WO2004111233A1 - 抗体の製造方法 - Google Patents

抗体の製造方法 Download PDF

Info

Publication number
WO2004111233A1
WO2004111233A1 PCT/JP2004/008585 JP2004008585W WO2004111233A1 WO 2004111233 A1 WO2004111233 A1 WO 2004111233A1 JP 2004008585 W JP2004008585 W JP 2004008585W WO 2004111233 A1 WO2004111233 A1 WO 2004111233A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
chain
pair
expression
antibodies
Prior art date
Application number
PCT/JP2004/008585
Other languages
English (en)
French (fr)
Inventor
Taro Miyazaki
Tetsuo Kojima
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2003/014059 external-priority patent/WO2005042582A1/ja
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to US10/560,098 priority Critical patent/US8597911B2/en
Priority to JP2005507008A priority patent/JP4794301B2/ja
Publication of WO2004111233A1 publication Critical patent/WO2004111233A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Definitions

  • the present invention relates to a method for preferentially producing an antibody of a target type in producing a multispecific antibody that binds a plurality of antibodies or antibody fragments. More specifically, the contact of a first light chain that is not associated with a first heavy chain with a second heavy chain that is not associated with a second light chain; and The present invention relates to a method for producing an antibody, comprising inhibiting contact between a first heavy chain that is not bound to a second light chain that is not bound to a second heavy chain.
  • the present invention provides a method for increasing the specific activity of an antibody composition using the method, an antibody product obtained by the method, a vector usable in the method, a vector kit containing the vector, The present invention relates to a cell containing the vector or the vector kit.
  • Antibodies are generally formed of two heavy chains (H chains) and two light chains (L chains). One H chain and one L chain form an L chain-H chain pair by disulfide bridge, and two L chain-H chain pairs are linked by two pairs of disulfide bridges between H chains to form an antibody. ing.
  • Bispecific antibodies sometimes called bifunctional antibodies, can react with two types of antigens that have specific binding sites for two antigenic determinants. It is a multivalent antibody. BsAb can be produced using a hybrid of two different types of monoclonal antibody-producing cells called hybrid hybridomas, or quadromas (US Pat. No. 4,474,893; R. Bos and W.
  • Fab antigen-binding fragments or Fab ′ fragments of two types of monoclonal antibodies were chemically (M. Brennan et al., Science 1985, 229 (1708): 81-3), Alternatively, they can be prepared by binding by genetic manipulation. In addition, it can be made by covalently linking two complete monoclonal antibodies (B. Karpovsky et al., J. Exp. Med. 1984, 160 (6): 1686-701).
  • Fab'-thiodibenzobenzoic acid (TNB) derivative and antibody fragment such as Fab'-thiol (SH) are used.
  • a method of chemically linking is known (Brennan et al., Science 1985, 229: 81).
  • a method for obtaining a Fab'-SH fragment that can be chemically linked more easily a method of producing a Fab'-SH fragment from a host such as E. coli by a gene recombination technique is known (Shalaby et al., J. Exp. Med. 1992, 175: 217-25).
  • Db diabody
  • VL L chain variable region
  • VH H chain variable region
  • full-length antibodies may be more suitable for diagnosis and treatment.
  • a sterically complementary mutation is introduced into the CH3 (part of the constant region) domain of the multimerization domain of the antibody H chain. Methods are known (Ridgway et al., Protein Eng. 1996, 9: 617-21). 0 Heavy chains produced by this method can still pair with incorrect L chains.
  • Japanese Patent Application Publication No. 2001-523971 describes a method for producing a multispecific antibody having a common L chain linked to a heteromeric polypeptide having an antibody binding domain.
  • BsAbs having specific binding ability to two different antigens are useful as targeting agents in clinical fields such as immunodiagnostics, therapeutics and immunoassays in vitro.
  • one arm of the BsAb to bind to the epitope that does not inhibit the enzymatic reaction on the enzyme used for the enzyme immunoassay, and to bind the other arm to the immobilization carrier, It can be used as a medium to bind the enzyme on a carrier (Hammerling et al., J. Exp. Med. 1968, 128: 146 1-73).
  • Other examples include antibody-targeted thrombolytic therapy.
  • JP-A-2-145187 a mouse-human 'chimeric bispecific individual antibody applicable to cancer targeting
  • cancer treatment and diagnosis for various tumors for example, JP-A-5-213775; JP-A-10-165184; JP-A-11-71288; JP-T-2002-518041; JP-T-11-506310; Link et al., Blood 1993, 81 Nitta et al., Lancet 1990, 335: 368-71; L. deLeij et al., Foundation Nationale de Transfusion Sanguine, Les Ulis France 1990, 249-53; Le Doussal et al., J Nucl. Med. 1993, 34: 1662-71; Stickney et al., Cancer Res.
  • an antibody specific to a specific antigen can be produced by genetic engineering (J. Xiang et al., Mol. Immunol. 1990, 27: 809; CR Bebbington et al., Bio / Technology 1992, 10: 169).
  • a method for obtaining antigen-specific heavy and light chains a method using phage or phagemid using E. coli as a host is known (WD Huse et al., Science 1989, 246: 1275; J. McCafferty et al. , Nature 1990, 348: 552; AS Kang et al., Proc. Natl. Acad.
  • Fab is produced and used as an antibody library.
  • a fusion protein of a single-chain Fv and a phage coat protein is produced to produce an antibody library.
  • antigen-specific antibodies and their genes are selected from one of those antibody libraries by examining the antigen-binding properties. Disclosure of the invention
  • bispecific antibody BsAb
  • the heavy chain is In most cases, the result is a heterozygous combination (Ha-Hb), but the L chain corresponding to each H chain is not necessarily only the one linked to the desired H chain. That is, there are four possible combinations of H chain and L chain: HaLa-HbLb (target type), HaLb-HbLa, HaLa-HbLa, and HaLb-HbLb. Therefore, when the bispecific agonist IgG is expressed simply by expressing two types of H chains and two types of L chains employing knobs-into-holes, the apparent specific activity of the generated IgG is a non-target type IgG. It is anticipated that the presence of will result in a reduction from what is expected.
  • the expression level may differ depending on the chain, and the affinity of the non-target type H chain and L chain may differ, the production rate of the target type IgG is not constant Conceivable. Also, there is no means for confirming the ratio of the target type IgG to the total IgG produced. These make screening for antibodies based on agonist activity difficult. This problem is most likely to occur when generating multispecific antibodies containing all BsAbs.
  • the present inventors have focused on the fact that one H chain alone is not secreted from cells due to knobs-in-holes, and expressed one H chain and L chain (Ha and La). After suppressing the expression, the other H chain and L chain (Hb and Lb) are expressed, the target HL molecules (HaLa and HbLb) are constructed first, and then the H chains are paired (L 2 ). As a result, it was found that the formation of the target BsAb can be prioritized, and the present invention has been completed.
  • a multispecific antibody such as a bispecific IgG
  • an antibody left arm H chain and L chain (Left HL)
  • an antibody right arm H chain and an L chain (Right HL) are each used as an expression control vector.
  • the target antibody can be efficiently produced by inhibiting the contact between an unmatched heavy chain and light chain, such as expression at a time difference.
  • a vector in which the expression of the first H chain and the first L chain is induced by the first expression regulator, and the second H chain and the second L chain by the second expression regulator A method for producing an antibody, which comprises using a vector capable of inducing the expression of
  • a vector kit comprising a vector to be expressed, and a vector in which the expression of the second L chain and the second H chain of the antibody is induced by the second expression regulator.
  • the present invention relates to a method for preferentially producing an antibody of a desired type in producing a multispecific antibody that binds a plurality of antibodies or antibody fragments. More specifically, in the production of a multispecific antibody such as a bispecific antibody (BsAb), a first light chain (L chain) that is not associated with a first heavy chain (H chain) Contact of the second heavy chain not associated with the second light chain, And preferentially producing the target BsAb by inhibiting the contact between the first H chain not bound to the first L chain and the second L chain not bound to the second H chain be able to.
  • a multispecific antibody such as a bispecific antibody (BsAb)
  • L chain first light chain
  • H chain first heavy chain
  • the present invention for example, first, (1) the first H chain and the first L chain of the antibody are expressed, a first H chain ′ L chain pair is prepared, and (2) the second After the H chain and the second L chain are expressed and the second H chain ′ L chain pair is prepared, (3) using the two pairs prepared in steps (1) and (2),
  • the desired BsAb can be produced preferentially.
  • the purpose is to produce an antibody having three or more specificities
  • the first to the desired number of pairs of H chains and L chains are expressed and formed in the same manner as in the case of producing BsAb.
  • the desired multispecific antibody can be produced using the prepared pair.
  • BsAb among the multispecific antibodies will be described as an example, but the method of the present invention can be applied to other multispecific antibodies.
  • the “first heavy (H) chain” is one of the two H chains forming the antibody
  • H chain refers to the other H chain that is different from the first H chain. That is, any one of the two H chains can be used as the first H chain, and the other can be used as the second H chain.
  • a “first light (L) chain” is one of the two L chains that form a BsAb, and the second L chain is different from the first L chain.
  • one of the two L chains can be arbitrarily the first L chain, and the other can be the second L chain.
  • the first L chain and the first H chain are derived from the same antibody that recognizes an antigen (or epitope), and the second L chain and the second H chain are also derived from an antigen (or epitope).
  • the L chain-H chain pair formed by the L chain is the first pair
  • the L chain-H chain pair formed by the second H chain ⁇ L chain is the second pair.
  • the antigen (or epitope) used in producing the antibody from which the second pair is derived is different from the antigen used in producing the antibody from which the first pair is derived. ,.
  • the antigens recognized by the first pair and the second pair may be the same, but preferably different antigens (or epitopes) are recognized. Understand. In this case, it is preferable that the H chain and the L chain of the first pair and the second pair have different amino acid sequences from each other. If the first pair and the second pair recognize different antigenic determinants, the first pair and the second pair may recognize completely different antigens, or different sites on the same antigen (different sites). (Epitopes) may be recognized.
  • an antigen such as a protein, a peptide, a gene, or a sugar
  • the other may recognize a radioactive substance, a chemotherapeutic agent, or a cytotoxic substance such as a cell-derived toxin.
  • the specific H chain and L chain are optionally used as the first pair and the second pair. Can be determined.
  • the gene encoding the H chain or L chain of the antibody can use a known sequence, or can be obtained by a method known to those skilled in the art. For example, it can be obtained from an antibody library, or it can be obtained by cloning a gene encoding an antibody from a hybridoma that produces a monoclonal antibody.
  • Many antibody libraries are already known for the antibody library, and the method of preparing the antibody library is also known. Therefore, those skilled in the art can appropriately obtain an antibody library.
  • antibody phage libraries see Clackson et al., Nature 1991, 352: 624-8, Marks et al., J. Mol. Biol.
  • the phage that binds to the antigen can be selected by expressing the variable region of a human antibody as a single-chain antibody (scFv) on the surface of a phage by the phage display method.
  • scFv single-chain antibody
  • the DNA sequence encoding the variable region of the human antibody to which it binds can be determined.
  • an appropriate expression vector can be prepared based on the sequence to obtain a human antibody.
  • the method of obtaining a gene encoding an antibody from a hybridoma is basically carried out by using a known technique, using a desired antigen or a cell expressing the desired antigen as a sensitizing antigen, and performing a normal immunization. Immunized according to the method, the obtained immune cells are fused with a known parent cell by a normal cell fusion method, and a monoclonal antibody-producing cell (hybridoma) is screened by a normal screening method. It can be obtained by synthesizing cDNA for the variable region (V region) of the antibody from the mRNA using reverse transcriptase and ligating it to DNA encoding the constant region (C region) of the desired antibody.
  • V region variable region
  • C region constant region
  • the sensitizing antigen for obtaining the antibody gene encoding the H chain and the L chain of the present invention is a complete antigen having immunogenicity. Includes incomplete antigens, including haptens that do not show immunogenicity.
  • a full-length protein or a partial peptide of the target protein can be used.
  • a substance composed of a polysaccharide, a nucleic acid, a lipid, or the like can serve as an antigen, and the antigen of the antibody of the present invention is not particularly limited.
  • the antigen can be prepared by a method known to those skilled in the art, for example, according to a method using a baculovirus (for example, W098 / 46777).
  • the production of the hybridoma can be performed according to, for example, the method of Milstein et al. (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46).
  • immunization may be performed by binding to a macromolecule having immunogenicity such as albumin. If necessary, a soluble 1 "biogen can be obtained by binding the antigen to another molecule.
  • transmembrane molecule such as a receptor
  • the extracellular region of the container is also possible to use the extracellular region of the container as a fragment, or to use a cell that expresses a transmembrane molecule on the cell surface as an immunogen.
  • Antibody-producing cells can be obtained by immunizing an animal with the appropriate sensitizing antigen described above.
  • antibody-producing lymphocytes can be immunized in vitro to produce antibody-producing cells.
  • mammals to be immunized various mammals can be used, but rodents, ephedra, and primates are generally used. Examples include rodents such as mouse, rat, hamster, etc., egrets such as egrets, and primates such as monkeys such as cynomolgus monkeys, rhesus monkeys, baboons and chimpanzees.
  • transgenic animals having a repertoire of human antibody genes are known, and human antibodies can be obtained by using such animals (W096 / 34096; Mendez et al., Nat. Genet. 1997). , 15: 146-56).
  • human lymphocytes may be sensitized with In or a cell expressing the desired antigen at In and the sensitized lymphocytes fused with human myeloma cells, e.g., U266. By doing so, it is also possible to obtain a desired human antibody having an antigen-binding activity (see Japanese Patent Publication No. 1-59878).
  • a desired human antibody can be obtained by immunizing a transgenic animal having the entire repertoire of human antibody genes with a desired antigen (W093 / 12227, W092 / 03918, W094 / 02602, See W096 / 34096, W096 / 33735).
  • the sensitizing antigen is appropriately diluted and suspended in Phosphate-Buffered Saline (PBS) or physiological saline, etc., mixed with an adjuvant as necessary, and emulsified. Alternatively, it is performed by subcutaneous injection. Thereafter, the sensitizing antigen mixed with Freund's incomplete adjuvant is preferably administered several times every 4 to 21 days. The production of the antibody can be confirmed by measuring the antibody titer of interest in the serum of the animal by a conventional method.
  • PBS Phosphate-Buffered Saline
  • physiological saline physiological saline
  • Hybridomas are prepared by combining antibody-producing cells obtained from animals or lymphocytes immunized with a desired antigen with a conventional fusion agent (eg, polyethylene glycol). It can be produced by fusing with an eoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, 1986, 59-103). If necessary, cultivate and propagate the hybridoma cells, and bind the antibodies produced by the hybridomas by known methods such as immunoprecipitation, radioimmunoassay (RIA), and enzyme-linked immunosorbent assay (ELISA). Measure specificity.
  • a conventional fusion agent eg, polyethylene glycol
  • the hybridoma producing the antibody whose specificity, affinity or activity of interest has been measured can be subcloned by a technique such as limiting dilution.
  • a gene encoding the selected antibody is ligated from a hybridoma or an antibody-producing cell (such as a sensitized lymphocyte) to a probe capable of specifically binding to the antibody (for example, a probe complementary to the sequence encoding the antibody constant region). Oligonucleotide, etc.). Cloning from raRA by RT-PCR is also possible.
  • Immunoglobulins fall into five different classes: IgA, IgD, IgE, IgG and IgM.
  • these classes are divided into several subclasses (isotypes) (eg, IgG-1, IgG-2, IgG-3, and IgG_4; IgA-1 and IgA-2, etc.).
  • the H chain and L chain used for the production of an antibody may be derived from antibodies belonging to any of these classes and subclasses, and are not particularly limited. IgG is particularly preferred.
  • the genes encoding the H chain and the L chain can be modified by genetic engineering techniques.
  • antibodies such as mouse antibodies, rat antibodies, rabbit antibodies, hamster antibodies, sheep antibodies, camel antibodies, etc.
  • chimeric antibodies, humanized antibodies and the like can be appropriately prepared.
  • a chimeric antibody is an antibody consisting of a variable region of the H chain and L chain of a non-human mammal, such as a mouse antibody, and a constant region of the H chain and L chain of a human antibody, and encodes the variable region of a mouse antibody.
  • the DNA can be obtained by ligating DNA to DNA encoding the constant region of a human antibody, inserting the DNA into an expression vector, introducing the DNA into a host, and producing.
  • Humanized antibodies are reconstituted (r Also called a human antibody, a DNA sequence designed to connect the complementary determining regions (CDRs) of mammals other than humans, for example, mouse antibodies, has a portion that overlaps the end of the DNA sequence. It is synthesized by PCR from several oligonucleotides prepared to have it.
  • the obtained DNA is ligated to DNA encoding the constant region of a human antibody, then inserted into an expression vector, and introduced into a host to produce (see EP239400; W096 / 02576).
  • Human antibody FRs linked via CDRs are selected so that the complementarity-determining regions form a favorable antigen-binding site. If necessary, the amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen binding site (K. Sato et al. , Cancer Res. 1993, 53: 851-856).
  • modifications may be made to improve the biological properties of the antibody, such as, for example, antigen binding.
  • modification can be performed by methods such as site-specific mutation (see, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488), PCR mutation, cassette mutation and the like.
  • site-specific mutation see, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488), PCR mutation, cassette mutation and the like.
  • more than 70%, more preferably more than 80%, even more preferably more than 90% (eg, more than 95%, 97%, 98%, 99%, etc.) of antibody variants with improved biological properties It has the amino acid sequence homology and / or similarity to the amino acid sequence of the variable region of the antibody based on the similarity.
  • sequence homology and / or similarity are determined by aligning the sequence as necessary so that the sequence homology takes the maximum value, introducing gaps, and then comparing with the original antibody residue. It is defined as the percentage of amino acid residues that are homologous (same residues) or similar (amino acids that fall into the same gnole based on the properties of the common amino acid side chain).
  • natural amino acid residues are based on the properties of their side chains: (1) hydrophobicity: alanine, isoleucine, norleucine, valine, methionine, and leucine; (2) neutral hydrophilicity: asparagine, glutamine, (3) acidity: aspartic acid and glutamic acid; (4) basicity: arginine, histidine and perricin; (5) residues that affect chain orientation: glycine and proline; and (6) Aromaticity: Classified into tyrosine, tryptophan and phenylalanine.
  • variable regions of the H and L chains interact to form an antigen-binding site of an antibody. It is known that even one variable region has a lower affinity than that containing the entire binding site, but has the ability to recognize and bind to an antigen. Therefore, the antibody gene encoding the H chain and the L chain of the present invention only needs to maintain the binding of the polypeptide encoded by the gene to a desired antigen. As long as it encodes a fragment containing the antigen-binding site.
  • the gene encoding the H chain may be designed so that antibodies expressed from the gene are unlikely to form antibodies between the first pair or the second pair.
  • knobs- into- holes introduce specific and complementary interactions at the interface between the first and second polypeptides (eg, non-naturally occurring).
  • a free thiol-containing residue is added to the interface of the first polypeptide so that a disulfide bond is formed between the first polypeptide and the second polypeptide at the interface of the second polypeptide.
  • the first not bound to the first H chain! Contact between the chain and the second H chain that is not bound to the second L chain, and the first H chain that is not bound to the first L chain and not bound to the second H chain
  • the first H chain and the second L chain should be expressed at different times, and the first L chain and the second H chain should be expressed at different times.
  • a method of expressing the first pair and the second pair at different times can be adopted.
  • "expressing the first pair and the second pair at the same time” means that at least a part of the expression time of the first pair and the second pair overlap, and it is preferable. In other words, the first pair and the second pair have the same onset time.
  • the time when the first pair is expressed and the time when the second pair is expressed are completely different. That is, when the first pair is expressed, the second pair is not expressed, and when the second pair is expressed, the first pair is preferably not expressed.
  • the present invention is not limited to this, and the time when the first pair appears and the time when the second pair appears may overlap.
  • Other methods to suppress the binding of the first H chain to the second L chain and to suppress the binding of the second H chain to the first L chain include the first H chain and the second L chain.
  • the chains may be expressed at different times and the second H chain and the first L chain may be expressed at different times.
  • the first H chain and the first L chain are preferably expressed at the same time, but are not particularly limited, and the first H chain and the first L chain may be expressed at different times. (The same applies to the second H chain and the second L chain).
  • the contact between the first L chain not bound to the first H chain and the second H chain not bound to the second L chain is inhibited, and the first L chain is bound to the first L chain. Inhibiting contact between the first H chain and the second L chain that is not bound to the second H chain does not affect the first H chain and the second L chain, and the first L chain and the second L chain. H-chain binding can be inhibited.
  • an antibody may be produced by expressing the first pair and the second pair at different locations, forming each pair, and then contacting the first pair and the second pair.
  • a method is considered in which the first pair and the second pair are expressed in different cells to form a pair, and then the cells expressing the first pair and the second pair are fused to produce an antibody.
  • Specific methods for expressing the first pair and the second pair at different times include, for example, inducing expression of the first pair and the second pair at different times using an expression control factor or the like. Can be mentioned. More specifically, a vector in which the expression of the first pair is induced by the first expression regulator is constructed, and a vector in which the expression of the second pair is induced by the second expression regulator is constructed. At this time, the first pair and the second pair may be constructed on one vector, or may be constructed on two or more different vectors. Further, the H chain and the L chain may be constructed on the same vector, or may be constructed on two or more different vectors. Next, the constructed vector is introduced into cells, and the expression of the first pair is first induced by the first expression regulator. Thereafter, expression of the second pair is induced by the second expression regulator. In this case, it is preferable to stop the expression of the first pair before inducing the expression of the second pair.
  • the expression regulator is not particularly limited as long as it can regulate the expression of the H chain and L chain in the host cell, and any type may be used.
  • expression may not be induced in the absence of an expression control factor, and expression may be induced in the presence of an expression control factor, or conversely, expression may not be induced in the presence of an expression control factor, and The expression may be induced in the absence of a regulatory factor.
  • the expression regulating factor may be a compound such as an expression inducing agent, or may be a physical factor such as temperature (heat).
  • Specific examples of the expression inducing agent include antibiotics such as tetracycline, hormones such as etadysone analog, enzymes such as Cre (causes recombination), and the like.
  • the above-described expression inducer that functions as an expression regulator can be excluded.
  • a physical factor such as temperature (heat)
  • the induced expression of the H chain and / or L chain can be stopped by returning the temperature to such a level that expression is not induced.
  • Construction of a vector whose expression is induced by an expression control factor can be performed by a method known to those skilled in the art.
  • a gene encoding the first pair or the second pair of antibodies is introduced into a vector (eg, pcDNA4 / T0, pIND: Invitrogen) whose expression is induced by a commercially available expression inducer.
  • a first expression regulator that induces the expression of H chain and L chain constituting the first pair and a second expression regulator that induces expression of H chain and L chain that constitute the second pair are different expression regulators.
  • the expression regulator that induces the expression of the first H chain and the expression regulator that induces the expression of the first L chain may be different (the second H chain and the L chain). The same holds true for the expression regulators).
  • a vector in which expression of the first or second pair of antibodies is induced by the expression regulatory factor constructed in this manner is likely to express the first pair and second pair of antibodies at different times. It becomes possible.
  • the host cell into which the vector has been introduced is a cell capable of expressing the first pair of antibodies and the second pair of antibodies at different times.
  • a promoter and a terminator for controlling the transcription and translation of gene information are required, and an appropriate signal is added to the N-terminus of each antibody fragment. It is preferable to arrange the array.
  • the promoter promoters derived from lac, trp, tac, ⁇ phage PL, PR and the like can be used.
  • the terminator one may use tr P A, phage, those from rrnB Liposomes one circle RNA.
  • Suitable signal sequences include a leader peptide sequence that enables secretion of the fusion protein from the host cell, and include the pellB secretion signal (Better et al., Science 1988, Science 1988). 240: 1041-3; Sastry et al., Proc. Natl. Acad. Sci. USA 1989, 86: 5728).
  • the vector used to prepare a vector capable of expressing the first pair and the second pair of the antibody of the present invention at different times is not particularly limited, and any vector may be used.
  • Specific examples of vectors include mammalian-derived expression vectors (E.g., pcDNA3 (Invitrogen), pEGF-BOS (Nucleic Acids Res.
  • pEF Bacillus subtilis-derived expression vector
  • pCDM8 Bacillus subtilis-derived expression vector
  • insect cell-derived expression vectors e.g., "Bac-to_BAC bacul ovirus expression systeraj (Gibco BRL ), PBacPAK8
  • plant-derived expression vectors e.g, ⁇ 1, pMH2
  • animal virus-derived expression vectors e.g, pHSV, pMV, pAdexLcw
  • retrovirus-derived expression vectors eg, pZIPneo
  • yeast-derived expression Vector for example, “Pichia Expression Kit” (Invitrogen), pVll, SP-QO1)
  • Bacillus subtilis-derived expression vector for example, pPL608, pKTH50
  • E. coli-derived expression vector M13-based vector, pUC System vector, pBR322, pBluescript, pCR_Script.
  • Cells used for producing cells capable of expressing the first pair and the second pair of the antibody of the present invention at different times are not particularly limited, and any cells may be used.
  • animal cells include (1) mammalian cells, such as CH0, COS, myeloma, BHK (baby hamster kidney), HeLa, Vero, (2) amphibian cells, such as African Xenopus oocytes, or (3) insect cells such, sf9, S f21, Tn5, and such.
  • a cell derived from Nicotian for example, a cell derived from -Nicotiana scwz
  • Nicotian cotian
  • Fungal cells include yeast (eg, cells of the genus Saccharomyces such as Saccharomyces cerevisiae), and filamentous fungi (eg, Ryosveki): ⁇ ⁇ 2 — (Aspergillus niger, etc.).
  • Pergilus cells of the genus Aspergillus, etc.
  • prokaryotic cells there is a production system using bacterial cells, such as Escherichia coli and Bacillus subtilis.
  • Pair and second pair (possibly, The cells of the present invention can be prepared by introducing a vector capable of expressing the first and second pairs of each H chain and L chain at different times.
  • the introduction of the vector expressing each constructed pair into a desired host cell depends on the type of the vector and the host cell used.
  • a prokaryotic cell for example, a method using calcium ions (Proc. Natl. Acad. Sci. USA 1972, 69: 2110), a protoplast method (JP-A-63-24829), It can be introduced into host cells by a method such as the electroporation method (Gene 1982, 17: 107; Molecular & General Genetics 1979, 168: 111).
  • the host cell is yeast, the electroporation method (Methods in Enzyraology 1990, 194: 182), the spheroplast method (Proc. Natl. Acad. Sci.
  • the host cells obtained as described above can be cultured, for example, by the following method.
  • the medium contains substances necessary for the growth of the organism, such as a carbon source, a nitrogen source, and inorganic salts, which can be used for efficient culture of the transformant.
  • a natural medium or a synthetic medium can be used as long as it makes it possible.
  • the cultivation may be performed under any of aerobic and anaerobic conditions, and conditions such as growth temperature, medium pH, and growth time can be appropriately determined by those skilled in the art according to the type of transformant used. ..
  • an inducer may be added to the medium as necessary (for example, IPTG for a lac promoter, IM for a trp promoter, etc.).
  • Insect cells as host cells When used, TNM-ra medium (Pharraingen), Sf-900 II SFM medium (Life Technologies), ExCel 1400 and ExCel 1405 (JEH Biosciences), Grace's Insect Medium (Nature 195: 788 ( 1962)) and the like, and if necessary, an antibiotic such as gentamicin may be added.
  • the host cell is an animal cell
  • commonly used RPMI1640 medium The Journal of American Medical Association 199: 519 (1967)
  • Eagle's MEM medium Science 122: 501 (1952)
  • DMEM A medium a medium obtained by adding BSA or the like to these mediums
  • Cultivation can be performed under normal conditions, for example, at pH 6 to 8, 30 to 40 ° C, and in the presence of 5% CO 2 .
  • an antibiotic such as kanamycin or penicillin may be added to the medium.
  • the H-chain and L-chain (Left HL) of the left arm of the antibody are transformed into the tetracycline-derived pcDNA4 (Invitrogen) vector, and the H-chain and L chain of the right arm (Right HL) are transformed into the ecdysone-derived pIND (Invitrogen) vector Incorporate.
  • All expression control plasmids are transduced into a suitable host cell as described above, eg, an animal cell such as COS-7. Thereafter, for example, tetracycline is added to the medium as a primary induction to form the antibody left arm HL molecule in the cells.
  • the first drug here, tetracycline
  • the medium is replaced with a fresh medium containing the secondary induction drug ecdysone analog, and the secondary induction expression is performed, for example, for 2 to 3 days.
  • antibody HL molecules on the right arm of the antibody are generated and associated with the HL molecules on the left arm already existing in the cell, to form a complete BsAb, which is secreted into the medium.
  • the method for producing an antibody of the present invention suppresses the productivity of an antibody other than the antibody containing both the first pair and the second pair, and the first pair and the second pair contained in the antibody composition to be produced. Can increase the proportion of antibodies containing both. That is, the specific activity of the antibody composition produced by the method of the present invention can be increased.
  • the present invention provides an antibody produced by the above-described method.
  • the antibody in the antibody composition produced by the above method can be purified by a known method used in ordinary protein purification.
  • antibodies can be separated and purified by appropriately selecting and combining affinity columns such as protein A columns, chromatography columns, filters, ultrafiltration, salting out, and dialysis (Antibodies: A Laboratory Manual, Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988). Purification can be performed, for example, using the antigen-binding activity of the antibody as an index.
  • Known methods can be used to measure the antigen-binding activity of the antibody (Antibodies: A Laboratory Manual, Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988).
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • fluorescence immunoassay can be used.
  • the multispecific antibody produced by the present invention is not particularly limited, usually, the amino acid sequences of the first H chain and the second H chain are different, and the amino acids of the first L chain and the second L chain are usually different.
  • Bispecific antibodies (BsAb) with different acid sequences BsAb will be mainly described, but the present invention can be similarly applied to other multispecific antibodies.
  • the antigens recognized by the first pair and the second pair may be the same, but are preferably BsAbs that recognize different antigens (or epitopes).
  • BsAbs that recognize completely different antigens or Bs Abs that recognize different sites (different epitopes) on the same antigen may be used.
  • the other may recognize radioactive substances, chemotherapeutic agents, cytotoxic substances such as cell-derived toxins, bioactive substances, and the like. .
  • the antibodies produced in the present invention are preferably designed so that antibodies are not easily formed between the first pair or the second pair.
  • specific examples of such ingenuity include the ability to raise knobs—into * holes.
  • Introduce an interaction e.g., a free thiol-containing residue at the interface of the first polypeptide such that a non-natural disulfide bond is formed between the first polypeptide and the second polypeptide).
  • Is to introduce a corresponding free thiol-containing residue into the interface of the second polypeptide (Table 2001-523971).
  • Knobs-into-holes are a technique known to those skilled in the art, and those skilled in the art can appropriately introduce them into antibodies.
  • the antibody produced by the present invention is preferably an antibody in which the H chain and the L chain are not linked by a linker or the like, and more preferably, the H chain and the L chain are shared by a bond other than a disulfide bond.
  • the antibody has no binding.
  • the antibody may be a low-molecular-weight antibody such as an antibody fragment or a modified antibody, as long as the antibody can bind to the antigen.
  • Specific examples of the antibody fragment include, for example, Fab, Fab ', F (ab') 2, Fv, and Diabody.
  • a gene encoding these antibody fragments may be constructed, introduced into an expression vector, and then expressed in a suitable host cell (for example, MS Co et al. , J. Immunol. 1994, 152: 2968-2976; M. Better and AH Horwitz, Methods Ensymol. 1989, 178: 476-496; A. Pluckthun and A. Skerra, Methods Enzymol. 1989, 178: 497.
  • a modified antibody conjugated with various molecules such as polyethylene glycol (PEG) Antibodies can also be used. It is also possible to bind a labeling substance, a chemotherapeutic agent, or a cytotoxic substance such as bacterial toxin to the antibody. Particularly, a labeled antibody is useful, and a method for labeling an antibody with an enzyme, a fluorescent substance, a luminescent substance, a radioisotope, a metal chelate or the like and detecting the antibody is known.
  • the modified antibody can be obtained by directly subjecting the obtained antibody to chemical modification using a crosslinking agent or the like.
  • low-molecular-weight haptens eg, biotin, dinitrophenyl, pyridoxal, fluorescamine, etc.
  • indirect labeling may be performed with a binding component that recognizes the low-molecular-weight hapten.
  • an antibody having a modified sugar chain can be used. Techniques for modifying the sugar chains of antibodies are already known (for example, W000 / 61739 W002 / 31140). “Antibodies” in the present invention also include these antibodies.
  • one arm of the antibody is prepared so as to recognize a tumor cell antigen
  • the other arm is a molecule that induces cytotoxicity.
  • lunar sever cell antigens include 1D10 (malignant B cells), AMOC-1 (pan carcinoma associated antigen) CAMA 1 CD7 CD15 CD19 CD22 CD38 CEA EGF receptor, Id-1 L-Dl (colorectal cancer) And MoV 18 p97 pl85 OVCAR-3, neural cell adhesion molecule (NCAM), renal cell carcinoma, melanocyte stimulating hormone analog, folate binding protein (FBP) and the like.
  • the molecule that induces cytotoxicity include CD3 CD16 Fcy RI.
  • BsAbs can be designed to bind to toxins such as IFN- ⁇ , saponin, pin alkaloids, and ricin ⁇ ⁇ chains.
  • the antibody of the present invention can be used as an agonist antibody capable of mimicking the dimerization of a receptor by a ligand.
  • a receptor eg, many cytokine receptors
  • the antibody of the present invention can be used as an agonist antibody capable of mimicking the dimerization of a receptor by a ligand.
  • a fibrinolytic agent Can be used, antibodies that bind to fibrin, tPA, uPA, etc.
  • a rabbit that can be used in diagnosis (egg IgG, Western)
  • Detectable substances such as sabiperoxidase (HRP), FITC, ⁇ -galactosidase, and antibodies that use hormones, ferritin, somatostatin, substance! 3 , CEA, etc. as antigens are known.
  • HRP sabiperoxidase
  • FITC FITC
  • ⁇ -galactosidase ⁇ -galactosidase
  • antibodies that use hormones, ferritin, somatostatin, substance! 3 , CEA, etc. as antigens are known.
  • Known multispecific antibodies W089Z02922 pamphlet, Ro314, 317 JP, can be produced by the process of the present invention a variety of antibodies, including a see Japanese Patent US5116964).
  • the antibody of the present invention is useful in clinical fields such as immunodiagnosis, therapy, and diagnosis by immunoassay, like the conventionally known multispecific antibodies.
  • it is activated by an enzyme to induce cytotoxicity such as killing tumor cells, to serve as a vaccine adjuvant, and to properly deliver drugs such as thrombolytics to targets in vivo.
  • cytotoxicity such as killing tumor cells
  • vaccine adjuvant a vaccine adjuvant
  • drugs such as thrombolytics to targets in vivo.
  • to treat infectious diseases to induce immune complexes with cell surface receptors, and to deliver immunotoxins to target cells such as tumor cells It can be used for various therapeutic purposes.
  • the antibody of the present invention when used as a pharmaceutical composition, it can be formulated by a method known to those skilled in the art.
  • Pharmaceutical compositions containing the antibody of the present invention used for such therapeutic purposes may be, if necessary, a suitable pharmaceutically acceptable inactive against them. It can be formulated by mixing with a carrier, medium and the like. For example, sterile water or saline, stabilizers, excipients, antioxidants (ascorbic acid, etc.), buffers (phosphoric acid, citric acid, other organic acids, etc.), preservatives, surfactants (PEG, TVeen, etc.), chelating agents (EDTA, etc.), binders and the like.
  • low-molecular-weight polypeptides serum anolevumin, proteins such as gelatin and immunoglobulins, glycine, glutamine, asparagine, amino acids such as arginine and lysine, saccharides such as polysaccharides and monosaccharides, and carbohydrates; It may contain sugar alcohols such as mannitol and sorbitol.
  • an aqueous solution for injection for example, physiological saline, isotonic solution containing glucose and other adjuvants, for example, D-sorbitol, D-mannose, D-mannitol, sodium chloride, etc.
  • solubilizing agents for example, alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, PEG), and nonionic surfactants (eg, Polysorbate 80, HC0-50).
  • alcohols eg, ethanol
  • polyalcohols eg, propylene glycol, PEG
  • nonionic surfactants eg, Polysorbate 80, HC0-50.
  • the Db of the present invention may be encapsulated in microcapsules (microcapsules of hydroxymethyl cellulose, gelatin, poly [methyl methacrylic acid], etc.), or a colloid drug delivery system (ribosome, albumin microsphere, microemulsion, etc.). may be a nano-particles, and nano-capsules) ( "Rera ington 's pharmaceutical Science 16 th edition, Oslo Ed., 1980, etc. see).
  • et al. a drug known a method of the drug sustained-release And applicable to the Db of the present invention (Langer et al., J. Biomed. Mater. Res. 1981, ID-lot 277; Langer, Chera. Tec. 1982, 12: 98-105; U.S. Pat. 3, 773, 919; EP-A-58,481; Sidraan et al., Biopolymers 1983, 22: 547-556; EP 133,988).
  • Administration to patients can be either oral or parenteral, but is preferably parenteral, specifically injection, nasal, pulmonary, transdermal Dosage forms and the like can be mentioned.
  • injection forms include systemic or local administration by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient. Dosage and For example, it is possible to select from O. OOOlrag to lOOOOmg per lkg of body weight at a time. Alternatively, for example, the dose can be selected within the range of 0.001 to 100 mg / body per patient. However, the present invention is not limited to these dosages and administration methods.
  • the antibodies of the present invention can also be used for enzyme immunoassays.
  • one of the antibodies is designed to recognize an epitope that does not inhibit the enzymatic activity on the enzyme, and the other to recognize a carrier that binds to the carrier.
  • antibodies that recognize IgG, ferritin, HRP, hormones and the like can be mentioned.
  • the antibody of the present invention can also be used for immunodiagnosis of various diseases in 3 vivo in vivo.
  • one pair of antibody variable regions of an antibody can be designed to recognize an antigen or the like specific to a tumor cell, and the other can be designed to bind to a detectable marker.
  • Detectable markers include radioisotopes (e.g.,
  • Antibodies of the present invention that are reactive to a detectable substance in this manner include competitive binding assays, direct and indirect sandwich immunoassays (such as ELISA), and immunoprecipitation assays (Zola, "Monoclonal Antibodies: A”). Manual of Techniques ", pp. 147-158, CRC Press Inc. (1987)) and the like.
  • the antibody of the present invention When the antibody of the present invention is used in the above-mentioned diagnosis or the like, the antibody can be bound to an insoluble carrier, if necessary.
  • Methods for binding an antibody to an insoluble carrier are well known, and the antibody can be immobilized on a solid phase by a conventional chemical bonding method or physical adsorption method.
  • the insoluble carrier include, for example, various synthetic resins, polysaccharides, glass, metals, and other materials having a desired shape such as spherical, fibrous, rod-like, container-like trays, disc-like, cells, and test tubes. Carriers can be mentioned. 3.
  • Antibody composition include, for example, various synthetic resins, polysaccharides, glass, metals, and other materials having a desired shape such as spherical, fibrous, rod-like, container-like trays, disc-like, cells, and test tubes. Carriers can be mentioned. 3. Antibody composition
  • the antibody composition refers to a group containing a plurality of types of antibodies.
  • Increasing the ratio of the target type antibody in the antibody composition means increasing the ratio of the antibody formed by the first pair and the second pair contained in the antibody composition.
  • it is necessary to reduce the ratio of an antibody containing a pair formed by the first H chain and the second L chain or a pair formed by the second H chain and the first L chain in the antibody composition. means. That is, the antibody composition of the present invention generally has higher specific activity.
  • Indicators of the specific activity of the antibody include antibody binding activity, agonist activity, antagonist activity, and neutralizing activity.
  • a detection index used for measuring the specific activity any index can be used as long as a quantitative and / or qualitative change of the target antibody in the antibody composition can be measured.
  • an index for a cell-free assay an index for a cell-based assay, an index for a tissue system, and an index for a biological system can be used.
  • an indicator of the cell-free system use is made of an enzymatic reaction due to the binding, agonist action, antagonist action, neutralization action, etc. of the antibody of the present invention, or a quantitative and / or qualitative change of protein, DNA, or RNA. I can do it.
  • an amino acid transfer reaction for example, an amino acid transfer reaction, a sugar transfer reaction, a dehydration reaction, a dehydrogenation reaction, a substrate cleavage reaction and the like can be used.
  • phosphorylation, dephosphorylation, dimerization, multimerization, degradation, dissociation, and the like of proteins, and amplification, cleavage, and elongation of DNA or RNA can also be used as indicators.
  • phosphorylation of a protein existing downstream of the signal transduction pathway can be used as a detection index.
  • Indicators of cell lines include changes in cell phenotype due to the binding, agonist action, antagonist action, neutralization action, etc.
  • a dangling, a change in proliferation activity, a change in form, a change in characteristics, and the like can be used.
  • secretory proteins, surface antigens, intracellular proteins, mRNA and the like can be used.
  • Changes in morphology include changes in the number of protrusions and / or protrusions, changes in flatness, changes in elongation / aspect ratio, changes in cell size, changes in internal structure, deformities / uniformity as a cell population Sex, changes in cell density, etc. can be used. Changes in cell morphology can generally be confirmed by observation under a microscope.
  • cell motility includes cell infiltration activity and cell migration activity.
  • an enzyme activity for example, an enzyme activity, an mRNA amount, an intracellular information transmitting substance amount such as Ca 2+ and cAMP, an intracellular protein amount, and the like can be used.
  • changes in cell proliferation activity induced by binding of the antibody of the present invention to a receptor, agonistic action, antagonist action, and neutralizing action can be used as an index.
  • an index of the organization system a change in function according to the organization to be used can be used as a detection index.
  • changes in tissue weight due to binding, agonist action, antagonist action, neutralization action, etc. of the antibody of the present invention changes in blood system, for example, changes in blood cell count, protein amount, enzyme activity, electrolytic mass, etc. Changes, or changes in the circulatory system, such as changes in blood pressure, heart rate, etc., can be used.
  • the method for measuring these detection indices is not particularly limited, and is luminescence, color development, fluorescence, radioactivity, fluorescence polarization, surface plasmon resonance signal, time-resolved fluorescence, mass, absorption spectrum, light scattering, and fluorescence. Resonance energy transfer or the like can be used. These measurement methods are well known to those skilled in the art, and can be appropriately selected according to the purpose. For example, the absorption spectrum can be measured by a commonly used photometer or plate reader, the luminescence can be measured by a luminometer, and the fluorescence can be measured by a fluorimeter. Mass can be measured using a mass spectrometer.
  • the radioactivity can be measured using a measuring device such as a gamma counter according to the type of radiation.
  • a measuring device such as a gamma counter according to the type of radiation.
  • BEACON Tekara Shuzo
  • surface plasmon resonance signal can be measured by BIAC0RE
  • time-resolved fluorescence, fluorescence resonance energy transfer, etc. can be measured by ARV0.
  • a flow cytometer or the like can be used for the measurement.
  • two or more types of detection indices may be measured by one measurement method. If it is simple, two or more types of measurement can be measured simultaneously and / or consecutively to obtain a larger number of detection indices. It is also possible to measure indicators.
  • fluorescence and fluorescence resonance energy transfer can be measured simultaneously with a fluorometer.
  • a vector which can be used in the method for producing an antibody of the present invention wherein the expression of an L chain or an H chain of an antibody is induced by an expression inducer.
  • the vector that can be used in the method for producing an antibody of the present invention is preferably one in which both a paired L chain and H chain are induced by one expression regulator.
  • the genes encoding the L chain and the H chain may be integrated in the same vector, or may be integrated in separate vectors.
  • the present invention also relates to a vector encoding the first L chain and the first H chain, and a vector kit comprising a vector encoding the second L chain and the second H chain.
  • the first L chain ⁇ H chain and the second L chain ⁇ H chain are induced by different expression regulators.
  • the vector of the present invention and the vector of the present invention may be such that the expression of the first L chain, the first H chain, the second L chain, and the second H chain is induced by different expression regulators, respectively. You may build a vector kit.
  • the present invention provides a cell containing the above vector or vector kit.
  • the cells preferably express the pair consisting of the first H chain and the L chain of the antibody and the pair consisting of the second H chain and the L chain of the antibody at different times.
  • the description in the above section “1. Method for producing antibody” can be referred to. All prior references cited in this specification are incorporated herein by reference. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a graph showing a comparison of IFN agonist activity by a luciferase quantification method.
  • 2-3 Co-induction
  • 3-3 One day induction with tetracycline, 2 days induction expression with muristerone A
  • 4-4 One day induction with tetracycline, 3 days induction expression with muristerone A
  • 5-3 Tetracycline Induced for 2 days, induced muristerone A for 1 day
  • 7-4 Induced for 1 day with muristerone A, induced for 3 days with tetracycline.
  • FIG. 2 is a graph showing the comparison of the amount of the target antibody by the sandwich ELISA method.
  • the absorbance at each antibody sample concentration was measured at 405 nm at a reference wavelength of 655 nm.
  • the upper row shows AR1-His + antibody + AR2-biotin, and the lower row shows AR2-His + antibody + AR1-biotin.
  • This antibody expresses only the anti-AR1 or anti-AR2 L chain together with the two types of H chains, and if the L chain is shared, the antibody loses its activity. In other words, it is expected that the apparent specific activity of IgG will increase if IgG of the target combination is preferentially expressed when both L chains are expressed.
  • the tetracycline-inducible vector pcDNA4 (Invitrogen) was used to express one arm of the antibody molecule that recognizes the AR1 receptor (referred to as the right arm HL molecule for convenience). Expression unit for each of the H and L chains constituting the HL molecule of the antibody right arm, ie, a signal sequence for animal cells (IL3ss) [Proc. Natl. Acad. Sci. USA. 81; 1075 (1984)]
  • IL3ss a signal sequence for animal cells
  • a vector (pcDNAl-24H or pcDNAl-24L) containing the mouse antibody variable region (VH or VL) recognizing the AR1 receptor and the human IgG4 ya constant region or the / c constant region was inserted by a known genetic engineering technique. It was prepared in accordance with
  • the other arm recognizing the AR2 receptor (referred to as the left arm HL molecule for convenience) used the eta-dyson analog-inducible vector pIND (Invitrogen).
  • Each plasmid DNA was isolated using a commercially available plasmid purification kit (QIAprep Spin Miniprep Kit, QIAGEN). Each plasmid solution was stored at 4 ° C until use.
  • HL molecule expression vector pcDNAl-24H and pcDNAl-24L
  • Plasmid pcDNA 6 / TR Invitrogen
  • TetR Tet repressor
  • the expressed TetR is a dimer
  • pcDNA4 / T0 Binds to the above two Tet operator sequences (Tet02) and suppresses transcription of the target gene.
  • the added tetracycline binds to the TetR dimer, and the TetR moves away from the Tet operator due to a structural change, whereby the transcription of the target gene by the CMV / Tet02 promoter is induced.
  • expression of the HL molecule expression vector (pIND2-7H and pIND2-7L) for the left arm of the antibody is induced by an insect hormone ecdysone-like compound (muristerone A or ponasterone A).
  • the plasmid pVgRXR (Invitrogen), which reacts with and induces the ecdysone analog compound and constantly expresses the ecdysone receptor and the retinoid X receptor, is required.
  • the addition of the ecdysone analog causes the analog and the heterodimer of the etadysone receptor and the retinoid X receptor to bind to the ecdysone / Darcocorticoid (5XE / GRE) promoter of the pIND vector and to bind to the target gene. Expression is activated.
  • plasmid DNA mixtures consisting of pcDNA1-24H, pcDNAl-24L, pIND2-7H, pIND2-7L, pcDNA6 / TR and pVgRXR were prepared for transfection of animal cells.
  • the II medium was charged, secreted 37 ° and C in cultured 2 days to 3 days in a 5% C0 2 incubator, performs secondary induction of the expression of the antibody left arm HL molecule, a bispecific IgG antibody into the culture medium I let it. After the culture supernatant was collected, the cells were once centrifuged (about 2000 g, 5 minutes, room temperature) to remove the cells, and concentrated with a micro-mouth Con-50 (Millipore) as necessary. 'The sample was stored at 4 ° C until use.
  • the antibody expression supernatant sample prepared in 2-3 was purified using protein A resin (rrap Protein A Sepharose FAST FLOW, Amershara biosciences). That is, 50 ⁇ l of the resin substituted with a TBS buffer was added to 4 ml of the supernatant, and the mixture was inverted at 4 ° C. overnight to adsorb the antibody to the resin. Once the supernatant was removed by centrifugation (3000 g, 10 minutes), the cells were suspended in 500 ⁇ l of TBS buffer and transferred to a 0.22 ⁇ filter cup (Millipore).
  • protein A resin Rap Protein A Sepharose FAST FLOW, Amershara biosciences
  • Inducible vectors that were subjected to staggered expression were those that were all induced simultaneously by an inducible vector (2-3 ), A 5- to 10-fold increase in specific activity was observed. In other words, it was strongly suggested that by expressing each HL molecule with a time lag, the unnecessary IgG generation ratio of an undesired combination was suppressed, resulting in an increase in the specific activity. ' 4 .. Analysis of target antibody expression level by sandwich ELISA
  • One antibody was induced by tetracycline and ponasterone A simultaneously after transfection (co-induction), and the other was induced by bonasterone A for 2 days after induction with tetracycline for 1 day. (Time difference expression) was used. After washing three times, the corresponding biotinylated secondary antigen (that is, AR2-biotin for AR1-His, AR1-biotin for AR2-His) diluted to 500 ng / ml in DB 100 ⁇ ⁇ was added to the mixture, and the mixture was incubated at room temperature for 60 minutes. After washing three times, AP-sterptavidine (ZYMED) diluted 3000-fold with DB was added, and incubated at room temperature for 60 minutes.
  • ZYMED AP-sterptavidine
  • the present invention provides a method for preferentially producing a desired type of antibody in producing a multispecific antibody that binds a plurality of antibodies or antibody fragments. More details for example, in the production of a bispecific antibody (BsAb), by employing the method of the present invention, the first light chain not bound to the first heavy chain and the second light chain are bound to each other. Not inhibit the contact of the second heavy chain, and the contact of the first heavy chain not bound to the first light chain and the second light chain not bound to the second heavy chain, and BsAb can be produced efficiently.
  • BsAb bispecific antibody
  • the ratio of an antibody formed from a correct pair of a heavy chain and a light chain contained in the produced antibody composition is increased, and immunodiagnosis, treatment, and The specific activity of a multispecific antibody useful in clinical fields such as diagnosis by immunoassay can be increased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明者らは、knobs-into-holesによって片方のH鎖だけでは分泌されないことに着目し、一方のH鎖・L鎖をまず発現させその発現を抑制した後、他方のH鎖・L鎖を発現させ、目的HL分子(HaLa及びHbLb)を構築した後にH鎖同士を対合させる(H2L2)ことで目的型二特異性抗体の形成を優先させることができることを発見し、本発明を完成した。

Description

明細書 抗体の製造方法 技術分野
本発明は、 複数の抗体または抗体断片を結合する多重特異性抗体の製造におい て目的とする型の抗体を優先的に製造する方法に関する。 より詳細には、 第一の 重鎖と結合していない第一の軽鎖と第二の軽鎖と結合していない第二の重鎖の接 触、 及び、 第一の軽鎖と結合していない第一の重鎖と第二の重鎖と結合していな い第二の軽鎖の接触を阻害することを含む抗体の製造方法に関する。 また、 本発 明は該方法を利用した抗体組成物の比活性を増加させる方法、 該方法により得ら れる抗体糸且成物、 並びに該方法において使用できるベクター、 該ベクターを含む ベクターキット、 及び該ベクターまたはベクターキットを含有する細胞に関する。 背景技術
抗体は一般的には、 2つの重鎖 (H鎖)と 2つの軽鎖 (L鎖)で形成されている。 1 つの H鎖と 1つの L鎖がジスルフィド架橋により L鎖- H鎖の対を形成し、 2つの L鎖- H鎖対が H鎖間の 2組のジスルフィド架橋により結合され、 抗体が形成され ている。 二特異性抗体 (bispecific antibody ; BsAb)は、 二機能性抗体 (bifuncti onal antibody)と呼ばれることもあり、 2つの抗原決定基に特異的な結合部位を 有する 2種類の抗原と反応することができる多価抗体である。 BsAbは、 ハイブ リッドハイブリ ドーマ、 即ちクヮドローマ(quadroma)と呼ばれる 2種類の異なる モノクローナル抗体産生細胞の融合体を用いて産生することができる(米国特許 第 4, 474, 893号公報; R. Bos and W. Nieuwenhuitzen, Hybridoraa 1992, 11 (1) : 41-51)。 また、 2種類のモノクローナル抗体の Fab (抗原結合性)断片、 または F ab'断片を化学的 (M. Brennan et al. , Science 1985, 229 (1708) : 81-3) 、 ま たは遺伝子操作により結合して作製することもできる。 さらに、 2つの完全なモ ノクローナル抗体を共有結合することで作製することもできる(B. Karpovsky et al. , J. Exp. Med. 1984, 160 (6): 1686-701)。
BsAb製造方法における問題点として、 免疫グロプリンの H鎖及ぴ L鎖が無作 為に組み合わさるため、 10種類の異なる抗体分子が産生される可能性がある点 が挙げられる(M. R. Suresh et al. , Methods Enzymol. 1986, 121: 210-28)。 ク ヮドローマにより産生される 10種類の抗体のうち、 所望の二特異性を有する抗 体は、 正しい L鎖と H鎖が組合されており、 且つ、 異なる結合特性を有する 2組 の L鎖 · Η鎖ペアにより構成された 1種類の抗体のみである。 そこで、 クヮドロ 一マにより産生される 10種類の抗体から所望の二重特異性を有する抗体を選択 的に精製する必要がある。 精製は、 一般にァフィ二ティークロマトグラフィーを 利用して行われるが、 余計な手数を要し、 またその収量も少なくなつてしまうと いう問題点がある(Y. S. Massimo et al. , J. Immunol. Methods 1997, 201: 57- 66)。
このような問題点を解消し、 より大きな収量で BsAbを得る方法として、 例え ば、 Fab' -チォ二ト口安息香酸 (TNB)誘導体と Fab' -チオール (SH)等の抗体断片を ィ匕学的に連結する方法が知られている(Brennan et al. , Science 1985, 229: 8 1)。 さらに、 化学的に連結させることができる Fab' - SH断片をより簡便に得るた めの方法として、 大腸菌等の宿主から遺伝子組換技術により産生する方法が知ら れている (Shalaby et al. , J. Exp. Med. 1992, 175: 217-25) 。 遺伝子組換技 術を用いることにより、 ヒト化抗体断片より構成される BsAbを得ることもでき る。 また、 ダイァボディ(Db)は、 遺伝子融合により構築された L鎖可変領域 (VL) と H鎖可変領域 (VH)が互いに結合できないくらいに短いリンカ一によつて結合さ れている 2種類の断片からなる BsAbである(P. Hoi liner et al. , Pro Natl. Acad. Sci. USA 1993, 90: 6444-8 ; EP404, 097号; W093/11161号)。 このような Dbをさらに改良したものとして単鎖(single chain) Dbを挙げることができる(TO 03/087163号公報)。 しかしながら、 抗体断片は、 完全長の抗体に比べ血清半減 期が短く、 完全抗体のようにエフェクター機能も有していなレ、。 そのため、 完全 長の抗体の方が、 より診断や治療に適している場合があると考えられている。 産生された抗体 H鎖をへテロダイマーとして効率的に結合するための方法とし て、 抗体 H鎖のマルチマー化ドメインの CH3 (定常領域の一部)ドメインに立体的 に相捕的な変異を導入する方法が知られている(Ridgway et al. , Protein Eng. 1996, 9: 617-21) 0 この方法により製造された H鎖も、 依然として誤った L鎖と 対形成し得る。 そこで、 特表 2001-523971号公報には、 抗体結合ドメインを有す るへテロマー性ポリぺプチドと結合した共通の L鎖を有する多重特異性抗体を製 造する方法が記載されている。 しかしながら、 任意の抗体を 2つ選んだ場合、 同 じ L鎖を含む可能性は低く、 該方法の実施が困難であることから、 任意の異なる H鎖に対応し、 高いァフィ二ティーを示す共通 L鎖をスクリーニングする方法も 本発明者らの一人により提案されている(PCT/JP04/000496)。
2つの異なる抗原に対する特異的結合能を有する BsAbは、 in vitro X in v ivoにおける免疫診断、 治療及び免疫学的検定等の臨床分野において標的化薬剤 として有用である。 例えば、 BsAbの一方の腕を酵素免疫分析に使用する酵素上 の酵素反応を阻害しない部分のェピトープと結合するように、 そして他方の腕を 固定化用担体に結合するように設計することで、 担体上に酵素を結合する媒体と して使用することができる(Hammerling et al. , J. Exp. Med. 1968, 128: 146 1-73)。 その他、 例えば、 抗体ターグティング化血栓溶解療法を挙げることがで きる。 該療法として、 血栓に含まれるフイブリン特異的に、 ゥロキナーゼ、 スト レプトキナーゼ、 組織プラスミノーゲンァクチべ一ター、 プロゥロキナーゼ等の 酵素またはその前駆体等の蛋白を運搬する抗体を用いることが検討されている(T. Kurokawa et al. , Bio/Technology 1989, 7: 1163; 特開平 5- 304992号公報)。 さらに、 癌ターゲティングに応用可能なマウス · ヒ ト 'キメラ二重特異个生抗体 (特開平 2-145187号公報)、 種々の腫瘍を対象とした癌治療及び診断 (例えば、 特 開平 5-213775号公報;特開平 10-165184号公報;特開平 11-71288号公報;特表 2 002- 518041号公報;特表平 11- 506310号公報; Link et al. , Blood 1993, 81: 3 343; Τ. Nitta et al. , Lancet 1990, 335: 368-71; L. deLeij et al. , Founda tion Nationale de Transfusion Sanguine, Les Ulis France 1990, 249-53; Le Doussal et al. , J. Nucl. Med. 1993, 34: 1662 - 71 ; Stickney et al. , Cance r Res. 1991, 51: 6650- 5参照)、 真菌治療 (特開平 5- 199894号公報)、 免疫応 答誘導(特表平 10-511085号公報; Weiner et al., Cancer Res. 1993, 53: 94-10 0)、 T細胞殺細胞作用の誘導(Kroesen et al. , Br. J. Cancer 1994, 70 : 652 - 6 1; Weiner et al., J. Immunol. 1994, 152: 2385)、 免疫分析 (M. R. Suresh et al. , Proc. Natl. Acad. Sci. USA 1986, 83: 7989- 93 ;特開平 5- 184383号公 報)、 免疫組織化学 (C. Milstein and A. C. Cuello, Nature 1983, 305: 537)等に BsAbを使用することが報告されている。
抗体の抗原特異性を決定する H鎖及び L鎖の可変領域塩基配列を取得すること により、 特定の抗原に特異的な抗体を遺伝子工学的に作製することができる(J. Xiang et al., Mol. Immunol. 1990, 27: 809 ; C. R. Bebbington et al. , Bio/Te chnology 1992, 10: 169)。 抗原特異的 H及び L鎖を取得する方法として、 大腸 菌を宿主とし、 ファージまたはファージミ ドを利用した方法が公知である(W. D. Huse et al. , Science 1989, 246: 1275; J. McCafferty et al. , Nature 1990, 348: 552; A. S. Kang et al. , Proc. Natl. Acad. Sci. USA 1991, 88: 4363) c これらの方法では Fabを産生させて抗体ライブラリ一とするか、 または、 Fab若 しくは一本鎖 Fvとファージコート蛋白質との融合蛋白質を産生させて抗体ライ ブラリーとする。 最終的に、 抗原との結合性を調べることにより、 それらの抗体 ライブラリ一から抗原特異的抗体及びその遺伝子を選択する。 発明の開示
二特異性抗体 (BsAb)発現の際、 knobs- into- holes技術の利用によって H鎖に つ!/、ては殆どがへテ口な組合せ (Ha- Hb)になるが、 一方それぞれの H鎖に対応す る L鎖が必ずしもそれぞれ目的の H鎖へ結合したもののみにはならない。 すなわ ち、 考えられる H鎖、 L鎖の組合せは HaLa- HbLb (目的型)、 HaLb- HbLa、 HaLa-HbL a、 HaLb- HbLbの 4通り存在する。 従って、 二特異性ァゴニスト IgGを knobs- int o - holesを採用した 2種の H鎖と 2種の L鎖を単に発現させた場合、 生成する Ig Gの見かけ上の比活性は非目的型 IgGの存在により、 期待されるよりも低減され たものになってしまうことが予想される。 鎖によつて発現量が異なる可能性があ るため、 また非目的型の H鎖と L鎖の親和性の強弱が異なる可能性があるため、 目的型の IgGの生成率は一定ではないと考えられる。 また目的型 IgGの生成 IgG 全体に対する比を確認する手段も無い。 これらのことはァゴニスト活性に基づく 抗体のスクリーニングを困難なものにしている。 この問題は、 全ての BsAbを含 む多特異性抗体の作成時に発生する可能性が高い。
上記課題を解決する方法として、 本発明者らは、 knobs- into- holesによって 一方の H鎖だけでは細胞より分泌されないことに着目し、 一方の H鎖及び L鎖 (Ha及び La) を発現させ、 その発現を抑制した後もう一方の H鎖及び L鎖 (Hb 及び Lb) を発現させ、 先に目的 HL分子 (HaLa及び HbLb)を構築した後に H鎖同 士を対合させる( L2)ことで目的型 BsAbの形成を優先させることができること を発見し、 本発明を完成した。 本発明により、 二特異性 IgG等の多重特異性抗体 の作製時に、 例えば、 抗体左腕 H鎖および L鎖 (Left HL)、 抗体右腕 H鎖おょぴ L鎖 (Right HL)それぞれを発現制御ベクターにより時間差で発現させる等、 対応 しない重鎖と軽鎖の接触を阻害することにより目的とする抗体を効率的に産生す ることができる。
より詳細には本発明により、
(1)第一の H鎖と結合していない第一の L鎖と第二の L鎖と結合していない第二 の H鎖の接触を阻害し、 第一の L鎖と結合していない第一の H鎖と第二の H 鎖と結合していない第二の L鎖の接触を阻害することを特徴とする抗体の製 造方法、
(2)抗体の第一の対と第二の対を異なる時期に発現させることを特徴とする抗体 の製造方法、
(3)以下の工程を含む抗体の製造方法
(a)抗体の第一の H鎖と第一の L鎖を発現させ、 第一の対を作製する工程、
(b)抗体の第二の H鎖と第二の L鎖を発現させ、 第二の対を作製する工程、 及び
(c)抗体の第一の対と第二の対を用いて抗体を作製する工程、
(4)以下の工程を含む抗体の製造方法
(a)抗体の第一の H鎖と第一の L鎖の発現を誘導して第一の対を作製する工程、 (b)抗体の第一の H鎖と第一の L鎖の発現の誘導をとめる工程、
(c)抗体の第二の H鎖と第二の L鎖の発現を誘導して第二の対を作製する工程、 及び
(d)抗体の第一の対と第二の対を用いて抗体を作製する工程、
(5)第一の H鎖と第二の H鎖のアミノ酸配列が異なり、 かつ第一の L鎖と第二の L鎖のアミノ酸配列が異なる抗体である上記(1)〜 (4)のいずれかに記載の製 造方法、
(6)抗体が二特異性抗体である上記 (1)〜 (5)のレ、ずれかに記載の製造方法、
(7)第一の対同士又は第二の対同士では抗体が形成されにくい抗体であることを 特徴とする上記 (1)〜 (6)の 、ずれかに記載の製造方法、
(8)第一の対同士又は第二の対同士では抗体が形成されにくい抗体が、 knobs-int o-holesが導入された抗体であることを特徴とする上記(1)〜(7)のいずれか に記載の製造方法、
(9)第一の発現調節因子により第一の H鎖及び第一の L鎖の発現が誘導されるべ クタ一、 および第二の発現調節因子により第二の H鎖及び第二の L鎖の発現 が誘導されるベクターを用いることを特徴とする抗体の製造方法、
(10)抗体組成物の、 第一の対と第二の対を含む抗体の割合を高くすることにより、 抗体組成物の比活性を増加させる方法、
(11)抗体の第一の対と第二の対を異なる時期に発現させることにより、 抗体組成 物の比活性を増加させる方法、
(12)抗体の第一の対と第二の対を異なる時期に発現させることにより、 第一の対 と第二の対を含む抗体以外の抗体の産生を抑制する方法、
(13)異なる 2種以上の発現誘導剤を用いることを特徴とする抗体の第一の対と第 二の対を異なる時期に発現させる方法、
(14)上記(1)〜 (9)のいずれかに記載の方法により製造される抗体、
(15)第一の H鎖、 第二の H鎖、 第一の L鎖、 第二の L鎖を同時期に発現させて作 製された抗体組成物と比較して、 第一の対と第二の対を含む抗体の割合が高 い抗体組成物、
(16)抗体の L鎖と H鎖がペプチドリンカ一で介されていないことを特徴とする上 記(15)記載の抗体組成物、
(17)発現誘導剤により抗体の L鎖または H鎖の発現が誘導されるベクター、 (18)第一の発現調節因子により抗体の第一の L鎖及び第一の H鎖の発現が誘導さ れるベクターと、 第二の発現調節因子により抗体の第二の L鎖及び第二の H 鎖の発現が誘導されるベクターを含むベクターキット、
(19)上記(17)または(18)に記載のベクターを含有する細胞、 並びに
(20)抗体の第一の対と第二の対を異なる時期に発現することが可能な細胞、 が提供される。
1 . 抗体の製造方法
本発明は、 複数の抗体または抗体断片を結合する多重特異性抗体の製造にぉレヽ て目的とする型の抗体を優先的に製造する方法に関する。 より詳細には、 二特異 性抗体 (BsAb)のような多重特異性抗体の製造においては、 第一の重鎖 (H鎖)と結 合していない第一の軽鎖 (L鎖)と第二の L鎖と結合していない第二の H鎖の接触、 及び、 第一の L鎖と結合していない第一の H鎖と第二の H鎖と結合していない第 二の L鎖の接触を阻害することにより目的型の BsAbを優先的に製造することが できる。 本発明では、 例えば、 まず (1)抗体の第一の H鎖と第一の L鎖を発現さ せ、 第一の H鎖 ' L鎖対を作製し、 別に (2)抗体の第二の H鎖と第二の L鎖を発 現させ、 第二の H鎖 ' L鎖対を作製した後、 (3) (1)及び (2)の工程により作製さ れた 2つの対を用いて所望の BsAbを優先的に製造することができる。 そして、 三以上の特異性を有する抗体の製造を目的とする場合には、 BsAbを製造する場 合と同様に第一〜所望の数までの H鎖 · L鎖の対をそれぞれ発現し形成させた後 に、 作製された対を用いて所望の多重特異性抗体を製造することができる。 以下、 多重特異性抗体のうち BsAbを例として説明するが、 本発明の方法はその他の多 重特異性抗体にも同じょうに適用することができる。
本発明において、 目的とする多重特異性抗体が BsAbであれば、 「第一の重 (H) 鎖」 とは抗体を形成する 2つの H鎖のうちの一方の H鎖であり、 第二の H鎖は第 —の H鎖とは異なるもう一方の H鎖のことをいう。 つまり、 2つの H鎖のうち任 意にどちらか一方を第一の H鎖とし、 他方を第二の H鎖とすることができる。 同 様に、 「第一の軽 (L)鎖」 とは BsAbを形成する 2つの L鎖のうちの一方の L鎖で あり、 第二の L鎖は第一の L鎖とは異なるもう一方の L鎖のことを指し、 2つの L鎖のうちどちらか一方を任意に第一の L鎖とし、 他方を第二の L鎖とすること ができる。 通常、 第一の L鎖と第一の H鎖は或る抗原 (又はェピトープ)を認識す る同一の抗体より由来し、 第二の L鎖と第二の H鎖も或る抗原(又はェピトープ) を認識する同一の抗体より由来するが、 これに限定されるわけではない。 ここで、 第一の H鎖. L鎖で形成される L鎖- H鎖対を第一の対、 第二の H鎖 · L鎖で形成 される L鎖 -H鎖対を第二の対と呼ぶ。 第二の対の由来となる抗体を作製する際 に用いられる抗原 (又はェピトープ)は、 第一の対の由来となる抗体を作製する際 に用いられるものとは異なっていることが好ましレ、。 即ち、 第一の対と第二の対 が認識する抗原は同じでもよいが、 好ましくは異なる抗原(又はェピトープ)を認 識する。 この場合、 第一の対及び第二の対の H鎖と L鎖は互いに異なるアミノ酸 配列を有していることが好ましい。 第一の対と第二の対が異なる抗原決定部位を 認識する場合、 該第一の対と第二の対は全く異なる抗原を認識してもよいし、 同 一抗原上の異なる部位 (異なるェピトープ)を認識してもよい。 又、 一方がタンパ ク質、 ペプチド、 遺伝子、 糖などの抗原を認識し、 他方が放射性物質、 化学療法 剤、 細胞由来トキシン等の細胞傷害性物質などを認識してもよい。 しかしながら、 特定の H鎖と L鎖の組合せで形成される対を有する抗体を作製したいと考えた場 合には、 その特定の H鎖と L鎖を第一の対及び第二の対として任意に決定するこ とができる。
抗体の H鎖又は L鎖をコードする遺伝子は既知の配列を用いることも可能であ り、 又、 当業者に公知の方法で取得することもできる。 例えば、 抗体ライブラリ 一から取得することも可能であるし、 モノクローナル抗体を産生するハイプリ ド —マから抗体をコードする遺伝子をクローニングして取得することも可能である。 抗体ライブラリ一については既に多くの抗体ライブラリ一が公知になっており、 又、 抗体ライブラリーの作製方法も公知であるので、 当業者は適宜抗体ライブラ リーを入手することが可能である。 例えば、 抗体ファージライブラリーについて は、 Clackson et al., Nature 1991, 352: 624-8、 Marks et al., J. Mol. Biol. 1991, 222: 58ト 97、 Waterhouses et al. , Nucleic Acids Res. 1993, 21: 226 5-6、 Griffiths et al. , EMBO J. 1994, 13 : 3245-60、 Vaughan et al., Nature Biotechnology 1996, 14 : 309- 14、 及び特表平 20—504970号公報等の文献を参 照することができる。 その他、 真核細胞をライブラリーとする方法 (W095/15393 号パンフレツト)やリボソーム提示法等の公知の方法を用いることが可能である。 さらに、 ヒト抗体ライブラリーを用いて、 パンユングによりヒト抗体を取得する 技術も知られている。 例えば、 ヒト抗体の可変領域を一本鎖抗体 (scFv)としてフ ァージディスプレイ法によりファージの表面に発現させ、 抗原に結合するファー ジを選択することができる。 選択されたファージの遺伝子を解析すれば、 抗原に 結合するヒト抗体の可変領域をコードする DNA配列を決定することができる。 抗 原に結合する scFvの. DNA配列が明らかになれば、 当該配列を元に適当な発現べ クタ一を作製し、 ヒ ト抗体を取得することができる。 これらの方法は既に周知で あり、 W092/01047, W092/20791, W093/06213, W093/11236、 W093/19172, W095/0 1438、 W095/15388を参考にすることができる。
ハイプリ ドーマから抗体をコードする遺伝子を取得する方法は、 基本的には公 知技術を使用し、 所望の抗原または所望の抗原を発現する細胞を感作抗原として 使用して、 これを通常の免疫方法にしたがって免疫し、 得られる免疫細胞を通常 の細胞融合法によって公知の親細胞と融合させ、 通常のスクリーニング法により、 モノクローナルな抗体産生細胞(ハイブリ ドーマ)をスクリーニングし、 得られた ハイブリ ドーマの mRNAから逆転写酵素を用いて抗体の可変領域 (V領域)の cDNA を合成し、 これを所望の抗体定常領域 (C領域)をコードする DNAと連結すること により得ることができる。
より具体的には、 特に以下の例示に限定される訳ではないが、 本発明の H鎖及 ぴ L鎖をコードする抗体遺伝子を得るための感作抗原は、 免疫原性を有する完全 抗原と、 免疫原性を示さないハプテン等を含む不完全抗原の两方を含む。 例えば、 目的タンパク質の全長タンパク質、 又は部分ペプチドなどを用いることができる。 その他、 多糖類、 核酸、 脂質等から構成される物質が抗原となり得ることが知ら れており、 本発明の抗体の抗原は特に限定されるものではない。 抗原の調製は、 当業者に公知の方法により行うことができ、 例えば、 バキュロウィルスを用いた 方法 (例えば、 W098/46777など)などに準じて行うことができる。 ハイプリ ドー マの作製は、 たとえば、 ミルスティンらの方法(G. Kohler and C. Milstein, Me thods Enzymol. 1981, 73 : 3- 46)等に準じて行うことができる。 抗原の免疫原性 が低い場合には、 アルブミン等の免疫原性を有する巨大分子と結合させ、 免疫を 行えばよい。 また、 必要に応じ抗原を他の分子と結合させることにより可溶 1"生抗 原とすることもできる。 受容体のような膜貫通分子を抗原として用いる場合、 受 容体の細胞外領域部分を断片として用いたり、 膜貫通分子を細胞表面上に発現す る細胞を免疫原として使用することも可能である。
抗体産生細胞は、 上述の適当な感作抗原を用いて動物を免疫化することにより 得ることができる。 または、 抗体を産生し得るリンパ球を in 'iroで免疫化し て抗体産生細胞とすることもできる。 免疫化する動物としては、 各種哺乳動物を 使用できるが、 ゲッ歯目、 ゥサギ目、 霊長目の動物が一般的に用いられる。 マウ ス、 ラット、 ハムスター等のゲッ歯目、 ゥサギ等のゥサギ目、 力二クイザル、 ァ カゲザル、 マントヒヒ、 チンパンジー等のサル等の霊長目の動物を例示すること ができる。 その他、 ヒト抗体遺伝子のレパートリーを有するトランスジエニック 動物も知られており、 このような動物を使用することによりヒト抗体を得ること もできる(W096/34096 ; Mendez et al. , Nat. Genet. 1997, 15 : 146- 56参照)。 このようなトランスジエニック動物の使用に代えて、 例えば、 ヒトリンパ球を I n で所望の抗原または所望の抗原を発現する細胞で感作し、 感作リンパ球 をヒトミエローマ細胞、 例えば U266と融合させることにより、 抗原への結合活 性を有する所望のヒ ト抗体を得ることもできる(特公平 1 - 59878号公報参照)。 ま た、 ヒト抗体遺伝子の全てのレパートリーを有するトランスジエニック動物を所 望の抗原で免疫することで所望のヒ ト抗体を取得することができる(W093/12227、 W092/03918、 W094/02602、 W096/34096、 W096/33735参照)。
動物の免疫化は、 例えば、 感作抗原を Phosphate- Buffered Saline (PBS)また は生理食塩水等で適宜希釈、 懸濁し、 必要に応じてアジュバントを混合して乳化 した後、.動物の腹腔内または皮下に注射することにより行われる。 その後、 好ま しくは、 フロイント不完全アジュバントに混合した感作抗原を 4〜21日毎に数回 投与する。 抗体の産生の確認は、 動物の血清中の目的とする抗体力価を慣用の方 法により測定することにより行われ得る。
ハイプリ ドーマは、 所望の抗原で免疫化した動物またはリンパ球より得られた 抗体産生細胞を、 慣用の融合剤 (例えば、 ポリエチレングリコール)を使用してミ エローマ細胞と融合して作成することができる(Goding, Monoclonal Antibodie s : Principles and Practice, Academic Press, 1986, 59 - 103)。 必要に応じノヽ イブリ ドーマ細胞を培養 ·増殖し、 免疫沈降、 放射免疫分析 (RIA)、 酵素結合免 疫吸着分析 (ELISA)等の公知の分析法により該ハイプリ ドーマより産生される抗 体の結合特異性を測定する。 その後、 必要に応じ、 目的とする特異性、 親和性ま たは活性が測定された抗体を産生するハイプリ ドーマを限界希釈法等の手法によ りサブクローユングすることもできる。 続いて、 選択された抗体をコードする遺伝子をハイプリ ドーマまたは抗体産生 細胞 (感作リンパ球等)から、 抗体に特異的に結合し得るプローブ (例えば、 抗体 定常領域をコードする配列に相補的なオリゴヌクレオチド等)を用いてクローニ ングすることができる。 また、 raR Aから RT-PCRによりクローユングすることも 可能である。 免疫グロブリンは、 IgA、 IgD、 IgE、 IgG及び IgMの 5つの異なる クラスに分類される。 さらに、 これらのクラスは幾つかのサブクラス(アイソタ ィプ)(例えば、 IgG- 1、 IgG- 2、 IgG- 3、 及び IgG_4; IgA- 1及び IgA- 2等)に分けら れる。 本発明において抗体の製造に使用する H鎖及び L鎖は、 これらいずれのク ラス及びサブクラスに属する抗体に由来するものであってもよく、 特に限定され ないが、 IgGは特に好ましいものである。
ここで、 H鎖及び L鎖をコードする遺伝子を遺伝子工学的手法により改変する ことも可能である。 例えば、 マウス抗体、 ラット抗体、 ゥサギ抗体、 ハムスター 抗体、 ヒッジ抗体、 ラクダ抗体等の抗体について、 ヒ トに対する異種抗原性を低 下させること等を目的として人為的に改変した遺伝子組換え型抗体、 例えば、 キ メラ抗体、 ヒ ト化抗体等を適宜作製することができる。 キメラ抗体は、 ヒト以外 の哺乳動物、 例えば、 マウス抗体の H鎖、 L鎖の可変領域とヒ ト抗体の H鎖、 L 鎖の定常領域からなる抗体であり、 マウス抗体の可変領域をコードする DNAをヒ ト抗体の定常領域をコードする DNAと連結し、 これを発現ベクターに組み込んで 宿主に導入し産生させることにより得ることができる。 ヒ ト化抗体は、 再構成 (r eshaped)ヒト抗体とも称され、 ヒ ト以外の哺乳動物、 たとえばマウス抗体の相補 性決定領域 (CDR; complementary determining region) を連結するように設計し た DNA配列を、 末端部にオーバーラップする部分を有するように作製した数個の オリゴヌクレオチドから PCR法により合成する。 得られた DNAをヒト抗体定常領 域をコードする DNAと連結し、 次いで発現ベクターに組み込んで、 これを宿主に 導入し産生させることにより得られる(EP239400 ; W096/02576参照)。 CDRを介し て連結されるヒト抗体の FRは、 相補性決定領域が良好な抗原結合部位を形成す るものが選択される。 必要に応じ、 再構成ヒ ト抗体の相補性決定領域が適切な抗 原結合部位を形成するように抗体の可変領域のフレームワーク領域のァミノ酸を 置換してもよい(K. Sato et al. , Cancer Res. 1993, 53 : 851-856)。
上述のヒト化以外に、 例えば、 抗原との結合性等の抗体の生物学的特性を改善 するために改変を行うことも考えられる。 このような改変は、 部位特異的突然変 異(例えば、 Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488参照)、 PCR変 異、 カセット変異等の方法により行うことができる。 一般に、 生物学的特性の改 善された抗体変異体は 70%以上、 より好ましくは 80%以上、 さらに好ましくは 90%以上 (例えば、 95%以上、 97%、 98%、 99%等)のアミノ酸配列相同性及び/ または類似性を元となった抗体の可変領域のアミノ酸配列に対して有する。 本明 細書において、 配列の相同性及び/または類似性は、 配列相同性が最大の値を取 るように必要に応じ配列を整列化、 及びギャップ導入した後、 元となった抗体残 基と相同(同じ残基)または類似 (一般的なァミノ酸の側鎖の特性に基き同じグノレ ープに分類されるアミノ酸残基)するアミノ酸残基の割合として定義される。 通 常、 天然のアミノ酸残基は、 その側鎖の性質に基いて(1)疎水性:ァラニン、 ィ ソロイシン、 ノルロイシン、 バリン、 メチォニン及ぴロイシン; (2)中性親水 性:ァスパラギン、 グルタミン、 システィン、 スレオニン及びセリン; (3)酸 性:ァスパラギン酸及びグルタミン酸; (4)塩基性:アルギニン、 ヒスチジン及 ぴリシン; (5)鎖の配向に影響する残基:グリシンおよびプロリン;ならびに(6) 芳香族性:チロシン、 トリプトファン及びフエ二ルァラニンのグループに分類さ れる。
通常、 H鎖及び L鎖の可変領域中に存在する全部で 6つの相補性決定領域 (超 可変部; CDR)が相互作用し、 抗体の抗原結合部位を形成している。 このうち 1つ の可変領域であっても全結合部位を含むものよりは低い親和性となるものの、 抗 原を認識し、 結合する能力があることが知られている。 従って、 本発明の H鎖及 ぴ L鎖をコードする抗体遺伝子は、 該遺伝子によりコードされるポリべプチドが 所望の抗原との結合性を維持していればよく、 H鎖及び L鎖の各々の抗原結合部 位を含む断片部分をコードしていればよレ、。
さらに、 本発明の方法において H鎖をコードする遺伝子は、 該遺伝子から発現 される抗体が、 第一の対同士又は第二の対同士では抗体が形成しにくいようにェ 夫されていることが好ましい。 例えば、 knobs- into - holes (特表 2001-523971) は、 第一のポリべプチドの界面と第二のポリべプチドの界面で特異的かつ相補的 な相互作用を導入する(例えば、 非天然のジスルフィド結合が第一のポリべプチ ドと第二のポリペプチド間に形成されるように、 第一のポリペプチドの界面に遊 離チオール含有残基を、 第二のポリべプチドの界面中に相当する遊離チオール含 有残基を導入する)当業者に公知の技術であり、 該方法を用いることによりへテ 口マルチマー形成が促進され、 ホモマルチマー形成が抑制された H鎖を発現させ ることができる。
第一の H鎖と結合していない第一の!鎖と第二の L鎖と結合していない第二の H鎖の接触、 及び、 第一の L鎖と結合し'ていない第一の H鎖と第二の H鎖と結合 していない第二の L鎖の接触を阻害するためには、 第一の H鎖と第二の L鎖を異 なる時期に発現させ、 第一の L鎖と第二の H鎖を異なる時期に発現させればよく、 例えば、 第一の対と第二の対を異なる時期に発現させる方法を採用することがで きる。
上述の第一の対と第二の対を異なる時期に発現させるのに対して、 第一の対と 第二の対を同時期に発現した場合には、 通常、 第一の H鎖と結合していない第一 の L鎖と第二の L鎖と結合していない第二の H鎖の接触が阻害されず、 第一の L 鎖と結合していない第一の H鎖と第二の H鎖と結合していない第二の L鎖の接触 が阻害されていないので、 第一の H鎖と結合していない第一の L鎖と第二の L鎖 と結合していない第二の H鎖の結合が抑制されず、 第一の L鎖と結合していない 第一の H鎖と第二の H鎖と結合していない第二の L鎖の結合が抑制されてない状 態となる。 本発明において 「第一の対と第二の対を同時期に発現する」 とは、 第 一の対と第二の対の発現時期の少なくとも一部が重なっていることを意味し、 好 ましくは、 第一の対と第二の対の発現時期が一致していることを指す。
本発明において、 第一の対と第二の対を異なる時期に発現させる場合、 第一の 対が発現している時期と、 第二の対が発現している時期が完全に異なっている、 つまり、 第一の対が発現している時は第二の対は発現しておらず、 第二の対が発 現している時は第一の対は発現していないことが好ましい。 し力 しながら、 本発 明はこれに限定されず、 第一の対が発現している時期と第二の対が発現している 時期の一部が重なっていても良い。 第一の H鎖と第二の L鎖の結合を抑制し、 第 .二の H鎖と第一の L鎖の結合を抑制するその他の方法としては、 第一の H鎖と第 二の L鎖を異なる時期に発現させ、 第二の H鎖と第一の L鎖を異なる時期に発現 させればよい。 即ち、 本発明の方法においては、 第一の H鎖と第一の L鎖は同時 期に発現させることが好ましいが、 特に限定されず、 第一の H鎖と第一の L鎖を 異なる時期に発現させてもよい(第二の H鎖と第二の L鎖についても同様)。 その 場合、 例えば、 第一の H鎖と結合していない第一の L鎖と第二の L鎖と結合して いない第二の H鎖の接触を阻害し、 第一の L鎖と結合していない第一の H鎖と第 二の H鎖と結合していない第二の L鎖の接触を阻害すれば第一の H鎖と第二の L 鎖、 及び第一の L鎖と第二の H鎖の結合を阻害することができる。 例えば、 第一 の対と第二の対を異なる場所で発現させ、 それぞれの対を形成してから、 第一の 対と第二の対を接触させ、 抗体を作製してもよい。 そのような方法の一つとして、 第一の対と第二の対を異なる細胞中で発現させ、 対形成させた後に、 第一の対と 第二の対を発現する細胞を融合して抗体を作製させる方法が考えられる。
第一の対と第二の対を異なる時期に発現させる為の具体的な方法としては、 例 えば、 発現調節因子などを用いて第一の対と第二の対の発現を異なる時期に誘導 する方法を挙げることができる。 より具体的には、 第一の発現調節因子により第 一の対の発現が誘導されるベクターを構築し、 第二の発現調節因子により第二の 対の発現が誘導されるベクターを構築する。 この際、 第一の対と第二の対を一つ のベクター上に構築してもよいし、 異なる 2つ以上のベクター上に構築してもよ い。 又、 H鎖と L鎖を同一のベクター上に構築してもよいし、 異なる 2つ以上の ベクターに構築してもよい。 次に、 構築したベクターを細胞に導入し、 まず第一 の発現調節因子により第一の対の発現を誘導する。 その後、 第二の発現調節因子 により第二の対の発現を誘導する。 この場合、 第二の対の発現を誘導する前に、 第一の対の発現を停止させておくことが好ましい。
発現調節因子は、 宿主細胞中での H鎖及び L鎖の発現を調節できるものであれ ば特に限定されず、 どのような種類のものを用いてもよい。 例えば、 発現調節因 子の不在下では発現が誘導されず、 発現調節因子の存在下では発現が誘導される ものでもよいし、 逆に、 発現調節因子の存在下では発現が誘導されず、 発現調節 因子の不在下で発現が誘導されるものでもよい。 発現調節因子は、 発現誘導剤な どの化合物でもよいし、 又、 温度 (熱)などの物理的な要因であってもよレ、。 発現 誘導剤の具体的な例としては、 テトラサイクリンなどの抗生物質、 エタダイソン アナログなどのホルモン、 Cre (causes recombination;相同組換え酵素)などの酵 素、 等を挙げることができる。 また、 誘導した H鎖及び/または L鎖の発現をと めるためには、 上述の発現調節因子として機能する発現誘導剤を除くことができ る。 温度 (熱)等の物理的要因を発現調節因子とした場合には、 発現が誘導されな いような温度に戻すことにより誘導した H鎖及び/または L鎖の発現をとめるこ とができる。 発現調節因子により発現誘導されるベクターの構築は当業者に公知の方法で行 うことができる。 具体的な例としては、 市販されている発現誘導剤により発現が 誘導されるベクター(例えば、 pcDNA4/T0、 pIND : Invitrogen)に抗体の第一の対 又は第二の対をコードする遺伝子を導入することにより作製することが可能であ る。 通常、 第一の対を構成する H鎖及び L鎖の発現を誘導する第一の発現調節因 子と第二の対を構成する H鎖及び L鎖の発現を誘導する第二の発現調節因子は異 なる発現調節因子である。 また、 場合により、 第一の H鎖の発現を誘導する発現 調節因子と第一の L鎖の発現を誘導する発現調節因子も異なるものであってもよ い (第二の H鎖及び L鎖の発現調節因子についても同様) 。 このようにして構築 された発現調節因子により抗体の第一または第二の対の発現が誘導されるべクタ 一は、 抗体の第一の対と第二の対を異なる時期に発現することが可能となる。 又、 当該ベクターが導入された宿主細胞は、 抗体の第一の対と第二の対を異なる時期 に発現することが可能な細胞となる。
本発明の各抗体断片を発現させるためのベクターの構築に当たっては、 遺伝子 情報の転写及び翻訳を制御するプロモーター、 ターミネータ一等のユニットが必 要であり、 さらに各抗体断片の N末端に適当なシグナル配列を配置することが好 ましい。 プロモーターとしては、 lac、 trp、 tac、 λ ファージ PL、 PR等に由来 するプロモーターが利用可能である。 ターミネータ一としては、 trPA、 ファージ、 rrnBリポソ一マル RNA由来のものを使用することができる。 適当なシグナル配 列としては、 宿主細胞からの融合蛋白質の分泌を可能にするリ一ダーぺプチド配 列が挙げられ、 pellB分泌シグナルを例示することができる(Better et al., Sc ience 1988, 240: 1041-3; Sastry et al. , Proc. Natl. Acad. Sci. USA 1989, 86: 5728参照)。
本発明の抗体の第一の対と第二の対を異なる時期に発現することが可能なべク ターを作製する為に用いられるベクターは特に限定されず、 どのようなベクター を用いてもよい。 ベクターの具体的な例としては、 哺乳動物由来の発現ベクター (例えば、 pcDNA3 (Invitrogen)、 pEGF - BOS (Nucleic Acids Res. 1990, 18 (17) : 5322)、 pEF、 pCDM8) 、 昆虫細胞由来の発現ベクター(例えば 「Bac- to_BAC bacul ovirus expression systeraj (Gibco BRL)、 pBacPAK8)、 植物由来の発現ベクター (例えば ρΜΗ1、 pMH2)、 動物ウィルス由来の発現ベクター(例えば、 pHSV、 pMV、 p AdexLcw) , レトロウイルス由来の発現ベクター(例えば、 pZIPneo)、 酵母由来の 発現ベクター(例えば、 「Pichia Expression Kit」 (Invitrogen) , p Vl l、 SP-QO 1)、 枯草菌由来の発現ベクター(例えば、 pPL608、 pKTH50) s 大腸菌由来の発現べ クタ一(M13系ベクター、 pUC系べクタ一、 pBR322、 pBluescript、 pCR_Script)な どが挙げられる。 又、 市販されている発現誘導剤により発現が誘導されるべクタ 一を用いてもよい。
本発明の抗体の第一の対と第二の対を異なる時期に発現することが可能な細胞 を作製する為に用いられる細胞は特に限定されず、 どのような細胞を用いてもよ い。 真核細胞を宿主として使用する場合、 動物細胞、 植物細胞、 真菌細胞を用い ることができる。 動物細胞としては、 (1)哺乳類細胞、 例えば、 CH0、 COS, ミエ ローマ、 BHK (baby hamster kidney)、 HeLa、 Vero、 (2)両生類細胞、 例えば、 ァ フリカツメガエル卵母細胞、 または(3)昆虫細胞、 例えば、 sf9、 Sf21、 Tn5など が知られている。 植物細胞としては、 ニコティ了ナ ( cotian )氯、 例えば-コ ティ了ャ ·タ 力 J^Nicotiana scwz?)由来の細胞が知られており、 これを力 ルス培養すればよい。 真菌細胞としては、 酵母 (例えば、 サッカロミセス 'セレ ビシェ Saccharomyces cerevisiae)等のサッカロミセス Saccharomyces)属の細 胞等)、 糸状菌 (例えば、 了スベ) キ) : Ά ·二 — (Aspergillus niger等の了ス ペルギルス (Aspergillus属の細胞等) などが知られてレヽる。 原核細胞を使用す る場合、 細菌細胞を用いる産生系がある。 細菌細胞としては、 大腸菌 coli 、 枯草菌等が知られている。 本発明においては、 糖鎖の付加、 立体構造の維持等の 観点から、 動物細胞を用いることが好ましく、 特に哺乳動物細胞を用いることが 好ましい。 これらの細胞に、 本発明の抗体の第一の対と第二の対 (場合により、 第一並びに第二の対の各々の H鎖及び L鎖)を異なる時期に発現することが可能 なベクターを導入することにより本発明の細胞を作製することができる。
構築した各対を発現するベクターの所望の宿主細胞への導入は、 用いるベクタ 一及び宿主細胞の種類に依存する。 原核細胞を宿主として使用する場合には、 例 えば、 カルシウムイオンを用いた方法(Proc. Natl. Acad. Sci. USA 1972, 69: 2110)、 プロトプラスト法(特開昭 63-24829号公報)、 エレクトロポレーシヨン法 (Gene 1982, 17: 107; Molecular & General Genetics 1979, 168 : 111)等の方 法により宿主細胞へ導入することができる。 また、 宿主細胞が酵母である場合に は、 エレク トロポレーシヨン法(Methods in Enzyraology 1990, 194: 182)、 スフ エロプラスト法(Proc. Natl. Acad. Sci. USA 1984, 81: 4889)、 酢酸リチウム 法(J. Bacteriol. 1983, 153: 163)等が挙げられ、 植物細胞についてはァグロバ クテリゥム法(Gene 1983, 23: 315; W089/05859等)、 超音波処理による方法(W0 91/00358)等が公知である。 また、 動物細胞を宿主とした場合には、 エレク ト口 ポレーシヨン法(Cytotechnology 1990, 3: 133)、 リン酸カルシウム法(特開平 2 - 227075号公報)、 リポフエクシヨン法(Proc. Natl. Acad. Sci. USA 1987, 8 4: 7413; Virology 1973, 52: 456)、 リン酸-カルシウム共沈法、 DEAE-デキスト ラン法、 微小ガラス管を用いた DNAの直接注入法等が挙げられる。
上述のようにして取得された宿主細胞は、 例えば、 次のような方法で培養する ことができる。 宿主が原核生物や真核微生物である場合は、 培地は該生物が資化 し得る炭素源、 窒素源、 無機塩類等の生育に必要な物質を含有し、 形質転換体の 効率的な培養を可能にするものであれば天然培地、 合成培地のいずれでもよい。 培養は好気的条件、 嫌気的条件のいずれで行ってもよく、 生育温度、 培地の pH、 生育時間等の条件は、 用いる形質転換体の種類に応じ適宜当業者により決定され 得るものである.。 また、 誘導性のプロモーターを用いた発現ベクターについては、 必要に応じてインデューサーを培地に添加すればょレ、(例えば、 lacプロモータ 一であれば IPTG、 trpプロモーターであれば IM等)。 昆虫細胞を宿主細胞とし て用いる場合には、 培地としては TNM-ra培地(Pharraingen)、 Sf-900 II SFM培 地(Life Technologies) , ExCel 1400及び ExCel 1405 (JEH Biosciences) , Grace' s Insect Medium (Nature 195: 788 (1962) )等を用いることができ、 必要に応じゲ ンタマイシン等の抗生物質を添加してもよレ、。 宿主細胞が動物細胞である場合に は、 一般に使用されている RPMI1640培地(The Journal of American Medical As sociation 199 : 519 (1967) )、 Eagleの MEM培地(Science 122: 501 (1952) )、 D MEM培地(Virology 8 : 396 (1959) )、 199培地(Proceeding of the Society for the Biological Medicine 73: 1 (1950) )、 または、 これらの培地に BSA等を添 加した培地を使用することができる。 培養は通常の条件、 例えば、 pH6〜8、 30〜 40°C、 5%C02存在下で行うことができる。 この際、 必要に応じカナマイシン、 ぺ ニシリン等の抗生物質を培地に添加してもよい。
抗体遺伝子を適当なベクターに組み込んで、 これを宿主に導入し、 遺伝子組換 え技術を用いて抗体を産生させる方法は当業者によく知られている(例えば、 Car 1, A. K. Borrebaeck, James, W. Larrick, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990参照)。 本発明の具体的な抗体の製造方法として、 例えば、 次のような方法が考えられ る。 最初に、 抗体左腕 H鎖および L鎖 (Left HL)をテトラサイクリン誘導型の pc DNA4 (Invitrogen)ベクターへ、 抗体右腕 H鎖および L鎖(Right HL)をェクダイソ ン誘導型の pIND (Invitrogen)ベクターへ組み込む。 全ての発現調節プラスミド を上述の適当な宿主細胞、 例えば、 COS- 7 等の動物細胞に形質導入する。 その後、 例えば、 一次誘導としてテトラサイクリンを培地へ添加し、 抗体左腕 HL分子を 細胞内で形成させる。 1〜2日間の一次誘導発現後、 一旦培地を洗浄することに より、 最初の薬剤(ここではテトラサイクリン)を完全に除去する。 次に、 二次誘 導用の薬剤ェクダイソンアナログを含む新鮮な培地に置換し、 二次誘導発現を例 えば 2〜3日間行う。 その結果、 抗体右腕 HL分子が生成され、 既に細胞中に存在 していた左腕 HL分子と会合し完全体 BsAbが形成され、 培地中へ分泌される。 本発明の抗体の製造方法により、 第一の対と第二の対の両方を含む抗体以外の 産性を抑制し、 製造される抗体組成物中に含まれる第一の対と第二の対の両方を 含む抗体の割合を高めることができる。 即ち、 本発明の方法により、 製造される 抗体組成物の比活性を増加させることができる。
2 . 抗体
本発明により上述の方法で製造される抗体が提供される。 必要に応じ、 上記方 法により製造された抗体組成物中の抗体を、 通常のタンパク質の精製で使用され ている公知の方法により精製することができる。 例えば、 プロテイン Aカラムな どのァフィ二ティーカラム、 クロマトグラフィーカラム、 フィルター、 限外濾過、 塩析、 透析等を適宜選択、 組合せることにより、 抗体を分離、 精製することがで きる (Antibodies: A Laboratory Manual, Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。 精製は、 例えば、 抗体の抗原結合活性を指標とし て行うことができる。 抗体の抗原結合活性 (Antibodies : A Laboratory Manual, Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)の測定には公 知の手段を使用することができる。 例えば、 ELISA (酵素結合免疫吸着検定法)、 E IA (酵素免疫測定法)、 RIA (放射免疫測定法)または蛍光免疫法などを用いること ができる。
本発明で製造される多重特異性抗体は特に限定されないが、 通常、 第一の H鎖 と第二の H鎖のアミノ酸配列が異なっており、 第一の L鎖と第二の L鎖のアミノ 酸配列が異なっている二特異性抗体 (BsAb)である。 以下、 主として BsAbについ て述べるが、 その他の多重特異性抗体にも同様に適用することができる。 第一の 対と第二の対が認識する抗原は同じでもよいが、 好ましくは異なる抗原 (又はェ ピトープ)を認識する BsAbである。 本発明においては、 全く異なる抗原を認識す る BsAbでもよいし、 同一抗原上の異なる部位 (異なるェピトープ)を認識する Bs Abでもよい。 又、 一方がタンパク質、 ペプチド、 遺伝子、 糖などの抗原を認識 し、 他方が放射性物質、 化学療法剤、 細胞由来トキシン等の細胞傷害' ι·生物質など を認識してもよレ、。 .
本発明で製造される抗体は、 第一の対同士又は第二の対同士では抗体が形成さ れにくい工夫がされていることが好ましい。 そのような工夫の具体例としては、 knobs— into— holesを挙け *ること力 Sできる。 knobs— into— holes fま、 へテ口マノレチ マー形成を促進し、 ホモマルチマー形成を抑制するように、 第一のポリべプチド の界面と第二のポリペプチドの界面で特異的かつ相補的な相互作用を導入する (例えば、 非天然のジスルフィ ド結合が第一のポリペプチドと第二のポリべプチ ド間に形成されるように、 第一のポリべプチドの界面に遊離チオール含有残基を、 第二のポリべプチドの界面中に相当する遊離チオール含有残基を導入する)方法 である(特表 2001-523971)。 knobs- into- holesは当業者に公知の技術であり、 当 業者は適宜、 抗体に導入することが可能である。
又、 本発明で製造される抗体は、 H鎖と L鎖がリンカ一などで結合されていな い抗体であることが好ましく、 さらに好ましくは H鎖と L鎖間にジスルフィ ド結 合以外の共有結合が存在しない抗体であることが好ましい。
また、 抗体は抗原に結合することができれば、 抗体断片等の低分子化抗体また は抗体の修飾物などであってもよい。 抗体断片の具体例としては、 例えば、 Fab、 Fab' , F (ab' ) 2、 Fv、 ダイァボディなどを挙げることができる。 このような抗体 断片を得るには、 これら抗体断片をコードする遺伝子を構築し、 これを発現べク ターに導入した後、 適当な宿主細胞で発現させればよい(例えば、 M. S. Co et a 1. , J. Immunol. 1994, 152: 2968—2976; M. Better and A. H. Horwitz, Metho ds Ensymol. 1989, 178: 476-496; A. Pluckthun and A. Skerra, Methods Enzy mol. 1989, 178 :497-515 ; E. Laraoyi, Methods Enzymol. 1986, 121: 652-663 ; J. Rousseaux et al., Methods Enzymol. 1986, 121: 663-669; R. E. Bird and B. . Walker, Trends Biotechnol. 1991, 9 : 132- 137参照)。
抗体の修飾物として、 ポリエチレングリコール (PEG)等の各種分子と結合した 抗体を使用することもできる。 又、 抗体に標識物質、 化学療法剤、 細菌由来トキ シン等の細胞傷害性物質などを結合することも可能である。 特に標識抗体は有用 であり、 酵素、 蛍光物質、 発光物質、 放射性同位体、 金属キレート等により抗体 を標識し、 検出する方法が公知である。 抗体修飾物は、 得られた抗体に架橋剤等 を用いて化学的な修飾を直接的に施すことによって得ることができる。 また、 抗 体に対して低分子ハプテン(例えば、 ピオチン、 ジニトロフエニル、 ピリ ドキサ ール、 フルォレサミン等)を結合し、 低分子ハプテンを認識する結合成分により 間接的な標識を施すこともできる。 また、 本発明においては、 糖鎖を改変した抗 体などを用いることも可能である。 抗体の糖鎖改変技術は既に知られている(例 えば、 W000/61739 W002/31140など)。 本発明における 「抗体」 にはこれらの抗 体も包含される。
本発明の抗体は、 癌治療において使用することを目的とする場合には、 例えば、 抗体の一方の腕は腫瘍細胞抗原を認識するように調製し、 他方の腕は細胞傷害性 を誘起する分子を認識するように設計することができる。 月重瘍細胞抗原としては、 例えば、 1D10 (悪'性 B細胞)、 AMOC-1 (pan carcinoma associated antigen) CAMA 1 CD7 CD15 CD19 CD22 CD38 CEA EGF受容体、 Id- 1 L - Dl (大腸癌)、 MoV 18 p97 pl85 OVCAR- 3、 神経細胞接着分子(neural cell adhesion raolecul e ; NCAM)、 腎細胞癌、 メラノサイト刺激ホルモンアナログ、 葉酸結合蛋白質 (FB P)等が挙げられる。 また、 細胞傷害性を誘起する分子としては、 CD3 CD16 Fc y RIが例示される。 その他、 IFN- α、 サポニン、 ピン力アルカロイド、 リシン の Α鎖等の毒素と結合できるよう BsAbを設計することもできる。
また、 ヘテロ二量体を形成し、 リガンドとの結合によりその鎖間の距離または 角度等が変化することにより細胞内にシグナルを伝達する受容体 (例えば、 多く のサイトカイン受容体)に対して結合するように構築することにより、 リガンド による受容体の二量体化を模倣できるァゴニスト抗体として本発明の抗体を利用 することができる。 その他にも、 (1) CD30及びアルカリホスファターゼに結合し、 リン酸マイトマ イシンをマイトマイシンアルコールに変換する等の、 化学物質の変換を助ける酵 素と相互作用する抗体、 (2)繊維素溶解剤として使用できる、 フイブリン、 tPA、 uPA等に結合する抗体、 (3) 11)し及び?(;受容体 (^ 1?1、 Fc y RII, または Fc y RI II)等に結合し免疫複合体を細胞表面受容体へ誘導する抗体、 (4) CD3等の T細胞 上の抗原と、 HCV、 インフルエンザ、 HIV等の病原菌の抗原を認識する感染性の 疾患に使用できる抗体、 (5)腫瘍の検出に使用し得る腫瘍抗原と、 E0TUBE、 DPTA、 ハプテン等の検出可能な物質に結合性を有する抗体、 (6)ワクチンアジュバント として使用し得る抗体(Fanger et al., Crit. Rev. Immunol. 1992, 12 : 101 - 24 参照)、 並びに(7)診断において使用し得るゥサギ IgG、 西洋ヮサビペルォキシダ ーゼ(HRP)、 FITC、 β -ガラクトシダーゼ等の検出可能な物質と、 ホルモン、 フエ リチン、 ソマトスタチン、 サブスタンス!3、 CEA等を抗原とする抗体等が知られ ており、 これらの公知の多重特異性抗体(W089Z02922号パンフレッ ト、 ΕΡ314、 317号公報、 US5116964号公報参照)を含む様々な抗体を本発明の方法により製造 することができる。
以上のように、 本発明の抗体は、 従来知られている多特異性抗体と同様に、 免 疫診断、 治療及び免疫学的検定による診断等の臨床分野において有用である。 例 えば、 腫瘍細胞を殺す等の細胞障害性を誘起するため、 ワクチンアジュパントと して、 血栓溶解剤等の薬剤を適切に生体内において標的に対して運搬するため、 酵素により活性化されるプロドラッグを標的部位において確実に変換するため、 感染性の疾患の治療用に、 細胞表面受容体に対して免疫複合体を誘導するため、 免疫毒素等を腫瘍細胞等の標的細胞に運搬するため等、 様々な治療目的で使用す ることが考えられる。
本発明の抗体を医薬組成物として用いる場合には、 当業者に公知の方法で製剤 化することが可能である。 このような治療目的で使用される本発明の抗体を含む 医薬組成物は、 必要に応じ、 それらに対して不活性な適当な薬学的に許容される 担体、 媒体等と混和して製剤化することができる。 例えば、 滅菌水や生理食塩水、 安定剤、 賦形剤、 酸化防止剤(ァスコルビン酸等)、 緩衝剤(リン酸、 クェン酸、 他の有機酸等)、 防腐剤、 界面活性剤 (PEG、 TVeen等)、 キレート剤 (EDTA等)、 結 合剤等を挙げることができる。 また、 その他の低分子量のポリペプチド、 血清ァ ノレブミン、 ゼラチンや免疫グロブリン等の蛋白質、 グリシン、 グルタミン、 ァス パラギン、 アルギニン及びリシン等のアミノ酸、 多糖及び単糖等の糖類や炭水化 物、 マンニトールやソルビトール等の糖アルコールを含んでいてもよい。 注射用 の水溶液とする場合には、 例えば生理食塩水、 ブドウ糖やその他の補助薬を含む 等張液、 例えば、 D-ソルビトール、 D-マンノース、 D-マンニトール、 塩化ナトリ ゥムが挙げられ、 適当な溶解補助剤、 例えばアルコール(エタノール等)、 ポリア ルコール(プロピレングリコール、 PEG等)、 非ィオン性界面活性剤(ポリソルべ ート 80、 HC0 - 50)等と併用してもよい。
また、 必要に応じ本発明の Dbをマイクロカプセル(ヒドロキシメチルセルロー ス、 ゼラチン、 ポリ [メチルメタクリル酸]等のマイクロカプセル)に封入したり、 コロイ ドドラッグデリバリーシステム(リボソーム、 アルブミンミクロスフエア、 マイクロエマルジョン、 ナノ粒子及びナノカプセル等)とすることもできる("Rera ington' s Pharmaceutical Science 16th edition , Oslo Ed. , 1980等参照)。 らに、 薬剤を徐放性の薬剤とする方法も公知であり、 本発明の Dbに適用し得る (Langer et al. , J. Biomed. Mater. Res. 1981, ID - loト 277 ; Langer, Chera. Tec h. 1982, 12 : 98- 105 ;米国特許第 3, 773, 919号;欧州特許出願公開(EP)第 58, 481 号; Sidraan et al., Biopolymers 1983, 22: 547- 556; EP第 133, 988号)。
患者への投与は経口、 非経口投与のいずれでも可能であるが、 好ましくは非経 口投与であり、 具体的には、 注射剤型、 経鼻投与剤型、 経肺投与剤型、 経皮投与 型などが挙げられる。 注射剤型の例としては、 例えば、 静脈内注射、 筋肉内注射、 腹腔内注射、 皮下注射などにより全身または局部的に投与することができる。 ま た、 患者の年齢、 症状によって適宜投与方法を選択することができる。 投与量と しては、 例えば、 一回につき体重 lkgあたり O. OOOlragから lOOOmgの範囲で選ぶ ことが可能である。 あるいは、 例えば、 患者あたり 0. 001〜; I00000mg/bodyの範 囲で投与量を選ぶことができる。 しかしながら、 本発明はこれらの投与量および 投与方法等に制限されるものではない。
本発明の抗体は酵素免疫分析に用いることもできる。 このためには、 抗体の一 方の抗体可変領域は酵素上の酵素活性を阻害しないェピトープを、 そして他方は 担体に結合するような担体を認識するように設計する。 例えば、 IgG、 フェリチ ン、 HRP及びホルモン等を認識する抗体を挙げることができる。
また、 本発明の抗体は 3 vivoKa in w iroにおける種々の疾病の免疫診断 に用いることも可能である。 例えば、 抗体の一方の対の抗体可変領域を腫瘍細胞 に特異的な抗原等を認識するようにし、 他方は検出可能なマーカーに結合するよ うに設計することができる。 検出可能なマーカーとしては放射性同位体 (例えば、
3H、 14C、 32P、 35S、 125I等)、 蛍光色素(フルォレセイン、 ルシフェリン等)、 化学 ルミネセンス化合物(イソチオシァネート、 ローダミン等)、 アルカリホスファタ ーゼ、 /3 -ガラクトシダーゼ、 HRP等の汎用の酵素等を挙げることができ、 抗体 のこれらの物質との結合及び検出は公知の方法に従って行うことができる(Hunte r et al. , Nature 1962, 144: 945; David et al. , Biochemistry 1974, 13 : 10 14; Pain et al. , J. Immunol. Meth. 1981, 0: 219; Nygen, J. Histochem an d Cytochem 1982, 30: 407参照)。 このように検出可能な物質に対して反応性を 有する本発明の抗体は、 拮抗的結合分析、 直接的及び間接的なサンドイッチ免疫 分析(ELISA等)、 免疫沈降分析(Zola, "Monoclonal Antibodies : A Manual of T echniques", pp. 147-158, CRC Press Inc. (1987) )等を含む、 種々の分析におい て用いることもできる。
本発明の抗体を上述のような診断等において使用する場合、 必要に応じ抗体を 不溶性担体に結合することもできる。 抗体を不溶性担体に結合する方法は周知で あり、 慣用の化学結合法または物理的吸着法により抗体を固相化することができ る。 不溶性担体としては例えば、 種々の合成樹脂、 多糖類、 ガラス、 金属等を素 材とした球状、 繊維状、 棒状、 トレイ等の容器状、 盤状、 セル及び試験管等の所 望の形態の担体を挙げることができる。 3 . 抗体組成物
本発明において抗体組成物とは、 複数種類の抗体を含む集団のことをいう。 抗体組成物において、 目的型の抗体の割合を高くするとは、 抗体組成物中に含 まれる、 第一の対と第二の対で形成される抗体の割合を高くすることを意味する。 つまり、 抗体組成物中の第一の H鎖と第二の L鎖で形成される対又は第二の H鎖 と第一の L鎖で形成される対を含む抗体の割合を低くすることを意味する。 即ち、 本発明の抗体組成物は、 一般的には、 より高い比活性を有するものである。
抗体の比活性の指標としては、 抗体の結合活性、 ァゴニスト活性、 アンタゴニ ス ト活性、 中和活性などを挙げることができる。 比活性を測定する為に用いる検 出指標としては、 抗体組成物中の目的とする抗体の量的および/又は質的な変化 が測定可能である限りどのような指標をも使用することができる。 例えば、 無細 胞系(cell free assay)の指標、 細胞系(cell-based assay)の指標、 組織系の指 標、 生体系の指標を用いることができる。 無細胞系の指標としては、 本発明の抗 体の結合、 ァゴニスト作用、 アンタゴニスト作用、 中和作用等による酵素反応ま たはタンパク質、 DNA、 RNAの量的および/若しくは質的な変化を用いることがで きる。 酵素反応としては、 例えば、 アミノ酸転移反応、 糖転移反応、 脱水反応、 脱水素反応、 基質切断反応等を用いることができる。 また、 タンパク質のリン酸 ィ匕、 脱リン酸化、 二量体化、 多量体化、 分解、 乖離等、 さらに DNAまたは RNAの 増幅、 切断、 伸長も指標として用いることができる。 また、 シグナル伝達経路の 下流に存在するタンパク質のリン酸化を検出指標とすることもできる。 細胞系の 指標としては、 本発明の抗体の結合、 ァゴニスト作用、 アンタゴニスト作用、 中 和作用等による細胞の表現型の変化、 例えば、 産生物質の量的及び/又は質的変 ィ匕、 増殖活性の変化、 形態の変化、 特性の変化等を用いることができる。 産生物 質としては、 分泌タン'パク質、 表面抗原、 細胞内タンパク質、 mR A等を用いる ことができる。 形態の変化としては、 突起形成及び/又は突起の数の変化、 偏平 度の変化、 伸長度/縦横比の変化、 細胞の大きさの変化、 内部構造の変化、 細胞 集団としての異形性/均一性、 細胞密度の変化等を用いることができる。 細胞の 形態の変化は、 一般に顕鏡下での観察で確認することができる。 特性の変化とし ては、 足場依存性、 サイトカイン依存応答性、 ホルモン依存性、 薬剤耐性、 細胞 運動性、 細胞遊走活性、 拍動性、 細胞内物質の変化等を用いることができる。 細 胞運動性としては、 細胞浸潤活性、 細胞遊走活性がある。 また、 細胞内物質の変 化としては例えば、 酵素活性、 mRNA量、 Ca2+及び cAMP等の細胞内情報伝達物質 量、 細胞内蛋白質量等を用いることができる。 また、 受容体への本発明の抗体の 結合、 アゴニスト作用、 アンタゴニス ト作用、 中和作用によって誘導される細胞 の増殖活性の変化を指標とすることができる。 組織系の指標としては、 使用する 組織に応じた機能変化を検出指標とすることができる。 生体系の指標としては本 発明の抗体の結合、 ァゴニスト作用、 アンタゴニスト作用、 中和作用等による組 織重量変化、 血液系の変化、 例えば血球細胞数の変化、 タンパク質量、 酵素活性、 電解質量の変化、 また、 循環器系の変化、 例えば、 血圧、 心拍数の変化等を用い ることができる。
これらの検出指標を測定する方法としては、 特に制限はなく、 発光、 発色、 蛍 光、 放射活性、 蛍光偏光度、 表面プラズモン共鳴シグナル、 時間分解蛍光度、 質 量、 吸収スペクトル、 光散乱、 蛍光共鳴エネルギー移動等を用いることができる。 これらの測定方法は当業者にとっては周知であり、 目的に応じて、 適宜選択する ことができる。 例えば、 吸収スぺクトルは一般的に用いられるフォトメータ又は プレートリーダ等、 発光はルミノメータ等、 蛍光はフルォロメータ等で測定する ことができる。 質量は質量分析計を用いて測定することができる。 放射活性は、 放射線の種類に応じてガンマカウンターなどの測定機器を用いて、 蛍光偏光度は BEACON (宝酒造)、 表面プラズモン共鳴シグナルは BIAC0RE、 時間分解蛍光、 蛍光 共鳴エネルギー移動などは ARV0などにより測定できる。 さらに、 フローサイ ト メータなども測定に用いることができる。 これらの測定方法は、 一つの測定方法 で 2種以上の検出指標を測定しても良く、 簡便であれば、 2種以上の測定を同時 および/または連続して測定することによりさらに多数の検出指標を測定するこ とも可能である。 例えば、 蛍光と蛍光共鳴エネルギー移動を同時にフルォロメ一 タで測定することができる。
4 . ベクター及び細胞
本発明により、 本発明の抗体の製造方法において使用することができる、 発現 誘導剤により抗体の L鎖または H鎖の発現が誘導されるべクターが提供される。 本発明の抗体の製造方法において使用できるベクターは、 好ましくは、 一つの発 現調節因子により対となる L鎖及び H鎖の両方が誘導されるものである。 ここで、 L鎖及び H鎖をコードする遺伝子は同じベクター中に組み込まれていても、 別々 のベクター中に組み込まれていてもよい。 本発明はまた、 第一の L鎖及び第一の H鎖をコードするベクター、 並びに、 第二の L鎖及び第二の H鎖をコードするべ クタ一を含むベクターキットに関する。 該ベクターキットでは、 好ましくは第一 の L鎖 · H鎖と第二の L鎖 · H鎖は異なる発現調節因子により誘導される。 さら に、 必要に応じ、 第一の L鎖、 第一の H鎖、 第二の L鎖、 第二の H鎖の発現が 各々別の発現調節因子により誘導されるように本発明のベクター及びべクターキ ットを構築してもよい。
本発明は上記ベクターまたはベクターキットを含有する細胞を提供する。 該細 胞は好ましくは、 抗体の第一の H鎖及ぴ L鎖からなる対と、 抗体の第二の H鎖と L鎖からなる対を異なる時期に発現するものである。 本発明のベクター及ぴ細胞 については、 上記 「1 . 抗体の製造方法」 の項の記載を参照することができる。 なお本明細書において引用された全ての先行文献は、 参照として本明細書に組 み入れられる。 図面の簡単な説明
図 1は、 ルシフェラーゼ定量法による IFNァゴニスト活性の比較を示すグラフ である。 2-3 : 同時誘導, 3-3 : テトラサイクリンで 1 日誘導後、 ムリステロン A で 2日誘導発現, 4-4 : テトラサイクリンで 1日誘導後、 ムリステロン Aで 3日 誘導発現, 5-3 : テトラサイクリンで 2日誘導後、 ムリステロン Aで 1日誘導発 現, 7-4: ムリステロン Aで 1 日誘導後、 テトラサイクリンで 3 日誘導発現。
図 2は、 サンドイッチ ELISA法による目的型抗体量の比較を示すグラフである。 各抗体サンプル濃度における吸光度を参照波長 655nmにて 405nmで計測した。 上 段は AR1- His+抗体 +AR2- biotin、 下段は AR2- His+抗体 +AR1- biotinを示す。
黒丸: 同時誘導発現サンプル, 白四角: 時間差誘導発現サンプル。 発明を実施するための最良の形態
以下、 本発明を実施例によりさらに詳細に説明するが、 これらの実施例は本発 明をいかなる意味でも限定するものではない。
1. ヒト IFNヘテロ受容体 (AR1/AR2) に結合する二特異性 IgG抗体発現用プラス ミ ド構築
本抗体は 2種の H鎖と共に抗 AR1または抗 AR2いずれかの L鎖だけを発現させ、 L鎖を共通のものにした場合活性を失う為、 逆に阻害に働くことが考えられる。 つまり、 両 L鎖を発現させた際に目的の組合せの IgGが優先的に発現すれば IgG の見かけ上の比活性が上昇することが期待される。
二特異性 IgG抗体を産生する際に、 各 H鎖のへテロな組み合わせの分子を形成 させるために IgGlの knob- into- hole技術 [Ridway et al. , Protein Eng. 9 ; 61 7 - 21 (1996) ]を参考に、 ヒ ト IgG4の CH3部分へのアミノ酸置換体を作製した。 a タイプ(ヒト IgG4 γ a).は Y349C、 T36OT置換体であり、 bタイプ(ヒト IgG4 y b)は E356C、 T366S、 L368A、 Y407Vの置換体である。 さらに、 両置換体のヒンジ領域 にも置換 (-ppcpScp > - ppcpPcp -)を導人した。
AR1受容体を認識する抗体分子片腕 (便宜上右腕 HL分子と称する) の発現用 として、 テトラサイクリン誘導型ベクター pcDNA4 (Invitrogen) を用いた。 抗 体右腕 HL分子を構成する H鎖および L鎖それぞれの発現ュニット、 すなわち動 物細胞用シグナル配列(IL3ss) [Proc. Natl. Acad. Sci. USA. 81; 1075 (1984) ]の下 流に AR1受容体を認識するマウス抗体可変領域 (VHないし VL)とヒ ト IgG4 y a定 常領域ないし /c定常領域、 を組み込んだベクター(pcDNAl-24Hないし pcDNAl-24 L)を公知の遺伝子工学的手法に則り作製した。
AR2受容体を認識するもう一方の片腕 (便宜上左腕 HL分子と称する) はエタ ダイソン類似体誘導型ベクター pIND (Invitrogen) を用いた。 抗体左腕 HL分子 を構成する H鎖おょぴ L鎖それぞれの発現ュニット、 すなわち動物細胞用シグナ ル配列(IL6ss) [EMB0. J. 6 ; 2939 (1987) ]の下流に AR2受容体を認識するマウス 抗体可変領域 (VHないし VL)とヒト IgG4 y b定常領域ないし K定常領域、 を組み 込んだベクター(PIND2 - 7Ηないし PIND2- 7L)を同様に作製した。 各々のプラスミ ド DNAは市販プラスミ ド精製キット(QIAprep Spin Miniprep Kit, QIAGEN)を用 いて単離した。 各プラスミド溶液は、 使用するまで 4°Cで保存した。
2. 二特異性 IgG抗体の動物細胞での時間差 HL発現
2-1. DNA溶液の調製
抗体右腕 HL分子発現用べクター (pcDNAl- 24Hそして pcDNAl- 24L) はテトラ サイクリンにより発現誘導がかかる。 テトラサイクリンが存在しない状況下で発 現を完全に抑制する為に Tetリプレッサー (TetR)をコードするプラスミド pcDNA 6/TR (Invitrogen)が要求される。 ここで、 発現した TetRは 2量体で pcDNA4/T0 上の 2つの Tetオペレーター配列(Tet02)に結合し、 目的遺伝子の転写を抑制す る。 そして、 添加したテトラサイクリンが TetR 2量体と結合し、 構造変化によ り TetRが Tetオペレーターから離れることにより、 CMV/Tet02プロモーターに よる目的遺伝子の転写が誘導される。 また、 抗体左腕 HL分子発現用ベクター (p IND2-7Hそして pIND2- 7L) は、 昆虫ホルモンであるェクダイソン類似化合物 (ム リステロン Aあるいはポナステロン A) により発現誘導がかかる。 このとき、 ェ クダイソン類似化合物と反応し誘導を行なぅェクダイソンレセプタ一とレチノィ ド Xレセプターを恒常的に発現するプラスミ ド pVgRXR (Invitrogen)が要求され る。 ここで、 ェクダイソンアナログの添加により、 その類似体と、 エタダイソン レセプターとレチノィ ド Xレセプターのへテロ 2量体が pINDベクターのェクダ ィソン/ダルココルチコィ ド(5XE/GRE)プロモーターに結合して目的遺伝子発現が 活性化する。 従って、 動物細胞のトランスフエクシヨンの為に pcDNAl- 24H、 pcD NAl- 24L、 pIND2-7H, pIND2- 7L、 pcDNA6/TRそして pVgRXRからなる計 6種類のプ ラスミ ド DNA混液を調製した。
2 - 2. 動物細胞のトランスフエクシヨン
アフリカミ ドリザル腎臓由来培養細胞 COS- 7株(Invitrogen)を用いた場合には、 細胞を DMEM+10%FCS培地へ懸濁し、 1 X 105/ralの細胞密度で接着細胞用 6- well プレート(CORNING)の各 wellへ lmlずつ蒔きこみ、 37°Cにて 5% C02 インキュべ 一ター内で一晩培養した。 2-1で調製したプラスミ ド DNA混液をトランスフエク シヨン試薬 FuGENE 6 (Roche) (Invitrogen) 1. 5 1と Opti - MEM I培地(Invitro gen) 250 ^ 1 の混液へ加えて室温 20分間静置したものを各 well の細胞へ投入し、 4〜5時間 37。Cにて 5% C02 ィンキュベータ一内でィンキュベートした。
ヒ ト胎児腎臓由来培養細胞 HEK293H株 (Invitrogen)を用いた場合には、 細胞 を D EM+10%FCS培地へ懸濁し、 5 X lOVralの細胞密度で接着細胞用 12-wellプレ ート(CORNING)の各 wellへ 1mlずつ蒔きこみ、 37°Cにて 5% C02ィンキュベータ 一内で一晩培養した。 2-1で調製したブラスミ ド DNA混液をトランスフエクショ ン試薬 Lipofectaraine 2000 (Invitrogen) 7 μ 1と Opti- MEM I培地(Invitrogen) 250 /i 1の混液へカ卩えて室温 20分間静置したものを各 wellの細胞へ投入し、 4〜 5時間 37°Cにて 5% C02ィンキュベータ一内でィンキュベートした。
2-3. 二特異性 IgG抗体の発現誘導
2- 2の通り トランスフエクシヨンした細胞培養液から培地を吸引除去し、 l / g /mlのテトラサイクリン塩酸塩(和光純薬)を含む 1ml CH0-S-SFM-II (Invitrogen) 培地を投入し、 37°Cにて 5% C02インキュベーター内で 1日培養して、 抗体右腕 HL分子の第一次発現誘導を行なった。 その後、 培地を吸引除去し、 一旦 lml CH 0-S-SFM-II培地にて洗浄した後、 5 ^ Μのムリステロン A (Invitrogen)ないしポ ナステロン A (Invitrogen)を含む lral CH0-S- SFM- II培地を投入し、 37°Cにて 5% C02インキュベーター内で 2日ないし 3日培養して、 抗体左腕 HL分子の第二次 発現誘導を行ない、 培地中へ二特異性 IgG抗体を分泌させた。 培養上清は回収さ れた後、 一旦遠心 (約 2000g、 5分間、 室温)して細胞を除去して、 必要に応じマ ィク口コン- 50 (Millipore) で濃縮を行った。'該サンプルは使用するまで 4°Cで 保存した。
2-4. 発現抗体の精製
2-3にて調製された抗体発現上清サンプルをプロテイン A樹脂 (rrap Protein A Sepharose FAST FLOW, Amershara biosciences)を用いて精製した。 すなわち、 該上清 4mlに対し TBS緩衝液で置換した樹脂 50 μ 1を添加し、 一晩 4°Cで転倒混 和し、 抗体を樹脂へ吸着させた。 一旦遠心 (3000 g, 10分)して上清を除去した 後、 TBS緩衝液 500 μ 1に懸濁し、 0. 22 μ ηιフィルターカップ (Millipore)へ移し た。 遠心 (3000 g, 1分)と TBS緩衝液による洗浄を 3回操り返した後、 溶出緩衝 液(10mM HC1, 150raM NaCl, and 0. 01% T een20) 100 μ 1にて溶出した。 溶出液 へ 150m NaClを含む 1M Tris溶液 5 1を添加し中和した。 該溶液は使用するま で 4 °Cで保存した。
2-5. ヒト IgG濃度の定量 Goat affinity purified antibody to human IgG Fc (Cappel) ¾: coating buff erにて 1 μ g/mLに調製し、 96- wellィムノプレート MaxiSorp Surface (NALGE N UNC International)に固相化した。 Diluent buffer (D. B. )にてブロッキング処理 した後、 D. B.を用いて適当に希釈した培養上清サンプルないし精製抗体サンプル を添加した。 また、 抗体濃度算出のためのスタンダードとして、 1000 ng/raLから 2倍系列で D. B.にて 11段階希釈した ChromPure Human IgG, whole molecule (Ja ckson IraraunoResearch, 11. 1 mg/raL)を同様に添加した。 3回洗浄した後、 Goat a nti-human IgG, alkaline phosphatase (Biosource)を反 eせた。 5 (E|洗净し Γこ 後、 Sigma 104<R) phosphatase substrate (Sigma Chemical)を基質として発色さ せ、 吸光度リーダー Model550 (Bio- Rad Laboratories)により、 参照波長 655 nra として 405 nraの吸光度を測定した。 Microplate Manager III (Bio-Rad Laboreto ries) ソフトウェアを用いて、 スタンダードの検量線から培養上清中のヒト IgG 濃度を算出した。 3. レポータージーンアツセィ法によるヒ ト IFNァゴニスト活性測定
ヒト肝癌由来培養細胞 HuH- 7 (国立衛生試験所)に IFN刺激応答因子の下流にル シフェラーゼ遺伝子を有するプラスミ ド pISRE- Luc (Stratagene)を導入した形質 転換細胞を用いて、 未精製抗体の IFNァゴュスト活性 (Relative Luciferase Uni t : RLU)を調査した。 活性測定はルシフェラーゼ定量システム Bright- Glo™ Luci ferase Assay System(Proraega)を用いて添付マニュアル記載の方法に従い行なつ た。 陽性対照として、 ヒト IFN a (rhIFN- α Α, CALBI0CHEM)を用いた。 結果を図 1に示す。 誘導型ベクターで時間差誘導発現をかけたもの(3-3, 4-4, 5-3, およ ぴ 7-4)は、 誘導型べクターで全てを同時に誘導発現かけたもの(2-3)に対し 5倍 から 1 0倍の比活性上昇が認められた。 すなわち、 時間差で各 HL分子を発現さ せることで、 目的外の組合せの余計な IgGの生成割合が抑えられた結果、 比活性 が上昇した可能性が強く示唆された。' 4.. サンドィツチ ELISA法による目的抗体発現量の解析
96-well Ni-NTA HisSorb Plate (QIAGEN)へ、 Hisタグ標識された各受容体(AR l—Hisないし AR2-His)を Diluent buffer (D. Β· )にて 500ng/mlに希釈したもの 1 00 iを添加しー晚 4°Cで吸着させた。 一且上清を吸引除去した後、 SuperBlock ™ Blocking Buffer in TBS (PIERCE) 200 /z 1を添加し、 室温 60分ブロッキング 処理した。 3回洗浄した後、 D. B.で希釈した精製抗体 (31. 25〜500ng/ral)を添加 し、 室温 60分インキュベートした。 抗体としては、 一つはトランスフエクショ ン後同時にテトラサイクリンとポナステロン Aにて誘導発現させたもの (同時誘 導) 、 もう一つはテトラサイクリンで 1日誘導かけた後にボナステロン Aで 2日 誘導発現させたもの (時間差発現) を用いた。 3回洗浄した後、 それぞれに対応 するピオチン化 2次抗原 (すなわち AR1- Hisに対しては AR2- biotin、 AR2- Hisに 対しては AR1- biotin) を D. B.にて 500ng/mlに希釈したもの 100 μ ΐを添カロし、 室温 60分インキュベートした。 3回洗浄した後、 D. B.で 3000倍に希釈された A P- sterptavidine (ZYMED)を添加し、 室温 60分インキュベートした。 5回洗浄し た後、 Sigma 104(R) phosphatase substrate (Sigma Chemical)を基質として発色 させ、 吸光度リーダー Model550 (Bio-Rad Laboratories)により、 参照波長 655 nraとして 405 nmの吸光度を測定した。
その結果、 ELISA 2種類の方策 (AR1- His+抗体 +AR2- biotinおよび AR2- His+抗 体 +AR1- biotin) 双方において時間差で各 HL分子を発現誘導させた方が、 両 HL 分子を同時に発現させる方法よりも単位抗体量あたり約 2倍強高い結合度を示し、 目的型抗体比率の優位性を示唆した (図 2参照) 。 産業上の利用の可能性
本発明は、 複数の抗体または抗体断片を結合する多重特異性抗体の製造におい て目的とする型の抗体を優先的に製造する方法を提供するものである。 より詳細 には、 例えば二特異性抗体 (BsAb)の製造において、 本発明の方法を採用すること により、 第一の重鎖と結合していない第一の軽鎖と第二の軽鎖と結合していない 第二の重鎖の接触、 及び、 第一の軽鎖と結合していない第一の重鎖と第二の重鎖 と結合していない第二の軽鎖の接触を阻害し、 目的型 BsAbを効率的に産生する ことができる。 即ち、 本発明の多重特異性抗体の製造方法により、 製造される抗 体組成物中に含まれる正しい重鎖と軽鎖の対から形成されている抗体の割合を高 め、 免疫診断、 治療及び免疫学的検定による診断等の臨床分野において有用な多 重特異性抗体の比活性を増加させることができる。

Claims

請求の範囲
1 . 第一の重鎖と結合していない第一の軽鎖と第二の軽鎖と結合していない第 二の重鎖の接触を阻害し、 第一の軽鎖と結合していない第一の重鎖と第二の 重鎖と結合していない第二の軽鎖の接触を阻害することを特徴とする抗体の 製造方法。
2 . 抗体の第一の対と第二の対を異なる時期に発現させることを特徴とする抗 体の製造方法。
3 . 以下の工程を含む抗体の製造方法。
(a)抗体の第一の重鎖と第一の軽鎖を発現させ、 第一の対を作製する工程、
(b)抗体の第二の重鎖と第二の軽鎖を発現させ、 第二の対を作製する工程、
(c)抗体の第一の対と第二の対を用いて抗体を作製する工程
4 . 以下の工程を含む抗体の製造方法。
(a)抗体の第一の重鎖と第一の軽鎖の発現を誘導して第一の対を作製するェ 程、
(b)抗体の第一の重鎖と第一の軽鎖の発現の誘導をとめる工程、
(c)抗体の第二の重鎖と第二の軽鎖の発現を誘導して第二の対を作製するェ 程、
(d)抗体の第一の対と第二の対を用いて抗体を作製する工程
5 . 第一の重鎖と第二の重鎖のアミノ酸配列が異なり、 かつ第一の軽鎖と第二 の軽鎖のアミノ酸配列が異なる抗体である請求項 1〜4のいずれかに記載の 製造方法。
6 . 抗体が二特異性抗体である請求項 1〜5のいずれかに記載の製造方法。
7 . 第一の対同士又は第二の対同士では抗体が形成されにくレ、抗体であること を特徴とする請求項 1〜6のいずれかに記載の製造方法。
8 . 第一の対同士又は第二の対同士では抗体が形成されにくい抗体が、 knobs- into - holesが導入された抗体であることを特徴とする請求項 1〜7のいずれ かに記載の製造方法。
9 . 第一の発現調節因子により第一の重鎖及び第一の軽鎖の発現が誘導される ベクター、 および第二の発現調節因子により第二の重鎖及び第二の軽鎖の発 現が誘導されるベクターを用いることを特徴とする抗体の製造方法。
1 0 . 抗体組成物の、 第一の対と第二の対を含む抗体の割合を高くすることに より、 抗体組成物の比活性を増加させる方法。
1 1 . 抗体の第一の対と第二の対を異なる時期に発現させることにより、 抗体 組成物の比活性を増加させる方法。
1 2 . 抗体の第一の対と第二の対を異なる時期に発現させることにより、 第一 の対と第二の対を含む抗体以外の抗体の産生を抑制する方法。
1 3 . 異なる 2種以上の発現誘導剤を用いることを特徴とする抗体の第一の対 と第二の対を異なる時期に発現させる方法。 '
1 4 . 請求項 1〜9のいずれかに記載の方法により製造される抗体。
1 5 . 第一の重鎖、 第二の重鎖、 第一の軽鎖、 第二の軽鎖を同時期に発現させ て作製された抗体組成物と比較して、 第一の対と第二の対を含む抗体の割 合が高い抗体組成物。
1 6 . 抗体の軽鎖と重鎖がペプチドリンカ一で介されていないことを特徴とす る請求項 15記載の抗体組成物。
1 7 . 発現誘導剤により抗体の軽鎖または重鎖の発現が誘導されるベクター。
1 8 . 第一の発現調節因子により抗体の第一の軽鎖及び第一の重鎖の発現が誘 導されるベクターと、 第二の発現調節因子により抗体の第二の軽鎖及び第 二の重鎖の発現が誘導されるベクターを含むベクターキット。
1 9 . 請求項 17または 18に記載のベクターを含有する細胞。
2 0 . 抗体の第一の対と第二の対を異なる時期に発現することが可能な細胞。
PCT/JP2004/008585 2003-06-11 2004-06-11 抗体の製造方法 WO2004111233A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/560,098 US8597911B2 (en) 2003-06-11 2004-06-11 Process for producing antibodies
JP2005507008A JP4794301B2 (ja) 2003-06-11 2004-06-11 抗体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003167087 2003-06-11
JP2003-167087 2003-06-11
PCT/JP2003/014059 WO2005042582A1 (ja) 2003-11-04 2003-11-04 抗体の製造方法
JPPCT/JP03/14059 2003-11-04

Publications (1)

Publication Number Publication Date
WO2004111233A1 true WO2004111233A1 (ja) 2004-12-23

Family

ID=33554235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008585 WO2004111233A1 (ja) 2003-06-11 2004-06-11 抗体の製造方法

Country Status (3)

Country Link
US (1) US8597911B2 (ja)
JP (1) JP4794301B2 (ja)
WO (1) WO2004111233A1 (ja)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
WO2014069647A1 (ja) * 2012-11-05 2014-05-08 全薬工業株式会社 抗体又は抗体組成物の製造方法
WO2014148895A1 (en) 2013-03-18 2014-09-25 Biocerox Products B.V. Humanized anti-cd134 (ox40) antibodies and uses thereof
EP2824183A1 (en) * 2005-04-08 2015-01-14 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor VIII
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
WO2015069865A1 (en) 2013-11-06 2015-05-14 Janssen Biotech, Inc. Anti-ccl17 antibodies
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
WO2015130732A2 (en) 2014-02-28 2015-09-03 Janssen Biotech, Inc. Anti-cd38 antibodies for treatment of acute lymphoblastic leukemia
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
WO2016040294A2 (en) 2014-09-09 2016-03-17 Janssen Biotech, Inc. Combination therapies with anti-cd38 antibodies
US9334331B2 (en) 2010-11-17 2016-05-10 Chugai Seiyaku Kabushiki Kaisha Bispecific antibodies
US9475880B2 (en) 2011-09-16 2016-10-25 Biocerox Products, B.V. Anti-CD134 (OX40) antibodies and uses thereof
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
WO2016210223A1 (en) 2015-06-24 2016-12-29 Janssen Biotech, Inc. Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
WO2016209921A1 (en) 2015-06-22 2016-12-29 Janssen Biotech, Inc. Combination therapies for heme malignancies with anti-cd38 antibodies and survivin inhibitors
WO2017024146A1 (en) 2015-08-05 2017-02-09 Janssen Biotech, Inc. Anti-cd154 antibodies and methods of using them
WO2017079150A1 (en) 2015-11-03 2017-05-11 Janssen Biotech, Inc. Subcutaneous formulations of anti-cd38 antibodies and their uses
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
WO2017106684A2 (en) 2015-12-17 2017-06-22 Janssen Biotech, Inc. Antibodies specifically binding hla-dr and their uses
WO2018002181A1 (en) 2016-06-28 2018-01-04 Umc Utrecht Holding B.V. TREATMENT OF IgE-MEDIATED DISEASES WITH ANTIBODIES THAT SPECIFICALLY BIND CD38
US9902770B2 (en) 2013-03-15 2018-02-27 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10208113B2 (en) 2014-06-23 2019-02-19 Janssen Biotech, Inc. Interferon α and ω antibody antagonists
EP3597219A1 (en) 2012-04-30 2020-01-22 Janssen Biotech, Inc. St2l antagonists and methods of use
WO2020148677A1 (en) 2019-01-18 2020-07-23 Janssen Biotech, Inc. Gprc5d chimeric antigen receptors and cells expressing the same
US10759870B2 (en) 2017-09-29 2020-09-01 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient
WO2021099944A1 (en) 2019-11-18 2021-05-27 Janssen Biotech, Inc. Anti-cd79 chimeric antigen receptors, car-t cells, and uses thereof
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11150254B2 (en) 2014-09-26 2021-10-19 Chugai Seiyaku Kabushiki Kaisha Method for measuring reactivity of FVIII
US11214623B2 (en) 2014-09-26 2022-01-04 Chugai Seiyaku Kabushiki Kaisha Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII)
US11352438B2 (en) 2016-09-06 2022-06-07 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X
WO2022177902A1 (en) 2021-02-16 2022-08-25 Janssen Biotech, Inc. Materials and methods for enhanced linker targeting
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
EP4219561A2 (en) 2015-05-20 2023-08-02 Janssen Biotech, Inc. Anti-cd38 antibodies for treatment of light chain amyloidosis and other cd38-positive hematological malignancies
US12116414B2 (en) 2007-09-26 2024-10-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386741B2 (ja) * 2002-04-15 2009-12-16 中外製薬株式会社 scDbライブラリーの作成方法
DE602004021095D1 (de) * 2003-01-21 2009-06-25 Chugai Pharmaceutical Co Ltd Verfahren zum screening der leichten kette eines antikörpers
EP1710255A4 (en) * 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODIES RECOGNIZING A TRIMER OR LARGER RECEPTOR
JPWO2005056602A1 (ja) * 2003-12-12 2008-03-06 中外製薬株式会社 アゴニスト活性を有する改変抗体のスクリーニング方法
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
WO2006028936A2 (en) * 2004-09-02 2006-03-16 Genentech, Inc. Heteromultimeric molecules
EP3348639A3 (en) * 2005-06-10 2018-10-31 Chugai Seiyaku Kabushiki Kaisha Sc(fv)2 site-directed mutant
KR102023401B1 (ko) 2012-05-10 2019-11-04 바이오아트라, 엘엘씨 다중-특이적 모노클로날 항체
IL242088B2 (en) 2013-05-20 2023-12-01 Genentech Inc Anti-transferrin receptor antibodies and methods of use
JP6779876B2 (ja) 2014-11-19 2020-11-04 ジェネンテック, インコーポレイテッド 抗トランスフェリン受容体抗体及びその使用方法
WO2016081640A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
US10941178B2 (en) * 2017-03-17 2021-03-09 Gilead Sciences, Inc. Method of purifying an antibody
JP7163399B2 (ja) * 2017-11-20 2022-10-31 泰州▲邁▼博太科▲薬▼▲業▼有限公司 Cd47とpd-l1を標的にする二重機能の融合タンパク質

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5637481A (en) * 1993-02-01 1997-06-10 Bristol-Myers Squibb Company Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell
ZA936260B (en) 1992-09-09 1994-03-18 Smithkline Beecham Corp Novel antibodies for conferring passive immunity against infection by a pathogen in man
CA2126967A1 (en) * 1992-11-04 1994-05-11 Anna M. Wu Novel antibody construct
SG55079A1 (en) * 1992-12-11 1998-12-21 Dow Chemical Co Multivalent single chain antibodies
DE122009000068I2 (de) 1994-06-03 2011-06-16 Ascenion Gmbh Verfahren zur Herstellung von heterologen bispezifischen Antikörpern
US5945311A (en) * 1994-06-03 1999-08-31 GSF--Forschungszentrumfur Umweltund Gesundheit Method for producing heterologous bi-specific antibodies
ES2153483T3 (es) 1994-07-11 2001-03-01 Univ Texas Metodos y composiciones para la coagulacion especifica en los vasos tumorales.
EP0812136B1 (en) * 1995-02-28 2000-12-20 The Procter & Gamble Company Preparation of noncarbonated beverage products having superior microbial stability
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
EP0871673B1 (en) 1995-05-03 2006-04-05 Bioenhancementsments Ltd. Bispecific antibodies in which the binding capability is reversibly inhibited by a photocleavable moiety
DE69633973T2 (de) 1995-09-11 2005-12-22 Kyowa Hakko Kogyo Co., Ltd. Antikörper gegen die alpha-kette von humanem interleukin 5 rezeptor
FR2745008A1 (fr) * 1996-02-20 1997-08-22 Ass Pour Le Dev De La Rech En Recepteur nucleaire de glucocorticoides modifie, fragments d'adn codant pour ledit recepteur et procedes dans lesquels ils sont mis en oeuvre
AU720232B2 (en) 1996-07-19 2000-05-25 Amgen, Inc. Analogs of cationic proteins
US6323000B2 (en) * 1996-12-20 2001-11-27 Clark A. Briggs Variant human α7 acetylcholine receptor subunit, and methods of production and uses thereof
US6183744B1 (en) * 1997-03-24 2001-02-06 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
CA2288600C (en) 1997-05-02 2010-06-01 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
US6368596B1 (en) * 1997-07-08 2002-04-09 Board Of Regents, The University Of Texas System Compositions and methods for homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells
US5980893A (en) 1997-07-17 1999-11-09 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
US6342220B1 (en) * 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
DE19819846B4 (de) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalente Antikörper-Konstrukte
CA2341029A1 (en) * 1998-08-17 2000-02-24 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
CO5280147A1 (es) 1999-05-18 2003-05-30 Smithkline Beecham Corp Anticuerpo humano monoclonal
AU1290001A (en) 1999-11-18 2001-05-30 Oxford Biomedica (Uk) Limited Antibodies
EP1238080A2 (en) 1999-12-14 2002-09-11 The Burnham Institute Bcl-g polypeptides, encoding nucleic acids and methods of use
DE60132075T2 (de) 2000-03-22 2009-03-12 Curagen Corp., New Haven Wnt-1 verwandte polypeptide und dafür kodierende nukleinsäuren
WO2001075454A2 (en) * 2000-04-03 2001-10-11 Oxford Glycosciences (Uk) Ltd. Diagnosis and treatment of alzheimer's disease
WO2001079494A1 (fr) 2000-04-17 2001-10-25 Chugai Seiyaku Kabushiki Kaisha Anticorps agonistes
AU1091802A (en) 2000-10-20 2002-04-29 Chugai Pharmaceutical Co Ltd Degraded agonist antibody
AU1091702A (en) 2000-10-20 2002-04-29 Chugai Pharmaceutical Co Ltd Degraded tpo agonist antibody
RU2287534C2 (ru) 2000-10-20 2006-11-20 Тугаи Сейяку Кабусики Кайся Деградированное антитело, являющееся агонистом tpo
US6859708B2 (en) * 2000-11-22 2005-02-22 Honda Giken Kogyo Kabushiki Kaisha Vehicle control system
DK1399484T3 (da) * 2001-06-28 2010-11-08 Domantis Ltd Dobbelt-specifik ligand og anvendelse af denne
US20030190705A1 (en) 2001-10-29 2003-10-09 Sunol Molecular Corporation Method of humanizing immune system molecules
AU2003216250A1 (en) * 2002-02-11 2003-09-04 Genentech, Inc. Antibody variants with faster antigen association rates
JP4386741B2 (ja) * 2002-04-15 2009-12-16 中外製薬株式会社 scDbライブラリーの作成方法
WO2003107218A1 (ja) 2002-05-31 2003-12-24 セレスター・レキシコ・サイエンシズ株式会社 相互作用予測装置
AU2003257536A1 (en) * 2002-08-27 2004-03-19 Chugai Seiyaku Kabushiki Kaisha Method of stabilizing protein solution preparation
JP2004086682A (ja) 2002-08-28 2004-03-18 Fujitsu Ltd 機能ブロック設計方法および機能ブロック設計装置
DE602004021095D1 (de) * 2003-01-21 2009-06-25 Chugai Pharmaceutical Co Ltd Verfahren zum screening der leichten kette eines antikörpers
WO2004087763A1 (ja) * 2003-03-31 2004-10-14 Chugai Seiyaku Kabushiki Kaisha Cd22に対する改変抗体およびその利用
CA2527694C (en) * 2003-05-30 2015-07-14 Hendricus Renerus Jacobus Mattheus Hoogenboom Fab library for the preparation of anti vegf and anti rabies virus fabs
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
WO2005035753A1 (ja) * 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha 機能蛋白質を代替する二重特異性抗体
EP1693448A4 (en) 2003-10-14 2008-03-05 Chugai Pharmaceutical Co Ltd DOUBLE SPECIFICITY ANTIBODY FOR FUNCTIONAL PROTEIN SUBSTITUTION
ES2388435T3 (es) * 2003-12-10 2012-10-15 Medarex, Inc. Anticuerpos de IP-10 y sus usos
JPWO2005056602A1 (ja) * 2003-12-12 2008-03-06 中外製薬株式会社 アゴニスト活性を有する改変抗体のスクリーニング方法
TW200530266A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Method of reinforcing antibody activity
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
EP1710255A4 (en) * 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODIES RECOGNIZING A TRIMER OR LARGER RECEPTOR
US20050266425A1 (en) * 2003-12-31 2005-12-01 Vaccinex, Inc. Methods for producing and identifying multispecific antibodies
TW200605906A (en) 2004-05-11 2006-02-16 Chugai Pharmaceutical Co Ltd Remedy for thrombopenia
WO2006028936A2 (en) * 2004-09-02 2006-03-16 Genentech, Inc. Heteromultimeric molecules
AU2006232287B2 (en) 2005-03-31 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
JP5057967B2 (ja) * 2005-03-31 2012-10-24 中外製薬株式会社 sc(Fv)2構造異性体
CA2957144C (en) 2005-04-08 2020-06-02 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
EP3348639A3 (en) * 2005-06-10 2018-10-31 Chugai Seiyaku Kabushiki Kaisha Sc(fv)2 site-directed mutant
CN101262885B (zh) * 2005-06-10 2015-04-01 中外制药株式会社 含有sc(Fv)2的药物组合物
AU2006256041B2 (en) * 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
ES2654040T3 (es) * 2006-03-31 2018-02-12 Chugai Seiyaku Kabushiki Kaisha Método de modificación de anticuerpos para la purificación de anticuerpos biespecíficos
EP2107115A1 (en) 2007-01-24 2009-10-07 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
RU2510400C9 (ru) * 2007-09-26 2014-07-20 Чугаи Сейяку Кабусики Кайся Способ модификации изоэлектрической точки антитела с помощью аминокислотных замен в cdr
DE102008056312A1 (de) 2008-11-07 2010-05-12 Biogenerics Pharma Gmbh Verwendung von Mikrotabletten als Lebens-und Futtermittelzusatz
SI2522724T1 (sl) 2009-12-25 2020-07-31 Chuqai Seiyaku Kabushiki Kaisha Postopek za spremembo polipeptida za čiščenje polipetidnih multimerov

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CARTER P. ET AL: "Bispecific human IgG by design", J. IMMUNOL. METHODS, vol. 248, 2001, pages 7 - 15, XP002974199 *
PEIPP M. ET AL: "Bispecific antibodies targeting cancer cells", BIOCHEM. SOC. TRANS., vol. 30, 2002, pages 507 - 511, XP002981328 *
RIDGWAY J.B. ET AL: "'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization", PROTEIN ENG., vol. 9, 1996, pages 617 - 621, XP002084766 *
SHALABY M.R. ET AL: "Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene", J. EXP. MED., vol. 175, 1992, pages 217 - 225, XP002975222 *
SKERRA A. ET AL: "Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli", GENE, vol. 151, 1994, pages 131 - 135, XP004042624 *

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US11168344B2 (en) 2005-03-31 2021-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
EP2824183A1 (en) * 2005-04-08 2015-01-14 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor VIII
US9777066B2 (en) 2005-06-10 2017-10-03 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US10934344B2 (en) 2006-03-31 2021-03-02 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US12116414B2 (en) 2007-09-26 2024-10-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9334331B2 (en) 2010-11-17 2016-05-10 Chugai Seiyaku Kabushiki Kaisha Bispecific antibodies
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
US9475880B2 (en) 2011-09-16 2016-10-25 Biocerox Products, B.V. Anti-CD134 (OX40) antibodies and uses thereof
EP3597219A1 (en) 2012-04-30 2020-01-22 Janssen Biotech, Inc. St2l antagonists and methods of use
JPWO2014069647A1 (ja) * 2012-11-05 2016-09-08 全薬工業株式会社 抗体又は抗体組成物の製造方法
WO2014069647A1 (ja) * 2012-11-05 2014-05-08 全薬工業株式会社 抗体又は抗体組成物の製造方法
US10344099B2 (en) 2012-11-05 2019-07-09 Zenyaku Kogyo Kabushikikaisha Antibody and antibody composition production method
US9902770B2 (en) 2013-03-15 2018-02-27 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US10155809B2 (en) 2013-03-15 2018-12-18 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US9790281B2 (en) 2013-03-18 2017-10-17 Biocerox Products, B.V. Humanized anti-CD134 (OX40) antibodies and uses thereof
US10273307B2 (en) 2013-03-18 2019-04-30 Biocerox Products B.V. Humanized anti-CD134 (OX40) antibodies and uses thereof
WO2014148895A1 (en) 2013-03-18 2014-09-25 Biocerox Products B.V. Humanized anti-cd134 (ox40) antibodies and uses thereof
EP3409690A1 (en) 2013-03-18 2018-12-05 BiocerOX Products B.V. Humanized anti-cd134 (ox40) antibodies and uses thereof
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
EP3466445A1 (en) 2013-11-06 2019-04-10 Janssen Biotech, Inc. Anti-ccl17 antibodies
US10829549B2 (en) 2013-11-06 2020-11-10 Jannsen Biotech, Inc. Anti-CCL17 antibodies
US9944697B2 (en) 2013-11-06 2018-04-17 Jansson Biotech, Inc. Anti-CCL17 antibodies
US11414484B2 (en) 2013-11-06 2022-08-16 Janssen Biotech, Inc. Anti-CCL17 antibodies
WO2015069865A1 (en) 2013-11-06 2015-05-14 Janssen Biotech, Inc. Anti-ccl17 antibodies
EP4272738A2 (en) 2014-02-28 2023-11-08 Janssen Biotech, Inc. Anti-cd38 antibodies for treatment of acute lymphoblastic leukemia
WO2015130732A2 (en) 2014-02-28 2015-09-03 Janssen Biotech, Inc. Anti-cd38 antibodies for treatment of acute lymphoblastic leukemia
US10358491B2 (en) 2014-06-23 2019-07-23 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US10208113B2 (en) 2014-06-23 2019-02-19 Janssen Biotech, Inc. Interferon α and ω antibody antagonists
US10759854B2 (en) 2014-06-23 2020-09-01 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
WO2016040294A2 (en) 2014-09-09 2016-03-17 Janssen Biotech, Inc. Combination therapies with anti-cd38 antibodies
US11150254B2 (en) 2014-09-26 2021-10-19 Chugai Seiyaku Kabushiki Kaisha Method for measuring reactivity of FVIII
US11214623B2 (en) 2014-09-26 2022-01-04 Chugai Seiyaku Kabushiki Kaisha Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII)
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
EP4219561A2 (en) 2015-05-20 2023-08-02 Janssen Biotech, Inc. Anti-cd38 antibodies for treatment of light chain amyloidosis and other cd38-positive hematological malignancies
WO2016209921A1 (en) 2015-06-22 2016-12-29 Janssen Biotech, Inc. Combination therapies for heme malignancies with anti-cd38 antibodies and survivin inhibitors
EP4385569A2 (en) 2015-06-24 2024-06-19 Janssen Biotech, Inc. Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
WO2016210223A1 (en) 2015-06-24 2016-12-29 Janssen Biotech, Inc. Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
WO2017024146A1 (en) 2015-08-05 2017-02-09 Janssen Biotech, Inc. Anti-cd154 antibodies and methods of using them
WO2017079150A1 (en) 2015-11-03 2017-05-11 Janssen Biotech, Inc. Subcutaneous formulations of anti-cd38 antibodies and their uses
EP3827845A1 (en) 2015-11-03 2021-06-02 Janssen Biotech, Inc. Subcutaneous formulations of anti-cd38 antibodies and their uses
EP4085929A1 (en) 2015-11-03 2022-11-09 Janssen Biotech, Inc. Subcutaneous formulations of anti-cd38 antibodies and their uses
WO2017106684A2 (en) 2015-12-17 2017-06-22 Janssen Biotech, Inc. Antibodies specifically binding hla-dr and their uses
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
WO2018002181A1 (en) 2016-06-28 2018-01-04 Umc Utrecht Holding B.V. TREATMENT OF IgE-MEDIATED DISEASES WITH ANTIBODIES THAT SPECIFICALLY BIND CD38
US11352438B2 (en) 2016-09-06 2022-06-07 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X
US10759870B2 (en) 2017-09-29 2020-09-01 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient
US12077592B2 (en) 2019-01-18 2024-09-03 Janssen Biotech, Inc. GPRC5D chimeric antigen receptors and cells expressing the same
WO2020148677A1 (en) 2019-01-18 2020-07-23 Janssen Biotech, Inc. Gprc5d chimeric antigen receptors and cells expressing the same
WO2021099944A1 (en) 2019-11-18 2021-05-27 Janssen Biotech, Inc. Anti-cd79 chimeric antigen receptors, car-t cells, and uses thereof
WO2022177902A1 (en) 2021-02-16 2022-08-25 Janssen Biotech, Inc. Materials and methods for enhanced linker targeting

Also Published As

Publication number Publication date
US8597911B2 (en) 2013-12-03
JP4794301B2 (ja) 2011-10-19
JPWO2004111233A1 (ja) 2006-08-10
US20060269989A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
WO2004111233A1 (ja) 抗体の製造方法
CN112574308A (zh) 靶向bcma的抗体、双特异性抗体及其用途
WO2019117684A1 (ko) a-syn/IGF1R에 대한 이중 특이 항체 및 그 용도
CN116848135A (zh) 新颖的抗gremlin1抗体
US20240190986A1 (en) Mesothelin binding molecule and application thereof
JP2022514786A (ja) Muc18に特異的な抗体
JP7245358B2 (ja) 抗cd25抗体及びその適用
CN114685667A (zh) 间皮素结合分子及其应用
WO2023088337A1 (zh) 抗tigit-抗pd-l1双特异性抗体、其药物组合物及用途
EP4403571A1 (en) Human epidermal growth factor receptor binding molecule and use thereof
WO2005042582A1 (ja) 抗体の製造方法
WO2023134716A1 (zh) 一种结合b7h3和nkp30的双特异性抗体及其应用
CN114685655B (zh) Pd-1结合分子及其应用
WO2024131846A1 (en) Antibody, antigen-binding fragment thereof, and pharmaceutical use thereof
RU2748953C1 (ru) Рекомбинантный Fab-scFv на основе нейтрализующего антитела против интерферона бета-1а человека и антитела против рецептора ErbB2 человека
WO2023142297A1 (zh) Muc1结合分子及其应用
WO2024094151A1 (en) Multi-specific antibody and medical use thereof
TW202434635A (zh) 多特異性抗體及其醫藥用途
TW202413422A (zh) 抗體、其抗原結合片段及其藥物用途
CN118388652A (zh) 抗成纤维细胞活化蛋白的单克隆抗体及其应用
JP2023523981A (ja) TGFβR2細胞外ドメイン短縮分子、TGFβR2細胞外ドメイン短縮分子と抗EGFR抗体との融合タンパク質、及び融合タンパク質の抗腫瘍使用
CN114249827A (zh) 抗tigit抗体及双抗体和它们的应用
CN118667003A (zh) 特异性结合Claudin18.2的抗体及其制法和应用
CN118027203A (zh) Psma抗体及其应用
CN115010810A (zh) 抗ctla-4抗体及其应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507008

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006269989

Country of ref document: US

Ref document number: 10560098

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10560098

Country of ref document: US