WO2004106282A1 - (トリフルオロメチル)ケイ皮酸アミドの製造方法 - Google Patents

(トリフルオロメチル)ケイ皮酸アミドの製造方法 Download PDF

Info

Publication number
WO2004106282A1
WO2004106282A1 PCT/JP2004/007348 JP2004007348W WO2004106282A1 WO 2004106282 A1 WO2004106282 A1 WO 2004106282A1 JP 2004007348 W JP2004007348 W JP 2004007348W WO 2004106282 A1 WO2004106282 A1 WO 2004106282A1
Authority
WO
WIPO (PCT)
Prior art keywords
trifluoromethyl
formula
reaction
benzaldehyde
group
Prior art date
Application number
PCT/JP2004/007348
Other languages
English (en)
French (fr)
Inventor
Yuzuru Morino
Michio Ishida
Masanori Tsukamoto
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Publication of WO2004106282A1 publication Critical patent/WO2004106282A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/11Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines

Definitions

  • the present invention relates to a process for producing (trifluoromethyl) cinnamamide, which is useful as an intermediate of a medicine or an agricultural chemical and as a reagent for introducing a fluorine-containing group.
  • Acrylic acid is allowed to act in the presence of carboxylic acids and bases to form 3- (trifluoromethyl)
  • Non-Patent Document 1 a method is known in which a (trifluoromethyl) bromobenzene, a base and atalinoleic acid are mixed and reacted using a fluorinated palladium complex compound having improved activity as a catalyst (Patent Document 1).
  • Non-patent document l Metalloorg. Khim. (1989), p. 911-914, Chemica nore abstract (Chemica noe abstract, 1989, Vol. 112, No. 157787).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-229912.
  • An object of the present invention is to easily and efficiently produce high-purity (trifluoromethyl) cinnamamide from industrially easily available substances as raw materials.
  • n 1 or 2.
  • Each L independently represents a halogen group, a nitro group, a cyano group, an alkyl group, an alkoxy group, an alkoxycarbonyl group (the alkyl The group, the alkoxy group, and the alkoxycarbonyl group each have 1 to 20 carbon atoms, may have a branch in the carbon chain, and a part of the bond between carbons may be a double bond), or
  • These groups represent aryl groups which may be bonded to the ring as a substituent, when n is 1, p is an integer of 0-4, and when n is 2, p is an integer of 0-3. is there. )
  • the present invention provides a means for producing (trifluoromethyl) cinnamamide simply and efficiently. According to the method of the present invention, impurities that are difficult to separate (especially regioisomers) do not coexist in the reaction mixture and are unlikely to be colored, which is particularly suitable for producing a high-purity target substance. .
  • the present inventors diligently studied a method for industrially easily synthesizing (trifluoromethyl) cinnamamide.
  • the (trifluoromethyl) benzaldehyde represented by the formula [1] is converted into pentachloroxylene by chlorinating xylene, which can obtain high-purity products at low cost, and then fluorinating it.
  • the present inventors further chlorinate the (trifluoromethyl) cinnamate thus obtained (second step), and then react it with ammonia (third step).
  • the present inventors have found that the (trifluoromethyl) cinnamamide represented by [4] can be obtained with a high purity that does not produce impurities that are difficult to separate, and thus completed the present invention. According to the method of the present invention, it is easy to obtain (trifluoromethyl) cinnamamide having a purity of 99.9% using a conventionally available compound as a starting material.
  • the reaction in the second step is performed in the presence of a solvent, and the reaction mixture obtained in the second step is subjected to a vacuum degassing operation (evaporation). From the reaction mixture, it is possible to evaporate the solvent of ( ⁇ + 0.1 XB) [g] or more and (A + 0.7 XB) [g] or less from the reaction mixture. I found it to be particularly good in terms of quality
  • the present invention includes three steps, a first step and a third step.
  • Trifluoromethylbenzaldehyde represented by the formula [1] is mixed with acetic anhydride and a metal acetate and allowed to react with each other, and (trifluoromethyl) caffeic acid represented by the formula [2] is reacted. Obtain the process.
  • Second step a step of chlorinating the (trifluoromethyl) cinnamate represented by the formula [2] and converting it to the (trifluoromethyl) DCmate chloride represented by the formula [3].
  • Third step a step of reacting the (trifluoromethyl) caffeic acid chloride represented by the formula [3] with ammonia to obtain a (trifluoromethyl) caffeic acid amide represented by the formula [4] .
  • L It may have another substituent (L) on the aromatic ring, but this L is limited to a group which is inactive in the coexistence of acetic anhydride and metal acetate, and specifically, each independently, Halogen (fluoro, chloro, bromo, and odo) groups, nitro groups, cyano groups, alkyl groups, alkoxy groups, and alkoxycarbonyl groups (these alkyl groups, alkoxy groups, and alkoxycarbonyl groups have a carbon number of 112 ( Preferably, it is 110, more preferably 116), and a part of the bond between carbons which may have a branch in the carbon chain may be a double bond), or Is an aryl group which may be bonded as a substituent on the ring.
  • Halogen fluoro, chloro, bromo, and odo
  • nitro groups cyano groups
  • alkyl groups, alkoxy groups, and alkoxycarbonyl groups these alkyl groups, alkoxy groups,
  • the (trifluoromethyl) benzaldehyde represented by the formula [1] is specifically 2_ (trifluoromethyl) benzaldehyde, 3_ (trifluoromethyl) benzaldehyde, 4_ (trifluoromethyl) benzaldehyde, 2, 3_bis (trifluoromethyl) benzaldehyde, 2,4_bis (trifluoromethyl) benzaldehyde, 2,5_bis (trifluoromethyl) benzanolaldehyde, 2,6_bis (trifluoromethyl) benzaldehyde , 3,4_bis (trifluoromethyl) benzaldehyde, 3,5_bis (trifluoromethyl) benzaldehyde, 2-nitole 5_ (trifluoromethyl) benzaldehyde, 2-methyl-5_ (trifluoromethyl) benz Forces such as dialdehyde, 2_bromo_5_ (trifluoromethyl) benz
  • a chlorinating agent second step
  • ammonia third step
  • Examples of the metal acetate used in the first step include general-purpose metal acetates such as sodium acetate, potassium acetate, magnesium acetate, and calcium acetate.
  • general-purpose metal acetates such as sodium acetate, potassium acetate, magnesium acetate, and calcium acetate.
  • potassium acetate is inexpensive, and it is particularly preferred because of its handling and ease.
  • (trifluoromethyl) benzaldehyde is relatively expensive among the reagents, and acetic anhydride and metal acetate are inexpensive.
  • acetic anhydride and metal acetate are used in a slight excess with respect to (trifluoromethyl) benzaldehyde to increase the reaction conversion of (trifluoromethyl) benzaldehyde.
  • it is preferable that acetic anhydride and metal acetate are used in an amount of 112 mol per 1 mol of (trifluoromethyl) benzaldehyde.
  • the solvent in the first step can be carried out without solvent, which is not particularly limited.
  • the present inventors use a non-water-soluble aprotic organic solvent having polarity as a solvent, whereby each reagent is appropriately dissolved in the solvent, and the reaction proceeds smoothly and smoothly. I found something favorable.
  • Solvents at 70 ° C to 200 ° C are easy to handle.
  • the reaction mixture is hardly colored, so that xylene is particularly preferably used as a solvent.
  • xylene the solubility of the desired product (trifluoromethyl) caesmic acid greatly depends on the temperature, and it shows high solubility at 100 ° C or higher.
  • the purification operation is easy to perform because a slurry is easily formed.
  • Xylene refers to 0-xylene, m-xylene, p-xylene, or industrial xylene (a mixture of o-xylene, m-xylene, p-xylene and ethylbenzene in a ratio of about 20: 45: 20: 15). Thus, any of these can be suitably used. Of these, o-xylene, m-xylene, and industrial xylene are particularly preferable because they are easy to handle without solidifying even at around 0 ° C.
  • the amount is preferably 0.4 kg-5.0 kg force S, preferably 0.5 kg-1.5 kg force, based on 1 kg of the amount of trizolene benzanoletaldehyde. Les ,. If the weight is less than 0.4 kg, (trifluoromethyl) benzaldehyde and (trifluoromethyl) caffeic acid will not be sufficiently dissolved in xylene, and the effect of using a solvent will not be sufficiently obtained. If the amount is more than 5.0 kg, the reactivity is hardly improved, and it is not preferable because it is economically disadvantageous.
  • the reaction temperature (temperature of the liquid inside) is in the range of 60 ° C to 200 ° C. Force 100 ° C 150 ° C S is particularly preferable. If the temperature is lower than 60 ° C, the reaction will be slow and if a solvent is used, the raw materials and products will not show sufficient solubility, and the advantages of using the solvent and using the solvent will not be sufficiently obtained. Is not preferred. On the other hand, when the temperature exceeds 200 ° C, the reaction mixture is colored and This is not preferable because it easily occurs.
  • the above (trifluoromethyl) benzaldehyde, acetic anhydride, and metal acetate are mixed in the presence or absence of a solvent, and stirring is continued at a predetermined temperature. Can be reached.
  • the reagents may be mixed at one time, but either (trifluoromethyl) benzaldehyde, acetic anhydride or metal acetate, the mixture of the two reagents in advance, and the remaining one It is preferable to add the reagents continuously or sequentially because the reaction temperature can be easily controlled.
  • a predetermined amount of xylene, acetic anhydride, and potassium acetate is previously charged into a reactor, heated to a predetermined temperature while stirring, and then (trifluoromethyl) benzaldehyde is sequentially or continuously introduced. Is the way.
  • the reaction is performed while measuring the composition of the reaction mixture by a method such as thin-phase chromatography, gas chromatography, or the like. After confirming that trifluoromethyl) benzaldehyde has been sufficiently reduced, it is desirable to terminate the process. If the reaction is carried out at 100-150 ° C using xylene and the reaction is continued until the (trifluoromethyl) benzaldehyde has been reduced to 5% of its original value, the time required is typically 2-8 hours .
  • This reaction can be carried out in air or in an inert gas such as nitrogen, helium, or argon. Due to the coexistence of these gases, there is almost no difference in the behavior such as reactivity and coloring.
  • an inert gas such as nitrogen, helium, or argon. Due to the coexistence of these gases, there is almost no difference in the behavior such as reactivity and coloring.
  • the purification operation after the completion of the reaction is not particularly limited as in conventional methods. However, since acetic anhydride, metal acetate, and acetic acid as a by-product coexist in this reaction system, washing the reaction mixture with water is effective.
  • This water washing operation may be performed as a heterogeneous solvent system of water Z organic solvent at the end of the reaction, with the target substance dissolved in a water-insoluble solvent such as xylene (at a temperature of at least about 80 ° C). After cooling to around room temperature to precipitate the desired product, it may be performed as a water / solid heterogeneous system. It is effective to wash with water three times or more.
  • the aqueous phase can be removed by two-phase separation.
  • the solid containing the target substance may be collected by a filtration method using a suction filter or a centrifugal separator.
  • the target substance will precipitate. Since a slurry is obtained, if the slurry is filtered, it is possible to collect solids mainly composed of a target substance.
  • the obtained solid contains (trifluoromethyl) benzaldehyde and other organic impurities.
  • washing with an organic solvent such as xylene or recrystallization may be performed.
  • (Trifluoromethyl) cinnamic acid exceeding 99% purity can be obtained simply by washing with a solvent such as xylene on a funnel while performing suction filtration without performing recrystallization. But many.
  • the (trifluoromethyl) cinnamate obtained in the first step is chlorinated with a chlorinating agent to produce (trifluoromethyl) cinnamate chloride represented by the formula [3]. It is a process.
  • the present step is achieved by reacting the (trifluoromethyl) caffeic acid obtained in the first step with a chlorinating agent in the presence or absence of a solvent.
  • a chlorinating agent in the presence or absence of a solvent.
  • hydrogen chloride gas is by-produced in an amount equal to the number of moles of the product.
  • the reactor must be open and connected to equipment capable of neutralizing the generated hydrogen chloride. Required for industrial implementation.
  • the reaction mixture obtained in the first step can be used directly as a raw material.
  • the reaction mixture is subjected to the above-described purification operation to obtain (trifluoromethyl) cake It is preferable to isolate the acid and use it as a raw material because the target product with less impurities can be produced.
  • Chlorinating agents that can be used in the second step include chloridation thionyl (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (SOC1), sulfuryl chloride (
  • PC1 Phosphorus pentachloride
  • Dichroic monoethylphosphine ⁇ (C H) PC1 ⁇ etc.
  • thionyl chloride is particularly preferable because it is relatively inexpensive and has high reactivity.
  • the mixing ratio of (trifluoromethyl) caffeic acid and the chlorinating agent there is no particular limitation on the mixing ratio of (trifluoromethyl) caffeic acid and the chlorinating agent. From the viewpoint, it is preferable that the molar amount of chlorine atom in the chlorinating agent is 2 to 3 mol per 1 mol of (trifluoromethyl) caesmic acid. More preferred. If the amount of chlorine atoms in the chlorinating agent is less than 2 mol, (trifluoromethyl) cinnamic acid will not be completely consumed and the yield will decrease, which is not preferable.
  • the reaction solvent is not particularly limited and can be used without a solvent. However, some of the obtained chlorides are solid at room temperature, and it is preferable to carry out the reaction in a solvent as soon as possible. It is particularly preferable that the solvent is an organic solvent, since the reaction proceeds particularly smoothly.
  • solvents that do not decompose under the reaction conditions of the present invention such as aprotic xylene, toluene, and ethylbenzene, esters such as ethyl acetate and methyl acetate, methylene chloride as a chlorinated solvent, and tetrachlorosilane are particularly preferred. Preferred examples are given.
  • the amount of the solvent there is no particular limitation on the amount of the solvent, however, considering the solubility of the trifluoromethylcaffeic acid derivative in an organic solvent, 1.5 g per lg of trifluoromethylcaffeic acid, which is the raw material of the second step, is 6 g. Is preferred, and a range of 2 to 4 g is particularly preferred.
  • the reaction temperature in the second step is not particularly limited, but is preferably in the range of 30 to 200 ° C, particularly preferably in the range of 40 ° C to 100 ° C. If performed at a temperature in the range of 60-80 ° C, the handling will be even better. If the temperature is lower than 30 ° C, the reaction is delayed, whereas if the temperature is higher than 200 ° C, the reaction mixture is liable to be colored and by-products are easily generated, which is not preferable.
  • the respective reagents may be mixed at a time, it is more preferable to gradually mix the respective reagents, for example, by dropping a chlorinating agent, when the reaction temperature is controlled on a large scale.
  • reaction time Since there is no particular restriction on the reaction time, the optimum reaction time varies depending on the conditions, the reaction is carried out while measuring the composition of the reaction mixture by a method such as gas chromatography, and the starting material (trifluoromethyl) After confirming that the cinnamate has been sufficiently reduced, it is preferable to end the procedure.
  • 3_ (trifluoromethyl) ceynyl chloride is a liquid at room temperature
  • 4- (trifluoromethyl) ky non-acid chloride is Solid at room temperature.
  • the reaction mixture containing (trifluoromethyl) cinnamate chloride obtained in the second step can be used as a raw material in the third step as it is, but before the third step, the "purification step” (Decompression operation under reduced pressure or flow of an inert gas) "is particularly preferable.
  • the “purification step” performed between the second step and the third step will be described.
  • the present inventors immediately before performing the third step, preliminarily reduce the acid gas and (Trifluoromethyl) cinnamate chloride obtained in the second step by a decompression operation or the like. An attempt was made to remove the chlorinating agent. As a result, the problem of coloring in the third step is remarkably improved, and side reactions such as the formation of (trifluoromethyl) key nitrile in the third step are remarkably suppressed, and the yield can be greatly improved. That's an important finding.
  • a vacuum degassing operation (evaporation) is particularly preferred.
  • evaporation a vacuum degassing operation
  • theoretical amount g
  • theoretical amount means "molar amount of (trifluoromethyl) caffeic acid"
  • X 2 ⁇ number of chlorine atoms in chlorinating agent molecule
  • X molecular weight of chlorinating agent
  • the third step When distilling off the liquid in this range, the third step When the ammonia gas is introduced in the reaction system, solidification of the solution in the reaction system is difficult to occur, and the corresponding (trifluoromethyl) cinnamamide can be obtained with a significantly higher chemical purity and yield. It should be noted that, although an amount of liquid exceeding ( ⁇ + 0.7 ⁇ B) [g] can be distilled off, the viscosity may be increased or solidification may occur, which may make handling difficult.
  • the operation of removing the acidic gas and the chlorinating agent can be achieved by flowing a dried inert gas (nitrogen gas, helium gas, or the like) into the reaction system in addition to degassing under reduced pressure. It was also found that this method could solve the problem of coloring in the third step and improve the yield of (trifluoromethyl) cinnamamide as compared with the case where the purification operation was not performed.
  • a dried inert gas nitrogen gas, helium gas, or the like
  • inert gas normal pressure equivalent
  • the raw material (trifluoromethyl) cinnamate chloride has a property of being gradually hydrolyzed by water in the air to be converted to (trifluoromethyl) cinnamate. Therefore, it is important that the (trifluoromethyl) cinnamate chloride and its solution obtained in the second step be used without prolonged contact with air. Considering this, as a pretreatment of the third step, air is circulated to remove the acid gas, and when (trifluoromethyl) cinnamate acid chloride is solid, it is precipitated. Then, washing with a solvent is not preferred.
  • the above purification operation performed between the second step and the third step can be preferably applied to any of the substrates targeted by the present invention.
  • 41- (trifluoromethyl) cinnamate having high crystallinity is the target compound, the effect of improving the yield by this purification operation is particularly remarkable.
  • other (trifluoromethyl) carboxylic acid amides for example, 3_ (trifluoromethyl) carboxylic acid amide
  • the yield is higher than that of 4- (trifluoromethyl) carboxylic acid amide.
  • the effect of improving the yield and improving the coloration by performing the above purification operation can be seen.
  • the third step is a step of reacting the (trifluoromethyl) cinnamate chloride obtained in the second step with ammonia to produce (trifluoromethyl) cinnamate.
  • ammonia used in this step any form such as ammonia gas and aqueous ammonia can be suitably used.
  • the reaction in the third step is a reaction in which one chlorine atom in (trifluoromethyl) caeic acid chloride is replaced by a (1-NH) group, the theoretical amount of ammonia required for the reaction is 1 Is equivalent. In order for the reaction to proceed sufficiently, it is necessary to neutralize the by-produced HC1 and shift the equilibrium toward the product. That is, the reaction in the third step is preferably carried out in the presence of one equivalent or more of a base in addition to the above-mentioned one equivalent of ammonia in order to keep the inside of the system basic.
  • ammonia can also cause a neutralization reaction with (trifluoromethyl) caesmic acid and acidic substances by-produced in the reaction of the second step, but this reaction takes precedence over these neutralization reactions. Since the target of the process, (trifluoromethyl) cinnamamide, is produced, undesirable reactions and side reactions can be minimized.
  • the molar amount of ammonia is not particularly limited with respect to 1 mole of (trifluoromethyl) cinnamate chloride. 2 mol or more is required.
  • ammonium salt (A water-soluble salt). Therefore, it is better to have excess ammonia.
  • the amount of ammonia is preferably in the range of 2.5-10 moles, more preferably 3.0-3.5 moles. If the amount of ammonia is less than 2 mol, the inside of the system will not become basic, and a large amount of (trifluoromethyl) cholic acid will remain in the product where the reaction is difficult to complete, leading to a decrease in the purity of the product. Is not preferred.
  • the reaction solvent there is no particular limitation on the reaction solvent, and the reaction can be performed without a solvent. However, the reaction proceeds more smoothly in a solvent. Some of the (trifluoromethyl)dorfamides obtained are solid at room temperature, and in such a case, it is particularly preferable to carry out the reaction in a solvent.
  • the solvent include ordinary organic solvents, and specific examples thereof include aprotic xylene, toluene, and ethylbenzene, esters such as ethyl acetate and methyl acetate, and chlorine-based solvents such as methylene chloride and carbon tetrachloride. Solvents that do not decompose under the reaction conditions of the present invention are preferred.
  • the amount of the solvent is preferably 10 g of lg with respect to lg of (trifluoromethyl) cinnamate chloride, and a particularly preferable amount is 24 g. If the amount of the solvent exceeds 20 g, not only the productivity is poor but also the reaction may be slow, which is not preferable. Further, as described above, when water coexists, (trifluoromethyl) cinnamate chloride is susceptible to hydrolysis, and (trifluoromethyl) cinnamate is generated, so that it is not preferable to use water as a solvent.
  • the reaction temperature is preferably in the range of -10 to + 200 ° C, and the force is preferably 100 ° C or less. If the temperature is higher than 100 ° C, the scattering of ammonia gas and salt is large. In addition, the reaction mixture is colored, and by-products are easily formed.
  • Each reagent may be mixed at a time, but may be mixed sequentially or continuously.
  • reaction temperature is easily controlled moderately.
  • the optimum reaction time differs depending on the conditions under which there is no special restriction on the reaction time.
  • the reaction solution may not be uniform, and it may be difficult to accurately measure the composition of the reaction mixture. Therefore, it is preferable to collect a part of the reaction mixture and confirm that the (trifluoromethyl) cinnamate chloride contained therein has been sufficiently reduced, and then terminate the process.
  • the purification operation after the completion of the reaction may be performed by a usual method, and there is no particular limitation. However, it is effective to wash the reaction mixture with water since inorganic salts such as ammonium chloride coexist in this reaction system. During the reaction, the desired product (trifluoromethyl) cinnamamide is often precipitated and becomes non-uniform, but the washing operation can be performed as it is. When the solution (organic layer / water) after washing with water is cooled, the target substance is sufficiently precipitated, and a solid containing the target substance as a main component can be collected by filtering the target substance.
  • the solid thus obtained contains, as by-products, (trifluoromethyl) cinnamic acid, (trifluoromethyl) caintyl acid nitrile, and other organic impurities.
  • an organic solvent such as ethyl acetate or recrystallization is particularly effective.
  • recrystallization can be performed effectively by using a low polar solvent such as a hexane / isopropanol mixed solvent as appropriate.
  • a low polar solvent such as a hexane / isopropanol mixed solvent as appropriate.
  • Such purification means can be appropriately optimized by those skilled in the art.
  • the obtained organic phase was cooled to 20 ° C and stirring was continued for 12 hours, whereby a slurry was obtained.
  • the organic phase was cooled to 5 ° C. and stirring was continued for another hour to age the slurry.
  • the obtained slurry was poured into a Buchner vacuum filter, and the solid component was captured on a funnel. Gathered. While suctioning, 90 g of industrial xylene cooled to 10 ° C. was loosely applied to the solid to wash it.
  • the collected solid was vacuum-dried at 60 ° C. and 1300-2600 Pa for 6 hours to obtain 121 g of a white powder.
  • the composition of this solid was analyzed by gas chromatography and liquid chromatography, and the purity of 3- (trifluoromethyl) cinnamic acid was 99.9 by either analytical method. /. (0.561 mol) (isolation yield: 60.0%).
  • the liquid temperature was kept at 100 to 135 ° C, and stirring was continued for 2 hours. Upon cooling to room temperature, solids gradually precipitated, forming a slurry. Next, 5. Okg of a 35% aqueous hydrochloric acid solution was added to the mixture, and stirring was continued at room temperature for 1 hour.
  • this two-phase mixture with xylene was filtered to collect a solid, and washed while 1 kg of xylene was added little by little.
  • the obtained solid was mixed with 20 liters of warm water (80 ° C), stirred for 1 hour, and then filtered to collect the solid.
  • Example 3 Production of 3- (trifluoromethyl) cinnamamide
  • the first step was carried out in the same manner as in Example 1, except that 3- (trifluoromethyl) benzaldehyde was used as a raw material, in the same manner as in Example 1, to obtain 3- (trifluoromethyl) caffeic acid. Obtained.
  • the second and third steps will be described.
  • the target compound 3- (trifluoromethyl) cinnamamide of this example has a higher solubility in a solvent than the 4_ (trifluoromethyl) cinnamamide of Example 4.
  • Example 4 describes the second step and the third step.
  • a glass four-necked flask 500 ml equipped with a stirrer, a reflux tower, and a thermometer, 180 g of ethinole acetate, 85 g (0.49332 mol) (1. 0. 4232mol)
  • Example 5 the production was performed on a larger scale than in Example 4. 4 The procedure and conditions were the same as in Example 4 except that the starting material was mono (trifluoromethyl) cinnamic acid, and no vacuum degassing operation or nitrogen gas flow was performed immediately before the third step. (Trifluoromethyl) cinnamamide was obtained. The isolation yield through the second and third steps was 60.9%. The crystals were pale yellow. Table 1 shows the results.
  • Example 6 was also manufactured on a large scale. 4 The same procedure and operation and conditions as in Example 4 were used except that the scale of the degree of solvent evaporation in the vacuum degassing operation immediately before the third step was increased by using mono (trifluoromethyl) caffeic acid as a raw material. Then, (trifluoromethyl) cinnamamide was obtained. The yield through the second and third steps was 89.6%, and a white powder was obtained.
  • Example 7 was also manufactured on a large scale. 41. As a purification operation immediately before the third step, a method in which dry nitrogen gas was flown (published) using 4- (trifluoromethyl) caffeic acid as a raw material was adopted.
  • Example 7 nitrogen was passed through the solution without degassing under reduced pressure after chlorination, and ammonia was added 26 hours later.
  • 4_ (trifluoromethyl) cinnamamide when degassing under reduced pressure or flowing nitrogen was performed between the second and third steps (Examples 4, 6, and 7) It can be seen that a remarkable improvement in yield was observed, and that good white crystals could be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

(トリフルォロメチル)ケィ皮酸アミドの製造方法 技術分野
[0001] 本発明は、医薬'農薬の中間体として、また含フッ素基導入試薬として有用な(トリフ ルォロメチル)ケィ皮酸アミドの製造方法に関する。
発明の背景
[0002] 3—(トリフルォロメチル)ブロモベンゼンを原料として、これに酢酸パラジウム、ホスフィ 明
ン類ならびに塩基の存在下、アクリル酸を作用させ、 3—(トリフルォロメチル)ケィ皮酸 田
を得る方法が知られている(非特許文献 1)。また、活性の向上した含フッ素パラジゥ ム錯化合物を触媒として(トリフルォロメチル)ブロモベンゼン類、塩基およびアタリノレ 酸を混合し、反応させる方法が知られている(特許文献 1)。
[0003] 非特許文献 l : Metalloorg. Khim. (1989)、 p. 911— 914のケミカノレアブストラタ 卜(ケミカノレアブストラクト、 1989年、第 112卷、第 157787号)。
特許文献 1 :特開 2000 - 229912号公報。
発明の要約
[0004] 本発明の目的は、工業的に入手の容易な物質を原料として、純度の高い(トリフル ォロメチル)ケィ皮酸アミドを簡便に、かつ効率良く製造することである。
[0005] 本発明に依れば、式 [ 1]で表される(トリフルォロメチル)ベンズアルデヒド類
[化 1]
Figure imgf000003_0001
に無水酢酸と金属酢酸塩とを混合して反応させ、式 [2]で表される(トリフルォロメチ ル)ケィ皮酸
Figure imgf000004_0001
を得、次いで(トリフルォロメチル)ケィ皮酸を塩素化剤と反応させ、式 [3]で表される (トリフルォロメチル)ケィ皮酸クロリド
[化 3]
Figure imgf000004_0002
を得、次いで、(トリフルォロメチル)ケィ皮酸クロリドをアンモニアと反応させることを特 徴とする、式 [4]で表される(トリフルォロメチル)ケィ皮酸アミド
[化 4]
4
Figure imgf000004_0003
の製造方法が提供される。
(式 [1]一 [4]中、 nは 1または 2を表す。 Lは各々独立して、ハロゲン基、ニトロ基、シ ァノ基、アルキル基、アルコキシ基、アルコキシカルボニル基(これらのアルキル基、 アルコキシ基、アルコキシカルボニル基は、炭素数が 1一 20であり、炭素鎖に分岐を 有してもよく、炭素どうしの結合の一部が二重結合になっていてもよい)、またはこれら 前記の基が環上に置換基として結合していてもよいァリール基を表す。 nが 1のとき p は 0— 4の整数であり、 nが 2のとき pは 0— 3の整数である。 )
詳細な説明 [0006] 本発明は、(トリフルォロメチル)ケィ皮酸アミドを簡便に効率良く製造する手段を提 供する。本発明の方法によれば、分離の難しい不純物(特に位置異性体)が反応混 合物中に共存せず、着色も生じ難いことから、高純度の目的物を製造する上で特に 好適である。
[0007] 上記、非特許文献 1と特許文献 1の方法において原料に用いられる(トリフルォロメ チル)ブロモベンゼン類には複数種類の異性体が存在する。これらの異性体の沸点 はお互いに近接しているため、特定の異性体を高い純度で単離することが特に困難 である。原料中の異性体の反応性は類似しているため、得られる式 [2]で表される(ト リフルォロメチル)ケィ皮酸も、対応する複数の異性体の混合物となる。この混合物の 中から、特定の異性体のみを高い純度で得ようとすると、反応後の精製操作に過大 な負荷がかかる。
[0008] このように得られた、式 [2]で表される(トリフルォロメチル)ケィ皮酸を塩素化剤で塩 素化すると、式 [3]で表される(トリフルォロメチル)ケィ皮酸クロリドが生成し、続いて この化合物をアンモニアと反応させると、式 [4]で表される(トリフルォロメチル)ケィ皮 酸アミドカ S得られる。しかし、式 [2]で表される化合物が、上記のように、位置異性体 を含んでいると、得られる式 [3]または [4]の化合物も位置異性体の混合物となり、こ こから特定の異性体を高純度で単離することには多大な負荷力 Sかかる。
[0009] すなわち、純度の高い(トリフルォロメチル)ケィ皮酸アミドを工業的に製造するため に、入手の容易な化合物を出発原料として、より効率良く製造する手段を見いだすこ とが必要課題であった。
[0010] 本発明者らはかかる問題点に鑑み、(トリフルォロメチル)ケィ皮酸アミドを工業的に 容易に合成する方法につき、鋭意、検討を行った。その結果、式 [ 1 ]で表される(トリ フルォロメチル)ベンズアルデヒド類が、高純度製品を安価に入手できるキシレンを出 発物質とし、これを塩素化してペンタクロロキシレンに変換し、さらにフッ素化して (ジ クロロメチノレ)(トリフルォロメチル)ベンゼンに変換し、さらに加水分解することで、高 純度品を容易に得ることができる化合物である点に着目した。そしてこの式 [ 1 ]で表 される化合物に、無水酢酸と金属酢酸塩とを混合して反応させたところ、式 [2]で表 される(トリフルォロメチル)ケィ皮酸類が高収率で得られ、分離の難しレ、不純物が生 成しないため、反応終了後の精製も容易であることを見いだした(第 1工程)。
[0011] 本発明者らはさらに、このようにして得られた(トリフルォロメチル)ケィ皮酸を塩素化 し (第 2工程)、次いでアンモニアと反応させる(第 3工程)と、式 [4]で表される(トリフ ルォロメチル)ケィ皮酸アミドが、分離の難しい不純物を生じることなぐ高い純度で 得られることを見いだし、本発明を完成した。本発明の方法によれば、通常に入手で きる化合物を出発原料として、純度 99. 9%の(トリフルォロメチル)ケィ皮酸アミドを 得ることち容易にできる。
[0012] なお、本発明による(トリフルォロメチル)ケィ皮酸アミドを製造する方法では、第 3ェ 程の反応中に着色が起こり、 目的物の(トリフルォロメチル)ケィ皮酸アミドが着色する 場合がある。ところが発明者らは、上記方法において、第 2工程と第 3工程の間に特 定の精製操作を行うことでこの問題が大幅に改善することを見出した。すなわち第 2 工程で得られた反応混合物に対し、精製操作として、減圧脱気操作か、乾燥した不 活性ガスの流通を行った後で、第 3工程を行うことにより、式 [4]で表される(トリフル ォロメチル)ケィ皮酸アミドの着色が解消されることを見出した。なおかつ、この精製 操作を行うことにより、 目的物の収率も顕著に向上することを見出した。
[0013] また、この精製操作を行う場合には、第 2工程の反応を、溶媒の存在下で行い、かつ 第 2工程で得られた反応混合物を減圧脱気操作 (エバポレーシヨン)に付す際に、反 応混合物から (Α+ 0· 1 X B) [g]以上、(A + 0. 7 X B) [g]以下の溶媒を留去するこ とが、操作性から、また得られる目的物の品質面から、特に優れていることを見出した
[0014] このように、本発明者らは、(トリフルォロメチル)ケィ皮酸アミドを工業的に製造するた めの優れた方法を見出し、発明を完成した。
[0015] 本発明に係る反応のスキームを下式 (スキーム 1)に示す。
[化 5]
(スキーム 1 ) 第 1工程 第 2工程 第 3工程
[ 1 ] ► [ 2 ] ► [ 3 ] ► [ 4 ] [0016] 以下、本発明につき、さらに詳細に説明する。本発明は、第 1工程一第 3工程の 3つ の工程によりなる。
第 1工程:式 [1]で表されるトリフルォロメチルベンズアルデヒド類に無水酢酸と金属 酢酸塩とを混合して反応させ、式 [2]で表される(トリフルォロメチル)ケィ皮酸を得る 工程。
第 2工程:式 [2]で表される(トリフルォロメチル)ケィ皮酸を塩素化して、式 [3]で表さ れる(トリフルォロメチル)ケィ皮酸クロリドに変換する工程。
第 3工程:式 [3]で表される(トリフルォロメチル)ケィ皮酸クロリドをアンモニアと反応さ せ、式 [4]で表される(トリフルォロメチル)ケィ皮酸アミドを得る工程。
[0017] そして、必要に応じ、第 2工程と第 3工程の間に、特定の精製操作を行うことによつ てなる。
[0018] 本発明の出発原料である式 [1]で表される(トリフルォロメチル)ベンズアルデヒド類 は、芳香環に 1個のアルデヒド基 (一 CHO)と、 1個または 2個のトリフルォロメチル基 を有する化合物である。芳香環上に他の置換基 (L)を有していても良いが、この Lは 無水酢酸と金属酢酸塩の共存下で不活性な基に限定され、具体的には各々独立し て、ハロゲン(フルォロ、クロ口、ブロモ、ョード)基、ニトロ基、シァノ基、アルキル基、 アルコキシ基、アルコキシカルボニル基(これらのアルキル基、アルコキシ基、アルコ キシカルボニル基は、炭素数が 1一 20 (好ましくは 1一 10、さらに好ましくは 1一 6)で あり、炭素鎖に分岐を有していてもよぐ炭素どうしの結合の一部が二重結合になつ ていてもよい)、またはこれら前記の基が環上に置換基として結合していてもよいァリ ール基のことである。
[0019] 式 [1]で表される(トリフルォロメチル)ベンズアルデヒド類は具体的には、 2_ (トリフル ォロメチル)ベンズアルデヒド、 3_ (トリフルォロメチル)ベンズアルデヒド、 4_ (トリフノレ ォロメチル)ベンズアルデヒド、 2, 3_ビス(トリフルォロメチル)ベンズアルデヒド、 2 , 4_ビス(トリフルォロメチル)ベンズアルデヒド、 2, 5_ビス(トリフルォロメチル)ベン ズァノレデヒド、 2, 6_ビス(トリフルォロメチル)ベンズアルデヒド、 3, 4_ビス(トリフルォ ロメチル)ベンズアルデヒド、 3, 5_ビス(トリフルォロメチル)ベンズアルデヒド、 2—ニト 口— 5_ (トリフルォロメチル)ベンズアルデヒド、 2—メチルー 5_ (トリフルォロメチル)ベン ズアルデヒド、 2_ブロモ _5_ (トリフルォロメチル)ベンズアルデヒド、 2—メトキシー 4_ ( トリフルォロメチル)ベンズアルデヒド、 2—メトキシー 3, 5_ビス(トリフルォロメチル)ベ ンズアルデヒド等が挙げられる力 S、これらに限定されない。
[0020] 本発明において何れの(トリフルォロメチル)ベンズアルデヒドを原料としても、第 1ェ 程によって、当該化合物中のアルデヒド基 (一 CHO)が _CH = CH— COOH基に変 換され、その他の基は変化を受けない、対応する(トリフルォロメチル)ケィ皮酸を選 択的に得ることができる。得られた(トリフルォロメチル)ケィ皮酸を塩素化剤と反応さ せ(第 2工程)、次いでアンモニアと反応させる(第 3工程)ことにより、該官能基のみが 効率的に一 CH = CH— CONH基に変換され、式 [4]で表される(トリフルォロメチル)
2
ケィ皮酸アミドが得られる。
[0021] これらの中でも 3—(トリフルォロメチル)ベンズアルデヒドを原料とすると、最終的に 3_
(トリフルォロメチル)ケィ皮酸アミドが得られる。また、 4一(トリフルォロメチル)ベンズ アルデヒドを原料とすれば 4一(トリフルォロメチル)ケィ皮酸アミドが得られる。これらの ケィ皮酸アミドは、その有用性の特に顕著なことから、特に好ましい例として挙げられ る。
[0022] まず、本発明の第 1工程について説明する。第 1工程は、式 [1]で表されるトリフルォ ロメチルベンズアルデヒド類に無水酢酸と金属酢酸塩とを混合し、反応させ、式 [2] で表される(トリフルォロメチル)ケィ皮酸を得る工程である。
[0023] 第 1工程に使用する金属酢酸塩としては酢酸ナトリウム、酢酸カリウム、酢酸マグネシ ゥム、酢酸カルシウムなどの汎用の金属酢酸塩が挙げられる。中でも酢酸カリウムは 安価であり、取り扱レ、やすレ、ことから特に好ましレ、。
[0024] 各試薬の混合比に特別な制限はなレ、が、各試薬の中では(トリフルォロメチル)ベン ズアルデヒドが相対的に高価で、無水酢酸と金属酢酸塩は安価なことから、 (トリフル ォロメチル)ベンズアルデヒドに対して無水酢酸と金属酢酸塩をやや過剰に用い、(ト リフルォロメチル)ベンズアルデヒドの反応転化率を高めるのが好ましい。具体的には (トリフルォロメチル)ベンズアルデヒド 1モルに対し、無水酢酸と金属酢酸塩をそれぞ れ 1一 2モル用いることが好ましい。
[0025] 第 1工程における溶媒には格段の制限はなぐ無溶媒でも行うこともできる。しかし原 料の(トリフルォロメチル)ベンズアルデヒドが液体であるのに対し、 目的物の(トリフル ォロメチル)ケィ皮酸は ioo°c以下では固体であるから、本反応系では反応の経過と 共に系内に固体成分が増大する。したがって本発明の反応は溶媒中で実施する方 が好ましい。ここで本発明者らは溶媒として、非水溶性の非プロトン性有機溶媒であ つて、かつ極性を持つものを用いると、各試薬が溶媒に適度に溶解し、反応が速く円 滑に進み、好ましいことを見いだした。具体的にはトルエン、キシレン、ェチルベンゼ ン、トリメチルベンゼン類、ジェチルベンゼン類、メチルシクロへキサン、 1—メチルシク 口へキセン、クロ口ベンゼン、ブロモベンゼン、塩化ベンジル、ベンゾトリフルオリド、ビ ス(トリフルォロメチル)ベンゼン類など、本発明の反応条件で分解せず、沸点が概ね
70°C以上 200°C以下の溶媒が取扱いやすい。
[0026] 特にキシレン中で反応を行うと、反応混合物が着色しにくいため、キシレンを溶媒 として使用することが特に好ましい。キシレンに対しては、 目的物(トリフルォロメチル) ケィ皮酸類の溶解度が温度に大きく依存し、 100°C以上では高い溶解性を示すが、 反応後に冷却すると目的物が析出して、取扱いやすいスラリーを形成するため、精 製操作が行いやすいという利点もある。キシレンとは、 0-キシレン、 m-キシレン、 p- キシレン、または工業用キシレン(o—キシレン、 m—キシレン、 p—キシレンおよびェチ ルベンゼンの約 20 : 45 : 20 : 15の混合物)のことで、これらの何れも好適に用いること ができる。このうち o—キシレン、 m—キシレン、および工業用キシレンは 0°C付近でも 固結することがなぐ取扱いやすいので特に好ましい。キシレンを溶媒として用いる場 合、その量 ίま(卜リフノレ才ロメチノレ)ベンズァノレデヒド lkgに対して、 0. 4kg一 5. 0kg力 S 好ましく、 0· 5kg— 1· 5kg力 S特に好ましレ、。 0. 4kg未満であると、キシレン中に(卜リ フルォロメチル)ベンズアルデヒドや(トリフルォロメチル)ケィ皮酸が十分に溶解せず 、敢えて溶媒を使用する効果が十分に得られないので好ましくない。また 5. 0kgより 多く用いても反応性はほとんど向上せず、経済的に不利であるから好ましくない。
[0027] 反応温度(内部の液体の温度)は 60°C— 200°Cの範囲である力 100°C 150°C力 S 特に好ましい。 60°C未満であると反応が遅ぐまた溶媒を用レ、た場合、原料や生成 物が十分な溶解性を示さず、取扱いにくぐまた溶媒を使用する利点も十分得られな レ、ことから好ましくない。一方、 200°Cを超えると反応混合物が着色しやすぐ副生物 も生じやすいから好ましくない。
[0028] 第 1工程は、溶媒の存在下または非存在下で、上記(トリフルォロメチル)ベンズアル デヒド、無水酢酸および金属酢酸塩を混合し、所定の温度で撹拌を継続することによ り達せられる。各試薬は一時に混合してもよレ、が、(トリフルォロメチル)ベンズアルデ ヒド、無水酢酸または金属酢酸塩のうちの何れ力、 2種の試薬を予め混合した混合物 に、残りの 1種類の試薬を連続的、あるいは逐次的に添加する方が反応温度の制御 がしやすぐ好ましい。例えば、反応器にキシレン、無水酢酸、酢酸カリウムの所定量 を予め投入し、撹拌しながら所定温度まで加熱した後に、(トリフルォロメチル)ベンズ アルデヒドを逐次的あるいは連続的に導入するのは好ましい方法である。
[0029] 反応時間には特別な制限はなぐ条件によって最適の反応時間は異なるので、薄相 クロマトグラフィー、ガスクロマトグラフィーなどの方法で反応混合物の組成を測定しな がら反応を行い、原料の(トリフルォロメチル)ベンズアルデヒドが十分に減少したこと を確認後、終了するのが望ましい。キシレンを使用して 100— 150°Cで反応を行い、 (トリフルォロメチル)ベンズアルデヒドが当初の 5%に減少するまで反応を継続する 場合、要する時間は典型的には 2— 8時間である。
[0030] なお、本反応は空気中でも、窒素、ヘリウム、アルゴンなどの不活性気体中でも行うこ とができる。これらの気体の共存によって、反応性、着色などの挙動にほとんど差異 が見られないので、通常、空気中で行えばよい。
[0031] 反応終了後の精製操作は通常の方法によればよぐ特別な制限はない。しかし本反 応系には無水酢酸、金属酢酸塩、副生物である酢酸が共存することから、反応混合 物を水洗することが効果的である。この水洗操作は、反応終了時、 目的物がキシレン 等の非水溶性溶媒中に溶けた状態 (概ね 80°C以上の状態)で、水 Z有機溶媒の不 均一溶媒系として行ってもよいし、室温付近まで冷却して目的物を析出させた後、水 /固体の不均一系として行ってもよレ、。水洗は 3回以上行うのが効果的であり、その うちの 1回は塩酸等、強酸での洗浄を行うと、金属酢酸塩の除去がより効果的に行え る。前者の場合、水相の除去は 2相分離によればよぐ後者の場合は、吸引濾過器 や遠心分離器を用いた濾過法により、 目的物を含む固体を捕集すればよい。なお前 者の場合、 2相分離後に、得られた有機相を室温付近に冷却すれば、 目的物が析出 しスラリーが得られるので、これをろ過すれば、 目的物を主成分とする固体を捕集す ること力 Sできる。
[0032] 上記、得られた固体中には、 (トリフルォロメチル)ベンズアルデヒドその他の有機性 不純物が含まれる。これらを除去するためには、キシレン等の有機溶媒で洗浄するか 、再結晶を行えばよい。本反応系では再結晶を行わなくても、吸引濾過を行いながら 、ロート上でキシレン等の溶媒をかけて洗浄するだけでも、 99%の純度を超える(トリ フルォロメチル)ケィ皮酸を得られる場合が多レ、。
[0033] 精製操作の終わった固体を減圧乾燥することにより、溶媒または水が除去され、式 [ 2]で表される(トリフルォロメチル)ケィ皮酸の白色結晶が得られる。
[0034] 次に、第 2工程について説明する。第 2工程は、第 1工程で得られた(トリフルォロメチ ノレ)ケィ皮酸を塩素化剤によって塩素化し、式 [3]で表される、 (トリフルォロメチル)ケ ィ皮酸クロリドを製造する工程である。
[0035] 本工程は、第 1工程で得られた(トリフルォロメチル)ケィ皮酸類を、溶媒の存在下ま たは非存在下、塩素化剤と反応させることにより達する。第 2工程の反応を通じて、塩 化水素ガスが生成物と等しいモル数、副生するため、反応器は開放系にし、発生し た塩化水素を中和処理できる設備に接続して行うことが、工業的な実施に際しては 求められる。
[0036] 本工程は、第 1工程で得られた反応混合物を直接原料として用いることもできるが、 第 1工程の反応後に、上述した精製操作に付して、(トリフルォロメチル)ケィ皮酸を 単離し、これを原料とした方が、不純物の少ない目的物が製造できるため、好ましい
[0037] 第 2工程に使用できる塩素化剤としては塩ィ匕チォニル(SOC1 )、塩化スルフリル(
2
SO C1 )、ォキシ塩化リン(POC1 )、二塩化ォキサリル { (COC1) }、三塩化リン(PC1
2 2 3 2
)、五塩化リン(PC1 )、ジクロ口モノェチルホスフィン { (C H ) PC1 }など、おおむね 1
3 5 2 5 2
oo°c以下で留去可能なものが好適に使用できるが、必ずしもこれらに限定されない
。これらの中では塩化チォニルは比較的安価である上、反応性も高いことから、特に 好ましい。
[0038] (トリフルォロメチル)ケィ皮酸と、塩素化剤の混合比に特別の制限はないが、収率の 観点から、(トリフルォロメチル)ケィ皮酸 1モルに対する、塩素化剤中の塩素原子の モル量が 2— 3モルであることが好ましぐ 2. 1一 2. 5モルであることがさらに好ましい 。塩素化剤中の塩素原子が 2モルを下回ると、(トリフルォロメチル)ケィ皮酸が完全 に消費されず、収率の低下を招くから、好ましくない。
[0039] 反応溶媒としては格段の制限は無ぐ無溶媒でも行うことが出来る。しかし得られる塩 素化物は室温で固体の物もあり、溶媒中で実施するのが取り扱いやすぐ好ましい。 溶媒が有機溶媒であると特に円滑に反応が進行するため、特に好ましい。具体的に は非プロトン性のキシレン、トルエン、ェチルベンゼンや、エステル類の酢酸ェチル、 酢酸メチル、塩素系溶媒の塩化メチレン、四塩ィ匕炭素など、本発明の反応条件で分 解しない溶媒が特に好ましい例として挙げられる。溶媒の量に特別な制限はないが、 トリフルォロメチルケィ皮酸誘導体の有機溶媒への溶解性を考慮すると、第 2工程の 原料であるトリフルォロメチルケィ皮酸 lgあたり 1. 5g 6gの範囲であることが好まし く、 2— 4gの範囲が特に好ましい。
[0040] 第 2工程の反応温度に特別な制限はないが、 30— 200°Cの範囲が好ましぐ 40°C 一 100°Cが特に好ましレ、。 60— 80°Cの範囲で行うと、取り扱いやすぐさらに好まし レ、。 30°C未満であると反応が遅ぐ一方 200°Cを越えると反応混合物が着色しやすく 副生物も生じやすいから好ましくない。
[0041] 各試薬は一時に混合しても良いが、塩素化剤を滴下するなど、各試薬を徐々に混合 した方が、反応温度の制御がしゃすぐ大きな規模で行う場合にはより好ましい。
[0042] 反応時間に特別な制限は無ぐ条件によって最適の反応時間は異なるので、ガスク 口マトグラフィーなどの方法で反応混合物の組成を測定しながら反応を行い、原料の (トリフルォロメチル)ケィ皮酸が十分に減少したことを確認後、終了するのが好ましレ、
[0043] 本工程の目的物(トリフルォロメチル)ケィ皮酸クロリドのうち、 3_ (トリフルォロメチル) ケィ皮酸クロリドは室温で液体、 4一(トリフルォロメチル)ケィ非酸クロリドは室温で固 体である。 (トリフルォロメチル)ケィ皮酸クロリドの中には固体のものもある力 これら は有機溶媒に溶けやすぐ溶媒を十分に用いた場合には、終始液体の形で取り扱え る。 [0044] 第 2工程で得られた(トリフルォロメチル)ケィ皮酸クロリドを含む反応混合物はそのま ま第 3工程の原料として使用することができるが、第 3工程の前に「精製工程 (減圧脱 気操作または不活性ガスの流通)」を行うことが特に好ましい。以下、この第 2工程と 第 3工程の間に行われる「精製工程」について説明する。
[0045] 第 2工程で得られた、式 [3]で表される(トリフルォロメチル)ケィ皮酸クロリドを含む反 応混合物中には、第 2工程を通じて副生した塩酸、亜硫酸ガス等の酸性ガスが残留 しており、これらが多く残留した(トリフルォロメチル)ケィ皮酸クロリドを第 3工程の原 料に用いると、得られる(トリフルォロメチル)ケィ皮酸アミドに着色を生じやすレ、。又、 塩素化剤が残存すると、生じた(トリフルォロメチル)ケィ皮酸アミドがさらに脱水を受 けた構造の、(トリフルォロメチル)ケィ皮二トリルが多く副生し、 目的物の収率が低下 することが明らかとなった。
[0046] このような状況に鑑み、本発明者らは、第 3工程を行う直前に、第 2工程で得られた( トリフルォロメチル)ケィ皮酸クロリドを予め減圧操作などによって酸性ガスおよび塩素 化剤を除去することを試みた。この結果、第 3工程における着色の問題が著しく改善 され、また第 3工程における(トリフルォロメチル)ケィ皮二トリル生成等の副反応も格 段に抑えられ、収率を大幅に向上できる、という、重要な知見が得られた。
[0047] この酸性ガスおよび塩素化剤の除去操作としては、減圧脱気操作(エバポレーシヨン )が特に好ましレ、。このエバポレーシヨンをどの程度行うかについて、特別の制限はな レ、。しかし、第 2工程における、塩素化剤の「過剰投入量」 {第 2工程における、塩素 化剤の実際の投入量 (g)から、「理論量」(g)を差し引いた値をいう。 (ここで「理論量」 (g)とは、「(トリフルォロメチル)ケィ皮酸のモル量」 X 2 ÷ (塩素化剤分子中の塩素原 子数) X (塩素化剤の分子量))として算出される重量をいう。 } }を A (g)とするとき、少 なくとも A (g)以上の液体成分が留去される程度に、減圧脱気を継続する必要がある 。但し、第 2工程で溶媒を使用した場合には、塩素化剤とともに、溶媒の留去も起こる ので、これより多量の留去を行った方が良レ、。具体的には、第 2工程において使用し た溶媒の量を B (g)とするとき、 (A + 0. l X B) [g]以上、 (A + 0. 7 X B) [g]以下、よ り好ましくは (A+ 0. 3 X B) [g]以上、 (A + 0. 5 X B) [g]以下、の液体が留去される ようにすると良レ、。この範囲の量の液体を留去する場合において、前述の第 3工程に おけるアンモニアガスの導入時に反応系内で溶液の固化が起こりにくぐなおかつ対 応する(トリフルォロメチル)ケィ皮酸アミドを大幅に高い化学純度、収率で得ることが できる。なお、(Α + 0· 7 X B) [g]を上回る量の液体を留去することもできるが、粘度 の増大や、固化が起こることがあり、取扱いが難しくなる場合がある。
[0048] なお、酸性ガスおよび塩素化剤の除去操作としては、減圧脱気以外にも、乾燥した 不活性ガス(窒素ガス、ヘリウムガスなど)を反応系内に流通させることによつても達 成でき、この方法によっても、精製操作を行わないときと比べ、第 3工程における着色 の問題が解決され、 (トリフルォロメチル)ケィ皮酸アミドの収率も向上できることを見 出した。しかし、通常、この操作を行うためには、反応混合物の全容積以上 (好ましく は 3倍以上、さらに好ましくは 5倍以上)の不活性ガス(常圧換算)の流通が必要であ る。このため、大きな規模で製造を行う場合には、経済的な理由からは前述のエバポ レーシヨンの方が好ましレ、。
[0049] なお、原料の(トリフルォロメチル)ケィ皮酸クロリドは空気中で、その水分によって徐 々に加水分解を受け(トリフルォロメチル)ケィ皮酸に変換する性質を持つ。よって第 2工程で得た(トリフルォロメチル)ケィ皮酸クロリドほたはその溶液)は空気と長時間 接触させずに用いることが重要である。このことを考えると、第 3工程の前処理として、 酸性ガスを除去するために空気を流通させることや、 (トリフルォロメチル)ケィ皮酸ク 口リドが固体であるときに、これを析出させて溶媒によって洗浄するなどの方法は好ま しくない。
[0050] 第 2工程と第 3工程の間に行われる上記精製操作は、本発明の対象とする基質の何 れにも好ましく適用できる。中でも、結晶性の高い 4一 (トリフルォロメチル)ケィ皮酸ァ ミドが目的物であるとき、本精製操作による収率改善の効果が特に著しい。他の(トリ フルォロメチル)ケィ皮酸アミド(例えば 3_ (トリフルォロメチル)ケィ皮酸アミド)を用い る場合には、収率は 4一(トリフルォロメチル)ケィ皮酸アミドの場合よりも低いものの、 上記精製操作を行うことによる、収率向上と着色改善の効果は見られる。
[0051] 以下、第 3工程の反応について説明する。第 3工程は、第 2工程で得られた(トリフ ルォロメチル)ケィ皮酸クロリドをアンモニアと反応させ、 (トリフルォロメチル)ケィ皮酸 アミドを製造する工程である。 [0052] 本工程に用いるアンモニアとしてはアンモニアガス、アンモニア水等、いずれの形態 であっても好適に用いることができる。第 3工程の反応は、(トリフルォロメチル)ケィ皮 酸クロリド中の塩素原子 1個が (一 NH )基に置換される反応であるから、反応に必要 とされるアンモニアの理論量は 1当量である。し力、し反応を十分に進行させるために は、反応に伴って副生する HC1を中和し、平衡を生成物側にずらす必要がある。す なわち第 3工程の反応は、系内を塩基性に保つ目的で、前記、 1当量のアンモニア に加えて、さらに 1当量以上の塩基の共存下で行うことが好ましい。
[0053] この過剰に加える塩基の種類に特別な制限はなぐ特にアンモニアでなくとも、例え ば炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化力リウ ム、水酸化ナトリウムなども使用できる。しかし、これらの塩基を当初から系内に添カロ すると、第 2工程の反応で副生した(トリフルォロメチル)ケィ皮酸や、前記の「前処理 」で除去し切れなかった酸性物質との中和反応が起こりやすぐ初期から系内に水を 生じ、これが(トリフルォロメチル)ケィ皮酸クロリドの加水分解を引き起こし、 目的物の 選択性を低下させる結果となる。
[0054] こうしたことから、過剰に加える塩基としてもアンモニアを用いることが特に好ましレヽ 。アンモニアも、第 2工程の反応で副生した(トリフルォロメチル)ケィ皮酸や、酸性物 質との間に中和反応を起こし得るが、それらの中和反応よりも優先して、本工程の目 的物である(トリフルォロメチル)ケィ皮酸アミドを生成するので、望まれなレ、副反応を 最小限に抑えることができる。塩基としてアンモニアのみを使用する場合における、 ( トリフルォロメチル)ケィ皮酸クロリド 1モルに対するアンモニアのモル量に特別の制限 はないが、反応を十分に進行させるためには、上述のとおり、合計 2モル以上が求め られる。アンモニアを更に過剰に投入することによって後処理工程 (後に水を添加し た時)で塩基性になり、第 3工程の反応で若干副生する(トリフルォロメチル)ケィ皮酸 をアンモニゥム塩 (水溶性塩)として除去することができる。よって、アンモニアは過剰 であった方が良い。このこと力 、アンモニアの量は 2. 5— 10モルの範囲が好ましく 、 3. 0-3. 5モルであることがさらに好ましレ、。アンモニアの量が 2モル未満であると 、系内が塩基性にならず、反応が完結しにくぐ製品中に(トリフルォロメチル)ケィ皮 酸が多く残留し、製品の純度低下を招くから、好ましくない。 [0055] 反応溶媒としては格段の制限は無ぐ無溶媒でも行うことが出来る。しかし、溶媒中で 行う方が反応は円滑に進行する。得られる(トリフルォロメチル)ケィ皮酸アミドには室 温で固体の物もあり、このような場合には、溶媒中で実施することが特に好ましい。溶 媒としては、通常の有機溶媒を挙げることができ、具体的には非プロトン性のキシレン 、トルエン、ェチルベンゼンや、エステル類の酢酸ェチル、酢酸メチル、塩素系溶媒 の塩化メチレン、四塩化炭素など、本発明の反応条件で分解しない溶媒が良い。溶 媒は、(トリフルォロメチル)ケィ皮酸クロリド lgに対して lg 10gであることが好ましく 、特に好ましい量は 2 4gである。溶媒が 20gを超えると、生産性が悪いばかりでなく 、反応も遅くなることがあり、好ましくない。また上述のように、水が共存すると、(トリフ ルォロメチル)ケィ皮酸クロリドが加水分解を受けやすく(トリフルォロメチル)ケィ皮酸 を生成するので、水を溶媒とすることは好ましくない。
[0056] 反応温度は通常、—10— + 200°Cの範囲である力 100°C以下が好ましレ、。 100 °C以上であるとアンモニアガスゃ塩ィヒアンモニゥムの飛散が大きい。又、反応混合物 が着色しやすぐ副生物も生じやすレ、から好ましくなレ、。
各試薬は一時に混合しても良いが、逐次に、あるいは連続的に混合を行っても良く
、通常、その方が反応温度を穏和に制御しやすいので、より好ましい。
反応時間に特別な制限は無ぐ条件によって最適の反応時間は異なる。反応中、 反応液は均一にならない場合もあり反応混合物の組成を正確に測定するのは困難 な場合もある。従って反応混合液の一部を採取して、この中に含まれる(トリフルォロ メチル)ケィ皮酸クロリドが十分に減少していることを確認後、終了するのが好ましい。
[0057] 反応終了後の精製操作は通常の方法によれば良く特別な制限は無い。しかし本反 応系には塩化アンモニゥム等の無機塩類が共存する事から反応混合物を水洗する 事が効果的である。反応中に目的物である(トリフルォロメチル)ケィ皮酸アミドが析 出し、不均一になることが多いが、水洗操作はそのまま行っても構わなレ、。水洗後の 溶液(有機層/水)を冷却すると目的物が十分に析出するので、これを濾過すれば 目的物を主成分とする固体を捕集することが出来る。
[0058] 上記得られた固体中には副生物として(トリフルォロメチル)ケィ皮酸、(トリフルォロ メチル)ケィ皮酸二トリル、その他の有機不純物が含まれる。これらを除去するために は酢酸ェチル等の有機溶媒で洗浄するか再結晶を行うのが、特に効果的である。酢 酸ェチル等で再結晶しにくい場合は、へキサン/イソプロパノール混合溶媒など、極 性の低い溶媒を適宜用いると、効果的に再結晶を行うことができる。このような精製手 段は当業者が適宜、最適化することができる。
[0059] 以下に、本発明を実施例を以て説明するが、本発明はこれらの実施例により限定さ れない。
[実施例 1 ] 3— (トリフルォロメチル)ケィ皮酸の製造
[0060] 撹拌器、還流管、滴下ロート、温度計を備えたガラス製の 4ッロフラスコ(1リットル) に酢酸カリウム 117g (l . 20mol)、無水酢酸 153g (l . 50mol)および工業用キシレ ン 145gを投入し、撹拌しながら加熱した。
[0061] 混合物の内部温度が 120°Cとなったら、 3_ (トリフルォロメチル)ベンズアルデヒド( 純度 99. l %) 164g (0. 934mol)を滴下ロートで 30分間かけて滴下した(その間、 反応液の内温は 120— 140°Cに維持した)。その後、反応液の内温 130— 140°Cに て 5時間、撹拌を継続し、反応を終了した。
[0062] 反応終了後、キシレンを 144g追加し、撹拌を続けて内部温度を 120°Cに安定させ た。続いて水 26gを逐次的に添カ卩した。この操作時には発熱が伴うので、撹拌を行い つつ、液の内温を 120— 140°Cの範囲に保ちつつ、ゆっくりと行った。水の滴下完了 後、放冷して 80°Cになった直後に、反応混合物を速やかに 2リットルの 4ッロフラスコ に移動させた。
[0063] この、 4口フラスコに移動した混合液に、 80°Cの温水を 229g力 0え、 80°Cで 30分撹拌 した後、同温度で 30分静置し、 2相分離を行った (水相を廃棄)。次に、得られた有 機相に、 35%塩酸 37gと、 80。Cの温水 218gを添カロし、 80°Cで 30分携禅した後、同 温度で 30分静置し、 2相分離を行った (塩酸相を廃棄)。得られた有機相に、 80°Cの 温水を 255g加え 80°Cで 30分撹拌した後、同温度で 30分静置し、 2相分離を行った (水相を廃棄)。
[0064] 次いで、得られた有機相を 20°Cに冷却し、 12時間撹拌を続けたところ、スラリーが得 られた。有機相を 5°Cに冷却し、さらに 1時間撹拌を継続し、スラリーを熟成させた。
[0065] 続いて得られたスラリーをブフナー式真空濾過器に注ぎ、固体成分をロート上に捕 集した。吸引を行いながら、 10°Cに冷やした工業用キシレン 90gをこの固体にゆつく りと力けて、洗浄を行った。
[0066] 捕集された固体を 60°C、 1300— 2600Paにて、 6時間、真空乾燥したところ、白色 粉末 121gを得た。ガスクロマトグラフィーおよび液体クロマトグラフィーにより、この固 体の組成を分析したところ、どちらの分析手段によっても 3—(トリフルォロメチル)ケィ 皮酸の純度は 99. 9。/。であった(0. 561mol) (単離収率 60. 0%)。
[実施例 2] 4— (トリフルォロメチル)ケィ皮酸の合成
[0067] 撹拌器、還流管、温度計を備え、試薬を逐次で添加することのできる定量ポンプに 接続したステンレス製の反応器(50リットル)に酢酸カリウム 4. 71kg (48. Imol)、無 水酢酸 6. 14kg (60. Imol)および工業用キシレン 5. 81kgを投入し、撹拌しながら 加熱した。混合物の内部温度が 120°Cとなったら、 4一(トリフルォロメチル)ベンズァ ノレデヒド(純度 99. 9%) 6. 53kg (37. 5mol)を定量ポンプを用レヽて 30分力、けて導 入した(その間、反応液の内温は 120— 140°Cに維持した)。その後、反応液の内温 130— 140°Cにて 5時間、撹拌を継続し、反応を終了した。
[0068] 反応終了後、キシレンを 5. 89kg追加し、続いて水 10. 4kgを逐次的に添加した。
水の滴下完了後、液温を 100— 135°Cに保ち 2時間撹拌を継続した。室温まで放冷 したところ次第に固体が析出し、スラリーが形成された。次いで、この混合物に 35% 塩酸水溶液を 5. Okg加え、室温で 1時間、撹拌を続けた。
[0069] この混合物をろ過して固体を捕集した。この固体を 8kgの工業用キシレン中に投入 し、室温下 1時間、撹拌を行った。
[0070] 次いでこのキシレンとの 2相混合物をろ過して、固体を捕集し、 1kgのキシレンを少 量ずつかけながら洗浄した。得られた固体を 20リットルの温水(80°C)をカ卩えて、 1時 間撹拌した後、ろ過し、固体を捕集した。
[0071] 捕集された固体を 60°C、 1300Paにて、 20時間、真空乾燥したところ、白色粉末 5 . 30kgを得た。ガスクロマトグラフィーおよび液体クロマトグラフィーにより、この固体 の組成を分析したところ、どちらの分析手段によっても 4一(トリフルォロメチル)ケィ皮 酸の純度は 99. 9。/。であった(24. 4mol) (単離収率 65. 0%)。
[実施例3] 3— (トリフルォロメチル)ケィ皮酸アミドの製造 [0072] 第 1工程は 3— (トリフルォロメチル)ベンズアルデヒドを原料とした他は、実施例 1と規 模、操作、条件とも同様に行い、 3— (トリフルォロメチル)ケィ皮酸を得た。以下、第 2 工程、第 3工程につき記載する。
[0073] 攪拌機、還流塔、温度計を備えたガラス製の 4ッ口フラスコ(500ml)に酢酸ェチル 180g、第 1工程で得た 3_ (トリフノレ才ロメチノレ)ケィ皮酸 85g (0. 3932mol) (1. Oe q)、塩ィ匕チ才ニノレ 53g (0. 4232mol) (1. 08eq)を添カロし、携禅しな力 Sらカロ熱し た。内温 (反応器内部の反応液の温度)を 60— 70°Cに保ち、 5時間加熱撹拌を継続 した後、反応を終了した。
[0074] 得られた、 3—(トリフルォロメチル)ケィ皮酸クロリドを含む反応混合物の全量をフラ スコに仕込み 減圧蒸留を行い、低沸点成分および溶媒を一部(合計 72g)除去させ た。次に残渣 (液体)の全量 (0. 3932mol : l . Oeqとする)を、攪拌機、環流塔、温度 計を備えたガラス製の 4ッロフラスコ(500ml)に添カ卩し、撹拌しながら 10°Cまで冷却 した。反応液温度を 60°C以下(10— 60°C)に保つように、アンモニアガス 20g (l . 17 647mol) (3eq)を、徐々に、攪拌しながら添加した。
[0075] アンモニアガス添加後、 1時間撹拌し、内容液の一部を採取、分析し、原料の 3- (ト リフルォロメチル)ケィ皮酸クロリドが十分に減少した事を確認後、反応を終了した。
[0076] 本実施例の目的化合物 3—(トリフルォロメチル)ケィ皮酸アミドは、実施例 4の 4_ ( トリフルォロメチル)ケィ皮酸アミドに比較して溶媒への溶解性が高ぐ反応混合物を
0— 5°Cに冷却するだけでは析出し難かった。このため、以下のような後処理を行つ た。
[0077] すなわち、反応終了後、水 400gを添加し、 25°Cで 30分撹拌した後、同温度で 30 分静置し、 2相分離を行った (水相を廃棄)。次に、得られた有機層から、エバポレー ターを用いて溶媒を留去した。残渣(固体)にへキサン 200g、イソプロパノール 40g を添加し 60°Cにて溶解後、氷水浴で 0 5°Cに冷却したところ、結晶が得られた。こ の結晶を濾過により捕集した。
[0078] 得られた結晶をろうと上で吸引操作を行いながら、温水(60°C) 300gで洗浄し、続 いて 5°Cに冷却したへキサン Z イソプロパノール = 5 : 1の混合溶媒 80gで洗浄し、 固体を捕集した。 [0079] 捕集された固体を 60°C、 1300Paにて 20時間真空乾燥させたところ、白色粉末 42 gが得られた。この粉末を、ガスクロマトグラフィー及び液体クロマトグラフィーにより分 析したところ、どちらの分析手段によっても 3—(トリフルォロメチル)ケィ皮酸アミドの純 度は 99. 9%であった。第 2工程および第 3工程を通じての単離収率は 49. 7%であ つた。
[実施例 4] 4一(トリフルォロメチル)ケィ皮酸アミドの製造
[0080] 実施例 4では第 2工程および第 3工程について記述する。攪拌機、還流塔、温度計 を備えたガラス製の 4ッロフラスコ(500ml)に酢酸ェチノレ 180g、 4— (トリフルォロメチ ノレ)ケィ皮酸 85g (0. 3932mol) (1. Oeq)、塩ィ匕チォニノレ 53g (0. 4232mol)
(1. 08eq)を添加し、撹拌しながら加熱した。内温 (反応器内部の反応液の温度) を 60 70°Cに保ち、 5時間加熱撹拌を継続し反応を終了した。
[0081] 得られた反応混合物の全量をフラスコに仕込み 減圧蒸留を行い、低沸点成分およ び溶媒を一部(合計 72g)除去させた。次に残渣液体の全量(0. 3932mol : l . Oe qとする)を、攪拌機、還流塔、温度計を備えたガラス製の 4ッロフラスコ(500ml)に 添加し、撹拌しながら 10°Cまで冷却した。この状態で、アンモニアガス 20g (l . 1764 7mol) (3eq)を、徐々に、攪拌しながら添加した。アンモニアガスの添加とともに発熱 があり、内部温度は最高 60°Cまで上昇した。アンモニアガスの添加速度を調節する ことで、内部温度が 60°Cを超えなレ、ようにした。
[0082] アンモニアガスの添加完了後、さらに 1時間撹拌し、内容液の一部を採取、分析し、 原料の 4一 (トリフルォロメチル)ケィ皮酸クロリドが十分に減少した事を確認して、反応 を終了した。
[0083] 反応終了後、水 400gを添加し、室温で 1時間撹拌後 5°Cまで冷却後、濾過を行い結 晶を得た。得られた結晶をろうと上で吸引操作を行いながら、温水(60°C) 300gで洗 浄し、続いて 5°Cに冷却した酢酸ェチル 80gで洗浄し、固体を捕集した。
[0084] 捕集された固体を 60°C、 1300Paにて 20時間真空乾燥させたところ、白色粉末 74g を得た。この粉末を、ガスクロマトグラフィー及び液体クロマトグラフィーにより分析した ところ、どちらの分析手段によっても 4一 (トリフルォロメチル)ケィ皮酸アミドの純度は 9 9. 9。/0であった(第 2工程、第 3工程を通じての単離収率 = 87. 4%) 0結果を表 1に 示す。
[実施例 5] 4—(トリフルォロメチル)ケィ皮酸アミドの製造
[0085] 実施例 5では、実施例 4よりも大きな規模で製造を行った。 4一(トリフルォロメチル)ケ ィ皮酸を原料とし、第 3工程の直前にぉレ、て減圧脱気操作や窒素ガス流通を実施し ない他は実施例 4と操作、条件とも同様に行レ、、(トリフルォロメチル)ケィ皮酸アミドを 得た。第 2工程、第 3工程を通じた単離収率は 60. 9%であった。結晶は淡黄色であ つた。結果を表 1に示す。
[実施例 6] 4—(トリフルォロメチル)ケィ皮酸アミドの製造
[0086] 実施例 6も、大きな規模で製造を行った。 4一(トリフルォロメチル)ケィ皮酸を原料とし 、第 3工程の直前の減圧脱気操作における溶媒留去の程度も、スケールを大きくした 他は、実施例 4と操作、条件とも同様に行レ、、(トリフルォロメチル)ケィ皮酸アミドを得 た。第 2工程、第 3工程を通じての収率は 89. 6%であり、白色粉末が得られた。
[実施例 7] 4— (トリフルォロメチル)ケィ皮酸アミドの製造
[0087] 実施例 7も、大きな規模で製造を行った。 4一 (トリフルォロメチル)ケィ皮酸を原料とし 、第 3工程の直前での精製操作としては、乾燥した窒素ガスを流通(パブリング)する 方法をとつた。
[0088] 攪拌機、還流塔、温度計を備えたガラス製の反応器(500L)に酢酸ェチル 120kg、
4一(トリフノレ才ロメチノレ)ケィ皮酸 57kg (0. 264kmol) 1. Oeq、塩ィ匕チ才ニノレ(95 %純度) 35kg (0. 280kmol) 1. 06eqを添カロし、携持しな力 Sらカロ熱した。内温( 反応器内部の反応液の温度)を 60— 70°Cに保ち 8時間加熱撹拌を継続し反応を終 了した。
[0089] 得られた反応混合物を加熱(70 90°C)攪拌しながら窒素を 10L/minで液中へ導 入させた。 26時間窒素の導入後、撹拌しながら 10°Cまで冷却した。反応液温度を 6 0。G以下(10一 60。G) こ保つよう (こ、アンモニアガス 13. 5kg (0. 792kmol) 3eqを、 徐々に、攪拌しながら添加した。アンモニアガス添加後、 1時間撹拌し、内容液の一 部を採取、分析し、原料の 4一 (トリフルォロメチル)ケィ皮酸クロリドが十分に減少した 事を確認後、反応を終了した。
[0090] 反応終了後、攪拌機、環流塔、温度計を備えたポリ(テトラフルォロエチレン)樹脂製 の反応器(1000L)へ反応液を移送した後、水 140kgを添加し、撹拌後 5°Cまで冷 却後、遠心分離によって濾過を行い結晶を得た。
得られた結晶を遠心分離上で、温水(60°C) 120kgで洗浄し、続レ、て 5°Cに冷却した 酢酸ェチル 18kgで洗浄し、固体を捕集した。捕集された固体を 1000Lのステンレス 製振動乾燥機で 50°C、 2670Paにて 20時間真空乾燥させたところ、白色粉末 49. 5 kgを得た。この粉末を、ガスクロマトグラフィー及び液体クロマトグラフィーにより分析 したところ、どちらの分析手段によっても 4一(トリフルォロメチル)ケィ皮酸アミドの純度 は 99. 9%であった(単離収率 87. 6%) 0結果を表 1に示す。
[表 1]
Figure imgf000022_0001
*実施例 7 は塩素化後減圧脱気を行わずに、 溶液に対して窒素を流通し、 2 6 時間 後にアンモニアを加えた。 このように 4_ (トリフルォロメチル)ケィ皮酸アミドの製造について、第 2工程と第 3工程 の間に、減圧脱気操作もしくは、窒素流通を行った場合 (実施例 4, 6, 7)、収率に顕 著な向上が認められ、かつ白色の良好な結晶が製造できることがわかる。

Claims

請求の範囲
式 [1]で表される(トリフルォロメチル)ベンズアルデヒド類
[化 6]
Figure imgf000023_0001
に無水酢酸と金属酢酸塩とを混合して反応させ、式 [2]で表される(トリフルォロメチ ル)ケィ皮酸
[化 7]
Figure imgf000023_0002
を得、次い ォロメチル)ケィ皮酸を塩素化剤と反応させ、式 [3]で表される (トリフルォ 皮酸クロリド
[化 8]
Figure imgf000023_0003
を得、次いで、(トリフルォロメチル)ケィ皮酸クロリドをアンモニアと反応させることを特 徴とする、式 [4]で表される(トリフルォロメチル)ケィ皮酸アミド
[化 9]
Figure imgf000024_0001
の製造方法。
(式 [1]一 [4]中、 nは 1または 2を表す。 Lは各々独立して、ハロゲン基、ニトロ基、シ ァノ基、アルキル基、アルコキシ基、アルコキシカルボニル基(これらのアルキル基、 アルコキシ基、アルコキシカルボニル基は、炭素数が 1一 20であり、炭素鎖に分岐を 有してもよぐ炭素どうしの結合の一部が二重結合になっていてもよい)、またはこれら 前記の基が環上に置換基として結合していてもよいァリール基を表す。 nが 1のとき p は 0 4の整数であり、 nが 2のとき pは 0 3の整数である。 )
[2] (トリフルォロメチル)ベンズアルデヒドが 3_ (トリフルォロメチル)ベンズアルデヒドであ ることを特徴とする、請求項 1に記載の、 3—(トリフルォロメチル)ケィ皮酸アミドの製造 方法。
[3] (トリフルォロメチル)ベンズアルデヒド力 (トリフルォロメチル)ベンズアルデヒドであ ることを特徴とする、請求項 1に記載の、 4一(トリフルォロメチル)ケィ皮酸アミドの製造 方法。
[4] 請求項 1乃至請求項 3の何れかにおいて、(トリフルォロメチル)ベンズアルデヒド類に 無水酢酸と金属酢酸塩を反応させ、(トリフルォロメチル)ケィ皮酸を得る反応を、キシ レン中で行うことを特徴とする、請求項 1乃至請求項 3の何れかに記載の(トリフルォ ロメチル)ケィ皮酸アミドの製造方法。
[5] 式 [1]で表される(トリフルォロメチル)ベンズアルデヒド類
[化 10]
Figure imgf000024_0002
に無水酢酸と金属酢酸塩とを混合して反応させ、式 [2]で表される(トリフルォロメチ ル)ケィ皮酸
[化 11]
Figure imgf000025_0001
を得 (第 1工程)、次いで(トリフルォロメチル)ケィ皮酸を塩素化剤と反応させ、式 [3] で表される(トリフルォロメチル)ケィ皮酸クロリド
[化 12]
Figure imgf000025_0002
を得(第 2工程)、次いで、 (トリフルォロメチル)ケィ皮酸クロリドをアンモニアと反応さ せ、式 [4]で表される(トリフルォロメチル)ケィ皮酸アミド
[化 13]
Figure imgf000025_0003
を得る(第 3工程)方法において、第 2工程で得られた反応混合物を減圧脱気操作( エバポレーシヨン)に付するか、該反応混合物に乾燥した不活性ガスを流通した後で 、第 3工程を行うことを特徴とする、式 [4]で表される(トリフルォロメチル)ケィ皮酸アミ ドの製造方法。
(式 [1]一 [4]中、 nは 1または 2を表す。 Lは各々独立して、ハロゲン基、ニトロ基、シ ァノ基、アルキル基、アルコキシ基、アルコキシカルボニル基(これらのアルキル基、 アルコキシ基、アルコキシカルボニル基は、炭素数が 1一 20であり、炭素鎖に分岐を 有してもよぐ炭素どうしの結合の一部が二重結合になっていてもよい)、またはこれら 前記の基が環上に置換基として結合していてもよいァリール基を表す。 nが 1のとき p は 0 4の整数であり、 nが 2のとき pは 0 3の整数である。 )
[6] 請求項 5において、第 2工程の反応を溶媒の存在下で行い、かつ第 2工程で得られ た反応混合物を減圧脱気操作 (エバポレーシヨン)に付す際に、反応混合物から (A + 0. l X B) [g]以上、(A + 0. 7 X B) [g]以下の溶媒を留去することを特徴とする、 請求項 5に記載の(トリフルォロメチル)ケィ皮酸アミドの製造方法。
(ここで A (g)は、第 2工程における塩素化剤の「過剰投入量」であり、 B (g)は第 2ェ 程で使用した溶媒を表す。 )
[7] 請求項 5または請求項 6において、(トリフルォロメチル)ベンズアルデヒドが 3—(トリフ ルォロメチル)ベンズアルデヒドであることを特徴とする、請求項 5または請求項 6に記 載の(トリフルォロメチル)ケィ皮酸アミドの製造方法。
[8] 請求項 5または請求項 6において、(トリフルォロメチル)ベンズアルデヒドが 4一(トリフ ルォロメチル)ベンズアルデヒドであることを特徴とする、請求項 5または請求項 6に記 載の(トリフルォロメチル)ケィ皮酸アミドの製造方法。
[9] 請求項 5乃至請求項 8の何れかにおいて、(トリフルォロメチル)ケィ皮アミド 1モルに 対して 2· 5— 10モルのアンモニアを添加することによって第 3工程を行うことを特徴と する、請求項 5乃至請求項 8の何れかに記載の(トリフルォロメチル)ケィ皮酸アミドの 製造方法。
PCT/JP2004/007348 2003-05-30 2004-05-28 (トリフルオロメチル)ケイ皮酸アミドの製造方法 WO2004106282A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003154348 2003-05-30
JP2003-154348 2003-05-30

Publications (1)

Publication Number Publication Date
WO2004106282A1 true WO2004106282A1 (ja) 2004-12-09

Family

ID=33487321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007348 WO2004106282A1 (ja) 2003-05-30 2004-05-28 (トリフルオロメチル)ケイ皮酸アミドの製造方法

Country Status (1)

Country Link
WO (1) WO2004106282A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849358A (ja) * 1981-09-18 1983-03-23 Torii Yakuhin Kk アミジン誘導体および抗補体剤
JP2003267913A (ja) * 2002-01-08 2003-09-25 Central Glass Co Ltd (トリフルオロメチル)ケイ皮酸類の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849358A (ja) * 1981-09-18 1983-03-23 Torii Yakuhin Kk アミジン誘導体および抗補体剤
JP2003267913A (ja) * 2002-01-08 2003-09-25 Central Glass Co Ltd (トリフルオロメチル)ケイ皮酸類の製造方法

Similar Documents

Publication Publication Date Title
WO2006016510A1 (ja) 2-アミノ-5-ヨード安息香酸の製造方法
RU2343142C2 (ru) Способ получения пентафторфенола
WO2004106282A1 (ja) (トリフルオロメチル)ケイ皮酸アミドの製造方法
JP4913962B2 (ja) フェニルエチニルフタル酸無水物誘導体の製造方法
JP3918883B2 (ja) ベンゾイルクロライド類の製造方法
JP4619602B2 (ja) ジフェニルエーテル化合物の製造方法
JP2005015471A (ja) (トリフルオロメチル)ケイ皮酸アミドの製造方法
WO2003093212A1 (fr) Derive de (fluoroalkyl)benzene de haute purete et procede de production de celui-ci
JP2652030B2 (ja) 2,4,5−トリフルオロ安息香酸の製造方法
JP3963607B2 (ja) トリフルオロメタンスルホニルクロリドの製造方法
JP2002255954A (ja) 2−n−ブチル−5−ニトロベンゾフランの製造方法
JP2652563B2 (ja) 芳香族ニトリル類の製造方法
JPH021432A (ja) 2,2‐ビス(4‐アミノフェニル)ヘキサフルオロプロパンの製造法
JP2859791B2 (ja) 4−ブロモメチルビフェニル化合物の製造法
WO2005014531A1 (ja) N-メタクリロイル-4-シアノ-3-トリフルオロメチルアニリンの製造方法、該化合物の安定化方法およびビカルタミドの製造方法
JP4383604B2 (ja) 芳香族シアノ安息香酸化合物の製造方法
JP4493805B2 (ja) 高純度安息香酸誘導体の製造方法
JP3555158B2 (ja) 3,4,5,6−テトラフルオロ無水フタル酸の製造方法
JP2003267913A (ja) (トリフルオロメチル)ケイ皮酸類の製造方法
JP3573245B2 (ja) 2,4,5−トリフルオロ−3−トリフルオロメチル安息香酸エステル類の製造方法
JP3543585B2 (ja) 2,2’,5,5’,6,6’−ヘキサフルオロビフェニル−3,3’,4,4’−テトラカルボン酸前駆体の製造方法
JP4172072B2 (ja) シアノ安息香酸の製造方法
JPS6363636A (ja) フマル酸クロライドの製造方法
JP4536224B2 (ja) 高純度安息香酸誘導体の製造方法
JP4435447B2 (ja) メトキシメチルトリアリールホスホニウムクロライドの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase