。 このよう に外側領域の設定背圧を小さくすると、 起動時に、 短時間で環状シールの外側領 域の圧力が設定値まで上昇し、 その後すぐに潤滑油は吸入空間へと供給されるこ とになる。 すなわち潤滑油の吸入空間への供給遅れが小さくなつて、 たとえ起動 初期から冷媒液が吸入空間に吸い込まれてち、 摺動表面での焼付き現象が起こら なくなる。
本発明の第 3の実施の形態は、 第 1 又は第 2の実施の形態によるスクロール圧 縮機において、 吸入空間に吸い込む冷媒ガスを、 その乾き度が 0. 5以下の液冷 媒を含 冷媒ガスとしたものである。
本実施の形態によれば、 起動時に液冷媒を含 冷媒ガスを吸込んだ場合であつ てち、 その乾き度が 0. 5以下の冷媒ガスであれば、 起動時に迅速なる潤滑油給 油が実現されることによって、 スクロール圧縮機の信頼性を確保することができ る。
本発明の第 4の実施の形態は、 第 1 又は第 2の実施の形態によるスクロール圧 縮機において、 冷媒として二酸化炭素を用いるものである。
本実施の形態によれば、 冷媒に C〇2を用いた場合にその圧力が高いので、 旋 回渦巻部品が固定渦巻部品に押し付けられるスラス卜力も大きくなり、 その分摺 動表面での焼付き現象が起こりゆすくなるが、 C O 外側領域の背圧 Δ Ρを小さ く設定することにより、 起動時、 短時間に背圧が設定値まで上昇し、 その後潤滑 油が速ゆかに吸入空間に供給され、 摺動部の焼付き現象を防止できる。 図面の簡単な説明
図 1 は、 本発明の第 1実施例のスクロール圧縮機を示す縦断面図
図 2は、 図 1 に示すスクロール圧縮機の旋回渦巻部品及び環状シールを示す部 分斜視図
図 3は、 図 1 に示すスクロール圧縮機の直径比 (d Z D ) とスラス卜力の関係 を示す線図
図 4は、 本発明の第 2実施例のスクロール圧縮機に係わる起動後の時間と圧力 変化を示す線図
図 5は、 従来のスクロール圧縮機を示す縦断面図 発明を実施するための最良の形態
以下、 本発明の実施例について図面を参照して説明する。
(実施例 1 )
図 1 は、 本発明の第 1実施例によるスクロール圧縮機の縦断面図であり、 圧縮 対象は冷媒ガスである。
図 1 に示すように、 本実施例のスクロール圧縮機は、 密閉容器 1 内に溶接や焼 き嵌めなどして固定したクランク軸 6の主軸受部材 7と、 この主軸受部材了上に ボル卜止めした固定渦巻部品 4との間に、 固定渦巻部品 4と嚙み合う旋回渦巻部 品 5を挟み込んでスクロール式の圧縮機構 2を構成する。 また、 旋回渦巻部品 5 と主軸受部材了との間に旋回渦巻部品 5の自転を防止して円軌道運動するように 案内するオルダムリングなどによる自転拘束部品 1 〇を設けて、 クランク軸 6の 上端にある偏心部にて旋回渦巻部品 5を偏心駆動することにより、 旋回渦巻部品 5を円軌道運動させる。
これにより固定渦巻部品 4の固定鏡板 4 a上に有する固定渦巻羽根 4 bと、 旋 回渦巻部品 5の旋回鏡板 5 a上に有する旋回渦巻羽根 5 bとを嚙み合わせて形成 している圧縮空間 8が、 外周側から中央部に移動しながら小さくなるのを利用し て、 密閉容器 1外に通じ 吸入管 1 8および固定渦巻部品 4の外周部の吸入空間 9から冷媒ガスを吸入して圧縮し、 所定圧力以上になつだ冶媒ガスを固定渦巻部 品 4の中央部の吐出口から密閉容器 1 内に吐出させることを繰り返す構成である。 クランク軸 6の下端は密閉容器 1 の下端部の潤滑油溜まり 1 了に達しており、 副軸受部材 1 5により支承され安定に回転する。 この副軸受部材 1 5は、 密閉容 器 1 内に溶接や焼き嵌め固定された副軸受保持部材 1 4に取り付けられている。 電動機 3は主軸受部材了と副軸受部材 1 4との間に位置して、 密閉容器 1 に溶接 や焼き嵌めなどして固定された固定子 3 aと、 クランク軸 6の途中の外まわりに 一体に結合された回転子 3 bとで構成され、 回転子 3 aおよびクランク軸 6が回 転することにより、 旋回渦巻部品 5が円軌道運動する。
旋回渦巻部品 5の背面部分には背圧室 1 2が設けてある。 この背圧室 1 2内に は主軸受部材了に設けだ円環溝に環状シール 1 1 を配置し、 この環状シール 1 1 により背圧室 1 2を 2分割している。 環状シール 1 1 で分割した一方の内側領域 1 2 a には、 高圧の吐出圧力 P dを作用させる。 また、 その外側領域 1 2 bには、 吸入圧力 P sから吐出圧力 P dまでの間の所定の中間圧力 P mを作用させている。 旋回渦巻部品 5は、 これら背圧室 1 2の圧力によりスラスト力が印加されて固定 渦巻部品 4に安定的に押し付けられ、 漏れを低減するととちに安定して円軌道運 動を行う構成である。
次に、 本実施例のスクロール圧縮機の給油動作について、 圧縮機構 2の給油経 路を説明する。 副軸受保持部材 1 4には容積型のオイルポンプ 1 6が取り付けら れている。 このオイルポンプ 1 6は、 クランク軸 6の下端で駆動される。 オイル ポンプ 1 6によって潤滑油溜まり 1 了から吸い上げられだ潤滑油は、 クランク軸 6を貫通している潤滑油供給穴 6 aを通じて圧縮機構 2の各摺動部に供給される。 潤滑油供給六 6 aを通じてクランク軸 6の上端に供給され 潤滑油の大部分は、 クランク軸 6の扁心軸受部および主軸受部了 aを潤滑した後、 主軸受部材 7の下 に流出し、 最終的に潤滑油溜まり 1 了に戻る。 一方、 クランク軸 6の上端に供給 された潤滑油の一部は、 旋回渦巻部品 5の内部に設けられた通路と絞り部 1 3を 経由して、 そこで減圧されて環状シール 1 1 の外側領域 1 2 bに供給される。 ま た、 この外側領域 1 2 bには自転拘束部品 1 〇が配設されており、 供給された潤 滑油により潤滑が行われる。 外側領域 1 2 bに供給された潤滑油が溜まるにした がい、 この外側領域 1 2 bの圧力は上昇するが、 その圧力を一定に保っために、 環状シール 1 1 の外側領域 1 2 bと吸入空間 9の間に圧力調整機構 2 0が配置さ れている。 外側領域 1 2 bの圧力が設定されだ背圧 Δ Ρ (二 P m— P s ) より高 くなると、 圧力調整機構 2 0が作動して、 外側領域 1 2 b内の潤滑油は吸入空間 9に供給され、 外側領域 1 2 bの圧力はほぼ '一定に保たれる。 吸入空間 9に供給 され 潤滑油は、 圧縮空間 8に入り、 圧縮空間 8内で冷媒ガスの漏れを防ぐシー ルの役割と、 固定渦巻部品 4と旋回渦巻部品 5の摺動面を潤滑する役割を果して し、る。
次に、 図 2、 図 3を用いて、 第 1実施例のスクロール圧縮機に関して、 更に詳 細説明する。 第 1実施例のスクロール圧縮機の構成は、 図 2で示す旋回渦巻部品 5の旋回鏡板 5 aの直径 Dと、 環状シール 1 1 の外径 dとの比 (d Z D ) の関係 を、 0. 5より大きく設定している。 ま 、 図 2に示すように環状シール 1 1 は、 旋回渦巻部品 5の旋回渦巻羽根 5 b面と反対側に、 すなわち背圧室 1 2側に配置 されている。
ところで、 エアコン等の空調機又はヒー卜ポンプ給湯機における冷凍サイクル では、 吐出圧力 P dと吸入圧力 P sの圧力比 P d Z P sは、 運転条件に J じて 2 〜6程度の範囲で変化する。 図 3に、 旋回渦巻部品 5の背圧室 1 2における環状 シール 1 1 の内側領域 1 2 aには P dが作用して外側領域 1 2 bには P sが作用 するとした場合について、 運転条件を変化させ、 旋回渦巻部品 5の旋回鏡板 5 a に作用する圧力バランスからスラストカを計算し、 そのスラス卜力の直径比 d Z Dに対する関係を示している。
図 3に示す線図によれば、 旋回渦巻部品 5を固定渦巻部品 4に接触摺動させる めには、 圧力比 P d Z P sが 2 ~ 6程度の範囲で変化するときスラスト力が常 にプラス (+ ) であれば良いので、 環状シール 1 1 の外径を旋回渦巻部品 5の旋 回鏡板 5 a直径の約 0. 5倍より大きく設定すれば良いことが判る。
すなわち、 直径比 d Z Dを 0. 5より大きぐ設定すると、 吐出圧力の大きさに 拘わらず常にプラス (+ ) のスラスト力が得られるので、 環状シール 1 1 の内側 領域 1 2 aに作用する吐出圧力 P dのみで旋回渦巻部品 5を固定渦巻部品 4に接 触摺動させることができる。 これにより、 環状シール 1 1 の外側領域 1 2 bに作 用する中間圧力 P mは、 吸入圧力 P s又は P sに近い圧力に設定することが可能 になるので、 本第 1 実施例のスクロール圧縮機においては、 背圧 Δ Ρが約ゼロに 近い値でも作動するように圧力調整機構 2 0を設定している。
このような本実施例の圧縮機構 2の構成により、 起動時、 環状シール 1 1の外 側領域 1 2 bに供給された潤滑油は、 時間遅れがなく吸入空間 9へと供給される ことになる。 したがって起動初期に多量の冷媒液が吸入空間 9に吸い込まれ、 そ の冷媒液が潤滑油を洗い流しても、 すぐに新しい潤滑油が吸入空間 9に供給され るので、 摺動表面での焼付き現象が起こらなくなるという大きな効果が得られる。
(実施例 2 )
次に、 本発明の第 2実施例によるスクロール圧縮機について説明する。 本第 2 実施例では、 図 1 の第 1 実施例のスクロール圧縮機に示す環状シール 1 1 の外側 領域 1 2 bに印加する背圧 Δ Ρ ( = P m - P s ) を、 次のように設定して構成す る。 なお、 第 1実施例のスクロール圧縮機と同一機能を有する構成は同一番号を 付して説明を省略する。
環状シール 1 1 の外側領域 1 2 bの圧力は、 環状シール 1 1の内側領域 1 2 a から潤滑油が流れ込んで上昇するが、 背圧の設定圧力が低いほど短時間にその値 に到達する。 そして、 環状シール 1 1の外側領域 1 2 bの圧力が設定背圧まで圧 力が上昇し 時点で、 潤滑油は圧縮機構 2の吸入空間 9に供給されることとなる。 従って、 本実施例では、 背圧 Δ Ρと使用する冷媒の 0 °Cにおける飽和蒸気圧 P。 との比 (Δ Ρ Ζ Ρ。) が略一定値でかつ 0 . 2以下になるように、 固定渦巻部品 4に埋め込まれた圧力調整機構 2 0により、 背圧 Δ Ρの値を規定している。 すな わち、 このように外側領域 1 2 bの設定背圧を小さく (0 . 2≥Δ Ρ Ζ Ρ。≥ 〇) 規定することにより、 起動時にはすぐに潤滑油は吸入空間 9へと供給される ことになる。 すなわち潤滑油の吸入空間 9への供給遅れが小さくなつて、 とえ 起動初期から冷媒液が吸入空間に吸い込まれてち摺動表面での焼付さ現象が起こ らなくなるという効果が得られる。
図 4は、 C〇2冷媒を使用したスクロール圧縮機において、 起動時における吸 入圧力 P s、 吐出圧力 P dと、 環状シール 1 1 の外側領域 1 2 bの圧力 (背圧△ P) とについて、 時間に対する変化を示し グラフである。 すなわち、 3台の〇 〇2スクロール圧縮機に関して、 圧力調整機構 2〇の設定を変えることにより、 それぞれ環状シール 1 1の外側領域 1 213の圧カ厶 を、 例えば 0. 5MP a、 1. 〇MP a、 1. 5MP aの 3種類異なる値に設定して、 実験評価を実施し 結果を示している。
背圧の時間変化を見ると、 背圧が〇. 5MP aに到達するには運転開始から約 3〇秒後であり、 1. 〇MP aに到達するには約 45秒後、 1. 5MP aに到達 するには約 60秒後となった。 言い換えると、 背圧 ΔΡの設定が 0. 5MP aの 場合には運転開始から約 3〇秒後に吸入空間 9に潤滑油が供給されるが、 背圧△ Pの設定が 1. OMP aの揚合には運転開始から約 45秒経過しないと吸入空間 9に潤滑油が供給されないことになる。
また、 この起動試験を実施し 結果、 背圧を ΔΡ=1. OMP , および 1. 5MP aに設定したスクロール圧縮機については、 両者とも旋回渦巻部品 5と固 定渦巻部品 4の摺動面、 すなわち各鏡板 4 a、 5 aに焼付き傷が発現し が、 △ P二 0. 5MP aに設定し 圧縮機については、 焼付きは生じなかった。
そして、 冷媒が C〇2の場合には、 0°Cにおける飽和蒸発圧力 Ρ。は 3. 5Μ P a Ca b s) であり、 設定背圧 ΔΡ =〇. 5 M P aの場合を考えると、 ΔΡと P。の比 (ΔΡ/Ρο) は〇. 1 43となる。
これらの実験から、 本第 2実施例のスクロール圧縮機において、 ΔΡΖΡ。の 値が 0. 2以下になるように ΔΡを設定することにより、 起動時に迅速な吸入空 間への潤滑油給油が可能になり、 摺動傷の発生や焼付きを防止することができ、 信頼性を高めることができると判明し 。
なお、 背圧△ Ρを小さく設定した場合 (C〇2泠媒を用いて ΔΡ二〇. 5M P aに設定した場合) も、 定格運転条件などの各種の条件で安定して高い効率の運 転を行うためには、 前述の第 1実施例で説明し ように、 環状シール 1 1の外径 dの大きさを、 旋回渦巻部品 5の旋回鏡板 5 a直径 Dの〇. 5以上に設定するこ とが望ましし、。
また、 背圧 ΔΡを小さく設定した場合であれば、 多量の冷媒液を含 冷媒 (す なわち乾き度が 0. 5以下の冷媒) が吸入空間 9に吸い込まれても、 旋回渦巻部 品 5と固定渦巻部品 4の摺動面に焼付きが生じなかったことを確認している。 上記説明から明らかなように本発明は、 旋回渦巻部品の旋回鏡板の直径 Dと環 状シールの外径 dとの比 (d Z D ) を、 0. 5より大きく設定したものであり、 これにより、 環伏シールの外側領域に作用する圧力 P mを、 吸入圧力 P s又は P sに近い圧力に設定すればよいことになり、 その結果、 圧縮機の起動時に、 環状 シールの外側領域に供給された潤滑油はほぼ同時に吸入空間へと供給されること になるので、 潤滑油の供給遅れがなくなって、 たとえ起動初期から冷媒液が吸入 空間に吸い込まれても、 摺動表面での焼付き現象が起こらな <なるという効果が 得られる。
まだ、 本発明は、 環状シールの外側領域に印加される背圧 Δ P ( = p m— P s ) と、 0 °Cにおける冷媒ガスの飽和蒸気圧 P。との比 (Δ Ρ Ζ Ρ。) が略一定 値でかつ 0. 2以下になるように、 背圧 Δ Ρを小さ <設定したものであり、 これ によって、 環状シールの外側領域の圧力は短時間にその設定値に到達し、 圧縮機 構の吸入空間にち潤滑油が速やかに供給されることとなり、 すなわち潤滑油の吸 入空間への供給遅れが小さくなる。 そして、 たとえば起動初期からその乾き度が 0. 5以下の冷媒が吸入空間に吸い込まれてち摺動表面での焼付き現象が起こら なくなるという効果が得られる。
ま 、 本発明は、 吸入空間に吸い込 ¾冷媒が、 その乾き度が 0. 5以下の液冷 媒を含 ¾冷媒ガスであっても、 第 1 又は第 2の実施の形態によれば、 起動時に迅 速なる潤滑油給油が可能になるので、 スクロール圧縮機の信頼性を高めることが できる。 さらに、 冷媒に C 0 2を用い 場合においては、 C〇2自体の圧力の絶 対値が高いので、 一般にその分摺動表面での焼付き現象が起こりやすくなるが、 環状シールの外側領域の背圧 Δ Ρを小さく設定することにより、 起動時、 短時間 に背圧が設定値まで上昇し、 これによつて潤滑油が速ゆかに吸入空間に供給され るので、 摺動部の焼付き現象を防止することができる。 産業上の利用可能性
以上のよ に本発明によれば、 起動時の給油遅れを防止し、 信頼性の高し、スク ロール圧縮機を提供することができる。

Claims

請求の範囲
1 固定鏡板上に固定渦巻羽根を有する固定渦巻部品と、 旋回鏡板上に旋回 渦巻羽根を有する旋回渦巻部品とを嚙み合わせて複数の圧縮空間を形成し、 前記 旋回渦巻部品の前記旋回渦巻羽根面と反対側の面に背圧室を設け、 前記背圧室を 環伏シールにより内側領域と外側領域に区画し、 前記環状シールの前記内側領域 に吐出圧力状態にある潤滑油を供給し、 該潤滑油の一部を絞り部で減圧して前記 外側領域に供給し、 該外側領域の潤滑油を吸入空間に供給するととちに、 前記外 側領域を吸入圧力 P sと吐出圧力 P d間の所定圧力 P mに設定し、 前記旋回渦巻 部品の背面にスラス卜力を印加することで、 前記旋回渦巻部品を前記固定渦巻部 品に接触させ、 前記旋回渦巻部品の自転を自転拘束部品によって拘束し、 前記旋 回渦巻部品を旋回運動させることにより、 前記圧縮空間を渦巻の中心に向かって 容積を減少させながら移動させ、 冷媒ガスを前記圧縮空間に吸い込んで圧縮する スクロール圧縮機であって、
前記旋回渦巻部品の前記旋回鏡板の直径 Dと前記環状シールの外径 dとの比 ( d / D ) を、 〇. 5より大きく設定したことを特徴とするスクロール圧縮機。
2 前記環状シールで区画され 前記外側領域に印加される背圧 Δ Ρ ( = P m - P s ) を、 当該背圧 Δ Ρと前記冷媒ガスの〇°Cにおける飽和蒸気圧 P 0との 比 (Δ Ρ Ζ Ρ ο ) が略一定値でかつ 0 . 2以下になるように設定したことを特徴 とするクレー厶 "1 に記載のスクロール圧縮機。
3 前記吸入空間に吸い込 ¾前記冷媒ガスが、 その乾き度が 0. 5以下の液 冷媒を含 冷媒ガスであることを特徴とするクレーム 1 又はクレーム 2に記載の スクロール圧縮機。
4 前記冷媒として二酸化炭素を用いることを特徴とするクレーム 1 又はク レーム 2に記載のスクロール圧縮機。
PCT/JP2004/008373 2003-06-12 2004-06-09 スクロール圧縮機 WO2004111456A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/560,037 US7614859B2 (en) 2003-06-12 2004-06-09 Scroll compressor with certain pressure ratio between discharge pressure and suction pressure and with certain ratio of diameter of orbiting mirror plate and outer diameter of the annular seal
KR1020057023664A KR101082710B1 (ko) 2003-06-12 2004-06-09 스크롤 압축기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-168215 2003-06-12
JP2003168215A JP4440564B2 (ja) 2003-06-12 2003-06-12 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2004111456A1 true WO2004111456A1 (ja) 2004-12-23

Family

ID=33549328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008373 WO2004111456A1 (ja) 2003-06-12 2004-06-09 スクロール圧縮機

Country Status (5)

Country Link
US (1) US7614859B2 (ja)
JP (1) JP4440564B2 (ja)
KR (1) KR101082710B1 (ja)
CN (2) CN1823227A (ja)
WO (1) WO2004111456A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001283B4 (de) * 2005-05-23 2014-12-11 Danfoss Commercial Compressors Kältemittelverdichter vom Scroll-Typ
US11703052B2 (en) * 2018-12-06 2023-07-18 Samsung Electronics Co., Ltd. High pressure scroll compressor

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830067B1 (en) * 2004-12-22 2017-01-25 Mitsubishi Denki Kabushiki Kaisha Scroll compressor
JP2007138828A (ja) 2005-11-18 2007-06-07 Hitachi Appliances Inc スクロール流体機械、冷凍サイクル装置
JP2008232041A (ja) * 2007-03-22 2008-10-02 Mitsubishi Heavy Ind Ltd 多段圧縮機
JP5315933B2 (ja) * 2008-06-05 2013-10-16 株式会社豊田自動織機 電動スクロール型圧縮機
KR101484538B1 (ko) * 2008-10-15 2015-01-20 엘지전자 주식회사 스크롤 압축기 및 이를 적용한 냉동기기
JP2012017656A (ja) * 2010-07-06 2012-01-26 Sanden Corp スクロール型圧縮機
CN103052804B (zh) * 2011-03-18 2016-01-20 松下电器产业株式会社 压缩机
CN102812251B (zh) * 2011-03-18 2015-06-10 松下电器产业株式会社 压缩机
DE102012104045A1 (de) * 2012-05-09 2013-11-14 Halla Visteon Climate Control Corporation 95 Kältemittelscrollverdichter für Kraftfahrzeugklimaanlagen
JP6108275B2 (ja) * 2012-05-14 2017-04-05 パナソニックIpマネジメント株式会社 圧縮機
JP5933042B2 (ja) * 2013-01-16 2016-06-08 三菱電機株式会社 密閉形圧縮機及びこの密閉形圧縮機を備えた蒸気圧縮式冷凍サイクル装置
CN104295498B (zh) 2013-06-27 2017-04-12 艾默生环境优化技术有限公司 压缩机
US20170089624A1 (en) * 2014-03-19 2017-03-30 Mitsubishi Electric Corporation Hermetic compressor and vapor compression-type refrigeration cycle device including the hermetic compressor
CN104088786B (zh) * 2014-06-24 2016-09-07 广东广顺新能源动力科技有限公司 一种汽车涡旋式电动空调压缩机总成
US10641269B2 (en) 2015-04-30 2020-05-05 Emerson Climate Technologies (Suzhou) Co., Ltd. Lubrication of scroll compressor
CN105201837B (zh) * 2015-10-26 2017-11-17 珠海格力节能环保制冷技术研究中心有限公司 一种双级压缩机及其中间增焓压力的调节方法和控制系统
JP2017089427A (ja) * 2015-11-05 2017-05-25 三菱重工業株式会社 スクロール圧縮機、スクロール圧縮機の製造方法
DE102015120151A1 (de) * 2015-11-20 2017-05-24 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug
JP6738170B2 (ja) * 2016-03-15 2020-08-12 サンデン・オートモーティブコンポーネント株式会社 スクロール圧縮機
US10414241B2 (en) 2016-06-30 2019-09-17 Emerson Climate Technologies, Inc. Systems and methods for capacity modulation through eutectic plates
US10569620B2 (en) 2016-06-30 2020-02-25 Emerson Climate Technologies, Inc. Startup control systems and methods to reduce flooded startup conditions
CN106286294B (zh) * 2016-09-19 2019-06-07 珠海格力电器股份有限公司 涡旋压缩机
DE102017110913B3 (de) 2017-05-19 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug
KR20200095994A (ko) * 2019-02-01 2020-08-11 엘지전자 주식회사 결합 구조가 개선된 스크롤 압축기
JP6927279B2 (ja) * 2019-12-17 2021-08-25 ダイキン工業株式会社 圧縮機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128992A (ja) * 1983-12-14 1985-07-10 Hitachi Ltd スクロ−ル圧縮機
JPH07119652A (ja) * 1993-10-20 1995-05-09 Fujitsu General Ltd スクロール圧縮機
JP2000283066A (ja) * 1999-03-30 2000-10-10 Sanyo Electric Co Ltd スクロール圧縮機
WO2002063171A1 (fr) * 2001-02-07 2002-08-15 Mitsubishi Denki Kabushiki Kaisha Compresseur a conduit spirale
JP2003035286A (ja) * 2001-05-18 2003-02-07 Matsushita Electric Ind Co Ltd スクロール圧縮機とその駆動方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770984A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Closed type scroll compressor
JP2631839B2 (ja) * 1986-08-22 1997-07-16 株式会社日立製作所 スクロール圧縮機
JPH06264876A (ja) * 1993-03-15 1994-09-20 Toshiba Corp スクロ−ル形圧縮機
JP2000136782A (ja) * 1998-10-30 2000-05-16 Denso Corp スクロール型圧縮機
JP2000220585A (ja) * 1999-01-28 2000-08-08 Toyota Autom Loom Works Ltd スクロール型圧縮機
JP3961189B2 (ja) 2000-03-31 2007-08-22 松下電器産業株式会社 密閉型圧縮機とその気液分離吐出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128992A (ja) * 1983-12-14 1985-07-10 Hitachi Ltd スクロ−ル圧縮機
JPH07119652A (ja) * 1993-10-20 1995-05-09 Fujitsu General Ltd スクロール圧縮機
JP2000283066A (ja) * 1999-03-30 2000-10-10 Sanyo Electric Co Ltd スクロール圧縮機
WO2002063171A1 (fr) * 2001-02-07 2002-08-15 Mitsubishi Denki Kabushiki Kaisha Compresseur a conduit spirale
JP2003035286A (ja) * 2001-05-18 2003-02-07 Matsushita Electric Ind Co Ltd スクロール圧縮機とその駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001283B4 (de) * 2005-05-23 2014-12-11 Danfoss Commercial Compressors Kältemittelverdichter vom Scroll-Typ
US11703052B2 (en) * 2018-12-06 2023-07-18 Samsung Electronics Co., Ltd. High pressure scroll compressor

Also Published As

Publication number Publication date
US20080038133A1 (en) 2008-02-14
JP4440564B2 (ja) 2010-03-24
KR101082710B1 (ko) 2011-11-15
CN1823227A (zh) 2006-08-23
US7614859B2 (en) 2009-11-10
JP2005002922A (ja) 2005-01-06
KR20060020665A (ko) 2006-03-06
CN101846074A (zh) 2010-09-29

Similar Documents

Publication Publication Date Title
WO2004111456A1 (ja) スクロール圧縮機
US7815423B2 (en) Compressor with fluid injection system
EP2639457B1 (en) Scroll compressor
JP2008101559A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
CN109983230B (zh) 具有注入功能的压缩机
US20080304994A1 (en) Scroll Fluid Machine
WO2018096824A1 (ja) スクロール圧縮機
KR102565824B1 (ko) 스크롤 압축기
WO2008069198A1 (ja) 流体機械
WO2002061285A1 (fr) Compresseur a vis
JP3584781B2 (ja) スクロール圧縮機及び冷凍装置
JP2005002886A (ja) スクロール圧縮機
WO2015083369A1 (ja) スクロール型圧縮機
KR100557061B1 (ko) 스크롤 압축기
KR20010014606A (ko) 용적형 유체 기계
CN111033046A (zh) 压缩机
JP2006257882A (ja) スクロール圧縮機
JP4407253B2 (ja) スクロ−ル圧縮機
JP2005048666A (ja) スクロール圧縮機
CN110268161B (zh) 涡旋式压缩机
JP4879078B2 (ja) 圧縮機
CN114008324B (zh) 涡旋式压缩机以及制冷循环装置
JP2010121577A (ja) スクロール圧縮機
JP2537839B2 (ja) 圧縮機
JP2017210926A (ja) 圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020056.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057023664

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057023664

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10560037

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10560037

Country of ref document: US