WO2004106863A1 - 熱式流量センサ - Google Patents

熱式流量センサ Download PDF

Info

Publication number
WO2004106863A1
WO2004106863A1 PCT/JP2004/007542 JP2004007542W WO2004106863A1 WO 2004106863 A1 WO2004106863 A1 WO 2004106863A1 JP 2004007542 W JP2004007542 W JP 2004007542W WO 2004106863 A1 WO2004106863 A1 WO 2004106863A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
flow sensor
thermal
cavity
heating resistor
Prior art date
Application number
PCT/JP2004/007542
Other languages
English (en)
French (fr)
Inventor
Masamichi Yamada
Izumi Watanabe
Keiichi Nakada
Junichi Horie
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2005506531A priority Critical patent/JPWO2004106863A1/ja
Priority to US10/546,174 priority patent/US7181962B2/en
Priority to EP04745496.2A priority patent/EP1653201B1/en
Priority to EP17155377.9A priority patent/EP3196602B1/en
Publication of WO2004106863A1 publication Critical patent/WO2004106863A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters

Definitions

  • the present invention relates to a thermal type flow sensor, and more particularly to a thermal type flow sensor suitable for measuring an intake air amount of an internal combustion engine.
  • a flow sensor which is provided in an electronically controlled fuel injection device of an internal combustion engine of an automobile or the like and measures the amount of intake air, has become mainstream since a thermal type can directly detect a mass air amount.
  • the heating resistor and the upstream and downstream of the heating resistor are provided on the cavity of the semiconductor substrate having the cavity via an electric insulating film.
  • a so-called temperature difference method in which a pair of resistance temperature detectors are arranged apart from each other and the flow rate is measured from the temperature difference between the upstream and downstream resistance temperature detectors.
  • the flow rate is measured from the temperature distribution change (temperature difference) of the electric insulating film on the cavity in the direction of air flow.
  • the shape and relative positional relationship of each placed RTD greatly affects the temperature distribution (measurement accuracy).
  • the electric insulating film above the cavity and the heating resistor are arranged upstream and downstream. It defines the shape and relative positional relationship of each placed RTD.
  • the present invention even when installed in an internal combustion engine such as an automobile and used for a long time under severe environmental conditions, it is possible to prevent floating particles such as carbon from adhering to the electrical insulating film on the cavity due to a thermophoretic effect.
  • the objective is to provide a low-cost and highly reliable thermal flow sensor.
  • the object of the present invention is to form at least a heating resistor near the center of the cavity through an electrical insulating film on the cavity of the semiconductor substrate having the cavity, and to keep the temperature of the heating resistor constant from the medium temperature.
  • the distance (W s) from the upstream end of the heating resistor to the upstream end of the electrical insulating film above the cavity in the air flow direction and the constant temperature (AT h) are:
  • At least a pair of resistance temperature detectors are formed on the electrical insulating film above the cavity, separated from each other in the upstream and downstream directions of the heating resistor, and a flow rate is measured from a temperature difference between the pair of resistance temperature detectors. Also in the configuration, it is possible to prevent the above-mentioned floating fine particles such as carbon from adhering.
  • the electric insulating film on the cavity has a substantially rectangular shape and a width in the air flow direction. It is possible to more effectively prevent the above-mentioned buoyant fine particles such as carbon from attaching due to the thermophoretic effect.
  • the electric insulating film on the cavity has a substantially rectangular shape, and an auxiliary heating resistor is formed at an upstream end and a downstream end of the electric insulating film.
  • the fuel injection amount is determined by using the thermal flow sensor.
  • a low-cost and highly reliable internal combustion engine control device to be controlled is realized.
  • FIG. 1 is a diagram showing a plan view of a thermal flow sensor element 1 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross section taken along the line AA ′ of the device of FIG.
  • FIG. 3 is an enlarged view of the diaphragm section 3 of the element of FIG.
  • FIG. 4 is a view showing a mounting structure of the thermal type flow sensor element 1.
  • FIG. 5 is a diagram showing an electric circuit of the resistors 4, 5a, 5b, 5c, 5d, and 6.
  • FIG. 6 is an explanatory diagram showing a plane of the diaphragm section 3.
  • FIG. 7 is an explanatory diagram showing a cross section of the diaphragm section 3 of FIG.
  • FIG. 8 is a diagram showing a temperature distribution of the diaphragm section 3 in the absence of wind.
  • FIG. 9 is a diagram showing a temperature distribution of the diaphragm section 3 with a medium flow.
  • FIG. 10 is an explanatory diagram showing a temperature distribution in a cross section of the diaphragm section 3 in FIGS.
  • FIG. 11 is a diagram showing the relationship between the temperature gradient and the carbon deposition height.
  • FIG. 12 is an enlarged view of the diaphragm portion 3 of the element according to the second embodiment of the present invention.
  • FIG. 13 is an enlarged view of the diaphragm section 3 of the element according to the third embodiment of the present invention.
  • FIG. 14 is a system configuration diagram of an electronic fuel injection system for a vehicle engine using the thermal type flow sensor shown in each embodiment of the present invention.
  • FIG. 1 is a plan view showing a mature flow sensor element 1 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line A—A ′ of the measuring element 1 in FIG. 1
  • FIG. FIG. 3 is an enlarged view of an electric insulating film (diaphragm part) 3.
  • the element 1 is a semiconductor substrate such as a single crystal silicon (Si) having a cavity 7 of a substantially rectangular shape (length (L), width (W)) on the substrate surface.
  • Diaphragm part 3 consisting of electric insulating film 8a on cavity 7 and electric insulating film 8b for protecting each resistor, heating resistor 4 of width (Wh) 4, upstream temperature measuring resistor 5a , 5b and the downstream temperature measuring resistor 5c 5d, a medium temperature measuring resistor for measuring the medium temperature by forming a heating resistor 4 and a bridge circuit (not shown) formed upstream of the substrate 2
  • terminal 12 (12a, 12, 12c, 12d, 12e, 12f, 12g, 12h) for connecting the signal of element 6, element 1 to the drive control circuit.
  • Wiring connection part 11 for connection (11a, lib, 11c, lid, 11e, 11f, 11g, 11h, 11i, 11j, Ilk, 1 1 1) Consisting of
  • each resistor 4, 5a, 5b, 5c, 5d, 6 is doped with impurities.
  • the heating resistor 4 is composed of a polycrystalline or single-crystal silicon (Si) semiconductor thin film layer, and the heating resistor 4 is arranged at the center of the diaphragm portion 3 in a direction substantially perpendicular to the flow of the medium.
  • the electric insulating film 8 a, 8 b forming the diaphragm portion 3 is formed on the thin-walled approximately 2 microns thick of silicon dioxide (S i 0 2) Ya nitride Kei element (S i 3 N 4), The structure is such that a sufficient heat insulating effect can be obtained.
  • the thermal type flow sensor according to the embodiment of the present invention performs the following operation.
  • the temperature of the medium flow 10 is controlled by the temperature (Th) of the heat generating resistor 4 which is thermally insulated by the cavity 7 and the electric insulating films 8a and 8b and formed on the electric insulating film 8a.
  • the flow rate and the flow direction of the medium flow 10 are determined by the temperature (resistance value) of the upstream temperature measuring resistors 5 a and 5 b and the downstream temperature measuring resistors 5 c and 5 d formed upstream and downstream of the heating resistor 4. Is detected by comparing. That is, the upstream temperature measuring resistors 5a and 5b and the downstream temperature measuring resistors 5c and 5d show almost the same temperature when the medium flow is zero, and there is no temperature difference.
  • the upstream RTDs 5a and 5b arranged mainly on the upstream side are the downstream RTDs 5c and 5c arranged on the downstream side. Since the cooling effect of the medium flow 10 is greater than 5 d, there is a difference between the temperature of the upstream RTDs 5 a, 5 b and the downstream RTD 55 d, and the flow rate is measured from this temperature difference. Is performed.
  • FIG. 4 is a cross-sectional view showing an embodiment of a thermal flow sensor on which the element 1 of FIG. 1 is mounted.
  • FIG. 1 is a cross-sectional view showing an embodiment of a thermal flow sensor mounted in an intake passage of an internal combustion engine of an automobile or the like.
  • the thermal type flow sensor includes an element 1, a support 14, and an external circuit 15.
  • the element 1 is placed in the sub-passage 13 inside the intake passage 9. Is arranged.
  • the external circuit 15 is electrically connected to the terminal 12 of the measuring element 1 via the support 14.
  • FIG. 5 shows the resistors 4, 5a, 5b, 5c, 5d, and 6 of the element 1 in FIG. 1 and a drive control circuit.
  • 18 is a power supply
  • 19 is a transistor for passing a heating current to the heating resistor 4
  • 20a and 2Ob are resistors
  • 16 is an input circuit including an AZD converter and the like and a D converter and the like.
  • a control circuit comprising an output circuit and a CPU for performing arithmetic processing and the like
  • 17 is a memory circuit.
  • the voltage at the terminals 12a and 12c of the bridge circuit composed of the heating resistor 4, the medium temperature measuring resistor 6, and the resistors 20a and 20b is input to the control circuit 16, and the temperature of the heating resistor 4 (Th
  • the temperature difference between the upstream resistance temperature detectors 5a and 5 and the downstream resistance temperature detectors 5c and 5d is the difference between the upstream resistance temperature detectors 5a and 5b and the downstream resistance temperature detectors 5c and 5d. Is detected from the potential difference between the terminals 12 g and 12 e of the bridge circuit.
  • the relationship between the flow rate (Q) and the potential difference between the terminals 12 g and 12 e of the bridge circuit is stored as a map in the memory 17, and the potential difference and the magnitude relationship between the terminals 12 g and 12 e are stored. Can measure and output the flow rate and flow direction.
  • the thermal flow sensor constructed as described above is mounted on an internal combustion engine such as an automobile, and adheres due to the thermophoretic effect of floating particles such as carbon when used for long periods under severe environmental conditions. The phenomenon will be described.
  • FIG. 6 is an enlarged plan view of the diaphragm portion 3 of the thermal type flow sensor in which floating particles such as carbon are observed after long-time use
  • FIG. 7 is a cross-sectional view thereof.
  • Reference numeral 21 denotes attached floating fine particles such as carbon, which are attached to the boundary between the diaphragm 3 and the substrate 2 on the upstream side and after being used for a long period of time, and to the central portion.
  • the amount of adhesion is large when the flow of air is slow, and it is characterized by little adhesion on the downstream side.
  • the buoyant fine particles 21 such as carbon attached to the upstream side of the diaphragm 3 accumulate over time of use, and the attachment height (H) is tens of meters in the worst case. Reach.
  • the suspended fine particles 21 of carbon or the like to which the air flow 10 adheres are disturbed as obstacles.
  • the buoyant fine particles 21 of carbon or the like have a size of about several meters, and at such a particle size, the speed due to the gravitational settling of the particles becomes extremely small, and floats following the flow of air.
  • thermophoretic effect is a phenomenon that has a particularly significant effect on particulate matter having a small particle size in which Brownian motion is important. Is a phenomenon that diffuses to the surface and adheres to the wall surface. That is, when the temperature of the gas phase medium is high and the temperature of the wall is low, diffusion and adhesion by thermophoresis are much more dominant than ordinary diffusion and adhesion.
  • This phenomenon is due to the fact that the higher the temperature of the molecular motion of the gas phase medium is, the more the momentum given to the particles by impacting the particles is higher on the higher temperature side than on the lower temperature side. Due to the difference in molecular motion due to the difference between the particles, an action force is generated on the particulate matter due to the thermophoretic effect. This force generates a moving velocity (V) in the particulate matter.
  • This moving speed (V) is given by the following equation.
  • T a is the temperature of the medium
  • a is the kinematic viscosity coefficient of the medium
  • C is the coefficient of thermophoresis.
  • thermophoretic effect is large when the temperature of the medium (T a) is low and the gradient of the medium temperature in space is large (the temperature distribution is steep).
  • This thermophoretic effect can explain the characteristic adhesion phenomenon of the buoyant fine particles such as carbon shown in FIGS.
  • FIGS. 8 and 9 show the temperature distribution of the diaphragm section 3 of the thermal type flow sensor.
  • FIG. 8 shows the case where there is no medium flow 10
  • the temperature distribution of the diaphragm section 3 when there is no medium flow 10 in Fig. 8 is as follows. 3 shows a temperature distribution.
  • the temperature of the substrate 2 around the diaphragm 3 is almost equal to the medium temperature (Ta) because the substrate 2 is a single-crystal Si substrate with good thermal conductivity and the substrate volume is sufficiently large (large heat capacity). ).
  • the temperature distribution of the diaphragm section 3 is reduced by the cooling effect of the medium on the upstream side of the heating resistor 4 and the downstream side is heated by the heating resistor 4, so that the ellipse is downstream.
  • the isothermal distribution of the shape shifts.
  • the temperature distribution is substantially the same as that of the windless state in FIG. Become.
  • the temperature gradient of the diaphragm 3 is the largest in the region indicated by BB ′ in the center. Focusing on this part, Fig. 10 shows the cross section and temperature distribution of the diaphragm section 3 of BB '.
  • the width of the diaphragm 3 is W
  • the width of the heating resistor 4 is Wh
  • the distance from the upstream end of the heating resistor 4 to the upstream end of the diaphragm 3 is W s
  • the heating resistor The distance from the downstream end of 4 to the downstream end of diaphragm 3 is W d.
  • the downstream distance Wd it is better to design the distance to the upstream end to be the same as the Ws dimension due to the symmetry of the backflow and the temperature distribution.
  • the heating temperature (Th) of the heating resistor 4 is defined by the average temperature of the heating resistor 4 above (the average temperature calculated from the resistance value and the temperature coefficient of resistance of the heating resistor 4).
  • the medium flow 10 When used in an internal combustion engine such as an automobile, the medium flow 10 is such that the intake air has a minimum flow velocity of 0.25 mZsec or more. Under such conditions, the temperature distribution changes more steeply only at the upstream end C of the diaphragm portion 3 than at the downstream end, so that the above equation (1) is used.
  • the grad (Ta) term becomes large, and the acting force of the thermophoretic effect concentrates on the portion C, so that floating particles such as carbon adhere. For this reason, the adhesion of floating particles such as carbon after long-time use as shown in FIG. 6 and FIG. The phenomenon in which the adhesive concentrates on the part can be explained. The adhesion of floating particles such as carbon after prolonged use was examined under various conditions.
  • thermophoresis effect shown in the above equation (1) that is, the gradient of the medium (air) temperature in space (temperature distribution on the upstream side of the diaphragm 3) and the floating property of carbon and the like A strong correlation was observed between the amount of attached fine particles (height H).
  • the adhesion height (H) gradually increases.
  • the temperature gradient (AThZWs) increases to 800 (° C / image). If it exceeds, the adhesion height (H) increases rapidly.
  • the distance (Ws) from the section to the upstream end of the diaphragm section 3 it is possible to prevent the adhesion of floating particles such as carbon.
  • the temperature gradient (AThZWs) is 800 (° C / dish) or less, adhesion of floating particles such as carbon becomes remarkable especially at a high temperature where the heating temperature (ATh) of the heating resistor 4 exceeds 160 CO. Therefore, the heating temperature (ATh) of the heating resistor 4 is equal to or lower than 160 (° C), and the distance (Ws) from the upstream end of the heating resistor 4 to the upstream end of the diaphragm 3 is smaller. At 0.2 or more jobs, attachment of airborne fine particles such as carbon was suppressed.
  • the width W is 700 ⁇
  • the width Wh is 100 m
  • the heating temperature ( ⁇ ) of the heating resistor 4 is 120 (° C)
  • the width Ws is 300 m.
  • the temperature gradient (AThZWs) on the upstream side of the diaphragm section 3 is set to 800 (° CZ) or less, so that the thermal flow sensor is mounted on an internal combustion engine such as an automobile. Therefore, even when used under severe environmental conditions for a long period of time, it is possible to prevent the adhesion of buoyant fine particles such as carbon fiber due to the thermophoretic effect and improve reliability. In addition, since a new additional component (light emitting means, etc.) is not required as in the conventional example, a low-cost and highly reliable thermal flow sensor can be provided.
  • FIG. 12 is an enlarged view of the diaphragm section 3 of the thermal type flow sensor element 1 according to the second embodiment of the present invention.
  • the diaphragm portion 3 is a substantially cross-shaped diaphragm having wide portions 3a and 3b in the center.
  • the width L2 of the wide portions 3a and 3b may be approximately equal to the width of the high-temperature portion of the resistor 4. For example, when the length L is 2 to 3 mm, the width L2 is about 1 mm.
  • the width (W) of the peripheral portion of the diaphragm 3 can be reduced while ensuring the distance (W s) from the upstream end of the antibody 4 to the upstream end of the diaphragm 3.
  • W s the distance from the upstream end of the antibody 4 to the upstream end of the diaphragm 3.
  • FIG. 13 is an enlarged view of the diaphragm section 3 of the thermal type flow sensor element 1 according to the third embodiment of the present invention.
  • the difference from the first embodiment shown in FIG. 3 is that auxiliary heating resistors 4a and 4b are formed around the boundary with the substrate 2 in the center of the diaphragm 3.
  • the auxiliary heating resistors 4a and 4 were formed and the area around the boundary with the substrate 2 at the center of the diaphragm 3 was heated to, for example, (intake temperature Ta + 20 to 40 ° C), as shown in Fig. 10. It can relieve the steep temperature distribution in section C where carbon and other buoyant particles are most likely to adhere. For this reason, the thermophoretic effect in the part C is reduced, and the attachment of floating fine particles such as carbon can be prevented.
  • thermal type flow sensor element 1 Next, a method of manufacturing the thermal type flow sensor element 1 according to the embodiment of the present invention will be described.
  • a semiconductor substrate 2 of single crystal silicon (Si) or the like is used as the substrate.
  • the surface of a single-crystal silicon (si) substrate 2 serving as a base is coated with silicon dioxide (S i ⁇ 2) to be an electric insulating film 8 a having a predetermined thickness of about 1 m by thermal oxidation or CVD or the like.
  • a resist is formed into a predetermined shape by a known photolithography technique, and then a polycrystalline silicon (Si) semiconductor thin film is patterned by a method such as reactive ion etching to form a predetermined resistor 4, 5a, 5 b, 5 c, 5 d, 6 and wiring connection 1 1 (11 a, lib, 11 c, lid, lie, llf, 11 g, 11 h, lli, 11 j, I lk, 11 1) are obtained.
  • electrically insulating film 8 a as a protective film 8 b is formed by CVD or the like and silicon dioxide (S I_rei_2) nitride Kei element (S i 3N4) to about 1 micron thick (then
  • the protective film 8b at the terminal 12 (12a, 12b, 12c, 12d, 12e, 12f, 12g, 12h) is removed for connection with an external circuit, and the terminal electrode 12 is , Aluminum, gold, etc.
  • the wiring connection part 11 for connecting each resistor and the terminal 12 is made of a polycrystalline silicon (Si) semiconductor thin film and a multilayer film structure of aluminum, gold, etc. It doesn't matter.
  • an etching mask material is patterned into a predetermined shape on the back surface of the single-crystal silicon (Si) semiconductor substrate 2 and anisotropically etched using an etching solution such as potassium hydroxide (KOH).
  • KOH potassium hydroxide
  • the embodiment using a polycrystalline silicon (Si) semiconductor thin film as the resistor has been described.
  • the same effect can be obtained when a metal material such as platinum is used.
  • the heating resistor 4 has a substantially I-shaped linear shape on the diaphragm 3, the same effect can be obtained with a substantially U-shaped or meandering (meandering) shape.
  • two pairs of resistance temperature detectors 5a, 5b, 5c, and 5d arranged upstream and downstream of the heating resistor 4 have been described. However, the same effect can be obtained.
  • the temperature difference method of measuring the flow rate and the flow direction from the temperature difference of the resistance temperature detectors arranged upstream and downstream of the heating resistor 4 has been described. It is self-evident that the same effect can be obtained with the direct heating method that measures the temperature.
  • the air taken into the engine 212 passes through an air cleaner (not shown), and after the air flow rate is measured by the thermal type flow sensor 1, passes through the intake pipe 214 and the throttle section 213 and is supplied from the injector 210.
  • the fuel is mixed with the fuel and flows into the engine 212. This mixed fuel is burned by the engine 212 and then It is discharged into the atmosphere through the exhaust pipe 211 as heat.
  • the signal 201 output from the thermal type flow sensor 1 and the auxiliary signals such as the signal 218 of the crank angle sensor 217 and various signals 215 for monitoring the operation state of an air-fuel ratio sensor (not shown) are output by the engine control unit ( This will be referred to as ECU hereinafter). Then, the fuel injection amount sprayed from the injector 210 is set so as to obtain an optimal operation state for lean burn or the like.
  • the ECU 206 mainly includes an input port 203, a RAM 204, a ROM 205, a CPU 208, and an output port 207.
  • the signal input to the ECU 206 is subjected to arithmetic processing, and then sent as a control signal from the output port 207 to various types of actuators (not shown). 'Here, only the signal 209 sent to the injector 210 is shown as an example.
  • the arithmetic processing of the air flow rate is executed inside the ECU 206, but the arithmetic processing may be executed inside the thermal type flow sensor 1 itself or inside the preprocessor 216. Further, a part of the processing may be performed by the thermal flow sensor 1 or the preprocessor 216. When performed by the preprocessor 216, the minimum signal required by the preprocessor 216 is the signal of the thermal flow sensor 1. Industrial applicability

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本発明の目的は、低コストで信頼性の向上した熱式流量センサを提供することにある。空洞部(7)を有する半導体基板(2)の前記空洞部上に電気絶縁膜を介して前記空洞部の中央近傍に少なくとも発熱抵抗体(4)を形成し、発熱抵抗体(4)の温度(Th)は媒体温度(Ta)に対して一定温度(ΔTh=Th-Ta)高く制御するとともに、発熱抵抗体(4)の空気の流れ方向に対する上流側端部から空洞部上電気絶縁膜の上流側端部の距離(Ws)と前記一定温度(ΔTh)が、ΔTh/Ws≦800(℃/mm)の関係を満たすように構成した、熱泳動効果によるカーボン等の浮遊性微粒子の付着を防止可能な低コストで信頼性の高い熱式流量センサ。

Description

明 細 書 熱式流量センサ 技術分野
本発明は、 熱式流量センサに係り、 特に内燃機関の吸入空気量を測定するのに 好適な熱式流量センサに関する。 背景技術
従来より自動車などの内燃機関の電子制御燃料噴射装置に設けられ吸入空気量 を測定する流量センサとレて、 熱式のものが質量空気量を直接検知できることか ら主流となってきている。
この中で特に、 半導体マイクロマシニング技術により製造された流量センサが、 コス卜が低減でき且つ低電力で駆動することが出来ることから注目されてきた。 このような従来の半導体基板を用いた熱式流量センサとしては、 当該出願人によ り出願された特開 2 0 0 1 - 4 1 7 9 0号公報に開示されたものがある。
特開 2 0 0 1—4 1 7 9 0号公報に記載の技術では、 空洞部を有する半導体基 板の前記空洞部上に電気絶縁膜を介して発熱抵抗体と発熱抵抗体の上下流に離間 して一対の測温抵抗体を配置して上下流の測温抵抗体の温度差から流量を計測す るいわゆる温度差方式が開示されている。
このような温度差方式では、 空気の流れ方向の前記空洞部上電気絶縁膜の温度 分布変化 (温度差) から流量を計測するが、 前記空洞部上電気絶縁膜および発熱 抵抗体と上下流に配置された測温抵抗体の夫々の形状と相対位置関係が温度分布 (測定精度) に大きな影響を与える。
上記従来技術では、 前記空洞部上電気絶縁膜の温度分布の対称性および計測流 量範囲の拡大、 高速応答性を実現する為に、 前記空洞部上電気絶縁膜および発熱 抵抗体と上下流に配置された測温抵抗体の夫々の形状と相対位置関係を規定して いる。
しかし、 この構成では、 自動車などの内燃機関に搭載して過酷な環境条件にて 長期間使用した場合の信頼性が十分に考慮されておらず、 長期間の使用により前 記空洞部上電気絶縁膜にカーボン等の浮遊性微粒子が熱泳動効果により厚く付着 する現象が出現して、 計測精度が長期間十分に保てない問題がある。
また、 上記のような汚損に対応した従来技術としては、 同じく当該出願人によ り出願された特開平 1 1— 2 3 0 8 0 2号公報に記載されたものがある。
特開平 1 1一 2 3 0 8 0 2号公報に記載された従来技術は、 発熱抵抗体上の保 護膜の上に光触媒膜を形成し、 更に発光手段を備えて光触媒膜に光を照射するこ とにより、 光触媒効果により汚損の影響を低減している。 発明の開示
しかしながら、 このように構成された従来の熱式流量センサにおいては、 新た に光触媒膜を形成する必要があり、 また光触媒膜に光を照射する発光手段が必要 となり、 流量計自体が大きくなるとともに部品点数が増大する為にコス卜が高く なるという問題点を有する。
本発明では、 自動車などの内燃機関に搭載し過酷な環境条件にて長期間使用し た場合でも、 前記空洞部上電気絶縁膜にカーボン等の浮遊性微粒子が熱泳動効果 により付着することを防止して低コストで信頼性の高い熱式流量センサを提供す ることを目的としている。
上記の目的は、 空洞部を有する半導体基板の前記空洞部上に電気絶縁膜を介し て前記空洞部の中央近傍に少なくとも発熱抵抗体を形成し、 前記発熱抵抗体の温 度を媒体温度より一定温度高く制御して流量を計測する熱式流量センサにおいて、 前記発熱抵抗体の温度 (T h ) は媒体温度 (T a ) に対して一定温度 (Δ Τ ίι = T h - T a ) 高く制御されるとともに、 前記発熱抵抗体の空気の流れ方向に対 する上流側端部から前記空洞部上電気絶縁膜の上流側端部の距離 (W s ) と前記 一定温度 (A T h ) が、
A T h /W s≤ 8 0 0 (°C/mm)
の関係を満たすように構成することにより、 新たな発光手段等の部品の追加する ことなく上記のカーボン等の浮遊性微粒子が熱泳動効果により付着することを防 止することが出来る。 また、 前記一定温度(A T h)が 1 6 0 C以下で、 且つ、 前記距離 (W s )が 0 . 2 腿以上とすることで、 より上記のカーボン等の浮遊性微粒子が付着することを防 止することが出来る。
また、 前記発熱抵抗体の上下流方向に離間して、 前記空洞部上電気絶縁膜上に 少なくとも一対の測温抵抗体を形成し、 前記一対の測温抵抗体の温度差から流量 を計測する構成においても、 上記のカーボン等の浮遊性微粒子が付着することを 防止することが出来る。
更に、 前記空洞部上電気絶縁膜は略矩形形状で、 空気の流れ方向の幅. (W) に 対して空洞部の中央部の幅が一部広がつた略十字型形状としたことにより、 より 効果的に上記のカーボン等の浮遊性微粒子が熱泳動効果により付着することを防 止することが出来る。
また、 前記空洞部上電気絶縁膜は略矩形形状で、 前記電気絶縁膜の上流側端部 および下流側端部に補助発熱抵抗体を形成し、 前記補助発熱抵抗体により前記電 気絶縁膜の上下流端部境界を加熱する構成とすることにより、 上記のカーボン等 の浮遊性微粒子が熱泳動効果により付着することを防止することが出来るととも に、 前記補助発熱抵抗体の電気導通状態から前記電気絶縁膜の破断状況を自己診 断することが出来る。
被計測媒体の流速が常用の最低流速で 0 . 2 5 mZsec 以上になるように設定さ れた内燃機関の吸入空気量を計測において、 前記熱式流量センサを用いることに より、 燃料噴射量を制御する低コス卜で高信頼性の内燃機関制御装置が実現され る。 図面の簡単な説明
図 1は、 本発明の実施例である熱式流量センサ素子 1の平面を示す図である。 図 2は、 図 1の素子の A— A ' 断面を示す図である。
図 3は、 図 1の素子のダイヤフラム部 3の拡大図である。
図 4は、 熱式流量センサ素子 1の実装構造を示す図である。
図 5は、 抵抗体 4, 5 a , 5 b , 5 c , 5 d , 6の電気回路を示す図である。 図 6は、 ダイヤフラム部 3の平面を示す説明図である。 図 7は、 図 6のダイヤフラム部 3の断面を示す説明図である。
図 8は、 無風でのダイヤフラム部 3の温度分布を示す図である。
図 9は、 媒体流ありでのダイヤフラム部 3の温度分布を示す図である。
図 10は、 図 8, 図 9のダイヤフラム部 3の断面の温度分布を示す説明図であ る。
図 1 1は、 温度勾配とカーボン付着高さの関係を示す図である。
図 12は、 本発明の第二の実施例である素子のダイヤフラム部 3の拡大図であ る。
図 13は、 本発明の第三の実施例である素子のダイヤフラム部 3の拡大図であ る。
図 14は、 本発明の各実施例に示した熱式流量センサを用いた自動車用ェンジ ンの電子燃料噴射システムのシステム構成図である。 発明を実施するための最良の形態
以下、 本発明の実施例について、 図面を参照して説明する。
図 1は、 本発明の実施例の熟式流量センサ素子 1を示す平面図、 図 2は、 図 1 の測定素子 1の A— A ' 断面図、 図 3は、 図 1の空洞部上の電気絶縁膜 (ダイヤ フラム部) 3の拡大図である。
図 1, 図 2, 図 3において、 素子 1は、 基板表面にて略矩形形状 (長さ (L), 幅 (W)) の空洞 7を有する単結晶ケィ素 (S i) 等の半導体基板 2, 空洞 7上の 電気絶縁膜 8 aおよび各抵抗体を保護するための電気絶縁膜 8 bからなるダイヤ フラム部 3, 幅 (Wh) の発熱抵抗体 4, 上流側測温抵抗体 5 a, 5 bと下流側 測温抵抗体 5 c 5 d, 基板 2の上流部に形成され発熱抵抗体 4とプリッジ回路 (図示せず) を構成し媒体温度を計測する為の媒体温度測温抵抗体 6, 素子 1の 信号を駆動制御回路と接続するための端子 12 (12 a, 12 , 12 c, 12 d, 12 e, 12 f , 12 g, 12 h), 各抵抗体と端子 12を接続するための配 線接続部 11 (11 a, l i b, 1 1 c, l i d, 1 1 e, 1 1 f , 11 g, 1 1 h, 1 1 i , 11 j , I l k, 1 1 1) よりなる。
ここで、 各抵抗体 4, 5 a, 5 b, 5 c, 5 d, 6は不純物ドープ処理された 多結晶または単結晶ケィ素 (S i) 半導体薄膜層よりなり、 発熱抵抗体 4はダイ ャフラム部 3の中央部に媒体の流れに対して直交方向にほぼ一直線上に配置され る。 また、 ダイヤフラム部 3を形成する電気絶縁膜 8 a, 8 bは、 二酸化ケイ素 (S i 02 ) ゃ窒化ケィ素 (S i 3N4) により約 2ミクロン厚に薄肉に形成され ており、 熱絶縁効果が十分得られる構造と成っている。
本発明の実施例である熱式流量センサは、 以下の様な動作を行う。
空洞 7および電気絶縁膜 8 a, 8 bにより熱絶縁され、 電気絶縁膜 8 a上に形 成された発熱抵抗体 4には、 発熱抵抗体 4の温度 (Th) が媒体流 10の温度を 示す媒体温度測温抵抗体 6の温度 (Ta) より一定温度 (ATh = Th— Ta) 高くなるように、 加熱電流が流されている。
媒体流 10の流量および流れ方向は、 発熱抵抗体 4の上下流に形成された上流 側測温抵抗体 5 a, 5 bと下流側測温抵抗体 5 c, 5 dの温度 (抵抗値) を比較 することにより検知される。 つまり、 上流側測温抵抗体 5 a, 5 bと下流側測温 抵抗体 5 c, 5 dは、 媒体流がゼロのときはほぼ同じ温度を示し温度差が生じな い。
一方、 図 1の媒体流 10の方向 (順流) ではおもに上流側に配置された上流側 測温抵抗体 5 a, 5 bの方が下流側に配置された下流側測温抵抗体 5 c, 5 dよ り媒体流 10による冷却効果が大きいことから、 上流側測温抵抗体 5 a, 5 bと 下流側測温抵抗体 5 5 dの温度に差が生じ、 この温度差から流量が計測され る。
一方、 媒体流 10が図 1の方向と反対 (逆流) のときには、 今度は下流側測温 抵抗体 5 c, 5 dの温度の方が上流側測温抵抗体 5 a, 5 bの温度より低くなり、 上流側測温抵抗体 5 a, 5 bと下流側測温抵坊体 5 c, 5 dの温度差の符号が逆 転する。 温度差から流量が、 また温度差の符号から媒体流 10の方向が検知でき る。
図 4は、 図 1の素子 1を実装した熱式流量センサの実施例を示す断面図である。 例えば、 自動車等の内燃機関の吸気通路に実装した熱式流量センサの実施例を示 す断面図である。 熱式流量センサは、 図のように、 素子 1と支持体 14と外部回 路 15とを含み構成される。 そして吸気通路 9の内部にある副通路 13に素子 1 が配置される。 外部回路 15は支持体 14を介して測定素子 1の端子 12に電気 的に接続されている。
次に、 図 5を参照し、 本発明の実施例の回路動作について説明する。 図 5は、 図 1の素子 1の抵抗体 4, 5 a, 5 b, 5 c, 5 d, 6と駆動制御回路を示した ものである。 図中、 18は電源、 19は発熱抵抗体 4に加熱電流を流すためのト ランジス夕、 20 a, 2 O bは抵抗、 16は AZD変換器等を含む入力回路と D 変換器等を含む出力回路と演算処理等を行う CPUからなる制御回路、 17 はメモリ回路である。
ここで、 発熱抵抗体 4, 媒体温度測温抵抗体 6, 抵抗 20 a, 20bよりなる ブリッジ回路の端子 12 a, 12 cの電圧が制御回路 16に入力され、 加熱抵抗 体 4の温度 (Th) が媒体温度に対応する媒体温度測温抵抗体 6の温度 (Ta) よりある一定温度 (ATh = Th— Ta) 高くなるよう各抵抗値 20 a, 20 b が設定され制御回路 16により制御される。
上流側測温抵抗体 5 a, 5 と下流側測温抵抗体 5 c, 5 dの温度差は、 上流 側測温抵抗体 5 a, 5 b, 下流側測温抵抗体 5 c, 5 dのプリッジ回路の端子 1 2 g, 12 eの電位差より検出する。
流量の計測には、 予め流量 (Q) とブリッジ回路の端子 12 g, 12 eの電位 差との関係をメモリ 17にマップとして記憶しておけば、 端子 12 g, 12 eの 電位差および大小関係から流量および流れの方向を計測し出力することが出来る。 次に、 上記の様に構成された熱式流量センサを自動車などの内燃機関に搭載し て、 過酷な環境条件にて長期間使用した場合におけるカーボン等の浮遊性微粒子 の熱泳動効果により付着する現象に関して説明する。
図 6は、 長時間使用後においてカーボン等の浮遊性微粒子の付着が見られた、 熱式流量センサのダイヤフラム部 3の拡大平面図であり、 図 7は、 その断面図で ある。
21が、 付着したカーボン等の浮遊性微粒子であり、 長時間使用後において特 にダイヤフラム 3の上流側の基板 2との境界で、 且つ、 中央部に集中して付着す る。 また、 付着量は空気の流れが遅い場合に多く、 下流側には殆ど付着していな いのが特徴である。 図 7に見るように、 ダイヤフラム 3の上流側に付着したカーボン等の浮遊性微 粒子 2 1は、 使用時間の経過とともに堆積して、 付着高さ (H) は最悪の場合数 十 mの厚さに達する。 このように大量に付着した場合、 図 7の 2 2に示す様に、 空気の流れ 1 0が付着したカーボン等の浮遊性微粒子 2 1が障害となって乱れる。 ダイヤフラム 3に形成した発熱抵抗体 4および測温抵抗体 5 b, 5 dに対して、 空気の流れ 1 0が適切に到達しなくなることにより、 流量の検出精度が悪くなる。 このようにカーボン等の浮遊性微粒子 2 1がダイヤフラム部 3に特徴的に付着 する現象 (熱泳動効果) に関して以下説明する。
カーボン等の浮遊性微粒子 2 1は、 大きさが数 m程度であり、 この程度の粒 径になると、 粒子の重力沈降による速度は極めて小さくなり、 空気の流れに追随 して浮遊する。
このような浮遊性微粒子が、 温度勾配により壁面へ付着する性質が熱泳動効果 である。 熱泳動効果は、 ブラウン運動が重要となるような小さな粒径の粒子状物 質に対して特に影響が顕著な現象であり、 気相媒体に温度勾配が存在する場合に 粒子状物質が低温部へと拡散し壁面に付着する現象である。 すなわち気相媒体の 温度が高く、 壁面の温度が低い場合には通常の拡散, 付着よりも熱泳動による拡 散, 付着がはるかに支配的となる。
この現象は、 気相媒体の分子運動が温度の高い方が活発であるため、 粒子に衝 突して与える運動量が温度の高い側の方が、 低い側の方よりも大きく、 結果とし て温度の違いによる分子運動の差から粒子状物資に熱泳動効果による作用力が生 じる。 この力により、 粒子状物質に移動速度 (V ) が発生する。 この移動速度 ( V ) は、 次式で与えられる。
v = - C X ( v a /T a ) X g r a d (T a )
ここで T aは媒体の温度、 レ aは媒体の動粘性係数である。 また Cは熱泳動の 係数である。
上式から熱泳動効果は、 媒体の温度 (T a ) が低温で、 且つ、 空間における媒 体温度の勾配が大きい (温度分布が急峻) 場合に効果が大きいことが分かる。 この熱泳動効果により、 図 6および図 7に示したカーボン等の浮遊性微粒子の 特徴的な付着現象が説明できる。 以下、 この現象の原因について説明する。 図 8および図 9は、 熱式流量センサのダイヤフラム部 3の温度分布を示したも ので、 図 8は媒体流 10が無い場合、 図 9は媒体流 10がある場合である。 図 8の媒体流 10が無い場合のダイヤフラム部 3の温度分布は、 発熱抵抗体 4 が配置されたダイヤフラム 3の中央部分が最も温度が高く (Th) の温度で示さ れた長楕円形状の等温度分布を示す。 ダイヤフラム部の周辺に近づくに従い、 T 2, T3 (Th>T2>T3) と同じく長楕円形状の等温度分布を保ちながら温 度が下がる。 ダイヤフラム部 3周辺の基板 2の温度は、 基板 2が熱伝導率の良い 単結晶 S i基板となっており、 且つ、 基板体積が十分に大きい (熱容量が大き い) ことからほぼ媒体温度 (Ta) となる。
図 9の媒体流 10がある場合のダイヤフラム部 3の温度分布は、 発熱抵抗体 4 の上流側が媒体の冷却効果により下がり、 下流側が発熱抵抗体 4により暖められ ることから、 下流側に長楕円形状の等温度分布がシフトする。 但し、 発熱抵抗体 4が配置されたダイヤフラム 3の中央部分は常時加熱されている為に、 図 8の無 風状態とほぼ同じく (Th) の温度で示された長楕円形状の等温度分布となる。 図 8および図 9から、 ダイヤフラム部 3において最も温度勾配の大きいのは、 中央部の B— B' で示された領域である。 この部分に注目して B— B' のダイヤ フラム部 3の断面および温度分布を示したのが図 10である。
図 10において、 ダイヤフラム部 3の幅が W、 発熱抵抗体 4の幅が Wh、 発熱 抵抗体 4の上流側端部からダイヤフラム部 3の上流側端部までの距離が W s、 発 熱抵抗体 4の下流側端部からダイヤフラム部 3の下流側端部までの距離が W dで ある。 ここで、 下流側距離 Wdとしては、 逆流および温度分布の対称性から、 上 流側端部までの距離が Ws寸法と同じように設計されていたほうが良い。 図 8に 示した無風状態での温度分布に対応したダイャフラム直上の媒体温度分布が実線 23であり、 図 9に示した媒体流 10がある場合の温度分布に対応したダイヤフ ラム直上の媒体温度分布が点線 24である。 基板 2は空気の温度 (Ta) に、 発 熱抵抗体 4は温度 (Ta) よりある一定温度 (ATh = Th— Ta) 高い Thに 加熱される。
ここで、 発熱抵抗体 4の加熱温度 (Th) としては、 図 8, 図 9に示した様に ダイヤフラム部にて長楕円形状の等温度分布となることから、 ダイヤフラム部 3 上の発熱抵抗体 4の平均温度 (発熱抵抗体 4の抵抗値と抵抗温度係数から算出さ れる平均温度) で定義している。
図 10において、 無風での温度分布 23では、 ダイヤフラム部 3の上流側およ び下流側端部において温度分布が急峻に変化するが、 媒体流 10がある場合の温 度分布 24では、 ダイヤフラム部 3の上流側端部 C部でのみ温度分布が急峻に変 化する。 発熱抵抗体 4に加熱された空気が、 下流に流れ下流側端部の媒体温度が 上昇し緩やかな温度分布となるからである。
自動車などの内燃機関に搭載して使用する場合は、 媒体流 10として吸入空気 が常用の最低流速で 0.25mZsec以上となっている。 このような条件では、 ダ ィャフラム部 3の上流側端部 C部でのみ、 下流側端部に比べて、 温度分布が急峻 に変化することになることから、 前記 (数 1) 式に示した grad (Ta) 項が大き くなり、 熱泳動効果の作用力が C部に集中してカーボン等の浮遊性微粒子が付着 することになる。 このような理由により、 上記の図 6および図 7に示した、 長時 間使用後におけるカーボン等の浮遊性微粒子の付着が、 ダイヤフラム 3の上流側 の基板 2との境界でのみ、 且つ、 中央部に集中して付着する現象が説明できる。 長時間使用後におけるカーボン等の浮遊性微粒子の付着状況を、 種々の条件に て検討した。 その結果、 前記 (数 1)式に示した熱泳動効果における、 grad(Ta) の項、 すなわち、 空間における媒体 (空気) 温度の勾配 (ダイヤフラム 3の上流 側温度分布) とカーボン等の浮遊性微粒子の付着量 (高さ H) との間に強い相関 が見られた。
図 11の曲線 25は、 発熱抵抗体 4の加熱温度 (ATh = Th— Ta) と発熱 抵抗体 4の上流側端部からダイヤフラム部 3の上流側端部までの距離 (Ws) を、 種々変えた場合における力一ボン等の浮遊性微粒子の付着量 (高さ H) をまとめ た結果である。 ダイヤフラム部 3の上流側温度勾配(△ T h Z W s )が大きくなる に従い、 付着高さ (H) が序々に大きくなるが、 特に、 温度勾配 (AThZW s) が 800 (°C /画) を超えると急激に付着高さ (H) が増大する。
温度勾配 (AThZWs) が 800 CC/mm) の領域は、 恐らく自動車などの 内燃機関での吸入空気の常用の最低流速が 0.25mZsec以上であること、 また、 内燃機関から発生するカーボン等の浮遊性微粒子の粒径および質量と、 前記 (数 1) 式に示した熱泳動効果による作用力が釣り合う領域 (閾値) になっているも のと想定される。
図 1 1の温度勾配 (AThZWs)' が 800 (°C/mm) 以下の領域 26と成る ように、 発熱抵抗体 4の加熱温度 (ATh = Th— Ta) と発熱抵抗体 4の上流 側端部からダイヤフラム部 3の上流側端部までの距離 (Ws) を設定することに よりカーボン等の浮遊性微粒子の付着を防止することが出来る。
特に、 温度勾配 (AThZWs) が 800 (°C/皿) 以下としては、 発熱抵抗 体 4の加熱温度 (ATh) が 160 CO を超える高温度では特にカーボン等の 浮遊性微粒子の付着が顕著となることから、 発熱抵抗体 4の加熱温度 (ATh) が 1 60 (°C) 以下で、 且つ、 発熱抵抗体 4の上流側端部からダイヤフラム部 3 の上流側端部までの距離 (Ws) が 0.2職以上の時に、 カーボン等の浮遊性微 粒子の付着が抑制された。 ここで、 例えば、 長さ Lが 2〜3mm、 幅 Wが 700 τη, 幅 Whが 100 mで、 発熱抵抗体 4の加熱温度 (ΔΤίι) が 120 (°C) としたとき、 幅 Wsを 300 mとしている。
但し、 距離 (Ws) が大きくなり過ぎると、 ダイヤフラム部 3の幅 (W)が大き くなり、 ダイヤフラム部の機械強度の低下および熱容量の増加に伴う応答速度の 低下につながるので注意を要する。
上記の様に構成された本発明の実施例の熱式流量センサでは、 ダイヤフラム部 3の上流側温度勾配 (AThZWs) を 800 (°CZ職) 以下とすることにより、 自動車などの内燃機関に搭載して過酷な環境条件にて長期間使用した場合におい ても力一ボン等の浮遊性微粒子の熱泳動効果による付着が防止でき信頼性の向上 が図れる。 また、 従来例の様に、 新たな追加部品 (発光手段等) が不必要である ことから、 低コス卜で信頼性の高い熱式流量センサが提供できる。
図 12は、 本発明の第二の実施例である熱式流量センサ素子 1のダイヤフラム 部 3の拡大図である。 図 3の第一の実施例と異なるのは、 ダイヤフラム部 3の中 央部に幅広部 3 a, 3 bを設けた略十字型のダイヤフラムとしたことである。 幅 広部 3 a, 3 bの幅 L 2は、 抵抗体 4の高温部の幅のほぼ等しくすればよく、 例 えば、 長さ Lを 2〜 3mmとしたとき、 幅 L 2は 1 mm程度とする。
このような構成とすることにより、 ダイヤフラム部 3の中央部における発熱抵 抗体 4の上流側端部からダイャフラム部 3の上流側端部までの距離 (W s )を確保 しつつ、 ダイヤフラム部 3の周辺部の幅 (W) を小さくすることができる。 ダイ ャフラム部 3の周辺部の幅 (W) を小さくすることにより、 ダイヤフラム部の機 械強度の低下および熱容量の増加に伴う応答速度の低下を伴うことなく、 カーボ ン等の浮遊性微粒子の付着を防止することが可能となる。
図 13は、 本発明の第三の実施例である熱式流量センサ素子 1のダイヤフラム 部 3の拡大図である。 図 3の第一の実施例と異なるのは、 ダイヤフラム部 3の中 央部における基板 2との境界部周辺に、 補助発熱抵抗体 4 a, 4 bを形成したこ とである。
補助発熱抵抗体 4 a, 4 を形成しダイヤフラム部 3の中央部における基板 2 との境界部周辺を、 例えば、 (吸気温 Ta + 20〜40°C) に加熱することにより 図 10に示した最もカーボン等の浮遊性微粒子の付着し易い C部における急峻な 温度分布を和らげることが出来る。 このため、 C部における熱泳動効果が低減さ れ、 カーボン等の浮遊性微粒子の付着を防止することができる。
また、 上記の補助発熱抵抗体 4 a, 4 bの導通状態を監視しておくことにより、 ダイヤフラム部 3が不具合により破壊されたことを検知する自己診断情報を得る ことも可能である。
次に、 本発明の実施例である熱式流量センサ素子 1の製造方法に関して説明す る。
基板としては、 単結晶ケィ素 (S i) 等の半導体基板 2を用いる。 ベースとな る単結晶ゲイ素 (s i) 基板 2の表面を、 熱酸化あるいは CVD法等により所定 の厚さ約 1 mの電気絶縁膜 8 aとなる二酸化ケイ素 (S i〇2 ) と窒化ケィ素
(S 13N4) を形成する。 次に、 抵抗体として、 厚さ約 1 mの多結晶ゲイ素
(S i) 半導体薄膜を CVD法等により積層する。
次に、 多結晶ケィ素 (S i) 半導体薄膜に不純物拡散を行い、 所定の抵抗率と なるように高濃度ドープ処理を行う。 更に、 公知のホトリソグラフィ技術により レジストを所定の形状に形成した後反応性イオンエッチング等の方法により、 多 結晶ケィ素 (S i) 半導体薄膜をパターニングし、 所定の抵抗体 4, 5 a, 5 b, 5 c, 5 d, 6と配線接続部 1 1 (11 a, l i b, 11 c, l i d, l i e, l l f, 11 g, 11 h, l l i, 1 1 j , I l k, 1 1 1 ) が得られる。
その後工程では、 保護膜 8 bとして電気絶縁膜 8 aと同様に、 二酸化ケイ素(S i〇2) と窒化ケィ素 (S i 3N4) を約 1ミクロン厚に CVD法等により形成する ( 次に、 外部回路との接続のために端子 12 (12 a, 12 b, 12 c, 12 d, 12 e, 12 f , 12 g, 12h) の部分の保護膜 8 bを除去し、 端子電極 12 が、 アルミニウム, 金等で形成される。 また、 各抵抗体と端子 12を接続するた めの配線接続部 11を、 多結晶ケィ素 (S i) 半導体薄膜とアルミニウム, 金等 の多層膜構成としてもかまわない。
最終工程では、 単結晶ケィ素 (S i) 半導体基板 2の裏面にエッチングのマス ク材を所定の形状にパターエングし水酸化カリウム (KOH) 等のエッチング液 を用いて異方性エッチングすることにより空洞 7を形成して、 本実施例の熱式流 量センサ素子 1が完成する。
本実施例では、 抵抗体として多結晶ケィ素 (S i) 半導体薄膜を用いた実施例 に関して説明したが、 白金等の金属材料を用いた場合でも同様の効果が得られる。 また、 発熱抵抗体 4として、 ダイヤフラム部 3上に略 I字状に一直線形状とし たが、 略 U字状の形状でも、 ミアンダ状 (蛇行状) でも同様の効果が得られる。 また、 本実施例では、 発熱抵抗体 4の上下流に配した二対の測温抵抗体 5 a, 5 b, 5 c, 5 dについて説明し'たが、 一対の測温抵抗体の構成でも同様の効果 が得られる。
また、 本実施例では、 発熱抵抗体 4の上下流に配した測温抵抗体の温度差から 流量および流れの方向を計測する温度差方式を説明したが、 発熱抵抗体 4の加熱 電流から流量を計測する直熱方式においても、 同様の効果が得られることは自明 である。
次に、 図 14を用いて、 本発明の各実施例に示した熱式流量センサを用いた自 動車用エンジンの電子燃料噴射システムの構成について説明する。
エンジン 212に吸入された空気は、 図示していないエアクリーナを通過し、 熱式流量センサ 1で空気流量が計測された後に、 吸気管 214, スロットル部 2 13を通過し、 インジェクタ 210から供給される燃料と混合されてエンジン 2 12へ流入する。 この混合された燃料はエンジン 212で燃焼された後、 排気ガ スとして排気管 211を通って大気中に排出される。 熱式流量センサ 1から出力 される信号 201と、 補助信号である例えばクランク角センサ 217の信号 21 8や図示しない空燃比センサ等の運転状態をモニタする各種信号 215は、 ェン ジンコントロールユニット (以後 ECUと称す) 206に取り込まれる。 そして、 リーンバーン等に対して最適な運転状態が得られるように、 インジェク夕 210 から噴霧される燃料噴射量が設定される。
ECU206は、 主として入力ポート 203, RAM204, ROM205, CPU208, 出力ポート 207から構成される。 ECU206に入力された信 号は演算処理を施された後、 制御信号として出力ポート 207から図示しない各 種ァクチユエ一夕に送られる。'ここでは、 例としてインジェクタ 210に送られ る信号 209のみが示されている。
この実施例では ECU 206内部で空気流量の演算処理を実行しているが、 演 算処理を、 熱式流量センサ 1自身またはプリプロセッサ 216の内部で実行して もよい。 また、 一部の処理を熱式流量センサ 1またはプリプロセッサ 216が分 担してもよい。 プリプロセッサ 216で行う場合、 プリプロセッサ 216が最低 限必要とする信号は、 熱式流量センサ 1の信号である。 産業上の利用可能性
本発明によれば、 熱泳動効果によるカーボン等の浮遊性微粒子が付着すること を防止することが出来るとともに、 低コストでより信頼性の高い熱式流量センサ が提供できる。

Claims

請求の範囲
1. 空洞部を有する半導体基板の前記空洞部上に電気絶縁膜を介して前記空洞部 の中央近傍に少なくとも発熱抵抗体を形成し、 前記発熱抵抗体の温度を被計測媒 体温度より一定温度高く制御して流量を計測する熱式流量センサにおいて、 前記発熱抵抗体の温度 (Th) は媒体温度 (Ta) に対して一定温度 (ΔΤΙι = Th-Ta) 高く制御されるとともに、
前記発熱抵抗体の空気の流れ方向に対する上流側端部から前記空洞部上電気絶 緣膜の上流側端部の距離 (Ws) と前記一定温度 (ΔΤΙι) が、
厶 Th/Ws≤800 (°C/腿)
の関係を満たすように構成されたことを特徴とする熱式流量センサ。
2. 請求項 1記載の熱式流量センサにおいて、
前記一定温度 (ΔΤίι) が 160°C以下で、 且つ、 前記距離 (Ws) が 0.2m m以上であることを特徴とする熱式流量センサ。
3. 請求項 1記載の熱式流量センサにおいて、
前記発熱抵抗体の上下流方向に離間して、 前記空洞部上電気絶縁膜上に少なく とも一対の測温抵抗体を形成し、 前記一対の測温抵抗体の温度差から流量を計測 することを特徴とする熱式流量センサ。
4. 請求項 1記載の熱式流量センサにおいて、
前記空洞部上電気絶縁膜は略矩形形状で、 媒体の流れ方向の幅 (W) に対して 空洞部の中央部の幅が一部広がつた略十字型形状としたことを特徴とする熱式流 量センサ。
5. 請求項 1記載の熱式流量センサにおいて、
前記空洞部上電気絶縁膜は略矩形形状で、 前記電気絶縁膜の上流側端部および 下流側端部に捕助発熱抵抗体を形成し、 前記補助発熱抵抗体により前記電気絶緣 膜の上下流端部境界を加熱するすることを特徴とする熱式流量センサ。
6 . 請求項 5記載の熱式流量センサにおいて、
前記補助発熱抵抗体の電気導通状態から前記電気絶縁膜の破断状況を自己診断 することを特徴とする熱式流量センサ。
7 . 請求項 1に記載の前記熱式流量センサにおいて、
被計測媒体の流速は、 常用の最低流速で 0 . 2 5 m/sec以上になるように設定 されていることを特徴とする熱式流量センサ。
8 . 請求項 1に記載の前記熱式流量センサを用いて内燃機関の吸入空気量を計測 し、 燃料噴射量を制御する内燃機関制御装置。
PCT/JP2004/007542 2003-05-30 2004-05-26 熱式流量センサ WO2004106863A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005506531A JPWO2004106863A1 (ja) 2003-05-30 2004-05-26 熱式流量センサ
US10/546,174 US7181962B2 (en) 2003-05-30 2004-05-26 Thermal flow sensor
EP04745496.2A EP1653201B1 (en) 2003-05-30 2004-05-26 Thermal flow sensor
EP17155377.9A EP3196602B1 (en) 2003-05-30 2004-05-26 Thermal flow sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-153680 2003-05-30
JP2003153680A JP4292026B2 (ja) 2003-05-30 2003-05-30 熱式流量センサ

Publications (1)

Publication Number Publication Date
WO2004106863A1 true WO2004106863A1 (ja) 2004-12-09

Family

ID=33487300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007542 WO2004106863A1 (ja) 2003-05-30 2004-05-26 熱式流量センサ

Country Status (4)

Country Link
US (1) US7181962B2 (ja)
EP (2) EP1653201B1 (ja)
JP (2) JP4292026B2 (ja)
WO (1) WO2004106863A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006108734A1 (de) * 2005-04-11 2006-10-19 Robert Bosch Gmbh BEHEIZTER HEIßFILMLUFTMASSENMESSER
JP2010197319A (ja) * 2009-02-27 2010-09-09 Hitachi Automotive Systems Ltd 計測素子
JP2013057543A (ja) * 2011-09-07 2013-03-28 Denso Corp 空気流量測定装置
JP2013096800A (ja) * 2011-10-31 2013-05-20 Denso Corp 空気流量測定装置
WO2013108289A1 (ja) * 2012-01-18 2013-07-25 日立オートモティブシステムズ株式会社 熱式流量計

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006019688D1 (de) * 2006-03-31 2011-03-03 Sensirion Holding Ag Durchflusssensor mit durchflussanpassbarem Analog-Digital-Wandler
JP4497165B2 (ja) * 2007-02-05 2010-07-07 株式会社デンソー 半導体装置の製造方法
WO2008105144A1 (ja) * 2007-02-28 2008-09-04 Yamatake Corporation センサ、センサの温度制御方法及び異常回復方法
EP1965179B1 (en) * 2007-02-28 2017-04-12 Sensirion Holding AG Flow detector device with self check
DE202007003027U1 (de) * 2007-03-01 2007-06-21 Sensirion Ag Vorrichtung zur Handhabung von Fluiden mit einem Flußsensor
JP4850105B2 (ja) * 2007-03-23 2012-01-11 日立オートモティブシステムズ株式会社 熱式流量計
JP4882920B2 (ja) * 2007-08-22 2012-02-22 株式会社デンソー 空気流量測定装置
US7500392B1 (en) * 2007-10-11 2009-03-10 Memsys, Inc. Solid state microanemometer device and method of fabrication
EP2187182B1 (en) * 2008-11-12 2015-08-05 Sensirion AG Method for operating a flow sensor being repetitively subjected to a thermal and/or chemical cleaning treatment, and flow measuring device
JP5178598B2 (ja) 2009-03-24 2013-04-10 日立オートモティブシステムズ株式会社 熱式流量計
EP2930475B1 (en) 2014-12-22 2017-11-15 Sensirion AG Flow sensor arrangement
CN109696236A (zh) * 2018-12-27 2019-04-30 中国电子科技集团公司第三研究所 一种声场质点振速敏感结构及制备方法
CN113532561A (zh) * 2020-04-16 2021-10-22 纬湃汽车电子(长春)有限公司 气体流量传感器
JP2023110111A (ja) * 2020-06-22 2023-08-09 日立Astemo株式会社 熱式流量センサ
CN113237920B (zh) * 2021-05-17 2022-04-22 西南交通大学 一种特高压换流变压器阀侧套管故障热源检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230802A (ja) * 1998-02-12 1999-08-27 Hitachi Ltd 熱式空気流量素子及び熱式空気流量計
JP2000275077A (ja) * 1999-03-26 2000-10-06 Omron Corp 薄膜ヒータ
JP2002048616A (ja) * 2000-08-07 2002-02-15 Hitachi Ltd 熱式空気流量センサ及び内燃機関制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852239A (en) * 1996-06-12 1998-12-22 Ricoh Company, Ltd. Flow sensor having an intermediate heater between two temperature-sensing heating portions
JP3461469B2 (ja) * 1999-07-27 2003-10-27 株式会社日立製作所 熱式空気流量センサ及び内燃機関制御装置
JP3698679B2 (ja) * 2002-03-27 2005-09-21 株式会社日立製作所 ガス流量計及びその製造方法
JP2004361271A (ja) * 2003-06-05 2004-12-24 Hitachi Ltd 熱式空気流量計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230802A (ja) * 1998-02-12 1999-08-27 Hitachi Ltd 熱式空気流量素子及び熱式空気流量計
JP2000275077A (ja) * 1999-03-26 2000-10-06 Omron Corp 薄膜ヒータ
JP2002048616A (ja) * 2000-08-07 2002-02-15 Hitachi Ltd 熱式空気流量センサ及び内燃機関制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1653201A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006108734A1 (de) * 2005-04-11 2006-10-19 Robert Bosch Gmbh BEHEIZTER HEIßFILMLUFTMASSENMESSER
US7966877B2 (en) 2005-04-11 2011-06-28 Robert Bosch Gmbh Heated hot-film air-mass sensor
JP2010197319A (ja) * 2009-02-27 2010-09-09 Hitachi Automotive Systems Ltd 計測素子
JP2013057543A (ja) * 2011-09-07 2013-03-28 Denso Corp 空気流量測定装置
JP2013096800A (ja) * 2011-10-31 2013-05-20 Denso Corp 空気流量測定装置
WO2013108289A1 (ja) * 2012-01-18 2013-07-25 日立オートモティブシステムズ株式会社 熱式流量計
CN104053972A (zh) * 2012-01-18 2014-09-17 日立汽车系统株式会社 热式流量计
JPWO2013108289A1 (ja) * 2012-01-18 2015-05-11 日立オートモティブシステムズ株式会社 熱式流量計
US9772208B2 (en) 2012-01-18 2017-09-26 Hitachi Automotive Systems, Ltd. Thermal type flowmeter with particle guide member

Also Published As

Publication number Publication date
EP3196602B1 (en) 2020-06-03
US20060144138A1 (en) 2006-07-06
JP2006052944A (ja) 2006-02-23
EP1653201A1 (en) 2006-05-03
JP4292026B2 (ja) 2009-07-08
JPWO2004106863A1 (ja) 2006-07-20
US7181962B2 (en) 2007-02-27
EP3196602A1 (en) 2017-07-26
EP1653201A4 (en) 2007-10-03
EP1653201B1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2004106863A1 (ja) 熱式流量センサ
US8186213B2 (en) Thermal-type flowmeter
JP4836864B2 (ja) 熱式流量計
US7591193B2 (en) Hot-wire nano-anemometer
JP3433124B2 (ja) 熱式空気流量センサ
JP5683192B2 (ja) 熱式流量センサ
JP3718198B2 (ja) 流量センサ
US4843882A (en) Direct-heated flow measuring apparatus having improved sensitivity response speed
US7775104B2 (en) Thermal flowmeter in which relationship among length of heat resistor, heating temperature for the heat resistor, and power supplied to the heat resistor is prescribed
EP1418408A1 (en) Thermal type flow measuring device
JPS5818169A (ja) 気体または液体の流速測定装置
JP4474308B2 (ja) 流量センサ
JP3484372B2 (ja) 感熱式流量センサ
JP2002048616A (ja) 熱式空気流量センサ及び内燃機関制御装置
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
Lei Silicon carbide high temperature thermoelectric flow sensor
JPWO2003102974A1 (ja) 白金薄膜および熱式センサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506531

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2004745496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004745496

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006144138

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10546174

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004745496

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10546174

Country of ref document: US