WO2004102597A2 - 電極用複合粒子及びその製造方法、電極及びその製造方法、並びに電気化学素子及びその製造方法 - Google Patents

電極用複合粒子及びその製造方法、電極及びその製造方法、並びに電気化学素子及びその製造方法 Download PDF

Info

Publication number
WO2004102597A2
WO2004102597A2 PCT/JP2004/006879 JP2004006879W WO2004102597A2 WO 2004102597 A2 WO2004102597 A2 WO 2004102597A2 JP 2004006879 W JP2004006879 W JP 2004006879W WO 2004102597 A2 WO2004102597 A2 WO 2004102597A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
particles
binder
electrode active
Prior art date
Application number
PCT/JP2004/006879
Other languages
English (en)
French (fr)
Other versions
WO2004102597A3 (ja
Inventor
Tadashi Suzuki
Masato Kurihara
Satoshi Maruyama
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003136270A external-priority patent/JP4204380B2/ja
Priority claimed from JP2003270720A external-priority patent/JP4204407B2/ja
Priority claimed from JP2003307733A external-priority patent/JP4204419B2/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/556,567 priority Critical patent/US20070003836A1/en
Publication of WO2004102597A2 publication Critical patent/WO2004102597A2/ja
Publication of WO2004102597A3 publication Critical patent/WO2004102597A3/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode usable for an electrochemical element such as a primary battery, a secondary battery (particularly, a lithium ion secondary battery), an electrolytic cell, and a capacitor (particularly, an electrochemical capacitor).
  • the present invention relates to a composite particle for an electrode which is a constituent material of the present invention and a method for producing the same.
  • the present invention relates to an electrode using the composite particles for an electrode as a constituent material, a method for producing the same, an electrochemical device provided with the electrode, and a method for producing the same.
  • Such a high-energy battery mainly includes a power source, an anode, and an electrolyte layer (for example, a layer made of a liquid electrolyte or a solid electrolyte) disposed between the power source and the anode.
  • an electrolyte layer for example, a layer made of a liquid electrolyte or a solid electrolyte
  • electrochemical devices such as high-energy batteries such as lithium ion secondary batteries and electrochemical capacitors such as electric double-layer capacitors are installed in electrochemical devices such as portable devices.
  • Various R & D activities are under way to further improve the characteristics of the equipment to be developed in order to respond to future developments. In particular, it is desired to further increase the power density, and even if the load demand from the equipment suddenly fluctuates greatly, an excellent charge that can sufficiently follow this demand.
  • Realized electrochemical device with discharge characteristics It is desired to do.
  • the above-mentioned force source and / or anode contains each electrode active material, a binder (synthetic resin or the like), a conductive auxiliary, a dispersion medium and / or a solvent.
  • a coating solution for electrode formation for example, slurry or paste
  • an active material-containing layer On the surface of the current collector. It is manufactured (for example, see Japanese Patent Publication No. 11-2833615).
  • the conductive additive may not be added to the coating solution in some cases.
  • a kneaded material containing an electrode active material, a binder, and a conductive additive was prepared without using a dispersion medium and a solvent in place of the coating solution, and the kneaded material was heated with a hot roll press and / or Alternatively, it may be formed into a sheet by using a hot press machine.
  • a conductive polymer may be further added to the coating liquid to form a so-called “polymer electrode”.
  • a method of applying a coating solution to the surface of the electrolyte layer may be adopted.
  • composite particles composed of manganese dioxide (active material of force source) particles and carbon material powder (conductive additive) immobilized on the surface of the manganese dioxide particles are used.
  • a positive electrode for a rechargeable lithium battery and a method for manufacturing the same have been proposed, which is intended to further improve the battery characteristics by preventing the decrease in the charge / discharge capacity of the battery caused by the cathode by using it as a source electrode material. (See, for example, Japanese Patent Application Laid-Open No. 2-262322).
  • a solid content of 20 to 50% by weight comprising a positive electrode active material (active material of a force source), a conductive agent (conductive auxiliary agent), a binder and a solvent.
  • the internal resistance (impedance) of the entire active material containing layer can be reduced by reducing the thickness of the active material containing layer of the electrode. It is possible that the above intentions can be achieved. However, in this case, the content of the active material becomes insufficient, and the battery capacity and the energy density of the battery cannot be sufficiently secured. Since the current collector and the separator do not contribute to the battery capacity, the battery capacity cannot be sufficiently secured from this viewpoint.
  • the composite particles described in Japanese Patent Application Laid-Open No. H2-262643 have low mechanical strength and carbon immobilized on the surface of manganese dioxide particles during electrode formation. Since the material powder is easy to peel off, the dispersibility of the carbon material powder in the obtained electrode is likely to be insufficient, and the expected electrode characteristics are improved. The present inventors have found that it has not been possible to achieve this.
  • a slurry comprising a solvent is spray-dried in hot air.
  • it is manufactured as a lump (composite particle) composed of the positive electrode active material, the conductive agent, and the binder.
  • the positive electrode active material, the conductive agent, and the binder are dispersed and dispersed in the solvent, the drying and the solidification proceed.
  • the conductive agent and the binder do not adhere to the surface of the particles composed of the respective positive electrode active materials constituting the lump (composite particles) in a state in which the conductive agent and the binder respectively maintain an effective conductive network and are sufficiently dispersed.
  • the present inventors have found that further improvement in battery output has not been reliably and sufficiently achieved.
  • the particles composed of the respective positive electrode active materials are surrounded only by the aggregate P33 composed of a large binder, and are electrically isolated in the mass (composite particles) P100.
  • the present inventors have found that there are many P11 that are not used.
  • the particles made of the conductive agent become aggregates during drying, the particles made of the conductive agent are unevenly distributed as aggregates P22 in the obtained lump (composite particles) P100.
  • the present inventors have found that a sufficient electron conduction path (electron conduction network) cannot be constructed in the lump (composite particle) P100, and sufficient electron conductivity cannot be obtained.
  • the aggregate P22 of particles made of a conductive agent may be electrically isolated by being surrounded only by the aggregate P33 made of a large binder.
  • Sufficient electron conduction path in P 100 Electrode conduction network The present inventors have found that h) cannot be constructed, and sufficient electron conductivity cannot be obtained.
  • conventional electrodes including the composite particles described in the above-mentioned Japanese Patent Application Laid-Open Nos. Hei 2-26224 and JP-A-2000-504504 are disclosed.
  • a binder binder having low insulating or electronic conductivity is used together with the electrode active material and the conductive auxiliary agent. It was not possible to secure sufficient electronic conductivity.
  • binding is performed. The present inventors have found that the use of an agent causes the above problem.
  • Electrolytic cells having electrodes manufactured by a method using a slurry containing the same and capacitors also had the same problems as described above.
  • the present invention has been made in view of the above-mentioned problems of the related art, and has excellent electrode characteristics even when a binder is used as a constituent material of the electrode. Form easily and reliably It is an object of the present invention to provide a composite particle for an electrode that can be used.
  • the present invention includes a composite particle for an electrode as a constituent material, the internal resistance is sufficiently reduced, and the excellent electrode characteristics capable of easily increasing the output density of the electrochemical element sufficiently. And an electrochemical device provided with the electrode and having excellent charge / discharge characteristics that can sufficiently follow a sudden and large load demand. With the goal.
  • Still another object of the present invention is to provide a manufacturing method capable of easily and reliably obtaining the above-described composite particles for an electrode, an electrode, and an electrochemical device.
  • the present inventors have conducted intensive studies to achieve the above object.
  • the electrode active material, the conductive additive Since a method using a coating solution or a kneaded material containing at least a binder is employed, the dispersion state of the electrode active material, the conductive auxiliary agent, and the binder in the active material-containing layer of the obtained electrode becomes non-uniform. Has had a significant effect on the occurrence of the above-mentioned problems.
  • the active material is formed by applying a coating solution or a kneaded material to the surface of a current collector to form a coating film composed of the coating solution or the kneaded material on the surface, drying the coating film and removing a solvent. A containing layer is formed.
  • the present inventors have found that in the process of drying the coating film, the conductive auxiliary agent and the binder having a low specific gravity float up to near the surface of the coating film.
  • the dispersed state of the electrode active material, the conductive auxiliary agent and the binder in the coating film does not form an effective conductive network, for example, the dispersed state becomes non-uniform.
  • sufficient adhesion between the three members of the electrode active material, the conductive auxiliary agent, and the binder was not obtained, and a good electron conduction path was not formed in the obtained active material-containing layer. It was found that the specific resistance and the charge transfer overvoltage were not sufficiently reduced.
  • conventional slurries including the composite particles described in Japanese Patent Application Laid-Open No. 2000-504504 are granulated by a spray drying method (spray dry ing).
  • the positive electrode active material active material of the power source
  • the conductive agent conductive auxiliary agent
  • the binder are contained in the same slurry.
  • the dispersion state of the electrode active material, the conductive auxiliary agent and the binder in the composite particles depends on the dispersion state of the electrode active material, the conductive auxiliary agent and the binder in the slurry (particularly, the drying of the slurry droplets).
  • the present inventors contact the conductive auxiliary agent and the binder with the electrolytic solution and selectively and satisfactorily disperse them on the surface of the electrode active material that can participate in the electrode reaction.
  • the present inventors have proposed a conventional technology including the composite particles disclosed in Japanese Patent Application Laid-Open Nos. Hei 2-262324 and 2000-504504.
  • the dispersion state of the electrode active material, the conductive auxiliary agent, and the binder in the coating film becomes non-uniform, so that the adhesion of the electrode active material and the conductive auxiliary agent to the current collector is not sufficiently obtained. Also found. In particular, the dispersed state of the electrode active material, the conductive auxiliary agent and the binder in the coating film and the electrode obtained therefrom becomes non-uniform, and these components are unevenly distributed in the electrode. It becomes remarkable when the value is increased.
  • the inventors of the present invention have recognized that although a binder is used, the internal resistance of an electrode tends to increase, despite the general perception of those skilled in the art.
  • the present inventors have found the following, and have reached the present invention. That is, the present inventors previously formed particles containing an electrode active material, a conductive auxiliary agent, and a binder through the following granulation step, and formed an active material-containing layer of an electrode using the particles as a constituent material.
  • the active material-containing layer whose specific resistance (or the internal resistance when normalized by apparent deposition) is sufficiently lower than the value of the electrode active material itself. Have been found, and the present invention has been achieved.
  • the present invention includes: an electrode active material; a conductive auxiliary having electron conductivity; and a binder capable of binding the electrode active material and the conductive auxiliary.
  • Composite particles for an electrode
  • the granulation process is
  • a raw material liquid preparation method for preparing a raw material liquid containing a binder, a conductive aid, and a solvent is provided.
  • a fluidized bed process in which particles made of the electrode active material are put into a fluidized tank and the particles made of the electrode active material are fluidized
  • the raw material liquid By spraying the raw material liquid into the fluidized bed containing the particles composed of the electrode active material, the raw material liquid is adhered to the particles composed of the electrode active material and dried. Removing the solvent.
  • the present invention provides a composite particle for an electrode, characterized in that:
  • the “electrode active material” as a constituent material of the composite particles for an electrode indicates the following materials depending on the electrode to be formed. That is, when the electrode to be formed is an electrode used as an anode of a primary battery, the “electrode active material” indicates a reducing agent, and when the electrode to be formed is a power source of a primary battery, the “electrode active material” Indicates an oxidizing agent.
  • the “particles made of an electrode active material” may contain substances other than the electrode active material to such an extent that the function of the present invention (function of the electrode active material) is not impaired.
  • the “electrode active material” is a reducing agent, and its reduced and oxidized materials
  • the electrode to be formed is a power source (during discharge) used in a secondary battery
  • the “electrode active material” is an oxidizing agent, and in either the reduced or oxidized state.
  • it refers to a substance capable of reversibly proceeding a reduction reaction from an oxidized product to a reduced product and an oxidation reaction from a reduced product to an oxidized product.
  • the “electrode active material” occludes metal ions involved in the electrode reaction.
  • the material may be capable of being released (interrate rate or doping * undoping).
  • the material include a carbon material used for an anode and a Z or a power source of a lithium ion secondary battery, a metal oxide (including a composite metal oxide), and the like.
  • the anode electrode active material is referred to as “anode active material”
  • the force electrode electrode active material is referred to as “force source active material”.
  • the “anode” in the case of “anode active material” is based on the polarity at the time of battery discharge (negative electrode active material)
  • the “anode” in the case of “force sword active material” Is based on the polarity of the battery during discharge (positive electrode active material).
  • positive electrode active material positive electrode active material
  • the “electrode active material” has an electron conductivity. Indicates metal (including metal alloy), metal oxide or carbon material.
  • the composite particles for an electrode of the present invention are particles in which the conductive auxiliary agent, the electrode active material, and the binder are closely adhered to each other in a very good dispersion state.
  • the composite particles for an electrode of the present invention are characterized in that in the granulation step, the temperature in the fluidized vessel, the amount of the raw material liquid sprayed into the fluidized vessel, The particle size can be adjusted by adjusting the amount, the speed of the airflow generated in the fluidized tank, and the style of the airflow (circulation) (laminar flow, turbulence, etc.). Then, the composite particles for an electrode are used as a constituent material of a coating solution or a kneaded product when producing an electrode.
  • the flow method is not particularly limited.
  • a fluidized tank in which particles are caused to flow by generating an airflow and the particles are flown a fluidized tank in which particles are rotated and flown by a stirring blade, and a fluidized tank in which particles are caused to flow by vibration.
  • an air flow is generated in a fluidized tank, and the electrode activity is generated in the air flow. It is preferable that the particles made of a substance are charged and the particles made of the electrode active material are fluidized.
  • An extremely good electron conduction path (electron conduction network) is three-dimensionally constructed inside the composite particles for electrodes.
  • the structure of the electron conduction path is such that the preparation conditions can be adjusted even after preparing a coating solution or a kneaded material containing the particles (for example, coating).
  • the initial state can be easily maintained by selecting a dispersion medium or a solvent when preparing the liquid.
  • a liquid film made of a coating solution or a kneaded material containing the composite particles for an electrode is formed on the surface of the current collecting member, and then a process of solidifying the liquid film (for example, drying the liquid film) ), The adhesion between the conductive agent, the electrode active material, and the binder, and the decrease in the adhesion between the conductive agent and the electrode active material to the surface of the current collecting member are reduced. It can be sufficiently prevented.
  • the present inventors have found that an extremely good electron conduction path (electron conduction network) in the active material containing layer of the electrode obtained in the present invention as compared with the conventional electrode. I guess it is constructed in three dimensions.
  • the electrode composite particles of the present invention by using the electrode composite particles of the present invention, it is possible to obtain better electrode characteristics than before. That is, the energy density per capacity of an electrochemical element such as a battery can be easily and surely improved as compared with the related art. Furthermore, even when the active material containing layer of the electrode is relatively thin (for example, when the thickness is 100 ⁇ m or less), the composite particles for an electrode of the present invention having excellent electron conductivity should be used. Thus, an electrode having a low internal resistance can be formed, so that an electrochemical element provided with this electrode has a relatively high current density (for example, when the thickness of the active material-containing layer is 1 OO / zm) as compared with the conventional one. In addition, quick and reproducible charge / discharge (only when the electrochemical element is a primary battery) is possible with SmAZ cm 2 or more.
  • a conductive polymer having ion conductivity is added as a component other than the composite particles for electrodes, or (C) the ion conductivity is reduced.
  • the conductive polymer is added to the composite material for the electrode and as a component of the electrode-forming coating liquid or the electrode-forming kneaded material, by either of these methods. Also, an extremely good ion conduction path can be easily constructed in the active material containing layer of the electrode.
  • the conductive polymer having ionic conductivity When a conductive polymer having ionic conductivity can be used as a binder to be a constituent material of the composite particles for an electrode, the conductive polymer having ionic conductivity may be used. May be used. It is considered that the binder having ion conductivity also contributes to the construction of the ion conduction path in the active material containing layer.
  • the polymer electrode described above By using the composite particles for an electrode, the polymer electrode described above can be formed.
  • a polymer electrolyte having electron conductivity may be used as a binder that is a constituent material of the composite particles for an electrode.
  • An electrode formed by using the composite particles for an electrode of the present invention is composed of a conductive agent, an electrode active material, and an electrolyte (a solid electrolyte or a liquid electrolyte) which serve as a reaction field of a charge transfer reaction that proceeds in the active material-containing layer.
  • the contact interface is formed three-dimensionally and with a sufficient size, and the electrical contact between the active material-containing layer and the current collecting member is in an extremely good state.
  • the dispersed particles of the conductive auxiliary agent, the electrode active material, and the binder are excellent in the dispersion state of the electrode. Since the conductive layer is formed in advance, the amounts of the conductive auxiliary agent and the binder can be sufficiently reduced as compared with the conventional case.
  • the conductive polymer when a conductive polymer is used, the conductive polymer is the same as the conductive polymer that is a component of the composite particles for an electrode described above. May also be heterogeneous.
  • the electrode active material may be an active material usable for a cathode of a primary battery or a secondary battery. Further, in the present invention, the electrode active material may be an active material usable for an anode of a primary battery or a secondary battery. Further, in the present invention, the electrode active material may be a carbon material or a metal oxide having electron conductivity that can be used for an electrode constituting an electrolysis cell or a capacitor.
  • the electrolysis cell or the capacitor includes at least a first electrode (anode), a second electrode (force source), and an electrolyte layer having ion conductivity.
  • FIG. 1 shows an electrochemical cell having a configuration in which a first electrode (anode) and a second electrode (force source) are opposed to each other via an electrolyte layer.
  • capacitor is synonymous with “capacitor”.
  • An electrochemical device capable of obtaining excellent charge / discharge characteristics by providing an electrode including the composite particles for an electrode as at least one of, and preferably both of the anode and the cathode. Can be configured easily and reliably.
  • the present invention also provides an electrode active material, a conductive auxiliary having electron conductivity, a binder capable of binding the electrode active material and the conductive auxiliary, A conductive active material-containing layer containing composite particles containing
  • the composite particles are formed through a granulation process in which a conductive auxiliary agent and a binder are brought into close contact with the particles made of the electrode active material and integrated therewith.
  • the agent is electrically isolated without being isolated,
  • An electrode is provided.
  • the electrode of the present invention has a sufficiently reduced specific resistance and charge transfer overvoltage of the active material-containing layer as compared with the conventional electrode, it is necessary to sufficiently increase the output density of the electrochemical device. Can be easily and reliably performed.
  • the composite particles used in the electrode of the present invention are particles in which a conductive auxiliary agent, an electrode active material, and a binder are adhered to each other in a very good dispersion state.
  • the composite particles are used as a main component of the powder when the active material-containing layer of the electrode is manufactured by a dry method described later, or the active material-containing layer of the electrode is formed by a wet method described later. It is used as a constituent material of a coating liquid or a kneaded material in the production of the compound.
  • an extremely good electron conduction path (electron conduction network) is three-dimensionally constructed.
  • the structure of the electron-conducting path is determined after the active material-containing layer is formed by heat treatment. Can maintain almost the original condition. Further, when the structure of the electron conduction path is used as a constituent material of a coating solution or a kneaded material when the active material-containing layer of the electrode is manufactured by a wet method described later, a coating solution containing the composite particles or a kneading material is used. Adjusting the preparation conditions even after preparing the product (For example, selection of a dispersion medium or a solvent at the time of preparing a coating liquid, etc.) makes it possible to easily maintain an almost initial state.
  • the electrode active material and the conductive auxiliary agent are not isolated in the active material-containing layer. Electrically coupled to For this reason, very good electron conduction paths (electron conduction networks) are three-dimensionally constructed in the active material-containing layer.
  • “the electrode active material and the conductive auxiliary agent are electrically coupled without being isolated in the active material-containing layer” means that the particles (or the electrode active material) in the active material-containing layer are made of the electrode active material. This indicates that the agglomerate) and the particles (or the agglomerate) made of the conductive additive are electrically connected without being “substantially” isolated.
  • the particles of the electrode active material (or agglomerates thereof) and the particles of the conductive additive are not completely isolated and electrically connected, but the effect of the present invention is obtained. c indicating that electrically bond well within the range that can achieve the electrical resistance levels for
  • the state of "the active material-containing layer and the electrode active material and the conductive assistant are electrically isolated without being isolated” is the active material-containing layer of the electrode of the present invention.
  • SEM Sccanning Electron Microscope: Transmission Electron Microscope
  • TEM Transmission Electron Microscope
  • EDX Energy
  • the electrode of the present invention compares the SEM photograph, the TEM photograph and the EDX analysis data of the cross section of the active material containing layer with the SEM photograph, the TEM photograph and the EDX analysis data of the conventional electrode. Thus, it can be clearly distinguished from conventional electrodes.
  • the granulation step includes a raw material liquid preparation step of preparing a raw material liquid containing a binder, a conductive auxiliary agent, and a solvent,
  • a fluidized bed process in which particles made of the electrode active material are put into a fluidized tank and the particles made of the electrode active material are fluidized
  • the raw material liquid By spraying the raw material liquid into the fluidized bed containing the particles composed of the electrode active material, the raw material liquid is adhered to the particles composed of the electrode active material and dried. Removing the solvent.
  • the granulation step having the above-described configuration it is possible to more reliably form the above-described composite particles, and to further surely obtain the effects of the present invention.
  • the fine particles of the raw material liquid containing the conductive auxiliary agent and the binder are directly sprayed on the particles made of the electrode active material in the fluidized tank.
  • the progress of agglomeration of the constituent particles constituting the composite particles can be sufficiently prevented, and as a result, the uneven distribution of the constituent particles in the obtained composite particles can be sufficiently prevented.
  • the conductive auxiliary agent and the binder can be brought into contact with the electrolytic solution, and can be selectively and satisfactorily dispersed on the surface of the electrode active material that can participate in the electrode reaction.
  • the composite particles are particles in which the conductive auxiliary agent, the electrode active material, and the binder are adhered to each other in an extremely good dispersion state. Further, in the granulation process, the composite particles are generated in the fluidized vessel at a temperature in the fluidized vessel, a spray of the raw material liquid sprayed into the fluidized vessel, The particle size can be adjusted by adjusting the amount of the electrode active material to be charged into the flowing air flow, the speed of the air flow generated in the fluidized vessel, the flow (circulation) style (laminar flow, turbulence, etc.) of the flow. Can be adjusted.
  • An extremely good electron conduction path (electron conduction network) is formed inside the composite particles formed by the granulation step having this configuration.
  • the structure of the electron conduction path is such that when the active material containing layer of the electrode is used as a main component of the powder when the layer is manufactured by a dry method described later, the active material containing layer is heated. Even after the formation of the layer, almost the initial state can be maintained.
  • the structure of the electron conducting path is such that when the active material-containing layer of the electrode is used as a constituent material of a coating solution or a kneaded material when the layer is manufactured by a wet method described later, a coating solution containing the composite particles or a kneading material is used. Even after the preparation of the product, it is possible to easily maintain almost the initial state by adjusting the preparation conditions (for example, selecting a dispersion medium or a solvent when preparing the coating solution).
  • the active material-containing layer of the electrode is manufactured by a wet method described below, a liquid film made of a coating solution or a kneaded material containing composite particles is formed on the current collector surface. Then, in the process of solidifying the liquid film (for example, in the process of drying the liquid film, etc.), the adhesion between the conventional conductive auxiliary agent, the electrode active material, and the binder is reduced, and Sufficiently reduce the adhesion of the conductive auxiliary agent and electrode active material to the surface of the Can be prevented.
  • an extremely good electron conduction path (electron conduction network) is three-dimensionally constructed as compared with the conventional electrode.
  • the present inventors speculate that the specific resistance and the charge transfer overvoltage of the active material-containing layer can be drastically reduced.
  • the active material-containing layer of the electrode is relatively thin (for example, when the thickness is 100 m or less), the composite particles having excellent electron conductivity should be used. Therefore, an electrode having a low internal resistance (impedance) can be formed. Therefore, an electrochemical element provided with this electrode has a relatively high current density (for example, a thickness of the active material-containing layer of 10 Om In this case, rapid and reproducible charge / discharge (only when the electrochemical element is a primary battery) with SmAZ cm 2 or more is possible, and high output can be easily achieved. Can be.
  • the thickness T of the active material-containing layer and the average particle diameter d of the composite particles contained in the active material-containing layer are determined.
  • Equations (1) to (3) When the conditions of Equations (1) to (3) are not satisfied at the same time, the following tendency becomes large. That is, when (T / d) in the formula (1) is less than 0.0005, a layer composed of composite particles dispersed (arranged) on a current collector to form an active material-containing layer. Pressure when rolling As the force increases, it tends to be difficult to maintain the good electron conduction network in the composite particles described above.
  • T in the formula (2) when T in the formula (2) is less than 1 ⁇ m, the mechanical strength of the active material-containing layer becomes insufficient, and the tendency that sufficient handling properties cannot be obtained increases. . If T in equation (2) exceeds 150 / xm, the distance between the upper portion of the active material-containing layer (the portion near the surface opposite to the surface in contact with the current collector) and the current collector increases. However, the longer the charge transfer path is, the more likely it is that sufficient output characteristics cannot be obtained.
  • the particles serving as nuclei (such as particles made of an electrode active material) in the production of the composite particles are too small to be sufficiently composited.
  • the tendency to not be able to perform is increased.
  • the tendency is that it becomes difficult for core particles to aggregate in the fluidized tank to form a stable fluidized bed.
  • d in the formula (3) exceeds 2 mm, large particles must be used as core particles in producing composite particles. In this case, since the ion diffusion rate of the particles having a large particle diameter is high, the tendency that sufficient output characteristics cannot be obtained increases.
  • the electrode of the present invention is characterized in that the active material-containing layer has a conductive property. It may be characterized by further containing a conductive polymer, whereby the polymer electrode described above can be formed.
  • the conductive polymer may be characterized in that it is a conductive polymer having ion conductivity, and the conductive polymer is a conductive polymer having electron conductivity. It may be a feature. Further, as the conductive polymer, a conductive polymer having ionic conductivity and a conductive polymer having electron conductivity may be used in combination.
  • an electrode having better electron conductivity and ion conductivity than conventional electrodes can be formed easily and reliably.
  • composite particles are used as the main component of the powder when the active material-containing layer of the electrode is manufactured by a dry method described below, such conductive high molecules other than the composite particles are contained in the powder. By being added as a component of the above, it can be contained in the active material-containing layer.
  • such a conductive polymer contains an active material by adding the conductive polymer as a component other than the composite particles. It can be contained in a layer.
  • a conductive polymer may be further added as a constituent material when forming the composite particles. That is, the composite particles may be further characterized by further containing a conductive polymer.
  • the conductive polymer may be a conductive polymer having ionic conductivity
  • the conductive polymer may be a conductive polymer having electronic conductivity. May be featured.
  • a conductive polymer having ionic conductivity and a conductive polymer having electronic conductivity may be used in combination as the conductive polymer.
  • an extremely good ion conduction path and / or An electron conduction path can be easily constructed.
  • Such a conductive polymer can be contained in the composite particles by further adding as a constituent material when forming the composite particles.
  • the conductive polymer having ion conductivity when a conductive polymer can be used as a binder as a constituent material of the composite particles, the conductive polymer having ion conductivity May be used. That is, the present invention may be characterized in that the binder is made of a conductive polymer. It is considered that the binder having ion conductivity contributes to the construction of the ion conduction path in the active material containing layer, and the binder having electron conductivity contributes to the construction of the electron conduction path in the active material containing layer.
  • the conductive polymer is a constituent material of the composite particles, a constituent component of a powder for forming an electrode (dry method), a constituent component of a coating solution for forming an electrode (wet method), Also, it may be added to any of the constituents of the kneaded material for electrode formation (wet method). Also in this case, an extremely good ion conduction path can be easily constructed in the active material containing layer of the electrode.
  • the electrodes formed using the composite particles are composed of a conductive auxiliary, an electrode active material, and an electrolyte (solid electrolyte or liquid electrolyte) that serve as reaction sites for an electron transfer reaction that proceeds in the active material-containing layer.
  • the contact interface between the active material-containing layer and the current collector is in an extremely good state, and the contact interface between the active material-containing layer and the current collector is formed in a three-dimensional and sufficient size.
  • composite particles in which the conductive auxiliary agent, the electrode active material, and the binder are each in a very good dispersion state are prepared in advance. Since it is formed, the amounts of the conductive auxiliary agent and the binder can be sufficiently reduced as compared with the conventional case.
  • the conductive polymer is the same as the conductive polymer that is a component of the composite particles described above. May also be heterogeneous.
  • the electrode active material may be an active material that can be used for a power source of a primary battery or a secondary battery.
  • the electrode active material may be an active material that can be used for an anode of a primary battery or a secondary battery.
  • the electrode active material may be a carbon material or a metal oxide having electron conductivity that can be used for an electrode constituting an electrolysis cell or a capacitor.
  • the present invention includes at least an anode, a power source, and an electrolyte layer having ion conductivity, and the anode and the cathode are arranged to face each other with the electrolyte layer interposed therebetween.
  • An electrochemical device having a configuration, wherein any one of the above-described electrodes of the present invention is provided as one or both electrodes of an anode and a force source.
  • an electrochemical device Provided is an electrochemical device.
  • the "electrochemical element” has at least a first electrode (anode) and a second electrode (cathode) facing each other, These first and second electrodes 1 shows a structure having at least an electrolyte layer having ionic conductivity disposed between them.
  • the “electrolyte layer having ionic conductivity” means (i) a porous separator formed of an insulating material, in which an electrolyte solution (or a gelling agent is added to the electrolyte solution).
  • a solid electrolyte membrane (a membrane composed of a solid polymer electrolyte or a membrane containing an ion-conductive inorganic material); and (iii) an electrolyte solution.
  • a layer made of a gel electrolyte obtained by adding a gelling agent, and a layer made of an (iv) electrolyte solution are shown.
  • the first electrode and the second electrode also contain the electrolyte used for each. It may have a configuration.
  • a laminated body including a first electrode (anode), an electrolyte layer, and a second electrode (force source) is It is called "primary field" as needed.
  • the element body has a structure of five or more layers in which the electrodes and the electrolyte layers are alternately laminated, in addition to the three-layer structure, as in the above-described structures (i) to (iii). May be.
  • the electrochemical element is a module in which a plurality of unit cells are arranged in series or in parallel in one case. It may have a configuration.
  • the electrochemical device of the present invention may be characterized in that the electrolyte layer is made of a solid electrolyte.
  • the solid electrolyte may be characterized by comprising a ceramic solid electrolyte, a solid polymer electrolyte, or a gel electrolyte obtained by adding a gelling agent to a liquid electrolyte.
  • an electrochemical element whose constituent elements are all solid for example, a so-called "all-solid-state battery" can be formed. As a result, the weight, the energy density, and the safety of the electrochemical device can be more easily improved.
  • the electrolyte layer is impregnated in a separator made of an insulating porous material and a separator. And a liquid electrolyte or a solid electrolyte. Also in this case, when a solid electrolyte is used, a ceramic solid electrolyte, a solid polymer electrolyte, or a gel electrolyte obtained by adding a gelling agent to a liquid electrolyte can be used.
  • the present invention provides a method in which a conductive agent and a binder capable of binding the electrode active material and the conductive agent are adhered to particles made of the electrode active material.
  • a granulation step of forming composite particles containing the electrode active material, the conductive auxiliary agent, and the binder is provided,
  • the granulation process is
  • a fluidized bed process in which particles made of the electrode active material are put into a fluidized tank and the particles made of the electrode active material are fluidized
  • the raw material liquid By spraying the raw material liquid into the fluidized bed containing the particles composed of the electrode active material, the raw material liquid is adhered to the particles composed of the electrode active material and dried. Removing the solvent.
  • a spray drying step in which the particles made of the electrode active material and the particles made of the conductive additive are brought into close contact with a binder;
  • the composite particles for an electrode of the present invention having the above-described structure can be easily and reliably formed. Therefore, by using the composite particles for an electrode obtained by this manufacturing method, an electrode having excellent polarization characteristics can be more easily and reliably formed, and as a result, excellent charge / discharge characteristics can be obtained. It is possible to easily and surely configure an electrochemical element having the same.
  • the above-mentioned "a conductive auxiliary agent and a binder are brought into close contact with the particles made of an electrode active material, and are integrated.
  • the term “converting” means that at least a part of the surface of the particles made of the electrode active material is brought into contact with the particles made of the conductive additive and the particles made of the binder. In other words, it is sufficient that the surface of the particles made of the electrode active material is partially covered with the particles made of the conductive additive and the particles made of the binder, and it is not necessary to cover the entire surface.
  • the “binder” used in the granulation step of the method for producing composite particles for an electrode of the present invention is a binder capable of binding an electrode active material and a conductive auxiliary used together. Show.
  • the granulation step is carried out. It is preferable to adjust the temperature in the fluidized vessel to 50 ° C or higher and to a temperature that does not significantly exceed the melting point of the binder.
  • the melting point is more preferably adjusted to be lower than the melting point.
  • the melting point of the binder is, for example, about 200 ° C., although it depends on the type of the binder.
  • the airflow generated in the fluidized vessel is preferably an airflow composed of air, nitrogen gas, or an inert gas.
  • the humidity (relative humidity) in the fluidized tank is preferably set to 30% or less in the above preferable temperature range.
  • the solvent contained in the raw material liquid is capable of dissolving or dispersing the binder, and contains a conductive additive. Preferably, it is dispersible. According to this, the dispersibility of the binder, the conductive auxiliary agent, and the electrode active material in the obtained composite particles for an electrode can be further improved. From the viewpoint of further improving the dispersibility of the binder, the conductive additive and the electrode active material in the electrode composite particles, the solvent contained in the raw material liquid can dissolve the binder and disperse the conductive additive. Is more preferable.
  • the manufacturing method of the composite particles for an electrode of the present invention thereby good c be characterized in that as a binding Chakuzai using a conductive polymer, for the resulting electrode
  • the composite particles will further contain a conductive polymer.
  • the polymer electrode described above can be formed.
  • the above conductive polymer may have ionic conductivity or may have electronic conductivity.
  • the conductive polymer has ion conductivity, it is necessary to construct an extremely good ion conduction path (ion conduction network) in the active material containing layer of the electrode more easily and more reliably. Can be.
  • the conductive polymer has electron conductivity, the conductive polymer extremely A good electron conduction path (electron conduction network) can be constructed more easily and more reliably.
  • the raw material liquid may further contain a conductive polymer.
  • the obtained electrode composite particles further contain a conductive polymer.
  • the polymer electrode described above can be formed.
  • the above conductive polymer may have ionic conductivity or may have electronic conductivity. When the conductive polymer has ionic conductivity, it is easier and more reliable to establish an extremely good ion conduction path (ion conduction network) in the active material containing layer of the electrode. it can. When the conductive polymer has electronic conductivity, it is easier and more reliable to establish an extremely good electron conduction path (electron conduction network) in the active material containing layer of the electrode. it can.
  • the present invention further provides a conductive active material-containing layer containing an electrode active material, a conductive current collector disposed in electrical contact with the active material-containing layer, A method of producing an electrode having at least a conductive agent and a binder capable of binding the electrode active material and the conductive agent to particles of the electrode active material. Integrated A granulation step of forming composite particles containing the electrode active material, the conductive auxiliary agent, and the binder,
  • the granulation process is
  • a fluidized bed process in which particles made of the electrode active material are put into a fluidized tank and the particles made of the electrode active material are fluidized
  • the raw material liquid By spraying the raw material liquid into the fluidized bed containing the particles composed of the electrode active material, the raw material liquid is adhered to the particles composed of the electrode active material and dried.
  • the present invention provides a method for producing an electrode, comprising:
  • the above-mentioned composite particles to be a constituent material of the electrode of the present invention can be easily and reliably formed. Therefore, by using the composite particles obtained by this granulation process, it is possible to more easily and surely form an electrode having an electrode characteristic such as an excellent output density and an excellent polarization characteristic. An electrochemical device having characteristics can be easily and reliably configured.
  • the above-mentioned “bonding of a conductive additive to particles comprising an electrode active material” is performed.
  • the term ⁇ contact and integration of the agent '' refers to a state in which at least a part of the surface of the particle made of the electrode active material is brought into contact with the particle made of the conductive additive and the particle made of the binder. Is shown. In other words, it is sufficient that the surface of the particles composed of the electrode active material is partially covered with the particles composed of the conductive additive and the particles composed of the binder, and it is necessary to cover the entire surface. There is no.
  • the “binder” used in the granulation step of the method for producing a composite particle of the present invention is a binder capable of binding the electrode active material and the conductive additive used together. Show.
  • the granulation step includes controlling the temperature in the fluidized vessel. It is preferable to adjust the temperature to a temperature not lower than the melting point of the binder at 50 ° C or more, and to adjust the temperature in the fluidized bath to 50 ° C or higher and lower than the melting point of the binder. More preferred.
  • the melting point of the binder is a force depending on the type of the binder, for example, about 200 ° C. When the temperature in the fluidized vessel is lower than 50 ° C, the tendency of the solvent being sprayed to be insufficiently dried increases.
  • the temperature in the fluidized vessel greatly exceeds the melting point of the binder, the tendency of the binder to melt and greatly hinder the formation of particles increases. If the temperature in the fluidized tank is slightly higher than the melting point of the binder, the above-mentioned problems can be sufficiently prevented depending on the conditions. Further, if the temperature in the fluidized vessel is lower than the melting point of the binder, the above problem does not occur.
  • the composite particles are generated in the fluidized vessel in the granulation step.
  • the airflow is the sky It is preferable that the gas flow is composed of gas, nitrogen gas, or an inert gas.
  • the humidity (relative humidity) in the fluidized tank is preferably set to 30% or less in the above preferable temperature range.
  • “Inert gas” refers to a gas belonging to a rare gas.
  • the solvent contained in the raw material liquid is capable of dissolving or dispersing the binder and dispersing the conductive additive.
  • the dispersibility of the binder, the conductive auxiliary agent, and the electrode active material in the obtained composite particles can be further increased.
  • the solvent contained in the raw material solution can dissolve the binder and disperse the conductive additive. More preferably, there is.
  • the raw material liquid may further contain a conductive polymer.
  • the obtained composite particles further contain a conductive polymer.
  • the polymer electrode described above can be formed by using the composite particles.
  • the above conductive polymer may have ionic conductivity or may have electron conductivity. If the conductive polymer has ionic conductivity, an extremely good ion conduction path (ion conduction network) is more easily and more reliably established in the active material-containing layer of the electrode. be able to. When the conductive polymer has electronic conductivity, an extremely good electron conduction path (electron conduction network) is more easily and more reliably established in the active material containing layer of the electrode. be able to.
  • the method for producing an electrode of the present invention comprises the steps of: It may be characterized by using a conductive polymer.
  • the obtained composite particles further contain a conductive polymer.
  • the polymer electrode described above can be formed by using the composite particles.
  • the conductive polymer may have ion conductivity or may have electron conductivity.
  • an extremely good ion conduction path ion conduction network
  • an extremely good electron conduction path ion conduction network
  • an extremely good electron conduction path can be more easily and reliably constructed in the active material containing layer of the electrode. .
  • an electrode having excellent polarization characteristics can be easily and reliably obtained. Furthermore, by using this electrode for at least one of the anode and the power source, and preferably for both, it is possible to easily and reliably construct an electrochemical device having excellent charge / discharge characteristics.
  • the active material-containing layer forming step is a step of subjecting the powder containing at least the composite particles to a heat treatment and a pressure treatment to form a sheet. It is preferable to have a sheet forming step of obtaining at least a sheet containing the sheet, and an active material containing layer disposing step of disposing the sheet as an active material containing layer on a current collector.
  • the active material-containing layer forming step by forming the active material-containing layer by a dry method using the composite particles, the internal resistance is sufficiently reduced, and the electrochemical element Output density An electrode having excellent electrode characteristics that can be easily increased can be obtained more reliably.
  • a high-power electrode having a relatively thick active material-containing layer (for example, the active material-containing layer having a thickness of 80%), which was difficult with the conventional wet method as well as the conventional dry method. ⁇ 120 m or less) can be easily manufactured.
  • the "powder containing at least the composite particles” may be composed of only the composite particles.
  • the “powder containing at least composite particles” may further include a binder and / or a conductive auxiliary.
  • the ratio of the composite particles in the powder is preferably 80% by mass or more based on the total mass of the powder.
  • the first heating member may be a current collector. This makes it possible to omit the step of bringing the produced active material-containing layer into electrical contact with the current collector, thereby improving the working efficiency in some cases.
  • the sheeting step is preferably performed using a hot roll press.
  • the hot roll press machine has a pair of hot rolls, and the “powder containing at least composite particles” is put between the pair of hot rolls, and heated and pressed to form a sheet. It has a configuration. This makes it possible to easily and reliably form a sheet to be an active material-containing layer.
  • the active material-containing layer in the active material-containing layer forming step, may be formed by a dry method using composite particles. Even if the active material-containing layer is formed by a wet method, the effects of the present invention described above can be obtained. You.
  • the active material-containing layer forming step includes: a coating liquid preparation step of adding a composite particle to a liquid capable of dispersing or kneading the composite particle to prepare a coating liquid for forming an electrode; A step of applying a coating liquid for forming an electrode to a portion where an active material-containing layer is to be formed; and a step of forming a liquid film comprising a coating liquid for forming an electrode applied to a portion of the current collector where the active material-containing layer is to be formed. And a step of solidifying. [0107] In this case as well, the internal resistance is sufficiently reduced, and an electrode having excellent electrode characteristics capable of easily increasing the output density of the electrochemical element easily and reliably is provided.
  • the term "dispersible liquid composite particles” is preferably a liquid that does not dissolve the binder in the composite particle, in the process of forming an active material-containing layer, the composite particles
  • the composite particles may have a property of partially dissolving the binder near the surface of the composite particles.
  • the binder capable of dispersing the composite particles and the binder and the conductive auxiliary as other components of the composite particles are further added. Is also good.
  • the binder added as another component is a binder that can be dissolved in the “liquid capable of dispersing the composite particles”.
  • kneading is performed by adding the composite particles to the liquid to prepare a kneaded material for electrode formation including the composite particles.
  • Solidifying a coating film made of the kneaded material for use. May be featured.
  • the internal resistance is sufficiently reduced, and an electrode having excellent electrode characteristics capable of easily increasing the output density of the electrochemical element easily and reliably is provided.
  • the active material-containing layer of the obtained electrode is made relatively thin, so that the output of the electrochemical device can be more reliably increased.
  • the thickness T of the active material-containing layer and the average particle diameter d of the composite particles contained in the active material-containing layer are represented by the following formulas (1) to (3). It is preferable to form the active material-containing layer so as to satisfy the condition represented by
  • the present invention comprises at least an anode, a power source, and an electrolyte layer having ion conductivity, and the anode and the cathode face each other via the electrolyte layer.
  • the present invention provides a method for producing an electrochemical device, characterized by using an electrode.
  • the load is reduced. It is possible to easily and reliably obtain an electrochemical device having excellent charge / discharge characteristics that can sufficiently follow the demand even when the demand fluctuates greatly.
  • FIG. 1 is a schematic cross-sectional view showing the basic configuration of a preferred embodiment (lithium ion secondary battery) of the electrochemical device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of the basic configuration of the composite particle of the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a granulation step when manufacturing an electrode.
  • FIG. 4 is an explanatory diagram showing an example of a sheeting step when manufacturing an electrode by a dry method.
  • FIG. 5 is an explanatory diagram showing an example of a coating liquid preparation step when an electrode is manufactured by a wet method.
  • FIG. 6 is a schematic cross-sectional view schematically showing the internal structure in the active material-containing layer of the electrode of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a basic configuration of another embodiment of the electrochemical device of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing a basic configuration of still another embodiment of the electrochemical device of the present invention.
  • FIG. 9 is an explanatory diagram showing a method for measuring the internal resistance (impedance) of the composite particles for an electrode of Example 1.
  • FIG. 10 is a SEM photograph showing a cross section of the active material-containing layer of an electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention. It is.
  • FIG. 11 is a cross section of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention (the same portion as the portion shown in FIG. 9).
  • FIG. 4 is a view showing a TEM photograph of the photograph of FIG.
  • FIG. 12 is a SEM photograph showing a cross section of an active material-containing layer of an electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention. It is.
  • FIG. 13 is a cross-sectional view of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention (the same portion as the portion shown in FIG. 11).
  • FIG. 4 is a diagram showing a TEM photograph of the photograph taken in FIG.
  • FIG. 14 is a SEM photograph showing a cross section of the active material-containing layer of an electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention. It is.
  • FIG. 15 is a cross-sectional view of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention (the portion shown in FIG. FIG. 4 is a diagram showing a TEM photograph of the same part).
  • Fig. 16 is a SEM photograph showing a cross section of an active material-containing layer of an electrode (electric double layer capacitor) manufactured by a conventional manufacturing method (wet method). is there.
  • FIG. 17 shows a cross section of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the conventional manufacturing method (wet method) (the same portion as the portion shown in FIG. 15).
  • FIG. 4 is a diagram showing a TEM photograph of the photograph taken in FIG.
  • Fig. 18 is a diagram showing an SEM photograph of a cross section of an active material-containing layer of an electrode (electric double layer capacitor) manufactured by a conventional manufacturing method (wet method). is there.
  • FIG. 19 shows the cross section of the active material-containing layer of an electrode (electric double layer capacitor) manufactured by the conventional manufacturing method (wet method).
  • FIG. 18 is a view showing a TEM photograph of the same part as that shown in FIG. 18).
  • Fig. 20 shows a SEM photograph of a cross section of the active material containing layer of an electrode (electric double layer capacitor) manufactured by the conventional manufacturing method (wet method). is there.
  • FIG. 21 shows a cross section of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the conventional manufacturing method (wet method) (the same portion as the portion shown in Fig. 20).
  • FIG. 4 is a diagram showing a TEM photograph of the photograph taken in FIG.
  • Fig. 22 schematically shows a partial configuration of the conventional composite particles for an electrode, and an internal structure in an active material-containing layer of an electrode formed using the conventional composite particles for an electrode. It is a schematic sectional view shown typically.
  • FIG. 1 is a schematic sectional view showing a basic configuration of a preferred embodiment (lithium ion secondary battery) of the electrochemical device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a basic configuration of a composite particle produced in a granulation step in producing an electrode (the anode 2 and the force sword 3 in FIG. 1).
  • the electrode included in the electrochemical element according to the present embodiment is a preferable example of the electrode of the present invention.
  • composite particles used as a constituent material of such an electrode are a preferred example of the composite particles for an electrode of the present invention.
  • the secondary battery 1 shown in FIG. 1 is mainly arranged between the anode 2 and the power source 3, and between the anode 2 and the power source 3. And an electrolyte layer 4.
  • the secondary battery 1 shown in FIG. 1 is provided with the anode 2 and the force sword 3 containing the composite particles P10 shown in FIG. 2 so that the load demand suddenly and largely fluctuates. Even if this is the case, an excellent charge / discharge that can sufficiently follow this will be possible.
  • the anode 2 of the secondary battery 1 shown in FIG. 1 is composed of a film-shaped (plate-shaped) current collector 24, and a membrane disposed between the current collector 24 and the electrolyte layer 4. Active material-containing layer 22. Note that this anode 2 is connected to an external power supply node (none is shown) during charging, and functions as a power source. Also this anode
  • the shape of 2 is not particularly limited, and may be, for example, a thin film as shown in the figure.
  • the active material-containing layer 22 of the anode 2 is mainly composed of the composite particles P 10 shown in FIG. Further, the composite particles P 10 are composed of particles P 1 composed of an electrode active material, particles P 2 composed of a conductive additive, and particles P 3 composed of a binder. .
  • the average particle size of the composite particles P10 is not particularly limited.
  • the composite particles P 10 have a structure in which the particles P 1 made of the electrode active material and the particles P 2 made of the conductive additive are electrically connected without being isolated. Therefore, also in the active material containing layer 22, a structure is formed in which the particles P 1 made of the electrode active material and the particles P 2 made of the conductive additive are electrically connected without being isolated.
  • the electrode active material constituting the composite particles P10 contained in the anode 2 is not particularly limited, and a known electrode active material may be used.
  • a known electrode active material may be used.
  • occlusion and release of lithium ions inter-rate, or Is a carbon material such as graphite, non-graphitizable carbon, easily graphitizable carbon, low-temperature calcined carbon, metals that can be combined with lithium such as A1, Si, Sn, etc. i 0 2, S n 0 2 such oxides amorphous compounds mainly of lithium titanate (L i 3 T i 5 0 12) , and the like.
  • the conductive auxiliary constituting the composite particles P10 contained in the anode 2 is not particularly limited, and a known conductive auxiliary may be used.
  • a known conductive auxiliary may be used.
  • carbon materials such as carbon black, highly crystalline artificial graphite, and natural graphite
  • metal fine powders such as copper, nickel, stainless steel, and iron
  • mixtures of the above carbon materials and metal fine powders and conductive oxides such as ITO Things.
  • the binder constituting the composite particles P 10 contained in the anode 2 is not limited as long as it can bind the above-mentioned particles of the electrode active material and the particles P 2 of the conductive auxiliary.
  • PVDF polyvinylidene fluoride
  • PT polytetrafluoroethylene
  • FE Tetrafluoroethylene-hexaphnoleo-propylene copolymer
  • FEP Tetrafluoroethylene-hexaphnoleo-propylene copolymer
  • PFA Tetrafluoroethylene-perfluoronoreanolyl vinyl ether copolymer
  • Ethylene-tetrafluoroethylene copolymer ETFE
  • PCTFE Polyethylene Trifluoroethylene
  • Fluorocarbon resins such as CTFE
  • PVF polyvinyl fluoride
  • the binder not only binds the particles P 1 composed of the electrode active material and the particles P 2 composed of the conductive additive, but also binds the foil (current collector 24) and the composite particles P 10 It also contributes to binding.
  • binder for example, vinylidene phenolic fluorohexa rubber (VD F—HFP fluorororubber), vinylidenefluoride hexafluoropropylene-tetrafluoroethylene rubber (VDF-HFP—TFE fluororubber), vinylidenefluoride-pentafluoropropylene Fluoro rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluorene propylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber), -Ridenef / Rheoride-perfluoro-methino-levinole ethere-tetrafluoroethylene-based fluoro rubber (VD F-PF MV E-TFE-based fluoro rubber), vinylidene fluorofluorene ethylene Vinylidene fluoride-based fluororubber such
  • the binder may be, for example, polyethylene, polypropylene, poly (ethylene terephthalate), aromatic polyamide, senorelose, styrene'butadiene rubber, isoprene. Rubber, butadiene rubber, ethylene propylene rubber, etc. may be used.
  • thermoplastic elastomers such as styrene 'butadiene' styrene block copolymer, hydrogenated products thereof, styrene ⁇ ethylene / butadiene / styrene copolymer, styrene 'isoprene' styrene block copolymer, and hydrogenated products thereof even better c be used
  • Tomah one type polymer, syndiotactic 1, 2-polybutadiene, ethylene 'vinyl acetate copolymer, pro propylene alpha -. old Refui emissions (carbon number 2-1 2) copolymers May be used.
  • a conductive polymer may be used.
  • particles composed of a conductive polymer may be further added to the composite particles # 10 as a component of the composite particles # 10.
  • an electrode is formed by a dry method using the composite particles ⁇ 10. At this time, it may be added as a component of a powder containing at least the composite particles.
  • particles comprising a conductive polymer are used. May be added as a constituent material of the coating solution or the kneaded material.
  • the conductive polymer is not particularly limited as long as it has lithium ion conductivity.
  • polymer compounds polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polychlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and polyether vinylidene carbonate Natick DOO, and monomers Poriata Li Roni preparative Rinore etc.
  • the polymerization initiator used for complexing include a photopolymerization initiator and a thermal polymerization initiator compatible with the above
  • the secondary battery 1 is a metal lithium secondary battery
  • its anode is an electrode made of only metal lithium or a lithium alloy also serving as a current collector. It may be.
  • the lithium alloy is not particularly limited, and examples thereof include alloys such as Li-A1, LiSi, and LiSn (here, LiSi is also treated as an alloy).
  • the force source is configured using composite particles P10 having a configuration described later.
  • the power source 3 of the secondary battery 1 shown in FIG. 1 is composed of a film-like current collector 34 and a film-like current collector 34 disposed between the current collector 34 and the electrolyte layer 4. And an active material containing layer 32.
  • the power source 3 is connected to an external power source (not shown) during charging, and functions as an anode.
  • the shape of the force sword 3 is not particularly limited.
  • the force sword 3 may be a thin film as shown in the drawing.
  • As the current collector 34 of the force source 3 for example, an aluminum foil is used.
  • the electrode active material constituting the composite particles P10 contained in the force source 3 is not particularly limited, and a known electrode active material may be used.
  • a known electrode active material may be used.
  • each component other than the electrode active material constituting the composite particles P10 contained in the force source 3 is the same as that constituting the composite particles P10 contained in the anode 2. Substances can be used.
  • the binder constituting the composite particles P 10 contained in the force sword 3 not only binds the particles P 1 made of the electrode active material and the particles P 2 made of the conductive auxiliary, but also It also contributes to the binding between the foil (current collector 34) and the composite particles P10.
  • the composite particles P 10 have a structure in which the particles P 1 made of the electrode active material and the particles P 2 made of the conductive additive are electrically connected without isolation c.
  • both Cathode 3 and Anode 2 be 500 to 300 mg.
  • the average particle diameter of the particles P1 made of each electrode active material is preferably 5 to 20 in the case of the force source 3, and 5 to 15 ⁇ m. m, more preferable to be m.
  • the anode 2 it is preferably 1 to 50 ⁇ ; More preferably, it is 30 m.
  • the amounts of the conductive assistant and the binder attached to the electrode active material are 100 X (mass of the conductive assistant + mass of the binder) Z (mass of the electrode active material)
  • the content is preferably from 1 to 30% by mass, and more preferably from 3 to 15% by mass.
  • the electrolyte layer 4 may be a layer composed of an electrolytic solution or a layer composed of a solid electrolyte (ceramic solid electrolyte, solid polymer electrolyte). It may be a layer composed of an electrolyte solution and / or a solid electrolyte impregnated in the electrolyte.
  • the electrolytic solution is prepared by dissolving a lithium-containing electrolyte in a non-aqueous solvent. Examples of lithium-containing electrolytes include, for example, LiCl
  • the non-aqueous solvent for example, ethers, ketones, carbonates, and the like can be selected from organic solvents exemplified in JP-A-63-212260, and the like. In the present invention, it is particularly preferable to use carbonates. Among the carbonates, it is particularly preferable to use a mixed solvent containing ethylene carbonate as a main component and one or more other solvents added.
  • the battery capacity is significantly improved, and the irreversible capacity ratio can be sufficiently reduced.
  • Solid polymer electrolytes include, for example, ionic conduction Conductive polymer having a property.
  • the conductive polymer is not particularly limited as long as it has lithium ion conductivity.
  • a polymer compound polyethylene oxide, polypropylene oxide, etc.
  • a monomer such as an ether-based polymer compound, a crosslinked polymer of a polyether compound, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylo-trinole, and the like.
  • the polymerization initiator used for complexing include a photopolymerization initiator or a thermal polymerization initiator compatible with the above-mentioned monomers.
  • the constituent material thereof is, for example, one or more of polyolefins such as polyethylene and polypropylene (in the case of two or more, There are laminated films of two or more layers, etc.), polyesters such as polyethylene terephthalate, thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer, and celluloses.
  • polyolefins such as polyethylene and polypropylene (in the case of two or more, There are laminated films of two or more layers, etc.)
  • polyesters such as polyethylene terephthalate
  • thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer
  • celluloses celluloses
  • microporous films, woven fabrics, and nonwoven fabrics with a porosity of about 5 to 2000 s and a thickness of about 5 to about 100 cc and a thickness force of about 5 to: LOO;
  • the separator may be impregnated with a solid electrolyte monomer, cured, and polymerized for use. Further, the above-mentioned electrolyte may be used by being contained in a porous separator.
  • the manufacturing method of the electrode shown below includes the preferable example of the manufacturing method of the composite particle for electrodes of this invention.
  • the composite particles P 10 include the electrode active material, the conductive auxiliary agent, and the binder by bringing the conductive auxiliary agent and the binder into close contact with the particles P 1 made of the electrode active material and integrating them. It is formed through a granulation step of forming composite particles.
  • FIG. 3 is an explanatory diagram showing an example of a granulation step when producing composite particles.
  • the granulation step includes: a raw material liquid preparation step of preparing a raw material liquid containing a binder, the conductive auxiliary agent, and a solvent; and generating a gas flow in a fluidized vessel, and A fluidized bed process in which particles composed of the electrode active material are charged and the particles composed of the electrode active material are fluidized, and a raw material liquid is sprayed into a fluidized bed containing the particles composed of the electrode active material, thereby obtaining a raw material.
  • the liquid is attached to the particles of the electrode active material and dried, the solvent is removed from the raw material liquid attached to the surface of the particles of the electrode active material, and the particles of the electrode active material and the conductive additive are used with a binder.
  • a spray drying step of bringing particles into close contact with each other.
  • the binder in the raw material liquid preparation process, the binder can be dissolved. Using a solvent, the binder is dissolved in the solvent. Next, a conductive agent is dispersed in the obtained solution to obtain a raw material liquid. In the raw material liquid preparation step, a solvent (dispersion medium) that can disperse the binder may be used.
  • the droplets 6 of the raw material liquid are sprayed in the fluidized tank 5 so that the droplets 6 of the raw material liquid flow.
  • the solvent is removed from the droplets 6 of the raw material liquid adhered to the particles P 1 composed of the layered electrode active material and simultaneously dried in the fluidized tank 5 to adhere to the surface of the particles P 1 composed of the electrode active material.
  • the particles P 1 made of the electrode active material and the particles P 2 made of the conductive additive are brought into close contact with each other with a binder, to obtain composite particles P 10.
  • the fluidized vessel 5 is, for example, a vessel having a cylindrical shape, and a hot air (or hot air) L5 flows into the bottom portion thereof from the outside.
  • An opening 52 for convection of particles made of an electrode active material in the fluidizing tank 5 is provided.
  • An opening 5 4 is provided on the side surface of the fluidized vessel 5 to allow the droplets 6 of the raw material liquid to be sprayed to flow into the particles P 1 of the electrode active material convected in the fluidized vessel 5.
  • Droplets 6 of a raw material liquid containing the binder, the conductive auxiliary agent, and the solvent are sprayed on the particles P 1 made of the electrode active material convected in the fluidized bath 5.
  • the temperature of the atmosphere in which the particles P1 composed of the electrode active material are placed is adjusted, for example, by adjusting the temperature of hot air (or hot air), and the like.
  • Predetermined temperature at which solvent can be quickly removed Preferably at a temperature not exceeding the melting point of the binder from 50 ° C, more preferably at a temperature not exceeding the melting point of the binder from 50 ° C (eg, 200 ° C)).
  • the liquid film of the raw material liquid formed on the surface of the particles P1 composed of the electrode active material is dried almost simultaneously with the spraying of the droplets 6 of the raw material liquid. Then, the binder and the conductive additive are brought into close contact with each other to obtain composite particles P10.
  • the solvent capable of dissolving the binder is not particularly limited as long as it is capable of dissolving the binder and dispersing the conductive additive.
  • Methods for dissolving the binder can be used.
  • the active material-containing layer is formed through the following active material-containing layer forming step.
  • the powder P12 containing at least the composite particles P10 is subjected to heat treatment and pressure treatment to form a sheet, and a sheet 18 containing at least the composite particles is obtained. It has a sheet forming step and an active material containing layer disposing step of disposing the sheet 18 as an active material containing layer (active material containing layer 22 or active material containing layer 32) on the current collector.
  • the dry method is a method of forming an electrode without using a solvent.
  • the solvent is insoluble and safe.
  • the electrode (porous material) is used for rolling only particles without using a solvent. Easy to increase the density of the body layer) 3)
  • the particles P1 composed of the electrode active material, There are advantages such as that the particles P 2 made of a conductive auxiliary agent for imparting conductivity and the particles P 3 made of a binder are not aggregated or unevenly distributed.
  • This sheet forming step can be suitably performed using a hot roll press machine shown in Fig. 4.
  • FIG. 4 is an explanatory diagram showing an example of a sheet forming step (when using a hot roll press) when producing an electrode by a dry method.
  • the composite particles P10 are present between a pair of hot rolls 84 and 85 of a hot roll press (not shown).
  • the powder P 12 containing the mixture is charged, mixed and kneaded, and rolled by heat and pressure to form a sheet 18.
  • the surface temperature of the heat rolls 84 and 85 is 60 ⁇
  • the temperature is preferably 120 ° C., and the pressure is preferably 20 to 500 kgf / cm.
  • the powder P12 containing at least the composite particles P10 includes particles P1 composed of an electrode active material and particles P2 composed of a conductive auxiliary agent for imparting conductivity. At least one kind of the particles P3 of the binder may be further mixed.
  • the powder P12 containing at least the composite particles P10 is kneaded in advance by a mixing means such as a mill. Is also good.
  • the current collector and the active material-containing layer are brought into electrical contact with each other after the active material-containing layer is formed by a hot roll press.
  • the current collector and the constituent material of the active material-containing layer dispersed on one surface of the current collector may be supplied to the heat rolls 84 and 85 to form the active material-containing layer.
  • the sheet molding and the electrical connection between the active material-containing layer and the current collector may be simultaneously performed.
  • the active material-containing layer of the obtained electrode When the active material-containing layer of the obtained electrode is made relatively thin to increase the output of the electrochemical element more reliably, the active material-containing layer may be formed in the active material-containing layer forming step.
  • the thickness T of the active material-containing layer and the average particle diameter d of the composite particles contained in the active material-containing layer satisfy the conditions represented by the following formulas (1) to (3). Thus, it is preferable to form the active material-containing layer.
  • the electrode-forming coating liquid is composed of a composite particle ⁇ 10 produced through a granulation step, a liquid capable of dispersing or dissolving the composite particle ⁇ 10, A mixed solution is prepared by mixing a conductive polymer to be added as needed, and a part of the above liquid is removed from the mixed solution to adjust the viscosity suitable for coating, thereby preparing a coating solution for forming an electrode. Obtainable.
  • a mixed liquid is prepared in which a liquid capable of dispersing or dissolving the composite particles P10 and a conductive polymer or a monomer that is a constituent material of the conductive polymer are mixed.
  • the electrode forming coating solution 7 can be prepared.
  • a coating solution for electrode formation is applied to the surface of the current collector, and a liquid film of the coating solution is formed on the surface.
  • an active material-containing layer is formed on the current collector to complete the fabrication of the electrode.
  • the method of applying the electrode forming coating liquid on the surface of the current collector is not particularly limited, and may be appropriately determined according to the material and shape of the current collector. Examples include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, and the like.
  • the active material-containing layer of the obtained electrode is to be relatively thin to increase the output of the electrochemical element more reliably
  • the active material-containing layer may be formed in the active material-containing layer forming step.
  • the thickness T of the active material-containing layer and the average particle diameter d of the composite particles contained in the active material-containing layer satisfy the conditions represented by the following formulas (1) to (3).
  • the electrode When the liquid film of the coating liquid for forming is formed on the surface of the current collector, the amount of the coating liquid for forming electrodes is adjusted.
  • a curing reaction between constituent components in the liquid film (for example, a polymerization reaction of a monomer that is a constituent material of the conductive polymer) may be involved.
  • the electrode-forming coating solution is applied on the current collector by the above-described predetermined method. Apply more.
  • an active material-containing layer is formed by irradiating the liquid film of the coating liquid with ultraviolet rays.
  • the electrode forming coating solution After the liquid film is formed, the monomer is polymerized in the liquid film to form a conductive polymer, so that the composite particles ⁇ ⁇ 10 in the liquid film can be substantially maintained in a good dispersion state while the composite is maintained. Since the conductive polymer can be generated in the gap between the particles ⁇ 10, it is possible to improve the dispersion state of the composite particles ⁇ 10 and the conductive polymer in the obtained active material-containing layer. it can.
  • the polymerization reaction of the monomer that is a constituent material of the ultraviolet curable resin can be advanced by irradiation with ultraviolet light.
  • the obtained active material-containing layer may be subjected to a rolling treatment such as heat treatment using a hot plate press or a hot roll to form a sheet, if necessary.
  • a coating liquid 7 for electrode formation containing the composite particles P10 was prepared and used.
  • the method of forming the electrode using the composite particles P10 (wet method) is not limited thereto.
  • FIG. Is formed In the active material-containing layer (active material-containing layer 22 or active material-containing layer 32) formed by the wet method and the dry method described above, a schematic diagram is shown in FIG. Is formed. That is, in the active material-containing layer (the active material-containing layer 22 or the active material-containing layer 32), the electrode active material is used irrespective of the use of the particles P3 made of the binder. A structure is formed in which the particles P 1 made of and the particles P 2 made of the conductive additive are electrically isolated without being isolated.
  • the electrode of the present invention may be any as long as the active material-containing layer is formed using the composite particles P10 contained in the electrode forming coating solution of the present invention.
  • the structure is not particularly limited.
  • the electrochemical element may be provided with the electrode of the present invention as at least one of a cathode and a cathode, and the other configuration and structure are not particularly limited.
  • the electrochemical element is a battery, as shown in FIG. 7, a plurality of unit cells (cells composed of an anode 2, a power source 3, and an electrolyte layer 4 also serving as a separator) 102 are stacked, and this is It may have a configuration of a module 100 (packaged) that is held in a sealed state in the case 9.
  • the unit cells may be connected in parallel or in series.
  • a battery unit in which a plurality of the modules 100 are further electrically connected in series or in parallel may be configured.
  • the battery unit for example, as shown in a battery unit 200 shown in FIG. 8, for example, the force source terminal 104 of one module 100 and another module 100 By electrically connecting the anode terminal 106 to the metal terminal 108, a battery unit 200 connected in series can be constructed.
  • the electrochemical device of the present invention includes an anode and a power source. And at least an electrolyte layer having ion conductivity, and the anode and the cathode only need to have a configuration in which the anode and the cathode are opposed to each other with the electrolyte layer interposed therebetween.
  • the electrode active material of the composite particles P10 in addition to the above-described example materials, those used in existing primary batteries are also used. May be used.
  • the conductive auxiliary agent and the binder may be the same as those of the above-described exemplary substances.
  • the electrode of the present invention is not limited to an electrode for a battery, and may be, for example, an electrolytic cell, an electrochemical capacitor (such as an electric double layer capacitor, an aluminum electrolytic capacitor), or an electrochemical sensor.
  • the electrode used for the electrode may be used.
  • the electrochemical device of the present invention is not limited to a battery alone, but may be, for example, an electrolytic cell, an electrochemical capacitor (such as an electric double layer capacitor or an aluminum electrolytic capacitor), or an electrochemical sensor. May be.
  • a carbon material having a high electric double layer capacity such as coconut shell activated carbon, pitch activated carbon, and phenol resin activated carbon, is used as an electrode active material constituting the composite particles P10. Can be used.
  • anode used for salt electrolysis for example, a material obtained by thermally decomposing ruthenium oxide (or a composite oxide of ruthenium oxide and other metal oxides) is used as an anode.
  • An electrode in which an active material-containing layer containing the obtained composite particle P10 is formed on a titanium substrate is used as a constituent material of the composite particle P10 as an electrode active material in the invention. May be.
  • the electrolyte solution is not particularly limited, and is used for a known electrochemical capacitor such as an electric double layer capacitor.
  • a non-aqueous electrolyte solution (a non-aqueous electrolyte solution using an organic solvent) can be used.
  • the type of the nonaqueous electrolyte solution 30 is not particularly limited, but generally, the solubility, dissociation degree, and viscosity of the solution are taken into consideration. It is desirable to use a non-aqueous electrolyte solution with a high conductivity and a high potential window (high decomposition starting voltage).
  • the organic solvent include propylene carbonate, diethylene carbonate, and acetonitrile.
  • the electrolyte include a quaternary ammonium salt such as tetraethylammonium trafluoroborate (borane tetrafluoride ammonium). In this case, it is necessary to strictly control the water content.
  • composite particles for an electrode that can be used to form an active material-containing layer of a power source of a lithium ion secondary battery.
  • the composite particles P10 for an electrode were composed of a cathode electrode active material (90% by mass), a conductive additive (6% by mass), and a binder (4% by mass).
  • the amounts of the electrode active material, the conductive auxiliary agent, and the binder used in the granulation process are determined by the amounts of these components in the finally obtained composite particles P10 for an electrode.
  • the mass ratio was adjusted to the above value.
  • composite particles for an electrode that can be used for forming an active material-containing layer of an anode of a lithium ion secondary battery are formed by a method that goes through the granulation step described above.
  • the composite particles P10 for an electrode were composed of an electrode active material (85% by mass) of an anode, a conductive additive (5% by mass), and a binder (10% by mass).
  • the raw material liquid was sprayed onto a fluidized bed of artificial graphite powder in a vessel having the same configuration as the fluidized vessel 5 shown in FIG.
  • the solution was attached to the surface of the powder.
  • N, N-dimethylformamide was removed from the surface of the powder almost simultaneously with the spraying.
  • acetylene black and polyvinylidene fluoride were brought into close contact with the powder surface to obtain electrode composite particles P 10 (average particle diameter: 300 m).
  • the amounts of the electrode active material, the conductive auxiliary agent, and the binder used in the granulation process are determined by the amounts of these components in the composite particles P10 for electrodes finally obtained.
  • the mass ratio was adjusted to the above value.
  • composite particles for an electrode that can be used to form an active material-containing layer of an electrode of an electric double layer capacitor are formed by a method that goes through the above-mentioned granulation step.
  • the composite particle P10 for an electrode was composed of an electrode active material (80% by mass) of an anode, a conductive additive (10% by mass), and a binder (10% by mass).
  • activated carbon BET specific surface area:
  • conductive Acetylene black was used as an auxiliary agent.
  • polyvinylidene fluoride was used as a binder.
  • acetylene black was dispersed in a solution in which polyvinylidene fluoride was dissolved in N, N-dimethylformamide ⁇ (DMF): solvent ⁇ .
  • raw material liquid "( ⁇ Se Ji Ren black 2 mass 0/0, polyvinylidene fluoride 2 wt 0/0) were made to tone.
  • the raw material liquid was sprayed onto a fluidized bed of artificial graphite powder in a vessel having the same configuration as the fluidized vessel 5 shown in FIG.
  • the solution was attached to the surface of the powder.
  • N N-dimethylformamide was removed from the powder surface almost simultaneously with the spraying.
  • acetylene black and polyvinylidene fluoride were brought into close contact with the powder surface to obtain composite particles P10 for the electrode (average particle diameter: 100 / Xm).
  • the amounts of the electrode active material, the conductive auxiliary agent, and the binder used in this granulation process are determined by the amounts of these components in the composite particles P10 for electrodes finally obtained.
  • the mass ratio was adjusted to the above value.
  • an electrode active material, a conductive agent and a binder Using a planetary mill and a homogenizer, a mixture comprising an electrode active material, a conductive agent, and a binder was stirred and mixed. Next, this kneaded material was sheeted using a hot-roll device, and the same amount (50 mg Zcm 2 ) of electrode active material as the composite particles P 10 for electrodes of Example 1 was obtained. An active material-containing layer having a porosity (porosity) (25%) was formed on an aluminum foil (current collector).
  • the electrode active material, the conductive agent, and the binder are mixed with a planetary mill and a homogenizer to stir and mix a mixture of the electrode active material, the conductive agent, and the binder. went.
  • the kneaded material was sheeted using a hot-roll device, and the same amount (32 mg / cm 2 ) of the electrode active material as the composite particle P 10 for electrodes of Example 2 was loaded.
  • An active material-containing layer having a porosity (porosity) (35%) was formed on a copper foil (current collector).
  • an electrode active material, a conductive agent, and a binder Using a planetary mill and a homogenizer, a mixture comprising an electrode active material, a conductive agent, and a binder was stirred and mixed. Next, the kneaded material was sheeted using a hot-roll device, and the same amount (10 mg Zcm 2 ) of the electrode active material as the composite particles P 10 for electrodes of Example 2 was loaded. An active material-containing layer having a porosity (porosity) (50%) was formed on an aluminum foil (current collector).
  • FIG. 9 is an explanatory diagram showing a method for measuring the internal resistance (impedance) of the composite particles for an electrode of Example 1.
  • the measurement cell 20 will be described. As shown in FIG. 9, the measurement cell 20 was placed in the glove box 9. Then, the glove box 9 was filled with argon gas. As shown in FIG. 9, the measuring cell 20 mainly includes a cathode C and an anode A opposed to each other, and a layer E of an electrolyte solution disposed between the anode A and the cathode C. It consisted of.
  • the anode A is made of a metallic lithium foil A2 (film thickness: 200 ⁇ m, electrode area: a circle with a diameter of 15 mm) and a metallic lithium foil A2. It consisted of a terminal A 1 consisting of a platinum wire connected to the back side (the side not in contact with the layer E of the electrolyte solution).
  • the force source C is composed of the electrode composite particles P 10 of Example 1 and a terminal C 1 made of a platinum wire electrically connected to the electrode composite particles P 10. Configured.
  • the internal resistance (impedance) of each measurement cell using the composite particles for electrodes P 10 of Example 1 as electrodes was measured when the measurement temperature was room temperature (25 ° C.).
  • the internal resistance was measured when the measurement temperature was room temperature (25 ° C.).
  • the internal resistance (impedance) of the particles made of the electrode active material contained in the composite particles P10 for the electrodes of Example 1 was measured when the measurement temperature was room temperature (25 ° C). .
  • the internal resistance (impedance) was measured as follows. That is, the cyclic voltammetry of one of the particles (one particle) composed of the electrode composite material P10 of the electrode active material of Example 1 was measured, and the particle composed of the electrode active material was measured based on this. The equilibrium capacity value was calculated. Next, one of the electrode active material particles (one particle) contained in the composite particles for electrode P10 of Example 1 was subjected to impedance measurement, and the obtained complex impedance probe was obtained. The charge transfer resistance value of the particles composed of the electrode active material was calculated as the impedance value from the data of the data.
  • the composite particles of Examples 1 to 3 had an internal resistance value of irrespective of the presence of the binder. It was confirmed that the internal resistance of the electrode active material used was lower than the internal resistance.
  • composite particles usable for forming an active material-containing layer of a power source of a lithium ion secondary battery are formed by a method through the granulation step described above.
  • the composite particles P 10 are composed of a cathode electrode active material (92% by mass), a conductive additive (4. 8% by mass) and a binder (3.2% by mass).
  • the amounts of the electrode active material, the conductive auxiliary agent, and the binder used in the granulation process are determined by the mass of these components in the finally obtained composite particle P10. Adjust the ratio to the above value did.
  • the electrode was manufactured by the dry method described above.
  • the composite particles P 10 (average particle diameter: 200 ⁇ m) were charged into a hot roll press having the same configuration as that shown in FIG.
  • the following sheet (width: 10 cm) was created (sheet forming process).
  • the heating temperature at this time was 120 ° C., and the pressurizing condition was a linear pressure of 200 kgf / cm.
  • this sheet was punched out to obtain a disc-shaped active material-containing layer (diameter: 15 mm).
  • one side of a disk-shaped current collector (aluminum foil, diameter: 15 mm, thickness: 20 / xm) has a hot-menoleto conductive layer (thickness).
  • the hot-melt conductive layer is made of the same conductive auxiliary agent (acetylene black) as used in the preparation of the composite particles and the same binder (vinylidene fluoride) used in the preparation of the composite particles. (Acetylene black: 20% by mass, polyvinylidene fluoride: 80% by mass).
  • thermocompression bonding conditions were as follows: thermocompression time: 1 minute, heating temperature: 180 ° C, and pressurization condition: SO kgf Z cm 2 .
  • An electrode (force sword) having a thickness of 100 m, an active material carrying amount of 30 mgcm 2 and a porosity of 25% by volume was obtained.
  • composite particles usable for forming an active material-containing layer of an anode of a lithium ion secondary battery were prepared. It was produced by a method involving a granulation step.
  • the composite particles P 10 were composed of an anode electrode active material (88% by mass), a conductive auxiliary (4% by mass), and a binder (8% by mass).
  • artificial graphite particles (BET specific surface area: 1.0 On ⁇ / g average particle diameter: 19 m), which is a fibrous graphite material, are used.
  • acetylene black was used as a conductive assistant.
  • polyvinylidene fluoride was used as a binder.
  • acetylene black was dispersed in a solution in which polyvinylidene fluoride was dissolved in N, N-dimethylformamide ⁇ (DMF): solvent ⁇ .
  • a raw material liquid ” (3% by mass of acetylene black, 2% by mass of polyvinylidene fluoride) was prepared.
  • the amounts of the electrode active material, the conductive auxiliary agent, and the binder used in the granulation are determined by the mass of these components in the composite particles P10 finally obtained. Adjust the ratio to the above value did.
  • the electrodes were prepared by the dry method described above.
  • the composite particles P 10 (average particle diameter: 200 m) are charged into a hot roll press having a configuration similar to that shown in FIG. 4 to form an active material-containing layer.
  • a sheet (width: 10 cm) was created (sheet forming process).
  • the heating temperature at this time was 120 ° C., and the pressurizing condition was a linear pressure of 200 kgf Z cm.
  • this sheet was punched out to obtain a disc-shaped active material-containing layer (diameter: 15 mm).
  • a disc-shaped current collector (copper foil, diameter: 15 mm, thickness: 20 m) was placed on one side of a hot-melt conductive layer (thickness: 20 m). Is: 5 im) formed.
  • the hot-melt conductive layer is a layer (acetylene black: acetylene black) composed of the same conductive aid (acetylene black) and a binder (methyl methacrylate) as those used for producing the composite particles. 3 0 mass 0/0, poly fluoride Bieriden: 7 0 mass 0/0).
  • thermocompression time 30 seconds
  • heating temperature 100 ° C
  • pressurization condition 10 kgf / cm 2 .
  • An electrode (force source) was prepared by the following conventional electrode preparation procedure (wet method).
  • the same material was used, and the mass of the electrode active material: the mass of the conductive agent: the mass of the binder was adjusted to be the same as in Example 4.
  • the same current collector (provided with a hot melt layer) as that used in Example 4 was used.
  • a binder was dissolved in N-methyl-piperidone (NMP) to prepare a binder solution (binder concentration: 5% by mass based on the total mass of the solution).
  • NMP N-methyl-piperidone
  • the electrode active material and the conductive additive were added to the binder solution at the above ratio, and mixed with a hyper mixer to obtain a coating solution.
  • this coating solution was applied on the hot melt layer of a current collector for a cathode by a doctor blade method.
  • the liquid films formed of the coating liquid formed on the current collector for the power source were respectively dried.
  • the current collector for a power source in a state where the obtained liquid film was dried was rolled using a roller press.
  • the heating temperature at this time was 180 ° C., the heating time was 1 minute, and the pressurizing condition was 30 kgf Z cm 2 .
  • an electrode (force source) having an active material-containing layer thickness of 100 im, an active material carrying amount of 30 mgcm 2 , and a porosity of 25% by volume was obtained.
  • Example 5 (Anode) was prepared.
  • NMP N-methyl-pyrrolidone
  • the electrode active material and the conductive additive were added to the binder solution at the above ratio, and mixed with a hyper mixer to obtain a coating solution.
  • this coating solution was applied on the hot melt layer of the current collector for the anode by a doctor blade method.
  • the liquid films composed of the coating liquid formed on the anode current collector were dried.
  • the anode current collector in a state where the obtained liquid film was dried was rolled using a roller press.
  • the heating temperature was 100 ° C.
  • the heating time was 30 seconds
  • the force and pressure conditions were 1 O kgf / cm 2 .
  • an electrode (anode) having an active material-containing layer thickness of 100 / m, an active material carrying amount of 15 mg Zcm 2 , and a porosity of 25 vol% was obtained.
  • Example 4 and Example 5 Each electrode of Example 4 and Example 5, Comparative Example 4 and Comparative Example 5 was used as a “test electrode (working electrode)”, a lithium metal foil (diameter: 15 mm, thickness: 100) / zm) was prepared as a counter electrode, and the following characteristics evaluation tests were performed to evaluate the electrode characteristics of each electrode (test electrode). Table 2 shows the results of the evaluation test.
  • An electrolyte solution to be an electrolyte layer was prepared according to the following procedure. That, L i C 1 0 4 The urchin by its molarity is 1 mo 1 L, solvent ⁇ ethylene carbonate Natick preparative (EC) and Jefferies Chirukabone preparative (DEC) at a volume ratio of 1: in a mixing 1 ⁇ Dissolved in.
  • EC solvent ⁇ ethylene carbonate Natick preparative
  • DEC Jefferies Chirukabone preparative
  • Leads (width: 10 mm, length: 25 mm, thickness: 0.50 mm) were connected to each of the anode and force source of the laminate by ultrasonic welding. Then, the laminate was placed in a sealed container serving as a mold of an electrochemical cell, and the prepared electrolyte solution was injected. Then, a constant pressure was applied from both sides of the anode and the force sword of the laminate. In this way, an electrochemical cell was prepared for each test electrode.
  • test electrode is a force source (in the case of the electrode of Example 4 and the electrode of Comparative Example 4)
  • the potential of the test electrode is determined based on the redox potential of the counter electrode lithium metal. Polarized in the potential range of +2.5 V to +4.3 V (constant current and constant voltage). The measurement evaluation test was performed at 25 ° C.
  • test electrode is an anode (in the case of the electrode of Example 5 and the electrode of Comparative Example 5)
  • the potential of the test electrode is determined based on the redox potential of the lithium metal of the counter electrode. And +0.01 V to +3
  • the electrodes of Example 4 and Example 5 had a higher active material capacity (A) than the electrodes of Comparative Example 4 and Comparative Example 5. It was confirmed that the maximum possible current density was large and that it had excellent output characteristics. From these results, it was found that in the active material-containing layers of the electrodes of Example 4 and Example 2, the electrode active material and the conductive auxiliary were electrically coupled without being isolated, and a good electron conduction network was obtained. It is considered that an ion conduction network has been formed.
  • FIGS. 10 to 15 show SEM photographs and TEM photographs of the active material-containing layer of the electrode of Example 4. Also, compare SEM and TEM photographs of the active material-containing layer of the electrode of Example 4 are shown in FIGS. 16 to 21.
  • Fig. 10 is a diagram showing an SEM photograph of a cross section of an active material-containing layer of an electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention.
  • Fig. 11 shows a TEM image of a cross section (the same part as that shown in Fig. 10) of the active material-containing layer of an electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention. It is a figure showing a photograph.
  • FIG. 12 is a SEM photograph showing a cross section of the active material-containing layer of an electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention.
  • Fig. 13 is a TEM image of the cross section of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention (the same part as the part shown in Fig. 12). It is a figure showing a photograph.
  • Fig. 14 is a diagram showing an SEM photograph of a cross section of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention.
  • Fig. 15 is a TEM image of a cross section of the active material containing layer of the electrode (electric double layer capacitor) manufactured by the manufacturing method (dry method) of the present invention (the same part as the part shown in Fig. 14). It is a figure showing a photograph.
  • FIG. 16 is a SEM photograph showing a cross section of the active material-containing layer of an electrode (electric double layer capacitor) manufactured by a conventional manufacturing method (wet method).
  • Figure 17 shows a TEM photograph of the cross section of the active material-containing layer of the electrode (electric double layer capacitor) manufactured by the conventional manufacturing method (wet method) (the same part as the part shown in Figure 16).
  • FIG. 18 is a SEM photograph showing a cross section of an active material-containing layer of an electrode (electric double layer capacitor) manufactured by a conventional manufacturing method (wet method).
  • Fig. 19 is a TEM photograph of a cross section of the active material-containing layer of the electrode (electric double layer capacitor) manufactured by the conventional manufacturing method (wet method) (the same part as shown in Fig. 18).
  • FIG. 20 is a diagram showing an SEM photograph of a cross section of an active material-containing layer of an electrode (electric double layer capacitor) manufactured by a conventional manufacturing method (wet method).
  • Figure 21 shows a TEM image of the cross section of the active material-containing layer of the electrode (electric double layer capacitor) manufactured by the conventional manufacturing method (wet method) (the same part as shown in Figure 20). It is a figure showing a photograph.
  • the electrode of Example 4 had the following structure. That is, for example, the photographing areas of R1 to R5 in FIG. 10 and the photographing areas of R1A to R5A in FIG. 11 (the same parts as R1 to R5 in FIG. 10 respectively) According to the observation results, the aggregates consisting of the conductive additive and the binder electrically and physically join the adjacent activated carbon particles to each other, and a good electron conduction network and ion conduction network were formed. It was confirmed that it was formed.
  • the internal structure of the active material-containing layer is a photograph at different magnifications.
  • the photographing regions R6 to R8 in FIG. 12 and R6A to R6 in FIG. Observation results of the R 8 A imaging area (the same parts as R 6 to R 8 in FIG. 12), and the R 9 A imaging area in FIG. 14 and the R 9 A imaging in FIG. 15 This was more clearly confirmed from the observation results of the region (the same portion as R 9 in FIG. 14).
  • the electrode of Comparative Example 4 was confirmed to have the following structure. That is, for example, the photographing area of R10 to R50 in FIG. 16 and the photographing area of R10A to R50A in FIG. 17 (the scales 1 to! According to the observation result of (5), it is remarkably observed that the aggregate composed of the conductive auxiliary agent and the binder is electrically and physically isolated from the activated carbon particles. ⁇ Compared with the active material-containing layer of Example 4, it was confirmed that the electron conduction network and the ion conduction network were not sufficiently formed. [0302] The internal structure of the active material-containing layer is a photograph at different magnifications.
  • an electrode having excellent electrode characteristics can be easily and reliably formed even when a binder is used as a constituent material of the electrode. It is possible to provide a composite particle for an electrode that can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

糸田 »
電極用複合粒子及びその製造方法、 電極及びその製造方法、 並び に電気化学素子及びその製造方法
技術分野
【 0 0 0 1 】 本発明は、 1次電池、 2次電池 (特に、 リチウム イオン 2次電池)、 電気分解セル、 キャパシタ (特に、 電気化学キ ャパシタ) 等の電気化学素子に使用可能な電極の構成材料となる 電極用複合粒子及びその製造方法に関する。 また、 本発明は、 電 極用複合粒子を構成材料と して用いた電極及びその製造方法、 並 びに当該電極を備えた電気化学素子及びその製造方法に関する。 背景技術
【 0 0 0 2】 近年の携帯機器の発展には目覚しいものがあり、 その大きな原動力と しては、 これらの機器の電源と して広く採用 されている リチウムイオン 2次電池をはじめとする高エネルギー 電池の発展が挙げられる。 かかる高エネルギー電池は、主と して、 力ソードと、 アノードと、 力ソードとアノードとの間に配置され る電解質層 (例えば、 液状電解質又は固体電解質からなる層) と から構成されている。
【 0 0 0 3】 そして、 リチウムイオン 2次電池をはじめとする 高エネルギー電池、 及び、 電気二重層キャパシタをはじめとする 電気化学キャパシタ等の電気化学素子は、 携帯機器等の電気化学 素子が設置されるべき機器の今後の発展に対応すべく特性の更な る向上を目指して様々な研究開発が進められている。 特に、 更な る出力密度の増大化を図ることが望まれており、 また、 機器から の負荷要求が急激に然も大きく変動する場合であっても、 これに 十分に追随可能な優れた充放電特性を有する電気化学素子を実現 することが望まれている。
【 0 0 0 4】 従来、 上記力ソード及び/又はアノードは、 それ ぞれの電極活物質と、 結着剤 (合成樹脂等) と、 導電助剤と、 分 散媒及び 又は溶媒とを含む電極形成用の塗布液 (例えば、 スラ リー状或いはペース ト状のもの) を調製し、 この塗布液を集電体
(例えば、 金属箔等) の表面に塗布し、 次いで乾燥させることに より、 電極活物質を含む層 (以下、 「活物質含有層」 という。) を 集電体の表面に形成する工程を経て製造されている (例えば、 特 開平 1 1 — 2 8 3 6 1 5号公報を参照)。
【 0 0 0 5】 なお、 この方法 (湿式法) においては、 塗布液に 導電助剤を添加しない場合もある。 また、 塗布液のかわりに、 分 散媒及び溶媒を使用せず、 電極活物質と、 結着剤と、 導電助剤と を含む混練物を調製し、 この混練物を熱ロールプレス機及び/又 は熱プレス機を用いてシート状に成形する場合もある。 更に、 塗 布液に導電性高分子を更に添加し、 いわゆる 「ポリマー電極」 を 形成する場合もある。 また、 電解質層が固体の場合には、 塗布液 を電解質層の表面に塗布する手順の方法を採用する場合もある。 【 0 0 0 6】 また、 例えば、 二酸化マンガン (力ソー ドの活物 質) 粒子と、 当該二酸化マンガン粒子の表面に固定化された炭素 材料粉末 (導電助剤) とからなる複合粒子を力ソー ドの電極材料 に使用して、 カソードに起因する電池の充放電容量の低下の防止 を図ることにより、 電池特性の更なる向上を意図したリチウム 2 次電池用正極及びその製造方法が提案されている (例えば、 特開 平 2— 2 6 2 2 4 3号公報を参照)。
【 0 0 0 7】 更に、正極活物質(力ソー ドの活物質)、導電剤 (導 電助剤)、 結着剤及び溶媒からなる、 固形分 2 0〜 5 0重量%、 該 固形分の平均粒径 1 0 /z m以下のスラ リ一を調製し、 該スラリー を噴霧乾燥方式 (spray drying) で造粒することによ り、 放電特 性及び生 ¾性等の特性の更なる向上を意図した有機電解液電池用 正極合剤の製造方法が提案されている (例えば、 特開 2 0 0 0 — 4 0 5 0 4号公報を参照)。
発明の開示
【 0 0 0 8】 しかしながら、 上述した特開平 1 1 — 2 8 3 6 1 5号公報に記載の技術をはじめとする湿式法によ り製造した電極 を備えたリチウムイオン 2次電池は下記の問題があり、 電池の出 力密度を増大させるには限界があり、 特に負荷要求が急激に然も 大きく変動する作動条件で使用される場合、 このよ うな負荷要求 に十分に追随可能な優れた充放電特性を有する電池を構成するこ とが極めて困難であった。
【 0 0 0 9】 すなわち、 電池出力の更なる向上を意図した場合 、 電極の活物質含有層の厚さを薄くすれば活物質含有層全体の内 部抵抗 (イ ンピーダンス) を低減することができるため上記の意 図を達成できる可能性がある。 しかし、 この場合には、 活物質の 含有量が不十分となり、 電池容量及び電池のエネルギー密度を十 分に確保することができなく なる。 集電体及びセパレータは電池 容量に寄与しないため、 この観点からも電池容量を十分に確保す ることができなくなる。
【 0 0 1 0】 また、 特開平 2 — 2 6 2 2 4 3号公報に記載の複 合粒子は、 機械的な強度が弱く電極形成中において二酸化マンガ ン粒子の表面に固定化された炭素材料粉末が剥離し易いため、 得 られる電極中の炭素材料粉末の分散性が不十分となり易く、 期待 される電極特性の向上を、 電池出力の更なる向上を確実かつ十分 に図ることができていないことを本発明者らは見出した。
【 0 0 1 1】 更に、 特開 2 0 0 0— 4 0 5 0 4号公報に記載の 有機電解液電池用正極合剤は、 溶媒からなるスラリーを熱風中に 噴霧乾燥 (spray drying) することにより正極活物質、 導電剤及 び結着剤からなる塊 (複合粒子) と して製造される。 この場合、 正極活物質、 導電剤及び結着剤が溶媒中に分散した状態で乾燥及 び固化が進行するため、 乾燥中に結着剤同士の凝集及び導電剤の 凝集が進行し、 得られる塊 (複合粒子) を構成する各正極活物質 からなる粒子の表面に、 導電剤及び結着剤がそれぞれ効果的な導 電ネッ トワークを保ち十分に分散した状態で密着していないため
、 電池出力の更なる向上を確実かつ十分に図ることができていな いことを本発明者らは見出した。
【 0 0 1 2】 より詳しくは、 特開 2 0 0 0— 4 0 5 0 4号公報 に記載の技術では、 図 2 2に示すように、 得られる塊 (複合粒子 ) P 1 0 0を構成する各正極活物質からなる粒子の中には、 大き な結着剤からなる凝集体 P 3 3のみに囲まれて、 該塊 (複合粒子 ) P 1 0 0中に電気的に孤立して利用されないもの P 1 1が多く 存在することことを本発明者らは見出した。 また、 乾燥中に導電 剤からなる粒子が凝集体となると、 得られる塊 (複合粒子) P 1 0 0中で、 導電剤からなる粒子が凝集体 P 2 2 と して偏在してし まい、 該塊 (複合粒子) P 1 0 0中十分な電子伝導パス (電子伝 導ネッ トワーク) を構築できず、 十分な電子伝導性を得ることが できていないことを本発明者らは見出した。 更に、 導電剤からな る粒子の凝集体 P 2 2が大きな結着剤からなる凝集体 P 3 3のみ に囲まれて電気的に孤立することもあり、 この観点からも該塊 ( 複合粒子) P 1 0 0中十分な電子伝導パス (電子伝導ネッ トヮー ク) を構築できず、 十分な電子伝導性を得ることができていない ことを本発明者らは見出した。
【 0 0 1 3】 また、 上述の特開平 2— 2 6 2 2 4 3号公報及び 特開 2 0 0 0— 4 0 5 0 4号公報に記載の複合粒子をはじめとす る従来の電極では、 電極の形状安定性を確保する観点から絶縁性 或いは電子伝導性の低い結着剤 (結着剤) を多量に電極活物質及 び導電助剤とともに使用するため、 この観点からも電極の電子伝 導性を確保することが十分にできていなかった。 更に、 上述の特 開平 2— 2 6 2 2 4 3号公報及び特開 2 0 0 0— 4 0 5 0 4号公 報に記載の複合粒子を使用して電極を作成する場合においても結 着剤を使用しているため、 上記の問題が発生することを本発明者 らは見出した。
【 0 0 1 4】 また、 上記のリチウムイオン 2次電池の他の種類 の 1次電池及び 2次電池においても、 先に述べた従来一般の製造 方法 (湿式法)、 即ち、 電極活物質、 導電助剤及び結着剤を少なく とも含む塗布液を用いる方法により製造した電極を有するものに ついては上述と同様の問題があった。
【 0 0 1 5】 更に、 電池における電極活物質のかわりに電子伝 導性の材料 (炭素材料又は金属酸化物) を電極活物質と して用い 、 これと導電助剤及び結着剤を少なく とも含むスラ リーを用いる 方法により製造した電極を有する電気分解セル、 及び、 キャパシ タ (例えば、 電気二重層キャパシタをはじめとする電気化学キヤ パシタ) においても、 上述と同様の問題があった。
【 0 0 1 6】 本発明は、 上記従来技術の有する課題に鑑みてな されたものであり、 電極の構成材料に結着剤を使用した場合であ つても、 優れた電極特性を有する電極を容易かつ確実に形成する ことのできる電極用複合粒子を提供することを目的とする。 また 、 本発明は、 電極用複合粒子を構成材料と して含み、 内部抵抗が 十分に低減されており、 電気化学素子の出力密度を十分に増大さ せることが容易に可能な優れた電極特性を有する電極、 並びに、 その電極を備えており、 負荷要求が急激に然も大きく変動する場 合であってもこれに十分に追随可能な優れた充放電特性を有する 電気化学素子を提供することを目的とする。 更に、 本発明は、 上 記の電極用複合粒子、 電極及び電気化学素子をそれぞれ容易かつ 確実に得ることのできる製造方法を提供することを目的とする。 【 0 0 1 7】 本発明者らは、 上記目的を達成すべく鋭意研究を 重ねた結果、 従来の電極形成方法では、 電極形成の際に先に述べ た電極活物質、 導電助剤及び結着剤を少なく とも含む塗布液又は 混練物を用いる方法を採用しているため、 得られる電極の活物質 含有層中の電極活物質、 導電助剤及び結着剤の分散状態が不均一 となっていることが上述の問題の発生に対して大きな影響を及ぼ していることを見出した。
【 0 0 1 8】 すなわち、 特開平 1 1 — 2 8 3 6 1 5号公報及び 特開平 2— 2 6 2 2 4 3号公報に記載の技術をはじめとする従来 の塗布液又は混練物を用いる方法では、 塗布液又は混練物を集電 体の表面に塗布して当該表面に塗布液又は混練物からなる塗膜を 形成し、 この塗膜を乾燥させて溶媒を除去することにより活物質 含有層を形成する。 本発明者らは、 この塗膜の乾燥の過程におい て、 比重の軽い導電助剤及び結着剤が塗膜表面付近まで浮き上が つてしまうことを見出した。 そして、 その結果、 塗膜中の電極活 物質、 導電助剤及び結着剤の分散状態が効果的な導電ネッ トヮー クを構築できていない状態、 例えば、 この分散状態が不均一とな り、 電極活物質、 導電助剤及び結着剤の三者間の密着性が充分に 得られず、 得られる活物質含有層中に良好な電子伝導パスが構築 されず、 活物質含有層の比抵抗並びに電荷移動過電圧を十分に低 減できていないことを見出した。
【 0 0 1 9】 更に、 特開 2 0 0 0 — 4 0 5 0 4号公報に記載の 複合粒子をはじめとする従来のスラ リ ーを噴霧乾燥方式 (spray d ry i ng) で造粒する方法では、 同一のスラ リー中に、 正極活物質 ( 力ソー ドの活物質)、 導電剤 (導電助剤)、 及び、 結着剤を含ませ ているために、 得られる造粒物 (複合粒子) 中の電極活物質、 導 電助剤及び結着剤の分散状態は、 スラリー中の電極活物質、 導電 助剤及び結着剤の分散状態 (特に、 スラ リーの液滴の乾燥が進行 する過程での電極活物質、 導電助剤及び結着剤の分散状態) に依 存するため、 先に図 2 2を用いて述べた、 結着剤の凝集とその偏 在、 及び、 導電助剤の凝集とその偏在が起こり、 得られる造粒物 (複合粒子) 中の電極活物質、 導電助剤及び結着剤の分散状態が 効果的な導電ネッ ト ワークを構築できていない状態、 例えば、 こ の分散状態が不均一となり、 電極活物質、 導電助剤及び結着剤の 三者間の密着性が充分に得られず、 得られる活物質含有層中に良 好な電子伝導パスが構築されなくなつていることを見出した。 【 0 0 2 0】 また、 本発明者らは、 この場合、 導電助剤及び結 着剤を電解液に接触し、 電極反応に関与できる電極活物質の表面 に選択的にかつ良好に分散させることができず、 反応場で発生す る電子を効率よく伝導させる電子伝導ネッ トワークの構築に寄与 しない無駄な導電助剤が存在したり、 単に電気抵抗を増大させる だけの存在となる無駄な結着剤が存在していることことを見出し た。 【 0 0 2 1】 更に、 本発明者らは、 特開平 2— 2 6 2 2 4 3号 公報及び特開 2 0 0 0— 4 0 5 0 4号公報の複合粒子をはじめと する従来技術では、 塗膜中の電極活物質、 導電助剤及び結着剤の 分散状態が不均一となるため、 集電体に対する電極活物質及び導 電助剤の密着性も充分に得られていないことも見出した。 特に、 塗膜及びこれより得られる電極中の電極活物質、 導電助剤及び結 着剤の分散状態が不均一となり、 これらの成分がそれぞれ電極中 で偏在してしまう問題は、 電極の厚さを大きくする場合に顕著と なる。
【 0 0 2 2】 そして本発明者らは、 結着剤を用いた場合には電 極の内部抵抗が増大する傾向にあるということが当業者の一般的 な認識であったにも拘わらず、 以下のことを見出し、 本発明に到 達した。 すなわち、 本発明者らは、 電極活物質、 導電助剤及び結 着剤を含む粒子を以下の造粒工程を経て予め形成し、 これを構成 材料として電極の活物質含有層を形成すれば、 結着剤が含まれて いるにも拘わらず、 比抵抗値 (或いは、 みかけの堆積でノーマラ ィズした場合の内部抵抗値) が電極活物質そのものの値よりも十 分に低い活物質含有層を構成できることを見出し、 本発明に到達 した。
【 0 0 2 3】 すなわち、 本発明は、 電極活物質と、 電子伝導性 を有する導電助剤と、 電極活物質と導電助剤とを結着させること が可能な結着剤と、 を含む電極用複合粒子であって、
電極活物質からなる粒子に対し、 導電助剤と結着剤とを密着させ て一体化させる造粒工程を経て形成されており、
造粒工程は、
結着剤と導電助剤と溶媒とを含む原料液を調製する原料液調製ェ 程と、
流動槽中に電極活物質からなる粒子を投入し、 電極活物質からな る粒子を流動層化させる流動層化工程と、
電極活物質からなる粒子を含む流動層中に原料液を噴霧すること により、 原料液を電極活物質からなる粒子に付着、 乾燥させ、 電 極活物質からなる粒子の表面に付着した原料液から溶媒を除去し. 結着剤により電極活物質からなる粒子と導電助剤からなる粒子と を密着させる噴霧乾燥工程と、
を含んでいること、
を特徴とする電極用複合粒子を提供する。
【 0 0 2 4 】 ここで、 本発明において、 電極用複合粒子の構成 材料となる 「電極活物質」 とは、 形成すべき電極により以下の物 質を示す。 すなわち、 形成すべき電極が 1次電池のァノードと し て使用される電極の場合には 「電極活物質」 とは還元剤を示し、 1次電池の力ソードの場合には「電極活物質」 とは酸化剤を示す。 また、 「電極活物質よりなる粒子」 中には、 本発明の機能 (電極活 物質の機能) を損なわない程度の電極活物質以外の物質が入って いてもよレヽ。
【 0 0 2 5】 また、 形成すべき電極が 2次電池に使用されるァ ノード(放電時)の場合には、 「電極活物質」とは還元剤であって、 その還元体及び酸化体の何れの状態においても化学的安定に存在 可能な物質であり、 酸化体から還元体への還元反応及び還元体か ら酸化体への酸化反応が可逆的に進行可能である物質を示す。 更 に、 形成すべき電極が 2次電池に使用される力ソード (放電時) の場合には、 「電極活物質」 とは酸化剤であって、 その還元体及び 酸化体の何れの状態においても化学的安定に存在可能な物質であ り、 酸化体から還元体への還元反応及び還元体から酸化体への酸 化反応が可逆的に進行可能である物質を示す。
【 0 0 2 6】 また、 上記以外にも、 形成すべき電極が 1次電池 及び 2次電池に使用される電極の場合、 「電極活物質」 は、 電極反 応に関与する金属イオンを吸蔵又は放出 (イ ンター力レー ト、 又 は、 ドープ * 脱ドープ) することが可能な材料であってもよい。 この材料と しては、 例えば、 リチウムイオン 2次電池のアノー ド 及び Z又は力ソー ドに使用される炭素材料や、 金属酸化物 (複合 金属酸化物を含む) 等が挙げられる。
【 0 0 2 7】 なお、 説明の便宜上、 本明細書においては、 ァノ ー ドの電極活物質を 「アノー ド活物質」 といい、 力ソー ドの電極 活物質を 「力ソー ド活物質」 という。 この場合の 「アノー ド活物 質」 という場合の 「アノード」 とは、 電池の放電時の極性を基準 とするもの (負極活物質) であり、 「力ソード活物質」 という場合 の 「力ソード」 は、 電池の放電時の極性を基準とするもの (正極 活物質) である。 アノード活物質及び力ソード活物質の具体的な 例示については後述する。
【 0 0 2 8】 また、 形成すべき電極が電気分解セルに使用され る電極又はキャパシタ (コンデンサ) に使用される電極の場合に は、 「電極活物質」 とは、 電子伝導性を有する、 金属 (金属合金を 含む)、 金属酸化物又は炭素材料を示す。
【 0 0 2 9】 上述の造粒工程では、 流動槽中において、 電極活 物質からなる粒子に、 導電助剤と結着剤とを含む原料液の微小な 液滴を直接噴霧するため、 先に述べた従来の複合粒子の製造方法 の場合に比較して、 複合粒子を構成する各構成粒子の凝集の進行 を十分に防止でき、 その結果、 得られる複合粒子中の各構成粒子 の偏在化を十分に防止できる。 また、 導電助剤及び結着剤を電解 液に接触し、 電極反応に関与できる電極活物質の表面に選択的に かつ良好に分散させることができる。
【 0 0 3 0】 そのため、 本発明の電極用複合粒子は、 導電助剤、 電極活物質及び結着剤のそれぞれを極めて良好な分散状態で互い に密着せしめた粒子となる。 また、 本発明の電極用複合粒子は、 造粒工程において、 流動槽中の温度、 流動槽中に噴霧する原料液 の噴霧量、 流動槽中に発生させる気流中に投入する電極活物質の 投入量、 流動槽中に発生させる気流の速度、 気流の流れ (循環) の様式 (層流、 乱流等) 等を調節することにより、 その粒子サイ ズを調節することができる。 そして、 この電極用複合粒子は、 電 極を製造する際の塗布液又は混練物の構成材料に使用される。
【 0 0 3 1 】 このよ うに上述の造粒工程では、 流動している粒 子に導電助剤等を含む原料液の液滴を直接噴霧できればよいため、 その流動の方法は特に限定されず、 例えば、 気流を発生させてこ の気流によ り、 粒子を流動させる流動槽ゃ、 撹拌羽によ り粒子を 回転流動させる流動槽ゃ、 振動により粒子を流動させる流動槽等 を用いることができる。 但し、 電極用複合粒子の製造方法におい ては、 得られる複合粒子の形状 · サイズを均一にする観点から、 流動層化工程において、 流動槽中に気流を発生させ、 該気流中に 前記電極活物質からなる粒子を投入し、 前記電極活物質からなる 粒子を流動層化させることが好ましい。
【 0 0 3 2】 この電極用複合粒子内部には、 極めて良好な電子 伝導パス (電子伝導ネッ トワーク) が 3次元的に構築されている。 この電子伝導パスの構造は、 この粒子を含む塗布液又は混練物を 調製した後においても、 調製条件を調節すること (例えば、 塗布 液を調製する際の分散媒又は溶媒の選択等) によりほぼ当初の状 態を保持させることが容易にできる。
【 0 0 3 3】 そのため、 集電部材表面に、 電極用複合粒子を含 む塗布液又は混練物からなる液膜を形成し、 次いで、 液膜を固化 させる過程 (例えば、 液膜を乾燥させる等の過程) において、 従 来のような導電助剤、 電極活物質及び結着剤の間の密着性の低下、 並びに、 集電部材表面に対する導電助剤及び電極活物質の密着性 の低下を充分に防止することができる。
【 0 0 3 4】 その結果、 本発明者らは、 本発明において得られ る電極の活物質含有層内には従来の電極に比較して極めて良好な 電子伝導パス (電子伝導ネッ トワーク) が 3次元的に構築されて いると推察している。
【 0 0 3 5】 また、 電極の活物質含有層を比較的厚くする場合
(例えば、 1 5 0 μ m以上とする場合) であっても、 本発明の電 極用複合粒子を用いることにより、 従来よりも良好な電極特性を 得ることができる。 すなわち、 電池等の電気化学素子の容量当り のエネルギー密度を従来より も容易かつ確実に向上させることが できる。 更に、 電極の活物質含有層を比較的薄くする場合 (例え ば、 1 0 0 μ m以下とする場合) であっても、 優れた電子伝導性 を有する本発明の電極用複合粒子を用いることにより、 内部抵抗 の低い電極を形成できるので、 この電極を備える電気化学素子は、 従来のものよ り も比較的高い電流密度 (例えば、 活物質含有層の 厚さを 1 O O /z mとしたときに S m A Z c m 2以上) での速やかで ありかつ再現性のよい充放電 (ただし電気化学素子が 1次電池の 場合は放電のみ) が可能となる。
【 0 0 3 6】 なお、 (A ) 電極用複合粒子を形成する際に構成材 料と してイオン伝導性を有する導電性高分子を更に添加する力、
( B ) 電極形成用塗布液又は電極形成用混練物を調製する際に、 イオン伝導性を有する導電性高分子を電極用複合粒子以外の構成 成分として添加するか、 (C ) イオン伝導性を有する導電性高分子 を、 電極用複合粒子の構成材料、 及び、 電極形成用塗布液又は電 極形成用混練物の構成成分と して何れにも添加するかのいずれか の手法をおこなうことによっても、 電極の活物質含有層内に極め て良好なイオン伝導パスを容易に構築することができる。
【 0 0 3 7】 また、 電極用複合粒子の構成材料となる結着剤と してイオン伝導性を有する導電性高分子を使用可能な場合には、 イオン伝導性を有する導電性高分子を使用してもよい。 イオン伝 導性を有する結着剤も活物質含有層内のイオン伝導パスの構築に 寄与すると考えられる。 この電極用複合粒子を用いることにより 先に述べたポリマー電極を形成することができる。 また、 電極用 複合粒子の構成材料となる結着剤と して、 電子伝導性を有する高 分子電解質を使用してもよい。
【 0 0 3 8】 このような構成とすることにより、 本発明では、 従来の電極よりも優れた電子伝導性及びイオン伝導性を有する電 極を容易かつ確実に形成することができる。 本発明の電極用複合 粒子を用いて形成される電極は、 活物質含有層内で進行する電荷 移動反応の反応場となる導電助剤、 電極活物質及び電解質 (固体 電解質又は液状電解質) との接触界面が、 3次元的にかつ充分な 大きさで形成されており、 なおかつ、 活物質含有層と集電部材と の電気的接触状態も極めて良好な状態にある。
【 0 0 3 9】 また、 本発明においては、 導電助剤、 電極活物質 及び結着剤のそれぞれの分散状態が極めて良好な電極用複合粒子 を予め形成するため、 導電助剤及び結着剤の添加量を従来より も 充分に削減できる。
【 0 0 4 0】 なお、 本発明において、 導電性高分子を用いる場 合、 導電性高分子は、 先に述べた電極用複合粒子の構成要素とな る導電性高分子と同種であっても異種であってもよい。
【 0 0 4 1】 更に、 本発明においては、 電極活物質が 1次電池 又は 2次電池のカソードに使用可能な活物質であってもよい。 ま た、 本発明においては、 電極活物質が 1次電池又は 2次電池のァ ノードに使用可能な活物質であってもよい。 更に、 本発明におい ては、 電極活物質が電気分解セル又はキャパシタを構成する電極 に使用可能な電子伝導性を有する炭素材料又は金属酸化物であつ てもよい。 なお、 本発明においては、 電気分解セル又はキャパシ タは、 第 1の電極 (アノード) と、 第 2の電極 (力ソード) と、 イオン伝導性を有する電解質層とを少なく とも備えており、 第 1 の電極 (アノード) と第 2の電極 (力ソード) とが電解質層を介 して対向配置された構成を有する電気化学セルを示す。 また、 本 明細書において、 「キャパシタ」 は 「コンデンサ」 と同義とする。 【 0 0 4 2】 電極用複合粒子を含む電極を、 アノード及びカソ 一ドのうちの少なく とも一方、 好ましくは両方と して備えること により、 優れた充放電特性を得ることのできる電気化学素子を容 易かつ確実に構成することができる。
【 0 0 4 3】 また、 本発明は、 電極活物質と、 電子伝導性を有 する導電助剤と、 電極活物質と導電助剤とを結着させることが可 能な結着剤と、 を含む複合粒子を構成材料と して含む導電性の活 物質含有層と、
活物質含有層に電気的に接触した状態で配置される導電性の集電 体と、
を少なく とも有しており、
複合粒子は、 電極活物質からなる粒子に対し、 導電助剤と結着剤 とを密着させて一体化させる造粒工程を経て形成されており、 活物質含有層において、 電極活物質と導電助剤とが孤立せずに電 気的に結合していること、
を特徴とする電極を提供する。
【 0 0 4 4】 従来の電極に比較して本発明の電極は活物質含有 層の比抵抗並びに電荷移動過電圧が十分に低減されているため、 電気化学素子の出力密度を十分に増大させることが容易かつ確実 にできる。
【 0 0 4 5】 本発明の電極に使用する複合粒子は導電助剤、 電 極活物質及び結着剤のそれぞれを極めて良好な分散状態で互いに 密着せしめた粒子である。 そして、 この複合粒子は、 電極の活物 質含有層を後述する乾式法により製造する際の粉体の主成分と し て使用されるか、 又は、 電極の活物質含有層を後述する湿式法に より製造する際の塗布液又は混練物の構成材料に使用される。 【 0 0 4 6】 この複合粒子内部には、 極めて良好な電子伝導パ ス (電子伝導ネッ トワーク) が 3次元的に構築されている。 この 電子伝導パスの構造は、 電極の活物質含有層を後述する乾式法に より製造する際の粉体の主成分と して使用する場合には加熱処理 により活物質含有層を形成した後においてもほぼ当初の状態を保 持させることができる。 また、 この電子伝導パスの構造は、 電極 の活物質含有層を後述する湿式法により製造する際の塗布液又は 混練物の構成材料と して使用する場合、 この複合粒子を含む塗布 液又は混練物を調製した後においても、 調製条件を調節すること (例えば、 塗布液を調製する際の分散媒又は溶媒の選択等) によ りほぼ当初の状態を保持させることが容易にできる。
【 0 0 4 7】 すなわち、 本発明の電極は、 上記の複合粒子の構 造を維持した状態で形成されるため、 活物質含有層において、 電 極活物質と導電助剤とが孤立せずに電気的に結合している。 その ため、 活物質含有層中には、 極めて良好な電子伝導パス (電子伝 導ネッ トワーク) が 3次元的に構築されている。 ここで、 「活物質 含有層において、 電極活物質と導電助剤とが孤立せずに電気的に 結合していること」 とは、 活物質含有層において、 電極活物質か らなる粒子 (又はその凝集体) と導電助剤からなる粒子 (又はそ の凝集体) とが 「実質的に」 孤立せずに電気的に結合しているこ とを示す。 よ り詳しく は、 電極活物質からなる粒子 (又はその凝 集体) と導電助剤からなる粒子の全てが完全に孤立せずに電気的 に結合しているのではなく、 本発明の効果を得られる水準の電気 抵抗を達成できる範囲で電気的に十分に結合していることを示す c
【 0 0 4 8】 そして、 この 「活物質含有層において、 電極活物 質と導電助剤とが孤立せずに電気的に結合している」 状態は、 本 発明の電極の活物質含有層の断面の S EM (Scanning Electron Micro Scope : 走査型電子顕微鏡) 写真、 T E M (Transmission Electron Microscope:透過型電子顕微鏡) 写真及び E D X (Energy
Dispersive X - ray Fluorescence Spectrometer: ェ不ノレキ1 ~力、散 型 X線分析装置)分析データにより確認することができる。 また、 本発明の電極は、 その活物質含有層の断面の S EM写真、 T EM 写真及び E D X分析データと、 従来の電極の S EM写真、 T EM 写真及び E D X分析データとを比較することによ り、 従来の電極 と明確に区別することができる。 【 0 0 4 9】 また、 本発明の電極においては、 造粒工程が、 結着剤と導電助剤と溶媒とを含む原料液を調製する原料液調製ェ 程と、
流動槽中に電極活物質からなる粒子を投入し、 電極活物質からな る粒子を流動層化させる流動層化工程と、
電極活物質からなる粒子を含む流動層中に原料液を噴霧すること により、 原料液を電極活物質からなる粒子に付着、 乾燥させ、 電 極活物質からなる粒子の表面に付着した原料液から溶媒を除去し. 結着剤により電極活物質からなる粒子と導電助剤からなる粒子と を密着させる噴霧乾燥工程と、
を含んでいることが好ましい。
【 0 0 5 0】 上述の構成の造粒工程を採用することにより、 先 に述べた複合粒子をより確実に形成することができ、 ひいては本 発明の効果をより確実に得ることができるようになる。 この造粒 工程では、 流動槽中において、 電極活物質からなる粒子に、 導電 助剤と結着剤とを含む原料液の微小な液滴を直接噴霧するため、 先に述べた従来の複合粒子の製造方法の場合に比較して、 複合粒 子を構成する各構成粒子の凝集の進行を十分に防止でき、 その結 果、 得られる複合粒子中の各構成粒子の偏在化を十分に防止でき る。 また、 導電助剤及び結着剤を電解液に接触し、 電極反応に関 与できる電極活物質の表面に選択的にかつ良好に分散させること ができる。
【 0 0 5 1】 そのため、 複合粒子は、 導電助剤、 電極活物質及 び結着剤のそれぞれを極めて良好な分散状態で互いに密着せしめ た粒子となる。 また、 複合粒子は、 造粒工程において、 流動槽中 の温度、 流動槽中に噴霧する原料液の噴霧 S、 流動槽中に発生さ せる気流中に投入する電極活物質の投入量、 流動槽中に発生させ る気流の速度、 気流の流れ (循環) の様式 (層流、 乱流等) 等を 調節することにより、 その粒子サイズを調節することができる。
【 0 0 5 2】 この構成の造粒工程により形成される複合粒子内 部には、 極めて良好な電子伝導パス (電子伝導ネッ トワーク) が
3次元的により確実に構築されている。 そして、 この場合にも、 この電子伝導パスの構造は、 電極の活物質含有層を後述する乾式 法により製造する際の粉体の主成分と して使用する場合には加熱 処理により活物質含有層を形成した後においてもほぼ当初の状態 を保持させることができる。 また、 この電子伝導パスの構造は、 電極の活物質含有層を後述する湿式法により製造する際の塗布液 又は混練物の構成材料と して使用する場合、 この複合粒子を含む 塗布液又は混練物を調製した後においても、 調製条件を調節する こと (例えば、 塗布液を調製する際の分散媒又は溶媒の選択等) によりほぼ当初の状態を保持させることが容易にできる。
【 0 0 5 3】 そのため、 電極の活物質含有層を後述する乾式法 により製造する際の粉体の主成分と してこの複合粒子を用いる場 合には、 従来のような導電助剤、 電極活物質及び結着剤の間の密 着性の低下、 並びに、 集電体表面に対する導電助剤及び電極活物 質の密着性の低下を充分に防止することができる。
【 0 0 5 4】 また、 電極の活物質含有層を後述する湿式法によ り製造する場合にも、 集電体表面に、 複合粒子を含む塗布液又は 混練物からなる液膜を形成し、 次いで、 液膜を固化させる過程 (例 えば、 液膜を乾燥させる等の過程) において、 従来のような導電 助剤、 電極活物質及び結着剤の間の密着性の低下、 並びに、 集電 体表面に対する導電助剤及び電極活物質の密着性の低下を充分に 防止することができる。
【 0 0 5 5】 その結果、 本発明の電極の活物質含有層内には従 来の電極に比較して極めて良好な電子伝導パス (電子伝導ネッ ト ワーク) が 3次元的に構築されており、 活物質含有層の比抵抗並 びに電荷移動過電圧を飛躍的に低減することが可能となっている と本発明者らは推察している。
【 0 0 5 6】 更に、 電極の活物質含有層を比較的薄くする場合 (例えば、 1 0 0 m以下とする場合) であっても、 優れた電子 伝導性を有する上記複合粒子を用いることにより、 内部抵抗 (ィ ンピーダンス) の低い電極を形成できるので、 この電極を備える 電気化学素子は、従来のものよりも比較的高い電流密度(例えば、 活物質含有層の厚さを 1 0 O mと したときに S mAZ c m2以 上) での速やかでありかつ再現性のよい充放電 (ただし電気化学 素子が 1次電池の場合は放電のみ) が可能となり、 容易に高出力 化を図ることができる。
【 0 0 5 7】 この場合、 電気化学素子の高出力化をより確実に 図る観点から、 活物質含有層の厚さ Tと、 該活物質含有層に含有 される複合粒子の平均粒子径 d とが下記式 ( 1 ) 〜 ( 3 ) で表さ れる条件を満たしていることが好ましい。
0. 0 0 0 5 ≤ (T/ d ) ≤ 1 - - · ( 1 )
Figure imgf000021_0001
l /z m≤ d ≤ 2 0 0 0 Ai m · · · ( 3 )
【 0 0 5 8】 式 ( 1 ) 〜 ( 3 ) の条件を同時に満たさない場合 以下の傾向が大きくなる。 すなわち、 式 ( 1 ) の (T/ d ) が 0. 0 0 0 5未満である場合には、 活物質含有層を形成するために集 電体上に散布 (配置) した複合粒子からなる層を圧延する際の圧 力が高く なり、 先に述べた複合粒子中の良好な電子伝導ネッ トヮ ークを維持することが困難になる傾向が大きく なる。
【 0 0 5 9】 また、 式 ( 1 ) の (T/ d ) が 1 を超える場合に は、 活物質含有層中で、 複数の複合粒子が集電体の面の法線方向 に積み重なって並んだ状態ができて、 複合粒子同士の接触界面が 形成される。 この複合粒子同士の界面抵抗 (電気抵抗) は複合粒 子中の内部抵抗よ り も大きいため、 十分な出力特性が得られなく なる傾向が大きくなる。
【 0 0 6 0】 更に、 式 ( 2 ) の Tが 1 μ m未満となると、 活物 質含有層の機械的強度が不十分となり、 十分なハンドリ ング性が 得られなく なる傾向が大きく なる。 また、 式 ( 2 ) の Tが 1 5 0 /x mを超えると、 活物質含有層上部 (集電体に接触する面と反対 側の面の近傍部分) と集電体との距離が大きく なり、 電荷移動パ スが長くなつて、 十分な出力特性が得られなく なる傾向が大きく なる。
【 0 0 6 1】 また、 式 ( 3 ) の d力 S l i m未満となると、 複合 粒子を製造する際の核となる粒子 (電極活物質からなる粒子など) が小さすぎて、 十分に複合化を行うことができなく なる傾向が大 きく なる。 先に述べたよ うに造粒工程を、 流動槽を用いて行う場 合には、 流動槽中で核となる粒子が凝集して安定した流動層を形 成することが困難となる傾向が大きく なる。 また、 式 ( 3 ) の d が 2 mmを超えると、 複合粒子を製造する際の核となる粒子と し て粒径の大きな粒子を使用しなければならなく なる。 この場合、 粒径の大きな粒子內のイオン拡散速度が大きいため、 十分な出力 特性が得られなくなる傾向が大きくなる。
【 0 0 6 2】 なお、 本発明の電極は、 活物質含有層には、 導電 性高分子が更に含有されていていることを特徴と していてもよい, これにより先に述べたポリマー電極を形成することができる。 こ の場合、 導電性高分子はイオン伝導性を有する導電性高分子であ ることを特徴と していてもよく、 導電性高分子は電子伝導性を有 する導電性高分子であることを特徴と していてもよい。 また、 導 電性高分子と してイオン伝導性を有する導電性高分子と電子伝導 性を有する導電性高分子とを併用してもよい。
【 0 0 6 3】 このような構成とすることにより、 本発明では、 従来の電極より も優れた電子伝導性及びイオン伝導性を有する電 極を容易かつ確実に形成することができる。 このよ うな導電性高 分子は、 電極の活物質含有層を後述する乾式法により製造する際 の粉体の主成分と して複合粒子を使用する場合には、 該粉体中に 複合粒子以外の構成成分と して添加することにより活物質含有層 中に含有させることができる。また、 このような導電性高分子は、 電極形成用塗布液又は電極形成用混練物を調製する際には、 導電 性高分子を複合粒子以外の構成成分と して添加することにより活 物質含有層中に含有させることができる。
【 0 0 6 4】 また、 本発明の電極では、 複合粒子を形成する際 に構成材料として導電性高分子を更に添加してもよい。 すなわち、 複合粒子には、 導電性高分子が更に含有されていることを特徴と していてもよい。 この場合にもこの場合、 導電性高分子はイオン 伝導性を有する導電性高分子であることを特徴と していてもよく、 導電性高分子は電子伝導性を有する導電性高分子であることを特 徴と していてもよい。 また、 導電性高分子と してイオン伝導性を 有する導電性高分子と電子伝導性を有する導電性高分子とを併用 してもよレ、。 【 0 0 6 5 】 このよ う に、 導電性高分子を含有させた複合粒子 を用いて活物質含有層を構成することにより、 電極の活物質含有 層内に極めて良好なイオン伝導パス及び又は電子伝導パスを容易 に構築することができる。 このような導電性高分子は、 複合粒子 を形成する際に構成材料と して更に添加することにより複合粒子 中に含有させることができる。
【 0 0 6 6】 また、 本発明の電極においては、 複合粒子の構成 材料となる結着剤と して導電性高分子を使用可能な場合には、 ィ オン伝導性を有する導電性高分子を使用してもよい。 すなわち、 本発明においては、 結着剤が導電性高分子からなることを特徴と していてもよい。 イオン伝導性を有する結着剤は活物質含有層内 のイオン伝導パスの構築に寄与し、 電子伝導性を有する結着剤は 活物質含有層内の電子伝導パスの構築に寄与すると考えられる。
【 0 0 6 7】 また、 導電性高分子は、 複合粒子の構成材料、 並 びに、 電極形成用の粉体 (乾式法) の構成成分、 電極形成用塗布 液 (湿式法) の構成成分、 及び、 電極形成用の混練物 (湿式法) の構成成分と して何れにも添加してもよい。 この場合にも電極の 活物質含有層内に極めて良好なイオン伝導パスを容易に構築する ことができる。
【 0 0 6 8】 複合粒子を用いて形成される電極は、 活物質含有 層内で進行する電子移動反応の反応場となる導電助剤、 電極活物 質及び電解質 (固体電解質又は液状電解質) との接触界面が、 3 次元的にかつ充分な大きさで形成されており、 なおかつ、 活物質 含有層と集電体との電気的接触状態も極めて良好な状態にある。 【 0 0 6 9】 また、 本発明においては、 導電助剤、 電極活物質 及び結着剤のそれぞれの分散状態が極めて良好な複合粒子を予め 形成するため、 導電助剤及び結着剤の添加量を従来より も充分に 削減できる。
【 0 0 7 0】 なお、 本発明の電極において、 導電性高分子を用 いる場合、 導電性高分子は、 先に述べた複合粒子の構成要素とな る導電性高分子と同種であっても異種であってもよい。
【 0 0 7 1】 更に、 本発明の電極においては、 電極活物質が 1 次電池又は 2次電池の力ソードに使用可能な活物質であってもよ レ、。 また、 本発明においては、 電極活物質が 1次電池又は 2次電 池のアノードに使用可能な活物質であってもよい。 更に、 本発明 においては、 電極活物質が電気分解セル又はキャパシタを構成す る電極に使用可能な電子伝導性を有する炭素材料又は金属酸化物 であってもよレヽ。
【 0 0 7 2】 また、 本発明は、 アノードと、 力ソードと、 ィォ ン伝導性を有する電解質層とを少なく とも備えており、 アノード とカソードとが電解質層を介して対向配置された構成を有する電 気化学素子であって、 先に述べた本発明の電極のうちの何れかの 電極がアノード及び力ソードのうちの一方或いは両方の電極と し て備えられていること、 を特徴とする電気化学素子を提供する。 【 0 0 7 3】 複合粒子を含む活物質含有層を備えた本発明の電 極を、 ァノード及び力ソードのうちの少なく とも一方、 好ましく は両方と して備えることにより、 負荷要求が急激かつ大きく変動 する場合であってもこれに十分に追随可能な優れた充放電特性を 有する電気化学素子を容易かつ確実に構成することができる。 【 0 0 7 4】 ここで、 本発明において、 「電気化学素子」 とは、 互いに対向する第 1の電極 (アノード) 及び第 2の電極 (カソ一 ド) とを少なく とも有しており、 これら第 1の電極と第 2の電極 との間に配置されるイオン伝導性を有する電解質層を少なく とも 備えた構成を有するものを示す。 また、 「イオン伝導性を有する電 解質層」 とは、 ( i ) 絶縁性材料から形成された多孔質のセパレ一 タであって、 その内部に電解質溶液 (或いは電解質溶液にゲル化 剤を添加することにより得られるゲル状の電解質) が含浸されて いるもの、 ( i i ) 固体電解質膜 (固体高分子電解質からなる膜又 はイオン伝導性無機材料を含む膜)、 ( i i i ) 電解質溶液にゲル 化剤を添加することによ り得られるゲル状の電解質からなる層、 ( i V ) 電解質溶液からなる層を示す。
【 0 0 7 5】 なお、 上記 ( i ) 〜 ( i V ) の構成の何れの場合 にも、 第 1の電極及び第 2の電極の内部にもそれぞれに使用され る電解質が含有されている構成を有していてもよい。
【 0 0 7 6】 また、 本明細書においては、 ( i ) 〜 ( i i i ) の 構成において、 第 1 の電極 (アノード)、 電解質層、第 2の電極 (力 ソード) からなる積層体を、 必要に応じて 「素体」 という。 更に、 素体は、 上記 ( i ) 〜 ( i i i ) の構成のように、 3層構造のも のの他に、 上記電極と電解質層とが交互に積層された 5層以上の 構成を有していてもよい。
【 0 0 7 7】 また、 上記 ( i ) 〜 ( i V ) の構成の何れの場合 にも、 電気化学素子は、 複数の単位セルを 1つのケース内に直列 或いは並列に配置させたモジュールの構成を有していてもよい。
【 0 0 7 8】 また、 本発明の電気化学素子は、 電解質層が固体 電解質からなることを特徴と していてもよい。 この場合、 固体電 解質が、 セラミ ック ス固体電解質、 固体高分子電解質、 又は、 液 状電解質にゲル化剤を添加して得られるゲル状電解質からなるこ とを特徴と していてもよレ、。 【 0 0 7 9】 この場合には、 構成要素が全て固体である電気化 学素子 (例えば、 いわゆる 「全固体型電池」) を構成することがで きる。 これによ り電気化学素子の軽量化、 エネルギー密度の向上 及び安全性の向上をより容易に図ることができる。
【 0 0 8 0】 電気化学素子と して 「全固体型電池」 を構成した 場合 (特に全固体型のリチウムイオン 2次電池を構成した場合) には、 下記 ( I ) 〜 ( I V ) の利点を有する。 即ち、 ( I ) 電解質 層が液状電解液ではなく 固体電解質からなるため、 液漏れの発生 がなく、 優れた耐熱性 (高温安定性) を得ることができ、 電解質 成分と電極活物質との反応を十分に防止できる。 そのため、 優れ た電池の安全性及び信頼性を得ることができる。 ( I I ) 液状電解 液からなる電解質層では困難であった金属リチウムをアノードと して使用すること (いわゆる 「金属リチウム 2次電池」 を構成す ること) が容易にでき、 更なるエネルギー密度の向上を図ること ができる。 ( I I I ) 複数の単位セルを 1つのケース内に配置させ たモジユールを構成する場合に、 液状電解液からなる電解質層で は実現不可能であつた複数の単位セルの直列接合が可能になる。 そのため、 様々な出力電圧、 特に比較的大きな出力電圧を有する モジュールを構成することができる。 ( I V ) 液状電解液からなる 電解質層を備える場合に比較して、 採用可能な電池形状の自由度 が広く なると共に電池をコンパク トに構成することが容易にでき る。 そのため、 電源と して搭載される携帯機器等の機器内の設置 条件 (設置位置、 設置スペースの大きさ及び、 設置スペースの形 状等の条件) に容易に適合させることができる。
【 0 0 8 1 】 また、 本発明の電気化学素子は、 電解質層が、 絶 縁性の多孔体からなるセパレ一タと、 セパレータ中に含侵された 液状電解質又は固体電解質と、 からなることを特徴と してもよい。 この場合にも固体電解質を用いる場合は、 セラ ミ ックス固体電解 質、 固体高分子電解質、 又は、 液状電解質にゲル化剤を添加して 得られるゲル状電解質を使用することができる。
【 0 0 8 2】 また、 本発明は、 電極活物質からなる粒子に対し、 導電助剤と、 電極活物質と導電助剤とを結着させることが可能な 結着剤とを密着させて一体化することによ り、 電極活物質と、 導 電助剤と、 結着剤とを含む複合粒子を形成する造粒工程を有して おり、
造粒工程は、
結着剤と導電助剤と溶媒とを含む原料液を調製する原料液調製ェ 程と、
流動槽中に電極活物質からなる粒子を投入し、 電極活物質からな る粒子を流動層化させる流動層化工程と、
電極活物質からなる粒子を含む流動層中に原料液を噴霧すること により、 原料液を電極活物質からなる粒子に付着、 乾燥させ、 電 極活物質からなる粒子の表面に付着した原料液から溶媒を除去し. 結着剤によ り電極活物質からなる粒子と導電助剤からなる粒子と を密着させる噴霧乾燥工程と、
を含むこと、
を特徴とする電極用複合粒子の製造方法を提供する。
【 0 0 8 3】 上述の造粒工程を経ることによ り、 先に述べた構 造を有する本発明の電極用複合粒子を容易かつ確実に形成するこ とができる。 そのため、 この製造方法によ り得られる電極用複合 粒子を用いることにより、 優れた分極特性を有する電極をより容 易かつ確実に形成することができ、 ひいては優れた充放電特性を 有する電気化学素子を容易かつ確実に構成することができる。
【 0 0 8 4】 ここで、 本発明の電極用複合粒子の製造方法にお ける造粒工程において、 上述の 「電極活物質からなる粒子に導電 助剤と結着剤とを密着させて一体化すること」 とは、 電極活物質 からなる粒子の表面の少なく とも一部分に、 導電助剤からなる粒 子と結着剤からなる粒子とをそれそれ接触させた状態とすること を示す。 すなわち、 電極活物質からなる粒子の表面は、 導電助剤 からなる粒子と結着剤からなる粒子とによりその一部が覆われて いれば十分であり、 全体が覆われている必要は無い。 なお、 本発 明の電極用複合粒子の製造方法の造粒工程において使用する 「結 着剤」 は、 これとともに使用される電極活物質と導電助剤とを結 着させることが可能なものを示す。
【 0 0 8 5】 また、 本発明の電極用複合粒子の製造方法におい ては、 先に述べた構造を有する電極用複合粒子をより容易かつよ り確実に形成する観点から、造粒工程は、流動槽中の温度を 5 0 °C 以上で、 結着剤の融点を大幅に越えない温度に調節することが好 ましく、 流動槽中の温度を 5 0 °C以上で、 結着剤の融点以下に調 節することがより好ましい。 この結着剤の融点とは、 その結着剤 の種類にもよるが、 例えば 2 0 0 °C程度である。 流動槽中の温度 が 5 0 °C未満となると、 噴霧中の溶媒の乾燥が不十分となる傾向 が大きくなる。 流動槽中の温度が結着剤の融点を大幅に越えると、 結着剤が溶融し粒子の形成に大きな支障をきたす傾向が大きくな る。 流動槽中の温度が結着剤の融点より も若干上回る程度の温度 であれば、 条件により上記の問題の発生を十分に防止することが できる。 また、 流動槽中の温度が結着剤の融点以下であれば、 上 記の問題は発生しない。 【 0 0 8 6】 更に、 本発明の電極用複合粒子の製造方法におい ては、 先に述べた構造を有する電極用複合粒子をより容易かつよ り確実に形成する観点から、 造粒工程において、 流動槽中に発生 させる気流は、 空気、 窒素ガス、 又は、 不活性ガスからなる気流 であることが好ましい。 更に、 造粒工程において、 流動槽中の湿 度 (相対湿度) は、 上記の好ましい温度範囲において 3 0 %以下 とすることが好ましい。
【 0 0 8 7】 また、 本発明の電極用複合粒子の製造方法におい ては、 造粒工程において、 原料液に含まれる溶媒は結着剤を溶解 可能又は分散可能であるとともに導電助剤を分散可能であること が好ましい。 これによつても、 得られる電極用複合粒子中の結着 剤、 導電助剤及び電極活物質の分散性をより高めることができる。 電極用複合粒子中の結着剤、 導電助剤及び電極活物質の分散性を より高める観点から、 原料液に含まれる溶媒は結着剤を溶解可能 であるとともに導電助剤を分散可能であることがより好ましい。
【 0 0 8 8】 更に、 本発明の電極用複合粒子の製造方法は、 結 着剤と して導電性高分子を使用することを特徴と していてもよい c これにより、 得られる電極用複合粒子には、 導電性高分子が更に 含有されることになる。 そして、 この電極用複合粒子を用いるこ とにより先に述べたポリマー電極を形成することができる。 上記 の導電性高分子はイオン伝導性を有するものであってもよく、 電 子伝導性を有するものであってもよい。 導電性高分子がイオン伝 導性を有するものである場合には、 電極の活物質含有層内に極め て良好なイオン伝導パス (イオン伝導ネッ トワーク) をよ り容易 かつより確実に構築することができる。 導電性高分子が電子伝導 性を有するものである場合には、 電極の活物質含有層内に極めて 良好な電子伝導パス (電子伝導ネッ ト ワーク) をよ り容易かつよ り確実に構築することができる。
【 0 0 8 9】 また、 本発明の電極用複合粒子の製造方法におい ては、 造粒工程において、 原料液には、 導電性高分子が更に溶解 されていてもよい。 この場合にも、得られる電極用複合粒子には、 導電性高分子が更に含有されることになる。 そして、 この電極用 複合粒子を用いることによ り先に述べたポリマー電極を形成する ことができる。 上記の導電性高分子はイオン伝導性を有するもの であってもよく、 電子伝導性を有するものであってもよい。 導電 性高分子がイオン伝導性を有するものである場合には、 電極の活 物質含有層内に極めて良好なイオン伝導パス (イオン伝導ネッ ト ワーク) をより容易かつよ り確実に構築することができる。 導電 性高分子が電子伝導性を有するものである場合には、 電極の活物 質含有層内に極めて良好な電子伝導パス (電子伝導ネッ トワーク) をより容易かつよ り確実に構築することができる。
【 0 0 9 0】 上述の本発明の電極用複合粒子の製造方法によ り 得られる電極用複合粒子を用いることによ り、 優れた分極特性を 有する電極を容易かつ確実に得ることができる。 更に、 この電極 をアノー ド及び力ソードのうちの少なく と も一方、 好ましくは両 方に用いることにより優れた充放電特性を有する電気化学素子を 容易かつ確実に構成することができる。
【 0 0 9 1 】 更に、 本発明は、 電極活物質を含む導電性の活物 質含有層と、 活物質含有層に電気的に接触した状態で配置される 導電性の集電体と、 を少なく とも有する電極の製造方法であって、 電極活物質からなる粒子に対し、 導電助剤と、 電極活物質と導電 助剤とを結着させることが可能な結着剤とを密着させて一体化す ることにより、 電極活物質と、 導電助剤と、 結着剤とを含む複合 粒子を形成する造粒工程と、
集電体の活物質含有層を形成すべき部位に、 複合粒子を用いて活 物質含有層を形成する活物質含有層形成工程と、
を有しており、
造粒工程は、
結着剤と導電助剤と溶媒とを含む原料液を調製する原料液調製ェ 程と、
流動槽中に電極活物質からなる粒子を投入し、 電極活物質からな る粒子を流動層化させる流動層化工程と、
電極活物質からなる粒子を含む流動層中に原料液を噴霧すること により、 原料液を電極活物質からなる粒子に付着、 乾燥させ、 電 極活物質からなる粒子の表面に付着した原料液から溶媒を除去し- 結着剤により電極活物質からなる粒子と導電助剤からなる粒子と を密着させる噴霧乾燥工程と、
を含むこと、
を有することを特徴とする電極の製造方法を提供する。
【 0 0 9 2】 上述の造粒工程を経ることにより、 先に述べた本 発明の電極の構成材料となる複合粒子を容易かつ確実に形成する ことができる。 そのため、 この造粒工程により得られる複合粒子 を用いることにより、 優れた出力密度及び優れた分極特性等の電 極特性を有する電極をより容易かつ確実に形成することができ、 ひいては優れた充放電特性を有する電気化学素子を容易かつ確実 に構成することができる。
【 0 0 9 3】 ここで、 本発明の電極の製造方法における造粒ェ 程において、 上述の 「電極活物質からなる粒子に導電助剤と結着 剤とを密着させて一体化すること」 とは、 電極活物質からなる粒 子の表面の少なく とも一部分に、 導電助剤からなる粒子と結着剤 からなる粒子とをそれそれ接触させた状態とすることを示す。 す なわち、 電極活物質からなる粒子の表面は、 導電助剤からなる粒 子と結着剤からなる粒子とによりその一部が覆われていれば十分 であり、 全体が覆われている必要は無い。 なお、 本発明の複合粒 子の製造方法の造粒工程において使用する 「結着剤」 は、 これと ともに使用される電極活物質と導電助剤とを結着させることが可 能なものを示す。
【 0 0 9 4】 また、 本発明の電極の製造方法においては、 先に 述べた構造を有する複合粒子をより容易かつより確実に形成する 観点から、 造粒工程は、 流動槽中の温度を 5 0 °C以上で、 結着剤 の融点を大幅に越えない温度に調節することが好ましく、 流動槽 中の温度を 5 0 °C以上で、 結着剤の融点以下に調節することがよ り好ましい。 この結着剤の融点とは、 その結着剤の種類にもよる 力 例えば 2 0 0 °C程度である。 流動槽中の温度が 5 0 °C未満と なると、 噴霧中の溶媒の乾燥が不十分となる傾向が大きくなる。 流動槽中の温度が結着剤の融点を大幅に越えると、 結着剤が溶融 し粒子の形成に大きな支障をきたす傾向が大きくなる。 流動槽中 の温度が結着剤の融点より も若干上回る程度の温度であれば、 条 件により上記の問題の発生を十分に防止することができる。 また、 流動槽中の温度が結着剤の融点以下であれば、 上記の問題は発生 しない。
【 0 0 9 5】 更に、 本発明の電極の製造方法においては、 先に 述べた構造を有する複合粒子をより容易かつより確実に形成する 観点から、 造粒工程において、 流動槽中に発生させる気流は、 空 気、 窒素ガス、 又は、 不活性ガスからなる気流であることが好ま しい。 更に、 造粒工程において、 流動槽中の湿度 (相対湿度) は、 上記の好ましい温度範囲において 3 0 %以下とすることが好ま し レ、。 「不活性ガス」 とは、 希ガスに属するガスを示す。
【 0 0 9 6】 また、 本発明の電極の製造方法においては、 造粒 工程において、 原料液に含まれる溶媒は、 結着剤を溶解又は分散 可能であると ともに導電助剤を分散可能であることが好ましい。 これによつても、 得られる複合粒子中の結着剤、 導電助剤及び電 極活物質の分散性をより高めることができる。 複合粒子中の結着 剤、 導電助剤及び電極活物質の分散性をよ り高める観点から、 原 料液に含まれる溶媒は結着剤を溶解可能であると ともに導電助剤 を分散可能であることがより好ましい。
【 0 0 9 7】 また、 本発明の電極の製造方法においては、 造粒 工程において、 原料液には、 導電性高分子が更に溶解されていて もよい。 この場合にも、 得られる複合粒子には、 導電性高分子が 更に含有されることになる。 そして、 この複合粒子を用いること により先に述べたポリマー電極を形成することができる。 上記の 導電性高分子はイオン伝導性を有するものであってもよく、 電子 伝導性を有するものであってもよい。 導電性高分子がイオン伝導 性を有するものである場合には、 電極の活物質含有層内に極めて 良好なイオン伝導パス (イオン伝導ネ ッ ト ワーク) をよ り容易か つよ り確実に構築することができる。 導電性高分子が電子伝導性 を有するものである場合には、 電極の活物質含有層内に極めて良 好な電子伝導パス (電子伝導ネッ ト ワーク) をよ り容易かつよ り 確実に構築することができる。
【 0 0 9 8】 更に、 本発明の電極の製造方法は、 結着剤と して 導電性高分子を使用することを特徴と していてもよい。 これによ り、 得られる複合粒子には、 導電性高分子が更に含有されること になる。 そして、 この複合粒子を用いることにより先に述べたポ リマー電極を形成することができる。 上記の導電性高分子はィォ ン伝導性を有するものであってもよく、 電子伝導性を有するもの であってもよい。 導電性高分子がイオン伝導性を有するものであ る場合には、 電極の活物質含有層内に極めて良好なイオン伝導パ ス (イオン伝導ネッ トワーク) をより容易かつより確実に構築す ることができる。 導電性高分子が電子伝導性を有するものである 場合には、電極の活物質含有層内に極めて良好な電子伝導パス (電 子伝導ネッ トワーク) をより容易かつより確実に構築することが できる。
【 0 0 9 9】 上述の本発明の電極の製造方法において得られる 複合粒子を用いることにより、 優れた分極特性を有する電極を容 易かつ確実に得ることができる。 更に、 この電極をアノー ド及び 力ソードうちの少なく とも一方、 好ましくは両方に用いることに より優れた充放電特性を有する電気化学素子を容易かつ確実に構 成することができる。
【 0 1 0 0】 また、 本発明の電極の製造方法において、 活物質 含有層形成工程は、 複合粒子を少なく とも含む粉体に加熱処理及 び加圧処理を施してシート化し、 複合粒子を少なく とも含むシー トを得るシート化工程と、 シートを活物質含有層と して集電体上 に配置する活物質含有層配置工程と、 を有することが好ましい。 【 0 1 0 1 】 このように、 活物質含有層形成工程において、 複 合粒子を用いて乾式法により活物質含有層を形成することにより、 内部抵抗が十分に低減されており、 電気化学素子の出力密度を十 分に増大させることが容易に可能な優れた電極特性を有する電極 をよ り確実に得ることができる。 特にこの場合には、 従来の乾式 法ではもちろん、 従来の湿式法でも困難であった活物質含有層の 厚さの比較的厚い高出力の電極 (例えば、 活物質含有層の厚さが 8 0 〜 1 2 0 m以下の電極) を容易に製造することができる。
【 0 1 0 2】 ここで、 「複合粒子を少なく とも含む粉体」 は、 複 合粒子のみからなるものであってもよい。 また、 「複合粒子を少な く とも含む粉体」 には、 結着剤及び /又は導電助剤が更に含まれ ていてもよい。 このよ うに粉体に複合粒子以外の構成成分が含ま れる場合、 粉体中の複合粒子の割合は、 粉体の総質量を基準と し て、 8 0質量%以上であることが好ま しい。
【 0 1 0 3】 また、 この場合、 第 1の加熱部材が集電体である ことを特徴と していてもよい。 これによ り、 作製した活物質含有 層を集電体に対して電気的に接触させる工程を省く ことが可能と なり、 作業効率を向上できる場合がある。
【 0 1 0 4】 また、 本発明の電極の製造方法においては、 シー ト化工程を、 熱ロールプレス機を用いて行うことが好ま しい。 熱 ロ ーノレプレス機は、 1対の熱ロ ーノレを有しており、 この 1対の熱 ロールの間に 「複合粒子を少なく とも含む粉体」 を投入し、 加熱 及び加圧してシー ト化する構成を有するものである。 これにより、 活物質含有層となるシー トを容易かつ確実に形成することができ る。
【 0 1 0 5】 以上のよ うに本発明の電極の製造方法においては、 活物質含有層形成工程において複合粒子を用いて乾式法により活 物質含有層を形成してもよいが、 以下のよ うに湿式法によ り活物 質含有層を形成しても先に述べた本発明の効果を得ることができ る。
【 0 1 0 6】 すなわち、 活物質含有層形成工程は、 複合粒子を 分散又は混練可能な液体に複合粒子を添加して電極形成用塗布液 を調製する塗布液調製工程と、 集電体の活物質含有層を形成すベ き部位に、 電極形成用塗布液を塗布する工程と、 集電体の活物質 含有層を形成すべき部位に塗布された電極形成用塗布液からなる 液膜を固化させる工程と、 を含むこと、 を特徴としていてもよい。 【 0 1 0 7】 この場合にも、内部抵抗が十分に低減されており、 電気化学素子の出力密度を十分に増大させることが容易に可能な 優れた電極特性を有する電極を容易かつ確実に得ることができる c ここで、 「複合粒子を分散可能な液体」 とは、 複合粒子中の結着剤 を溶解しない液体であることが好ましいが、 活物質含有層を形成 する過程において、 複合粒子同士の電気的接触を十分に確保でき て本発明の効果を得られる範囲であれば複合粒子の表面近傍の結 着剤を一部溶解させる特性を有するものであってもよい。 なお、 本発明の効果を得られる範囲であれば、 複合粒子を分散可能な液 体には複合粒子の他の成分と して、 結着剤、 及び、 導電助剤が更 に添加されていてもよい。 この場合の他の成分と して添加される 結着剤は、 「複合粒子を分散可能な液体」 に溶解可能な結着剤であ る。
【 0 1 0 8】 また、 活物質含有層形成工程において、 複合粒子 を混練可能な液体を使用する場合、 この液体に複合粒子を添加し て複合粒子を含む電極形成用混練物を調製する混練物調製工程と、 集電体の活物質含有層を形成すべき部位に、 電極形成用混練物を 塗布する工程と、 集電体の活物質含有層を形成すべき部位に塗布 された電極形成用混練物からなる塗膜を固化させる工程と、 を含 むこと、 を特徴と していてもよい。
【 0 1 0 9】 この場合にも、 内部抵抗が十分に低減されており、 電気化学素子の出力密度を十分に増大させることが容易に可能な 優れた電極特性を有する電極を容易かつ確実に得ることができる, 【 0 1 1 0】 また、 本発明の電極の製造方法においても、 得ら れる電極の活物質含有層を比較的薄く して電気化学素子の高出力 化をよ り確実に図る場合には、 活物質含有層形成工程において、 活物質含有層の厚さ Tと、 該活物質含有層に含有される複合粒子 の平均粒子径 d とが下記式 ( 1 ) 〜 ( 3 ) で表される条件を満た すように活物質含有層を形成することが好ましい。
0. 0 0 0 5≤ (T d ) ≤ 1 · · · ( 1 )
1 /ΐ πι≤ Τ≤ 1 5 0 μ ιη ' · · ( 2 )
1 μ πι≤ ά≤ 2 0 0 0 ^ πι · ' · ( 3 )
【 0 1 1 1 】 更に、 本発明は、 アノードと、 力ソー ドと、 ィォ ン伝導性を有する電解質層とを少なく とも備えており、 アノー ド とカソー ドとが電解質層を介して対向配置された構成を有する電 気化学素子の製造方法であって、 アノード及び力ソー ドのうちの 一方或いは両方の電極と して、 先に述べた本発明の電極の製造方 法により製造された電極を使用すること、 を特徴とする電気化学 素子の製造方法を提供する。
【 0 1 1 2】 上述した本発明の電極の製造方法によ り得られる 電極を、 アノード及び力ソードのうちの少なく とも一方、 好ま し く は両方と して使用することによ り、 負荷要求が急激かつ大きく 変動する場合であってもこれに十分に追随可能な優れた充放電特 性を有する電気化学素子を容易かつ確実に得ることができる。
図面の簡単な説明 【 0 1 1 3】 図 1は、 本発明の電気化学素子の好適な一実施形 態 (リチウムイオン 2次電池) の基本構成を示す模式断面図であ る。
【 0 1 1 4】 図 2は、 本発明の複合粒子の基本構成の一例を示 す模式断面図である。
【 0 1 1 5】 図 3は、 電極を製造する際の造粒工程の一例を示 す説明図である。
【 0 1 1 6】 図 4は、 乾式法によ り電極を製造する際のシー ト 化工程の一例を示す説明図である。
【 0 1 1 7】 図 5は、 湿式法によ り電極を製造する際の塗布液 調製工程の一例を示す説明図である。
【 0 1 1 8】 図 6は、 本発明の電極の活物質含有層中の内部構 造を概略的に示す模式断面図である。
【 0 1 1 9】 図 7は、 本発明の電気化学素子の他の一実施形態 の基本構成を示す模式断面図である。
【 0 1 2 0】 図 8は、 本発明の電気化学素子の更に他の一実施 形態の基本構成を示す模式断面図である。
【 0 1 2 1 】 図 9は、 実施例 1の電極用複合粒子の内部抵抗 (ィ ンピーダンス) の測定方法を示す説明図である。
【 0 1 2 2】 図 1 0は、 本発明の製造方法 (乾式法) によ り製 造された電極 (電気二重層キャパシタ) の活物質含有層の断面を 撮影した S EM写真を示す図である。
【 0 1 2 3】 図 1 1は、 本発明の製造方法 (乾式法) により製 造された電極 (電気二重層キャパシタ) の活物質含有層の断面 (図 9に示した部分と同一部分) を撮影した T EM写真を示す図であ る。 【 0 1 2 4】 図 1 2は、 本発明の製造方法 (乾式法) によ り製 造された電極 (電気二重層キャパシタ) の活物質含有層の断面を 撮影した S EM写真を示す図である。
【 0 1 2 5】 図 1 3は本発明の製造方法 (乾式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面 (図 1 1 に示した部分と同一部分) を撮影した T EM写真を示す図で ある。
【 0 1 2 6】 図 1 4は、 本発明の製造方法 (乾式法) によ り製 造された電極 (電気二重層キャパシタ) の活物質含有層の断面を 撮影した S EM写真を示す図である。
【 0 1 2 7】 図 1 5は、 本発明の製造方法 (乾式法) によ り製 造された電極 (電気二重層キャパシタ) の活物質含有層の断面 (図 1 3に示した部分と同一部分) を撮影した T EM写真を示す図で ある。
【 0 1 2 8】 図 1 6は、 従来の製造方法 (湿式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面を撮 影した S EM写真を示す図である。
【 0 1 2 9】 図 1 7は、 従来の製造方法 (湿式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面 (図 1 5に示した部分と同一部分) を撮影した T EM写真を示す図で ある。
【 0 1 3 0】 図 1 8は、 従来の製造方法 (湿式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面を撮 影した S EM写真を示す図である。
【 0 1 3 1 】 図 1 9は、 従来の製造方法 (湿式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面 (図 1 8に示した部分と同一部分) を撮影した T EM写真を示す図で ある。
【 0 1 3 2】 図 2 0は、 従来の製造方法 (湿式法) 〖こよ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面を撮 影した S EM写真を示す図である。
【 0 1 3 3】 図 2 1は、 従来の製造方法 (湿式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面 (図 2 0に示した部分と同一部分) を撮影した T EM写真を示す図で ある。
【 0 1 3 4】 図 2 2は、従来の電極用複合粒子の部分的な構成、 及び、 従来の電極用複合粒子を用いて形成された電極の活物質含 有層中の内部構造を概略的に示す模式断面図である。
発明を実施するための最良の形態
【 0 1 3 5】 以下、 図面を参照しながら本発明の好適な実施形 態について詳細に説明する。 なお、 以下の説明では、 同一または 相当部分には同一符号を付し、 重複する説明は省略する。
【 0 1 3 6】 図 1は、 本発明の電気化学素子の好適な一実施形 態 (リチウムイオン 2次電池) の基本構成を示す模式断面図であ る。 また、 図 2は電極 (図 1 中のアノー ド 2及び力ソード 3 ) を 製造する際の造粒工程において製造される複合粒子の基本構成の 一例を示す模式断面図である。 ここで、 本実施形態にかかる電気 化学素子が備える電極は、 本発明の電極の好ましい一例である。 また、 かかる電極の構成材料と して用いられる複合粒子は、 本発 明の電極用複合粒子の好ましい一例である。
【 0 1 3 7】 図 1 に示す 2次電池 1 は、 主と して、 アノード 2 及び力ソー ド 3 と、 アノード 2 と力ソード 3 との間に配置される 電解質層 4とから構成されている。
【 0 1 3 8】 図 1に示す 2次電池 1は、 図 2に示す複合粒子 P 1 0を含むアノード 2及び力ソード 3を備えることにより、 負荷 要求が急激に然も大きく変動する場合であってもこれに十分に追 随可能な優れた充放電が可能となる。
【 0 1 3 9】 図 1に示す 2次電池 1のアノード 2は、 膜状 (板 状) の集電体 2 4 と、 集電体 2 4 と電解質層 4 との間に配置され る膜状の活物質含有層 2 2とから構成されている。 なお、 このァ ノード 2は充電時においては外部電源のァノード (何れも図示せ ず) に接続され、 力ソードと して機能する。 また、 このアノード
2の形状は特に限定されず、 例えば、 図示するように薄膜状であ つてもよい。 アノード 2の集電体 2 4 と しては、 例えば、 銅箔が 用いられる。
【 0 1 4 0】 また、 アノード 2の活物質含有層 2 2は、 主と し て、 図 2に示す複合粒子 P 1 0から構成されている。 更に、 複合 粒子 P 1 0は、 複合粒子 P 1 0は、 電極活物質からなる粒子 P 1 と、 導電助剤からなる粒子 P 2 と、 結着剤からなる粒子 P 3とか ら構成されている。 この複合粒子 P 1 0の平均粒子径は特に限定 されない。 この複合粒子 P 1 0は、 電極活物質からなる粒子 P 1 と導電助剤からなる粒子 P 2 とが孤立せずに電気的に結合した構 造を有している。 そのため、 活物質含有層 2 2においても、 電極 活物質からなる粒子 P 1 と導電助剤からなる粒子 P 2とが孤立せ ずに電気的に結合した構造が形成されている。
【 0 1 4 1】 アノード 2に含まれる複合粒子 P 1 0を構成する 電極活物質は特に限定されず公知の電極活物質を使用してよい。 例えば、 リチウムイオンを吸蔵 '放出 (インター力レート、 或い はドーピング · 脱ドーピング) 可能な黒鉛、 難黒鉛化炭素、 易黒 鉛化炭素、 低温度焼成炭素等の炭素材料、 A 1 、 S i 、 S n等の リチウムと化合することのできる金属、 S i 02、 S n 02等の酸化 物を主体とする非晶質の化合物、 チタン酸リチウム (L i 3T i 5 012) 等が挙げられる。
【 0 1 4 2】 アノード 2に含まれる複合粒子 P 1 0を構成する 導電助剤は特に限定されず公知の導電助剤を使用してよい。 例え ば、 カーボンブラック類、 高結晶性の人造黒鉛、 天然黒鉛等の炭 素材料、 銅、 ニッケル、 ステンレス、 鉄等の金属微粉、 上記炭素 材料及び金属微粉の混合物、 I T Oのよ うな導電性酸化物が挙げ られる。
【 0 1 4 3】 アノード 2に含まれる複合粒子 P 1 0を構成する 結着剤は、 上記の電極活物質の粒子と導電助剤からなる粒子 P 2 とを結着可能なものであれば特に限定されない。 例えば、 ポリ フ ッ化ビ二リデン (P VD F)、 ポリテ ト ラフルォロエチレン (P T
F E)、 テ トラフノレォロエチレン一へキサフノレオ口プロ ピレン共重 合体 (F E P)、 テ トラフルォロエチレン一パーフノレオロアノレキル ビニルエーテル共重合体 (P FA)、 エチレン一テ トラフルォロェ チレン共重合体(E T F E)、ポリ ク ロ 口 ト リ フルォロエチレン(P C T F E)、 エチレン一ク ロ 口 ト リ フルォロエチレン共重合体 (E
C T F E )、 ポリ フッ化ビニル ( P V F ) 等のフッ素樹脂が挙げら れる。 また、 この結着剤は、 上記の電極活物質からなる粒子 P 1 と導電助剤からなる粒子 P 2 とを結着するのみならず、 箔 (集電 体 2 4 ) と複合粒子 P 1 0との結着に対しても寄与している。
【 0 1 4 4】 また、 上記の他に、 結着剤は、 例えば、 ビニリデ ンフノレオライ ドー へキサフノレオ口プロ ピレン系フッ素ゴム (VD F— H F P系フ ッ素ゴム)、 ビニリデンフルオラィ ドーへキサフル ォロプロ ピレン一テ トラフノレォロエチレン系フ ッ素ゴム (VD F 一 H F P— T F E系フッ素ゴム)、 ビニ リデンフルオラィ ド一ペン タフルォロプロ ピレン系フッ素ゴム (VD F— P F P系フ ッ素ゴ ム)、 ビニリデンフルオライ ド一ペンタフルォ口プロ ピレンーテ ト ラフノレォロエチレン系フ ッ素ゴム (VD F— P F P— T F E系フ ッ素ゴム)、 ビ-リデンフ /レオライ ド一パーフノレオロメチノレビ二ノレ エーテノレ一テ ト ラフノレォロエチレン系フッ素ゴム (VD F— P F MV E— T F E系フッ素ゴム)、 ビニリ デンフルオラィ ドーク ロ ロ ト リ フノレオ口エチレン系フッ素ゴム (VD F— C T F E系フッ素 ゴム) 等のビニリデンフルオラィ ド系フ ッ素ゴムを用いてもよい。 【 0 1 4 5】 更に、 上記の他に、 結着剤は、 例えば、 ポリェチ レン、 ポリ プロ ピレン、 ポリ エチレンテレフタ レー ト、 芳香族ポ リ アミ ド、 セノレロース、 スチレン ' ブタジエンゴム、 イ ソプレン ゴム、 ブタジエンゴム、 エチレン ' プロ ピレンゴム等を用いても よレ、。 また、 スチレン 'ブタジエン ' スチレンブロ ック共重合体、 その水素添加物、 スチレン ■ エチレン · ブタジエン · スチレン共 重合体、 スチレン ' イソプレン ' スチレンブロック共重合体、 そ の水素添加物等の熱可塑性エラス トマ一状高分子を用いてもよい c 更に、 シンジオタクチック 1、 2—ポリブタジエン、 エチレン ' 酢酸ビニル共重合体、 プロ ピレン . α —才レフイ ン (炭素数 2〜 1 2 ) 共重合体等を用いてもよい。 また、 導電性高分子を用いて もよい。
【 0 1 4 6】 また、 複合粒子 Ρ 1 0には、 導電性高分子からな る粒子を当該複合粒子 Ρ 1 0の構成成分と して更に添加してもよ レ、。 更に、 複合粒子 Ρ 1 0を用いて乾式法により電極を形成する 際には、 複合粒子を少なく とも含む粉体の構成成分と して添加し てもよい。 また、 複合粒子 P 1 0を用いて湿式法によ り電極を形 成する際には、 複合粒子 P 1 0を含む塗布液又は混練物を調製す る際に、 導電性高分子からなる粒子を当該塗布液又は混練物の構 成材料と して添加してもよい。
【 0 1 4 7】 例えば、 導電性高分子は、 リチウムイオンの伝導 性を有していれば特に限定されない。 例えば、 高分子化合物 (ポ リエチレンォキシド、 ポリプロピレンォキシド等のポリエーテル 系高分子化合物、 ポリエーテル化合物の架橋体高分子、 ポリェピ ク ロルヒ ドリ ン、 ポリ フォスファゼン、 ポリシロキサン、 ポリ ビ ニルピロ リ ドン、 ポリ ビニリデンカーボネー ト、 ポリアタ リ ロニ ト リノレ等) のモノマーと、 L i C 1 04、 L i B F4、 L i P F6、 L i A s F6、 L i C l 、 L i B r、 L i (C F3S 02) 2N、 L i N (C2F5S 02)2リチウム塩又はリチウムを主体とするアル力リ金 属塩と、 を複合化させたもの等が挙げられる。 複合化に使用する 重合開始剤と しては、 例えば、 上記のモノマーに適合する光重合 開始剤または熱重合開始剤が挙げられる。
【 0 1 4 8】 なお、 2次電池 1 を金属リチウム 2次電池とする 場合には、 そのアノード (図示せず) は、 集電体を兼ねた金属リ チウム又はリチウム合金のみからなる電極であってもよレ、。 リチ ゥム合金は特に限定されず、 例えば、 L i - A 1 , L i S i , L i S n等の合金 (ここでは、 L i S i も合金と して取り扱うもの とする) があげられる。 この場合、 力ソー ドは後述する構成の複 合粒子 P 1 0を用いて構成する。
【 0 1 4 9】 図 1 に示す 2次電池 1の力ソー ド 3は、 膜状の集 電体 3 4 と、 集電体 3 4 と電解質層 4 との間に配置される膜状の 活物質含有層 3 2 とから構成されている。 なお、 この力ソー ド 3 は充電時においては外部電源の力ソー ド (何れも図示せず) に接 続され、 アノー ドと して機能する。 また、 この力ソード 3の形状 は特に限定されず、 例えば、 図示するように薄膜状であってもよ レ、。 力ソー ド 3の集電体 3 4 と しては、 例えば、 アルミ箔が用い られる。
【 0 1 5 0】 力ソード 3に含まれる複合粒子 P 1 0を構成する 電極活物質は特に限定されず公知の電極活物質を使用してよい。 例えば、 コバルト酸リチウム (L i C o 02)、 ニッケル酸リチウム (L i N i 02)、 リチウムマンガンスピネル (L i Mn 204)、 及 び、 一般式 : L i N i XM n yC o z02 ( x + y + z = 1 ) で表され る複合金属酸化物、 リチウムバナジウム化合物、 v2o5、 オリ ビン 型し i M P 04 (ただし、 Mは、 C o、 N i、 M n又は F eを示す)、 チタン酸リチウム ((L i 3T i 5012) 等が挙げられる。
【 0 1 5 1】 更に、 力ソード 3に含まれる複合粒子 P 1 0を構 成する電極活物質以外の各構成要素は、 アノード 2に含まれる複 合粒子 P 1 0を構成するものと同様の物質を使用することができ る。 また、 この力ソード 3に含まれる複合粒子 P 1 0を構成する 結着剤も、 上記の電極活物質からなる粒子 P 1 と導電助剤からな る粒子 P 2 とを結着のみならず、 箔 (集電体 3 4 ) と複合粒子 P 1 0 との結着に対しても寄与している。 この複合粒子 P 1 0は、 先にも述べたよ うに電極活物質からなる粒子 P 1 と導電助剤から なる粒子 P 2 とが孤立せずに電気的に結合した構造を有している c そのため、 活物質含有層 3 2においても、 電極活物質からなる粒 子 P 1 と導電助剤からなる粒子 P 2 とが孤立せずに電気的に結合 した構造が形成されている。 【 0 1 5 2】 ここで、 導電助剤、 電極活物質及び固体高分子電 解質との接触界面を 3次元的にかつ充分な大きさで形成する観点 から、 上記のァノード 2及び力ソード 3にそれぞれ含まれる各電 極活物質からなる粒子 P 1の B E T比表面積は、 力ソー ド 3の場 合 0. :!〜 1. 0 m2/ gであることが好ましく、 0. 1〜 0. 6 m2ノ gであることがよ り好ましい。 また、 アノード 2の場合 0. 1〜: L 0 m2Z gであることが好ましく 、 0. l〜 5 m2 gである ことがより好ましい。 なお、 2重層キャパシタの場合には、 カソ ード 3及びァノード 2 ともに 5 0 0〜 3 0 0 0 m gであること が好ましい。
【 0 1 5 3】 更に、 同様の観点から、 各電極活物質からなる粒 子 P 1の平均粒径は、 力ソー ド 3の場合 5〜 2 0 であること が好ましく、 5〜 1 5 μ mであることがよ り好ましレ、。 また、 ァ ノー ド 2の場合 1〜 5 0 μ πιであることが好ま しく、 ;!〜 3 0 mであることがよ り好ましい。 更に、 同様の観点から、 電極活物 質に付着する導電助剤及び結着剤の量は、 1 0 0 X (導電助剤の 質量 +結着剤の質量) Z (電極活物質の質量) の値で表現した場 合、 1〜 3 0質量%であることが好ま しく、 3〜 1 5質量%でぁ ることがより好ましい。
【 0 1 5 4】 電解質層 4は、電解液からなる層であってもよく、 固体電解質 (セラ ミ ックス固体電解質、 固体高分子電解質) から なる層であってもよく、 セパレータと該セパレータ中に含浸され た電解液及び 又は固体電解質とからなる層であってもよい。 【 0 1 5 5】 電解液は、 リチウム含有電解質を非水溶媒に溶解 して調製する。 リチウム含有電解質と しては、 例えば、 L i C l
04、 L i B F4、 L i P F6等から適宜選択すればよく、 また、 L i (C F3S 02) 2N、 L i (C2F5S 02) 2Nのようなリチウムィ ミ ド塩や、 L i B (C 204) 2 などを使用することもできる。 非水 溶媒と しては、 例えば、 エーテル類、 ケ トン類、 カーボネー ト類 等、 特開昭 6 3 - 1 2 1 2 6 0号公報などに例示される有機溶媒 から選択することができるが、 本発明では特にカーボネー ト類を 用いることが好ましい。 カーボネー ト類のうちでは、 特にェチレ ンカーボネー トを主成分と し他の溶媒を 1種類以上添加した混合 溶媒を用いることが好ましい。 混合比率は、 通常、 エチレンカー ボネー ト : 他の溶媒 = 5〜7 0 : 9 5〜3 0 (体積比) とするこ とが好ましい。 エチレンカーボネー トは凝固点が 3 6. 4 °Cと高 く、 常温では固化しているため、 エチレンカーボネー ト単独では 電池の電解液と しては使用できないが、 凝固点の低い他の溶媒を 1種類以上添加することによ り、 混合溶媒の凝固点が低く なり、 使用可能となる。 この場合の他の溶媒と してはエチレンカーボネ 一卜の凝固点を低くするものであれば何でもよい。 例えばジェチ ルカーボネー ト、 ジメチルカーボネー ト、 プロ ピレンカーボネー ト、 1 , 2—ジメ トキシェタン、 メチルェチルカーボネー ト、 Ί ーブチロラク ト ン、 γ—パレロラク ト ン、 γ—ォク タノイ ツク ラ タ トン、 1, 2—ジエ トキシェタン、 1, 2—エ トキシメ トキシ ェタン、 1, 2—ジブトキシェタン、 1 , 3—ジォキソラナン、 テ トラ ヒ ドロフラン、 2—メチノレテ トラ ヒ ドロフラン、 4 , 4一 ジメチル一 1 , 3—ジォキサン、 ブチレンカーボネー ト、 蟻酸メ チルなどが挙げられる。 ァノードの活物質と して炭素質材料を用 レ、、 且つ上記混合溶媒を用いることによ り、 電池容量が著しく向 上し、 不可逆容量率を十分に低くすることができる。
【 0 1 5 6】 固体高分子電解質と しては、 例えば、 イオン伝導 性を有する導電性高分子が挙げられる。
【 0 1 5 7】 上記導電性高分子と しては、 リチウムイオンの伝 導性を有していれば特に限定されず、 例えば、 高分子化合物 (ポ リエチレンォキシド、 ポリ プロ ピレンォキシド等のポリエーテル 系高分子化合物、 ポリエーテル化合物の架橋体高分子、 ポリェピ クロルヒ ドリ ン、 ポリ フォスファゼン、 ポリシロキサン、 ポリ ビ ニルピロ リ ドン、 ポリ ビニリデンカーボネー ト、 ポリアク リ ロ - ト リノレ等) のモノマ一と、 L i C 1 04、 L i B F4、 L i P F6、 L i A s F6、 L i C l 、 L i B r、 L i (C F3S 02) 2N、 L i N (C2F5S 02)2リチウム塩又はリチウムを主体とするアル力リ金 厲塩と、 を複合化させたもの等が挙げられる。 複合化に使用する 重合開始剤と しては、 例えば、 上記のモノマーに適合する光重合 開始剤又は熱重合開始剤が挙げられる。
【 0 1 5 8】 更に、 高分子固体電解質を構成する支持塩と して は、 例えば、 L i C 1 04、 L i P F6、 L i B F 4、 L i A s F 6
L i C F 3 S 03 L i C F3C F2S 03、 L i C (C F3S 02) L i N (C F3S 02) 2、 L i N (C F3C F2S 02) 2、 L i N (C F3 S O 2) (C4F9S 02)及び L i N (C F3C F2C O)2等の塩、又は、 これらの混合物が挙げられる。
【 0 1 5 9】 電解質層 4にセパレータを使用する場合、 その構 成材料と しては、 例えば、 ポリエチレン、 ポリプロ ピレン等のポ リオレフイ ン類の一種又は二種以上 (二種以上の場合、 二層以上 のフィルムの張り合わせ物等がある)、 ポリエチレンテレフタレー 卜のよ うなポリエステノレ類、 エチレン一テ トラフノレォロエチレン 共重合体のような熱可塑性フッ素樹脂類、 セルロース類等がある。 シー トの形態は J I S— P 8 1 1 7に規定する方法で測定した通 気度が 5〜 2 0 0 0秒 1 0 0 c c程度、 厚さ力 5〜: L O O ;/ m 程度の微多孔膜フィルム、 織布、 不織布等がある。 なお、 固体電 解質のモノマーをセパレータに含浸、 硬化させて高分子化して使 用してもよい。 また、 先に述べた電解液を多孔質のセパレータ中 に含有させて使用してもよい。
【 0 1 6 0】 次に、 本発明の電極の製造方法の好適な一実施形 態について説明する。 なお、 以下に示す電極の製造方法には、 本 発明の電極用複合粒子の製造方法の好ましい例が包含される。
【 0 1 6 1】 先ず、 複合粒子 P 1 0の製造方法について説明す る。 複合粒子 P 1 0は、 電極活物質からなる粒子 P 1に導電助剤 と結着剤とを密着させて一体化することにより、 電極活物質と、 導電助剤と、 結着剤とを含む複合粒子を形成する造粒工程を経て 形成される。
【 0 1 6 2】 上述の造粒工程について、 図 3を用いてより具体 的に説明する。 図 3は、 複合粒子を製造する際の造粒工程の一例 を示す説明図である。
【 0 1 6 3】 造粒工程は、 結着剤と前記導電助剤と溶媒とを含 む原料液を調製する原料液調製工程と、 流動槽中に気流を発生さ せ、 該気流中に電極活物質からなる粒子を投入し、 電極活物質か らなる粒子を流動層化させる流動層化工程と、 電極活物質からな る粒子を含む流動層中に原料液を噴霧することにより、 原料液を 電極活物質からなる粒子に付着、 乾燥させ、 電極活物質からなる 粒子の表面に付着した原料液から溶媒を除去し、 結着剤により電 極活物質からなる粒子と導電助剤からなる粒子とを密着させる噴 霧乾燥工程と、 とを含む。
【 0 1 6 4】 先ず、 原料液調製工程では、 結着剤を溶解可能な 溶媒を用い、 この溶媒中に結着剤を溶解させる。 次に得られた溶 液に、 導電助剤を分散させて原料液を得る。 なお、 この原料液調 製工程では、 結着剤を分散可能な溶媒 (分散媒) であってもよい。
【 0 1 6 5】 次に、 流動層化工程においては、 図 3に示すよ う に、 流動槽 5内において、 気流を発生させ、 該気流中に電極活物 質からなる粒子 P 1 を投入することによ り、 電極活物質からなる 粒子を流動層化させる。
【 0 1 6 6】 次に、 噴霧乾燥工程では、 図 3に示すよ うに、 流 動槽 5内において、 原料液の液滴 6を噴霧することによ り、 原料 液の液滴 6を流動層化した電極活物質からなる粒子 P 1 に付着さ せ、 同時に流動槽 5内において乾燥させ、 電極活物質からなる粒 子 P 1の表面に付着した原料液の液滴 6から溶媒を除去し、 結着 剤によ り電極活物質からなる粒子 P 1 と導電助剤からなる粒子 P 2 とを密着させ、 複合粒子 P 1 0を得る。
【 0 1 6 7】 よ り具体的には、 この流動槽 5は、 例えば、 筒状 の形状を有する容器であり、 その底部には、 温風 (又は熱風) L 5を外部から流入させ、 流動槽 5内で電極活物質からなる粒子を 対流させるための開口部 5 2が設けられている。 また、 この流動 槽 5の側面には、 流動槽 5内で対流させた電極活物質からなる粒 子 P 1 に対して、 噴霧される原料液の液滴 6を流入させるための 開口部 5 4が設けられている。 流動槽 5内で対流させた電極活物 質からなる粒子 P 1 に対してこの結着剤と導電助剤と溶媒とを含 む原料液の液滴 6を噴霧する。
【 0 1 6 8】 このとき、 電極活物質からなる粒子 P 1の置かれ た雰囲気の温度を、 例えば温風 (又は熱風) の温度を調節する等 して、 原料液の液滴 6中の溶媒を速やかに除去可能な所定の温度 (好ましく は、 5 0 °Cから結着剤の融点を大幅に超えない温度、 よ り好ましく は 5 0 °Cから結着剤の融点以下の温度 (例えば、 2 0 0 °C) } に保持しておき、 電極活物質からなる粒子 P 1の表面に 形成される原料液の液膜を、 原料液の液滴 6の噴霧とほぼ同時に 乾燥させる。 これにより、 電極活物質からなる粒子の表面に結着 剤と導電助剤とを密着させ、 複合粒子 P 1 0を得る。
【 0 1 6 9】 ここで、 結着剤を溶解可能な溶媒は、 結着剤を溶 解可能であり導電助剤を分散可能であれば特に限定されるもので はないが、 例えば、 N—メチル一 2—ピロ リ ドン、 N, N—ジメ チルホルムアミ ド等を用いることができる。
【 0 1 7 0】 次に、 複合粒子 P 1 0を用いた電極の形成方法の 好適な一例について説明する。
【 0 1 7 1】 (乾式法)
【 0 1 7 2】 先ず、 上述した造粒工程を経て製造した複合粒子 P 1 0を使用し、 溶媒を用いない乾式法により電極を形成する場 合について説明する。
【 0 1 7 3】 この場合、 活物質含有層は以下の活物質含有層形 成工程を経て形成される。 この活物質含有層形成工程は、 複合粒 子 P 1 0を少なく とも含む粉体 P 1 2に加熱処理及び加圧処理を 施してシー ト化し、 複合粒子を少なく とも含むシー ト 1 8を得る シート化工程と、 シート 18を活物質含有層 (活物質含有層 2 2又 は活物質含有層 3 2 ) と して集電体上に配置する活物質含有層配 置工程とを有する。
【 0 1 7 4】 乾式法は、 溶媒を用いずに電極を形成する方法で あり、 1 ) 溶媒が不溶で安全である、 2 ) 溶媒を使用せず粒子の みを圧延するため電極 (多孔体層) の高密度化を容易に行うこと ができる、 3 ) 溶媒を使用しないので、 湿式法で問題となる、 集 電体上に塗布した電極形成用塗布液からなる液膜の乾燥過程にお いて、 電極活物質からなる粒子 P 1、 導電性を付与するための導 電助剤からなる粒子 P 2、 及び、 結着剤からなる粒子 P 3の凝集 及び偏在が発生しない、 等の利点がある。
【 0 1 7 5】 そしてこのシー ト化工程は、 図 4に示す熱ロール プレス機を用いて好適に行うことができる。
【 0 1 7 6】 図 4は乾式法に.よ り電極を製造する際のシー ト化 工程の一例 (熱ロールプレス機を用いる場合) を示す説明図であ る。
【 0 1 7 7】 この場合、 図 4に示すよ うに、 熱ロールプレス機 (図示せず) の一対の熱ロール 8 4及び熱ロール 8 5の間に、 複 合粒子 P 1 0を少なく とも含む粉体 P 1 2を投入し、 これらを混 合して混練すると共に、 熱及び圧力により圧延し、 シー ト 1 8に 成形する。 このとき、 熱ロール 8 4及び 8 5の表面温度は 6 0〜
1 2 0 °Cであることが好ましく、 圧力は 2 0〜 5 0 0 0 k g f / c mであることが好ましい。
【 0 1 7 8】 ここで、 複合粒子 P 1 0を少なく とも含む粉体 P 1 2には、 電極活物質からなる粒子 P 1、 導電性を付与するため の導電助剤からなる粒子 P 2、 結着剤からなる粒子 P 3の う ちの 少なく とも 1種の粒子を更に混合してもよい。
【 0 1 7 9】 また、 熱ロールプレス機 (図示せず) に投入する 前に、 複合粒子 P 1 0を少なく とも含む粉体 P 1 2をミルなどの 混合手段により予め混練しておいてもよい。
【 0 1 8 0】 なお、 集電体と活物質含有層とを電気的に接触さ せることは、 活物質含有層を熱ロールプレス機で成形してから行 つてもよいが、 集電体と、 該集電体の一方の面上に撒布された活 物質含有層の構成材料とを熱ロール 8 4及び熱ロール 8 5に供給 して、 活物質含有層のシー ト成形及び活物質含有層と集電体との 電気的な接続を同時に行うようにしてもよい。
【 0 1 8 1 】 また、 得られる電極の活物質含有層を比較的薄く して電気化学素子の高出力化をより確実に図る場合には、 活物質 含有層形成工程において、 活物質含有層形成工程において、 活物 質含有層の厚さ Tと、 該活物質含有層に含有される複合粒子の平 均粒子径 d とが下記式 ( 1 ) 〜 ( 3 ) で表される条件を満たすよ うに活物質含有層を形成することが好ましい。 具体的には、 活物 質含有層形成工程のシー ト化工程において、 1 ) 熱ロール 8 4及 び熱ロール 8 5の面上に撒布する複合粒子 P 1 を少なく とも含む 粉体 P 1 2の量を調節する、 2 ) 熱ロール 8 4及び熱ロール 8 5 の間のギヤップを調節する、 熱ロール 8 4及び熱ロール 8 5が粉 体 P 1 2を加圧する際の圧力を調節することによ り下記式 ( 1 )
〜 ( 3 ) で表される条件を満たすように調節することができる。 0. 0 0 0 5≤ (T/ d ) ≤ 1 - - · ( 1 )
1 /χ πι≤ Τ≤ 1 5 0 μ πι - - · ( 2 )
l /z m≤ d≤ 2 0 0 0 M m · ' · ( 3 )
【 0 1 8 2】 (湿式法)
【 0 1 8 3】 次に、 上述した造粒工程を経て製造した複合粒子 Ρ 1 0を使用し、 電極形成用塗布液を調製し、 これを用いて電極 を形成する場合の好適な一例について説明する。 先ず、 電極形成 用塗布液の調製方法の一例について説明する。
【 0 1 8 4】 電極形成用塗布液は、 造粒工程を経て作製した複 合粒子 Ρ 1 0 と、 複合粒子 Ρ 1 0を分散又は溶解可能な液体と、 必要に応じて添加される導電性高分子とを混合した混合液を作製 し、 混合液から上記液体の一部を除去して、 塗布に適した粘度に 調節することにより電極形成用塗布液を得ることができる。
【 0 1 8 5】 より具体的には、導電性高分子を用いる場合には、 図 5に示すよ うに、 例えば、 スターラー等の所定の撹拌手段 (図 示せず) を有する容器 8内において、 複合粒子 P 1 0を分散又は 溶解可能な液体と、 導電性高分子又は該導電性高分子の構成材料 となるモノマーとを混合した混合液を調製しておく。 .次に、 この 混合液に複合粒子 P 1 0を添加して充分に撹拌することにより、 電極形成用塗布液 7を調製することができる。
【 0 1 8 6】 次に、 電極形成用塗布液を用いた本発明の電極の 製造方法の好適な一実施形態について説明する。 先ず、 電極形成 用塗布液を、 集電体の表面に塗布し、 当該表面上に、 塗布液の液 膜を形成する。 次に、 この液膜を乾燥させることにより、 集電体 上に活物質含有層を形成し電極の作製を完了する。 ここで、 電極 形成用塗布液を集電体の表面に塗布する際の手法は特に限定され るものではなく、 集電体の材質や形状等に応じて適宜決定すれば よい。 例えば、 メ タルマスク印刷法、 静電塗装法、 ディ ップコー ト法、 スプレーコー ト法、 ロールコー ト法、 ドクターブレー ド法、 グラビアコート法、 スク リーン印刷法等が挙げられる。
【 0 1 8 7】 また、 得られる電極の活物質含有層を比較的薄く して電気化学素子の高出力化をより確実に図る場合には、 活物質 含有層形成工程において、 活物質含有層形成工程において、 活物 質含有層の厚さ Tと、 該活物質含有層に含有される複合粒子の平 均粒子径 dとが下記式 ( 1 ) 〜 ( 3 ) で表される条件を満たすよ うに活物質含有層を形成することが好ましい。 具体的には、 電極 形成用塗布液の液膜を集電体の表面に形成する際に、 電極形成用 塗布液の塗布量を調節する。
0. 0 0 0 5≤ (T/ d ) ≤ 1 - - · ( 1 )
l /i m≤ T≤ 1 5 0 /i m - - · ( 2 )
l /i m≤ d≤ 2 0 0 0 m · ' · ( 3 )
【 0 1 8 8】 また、 電極形成用塗布液の液膜から活物質含有層 を形成する際の手法としては、 乾燥以外に、 塗布液の液膜から活 物質含有層を.形成する際に、 液膜中の構成成分間の硬化反応 (例 えば、 導電性高分子の構成材料となるモノマーの重合反応) を伴 う場合があってもよい。 例えば、 紫外線硬化樹脂 (導電性高分子) の構成材料となるモノマーを含む電極形成用塗布液を使用する場 合、 先ず、 集電体上に、 電極形成用塗布液を上述の所定の方法に より塗布する。 次に、 塗布液の液膜に、 紫外線を照射することに より活物質含有層を形成する。
【 0 1 8 9】 この場合、 導電性高分子 (導電性高分子からなる 粒子) を予め電極形成用塗布液に含有させておく場合に比較して、 集電体上に電極形成用塗布液の液膜を形成した後、 液膜中でモノ マーを重合させて導電性高分子を生成させることにより、 液膜中 での複合粒子 Ρ 1 0の良好な分散状態をほぼ保持したまま、 複合 粒子 Ρ 1 0間の間隙に導電性高分子を生成させることができるの で、 得られる活物質含有層中の複合粒子 Ρ 1 0と導電性高分子と の分散状態をより良好にすることができる。
【 0 1 9 0】 すなわち、 得られる活物質含有層中に、 より微細 で緻密な粒子 (複合粒子 Ρ 1 0と導電性高分子からなる粒子) が 一体化したイオン伝導ネッ トワーク及び電子伝導ネッ トワークを 構築することができる。 そのためこの場合、 比較的低い作動温度 領域においても電極反応を充分に進行させることが可能な優れた 分極特性を有するポリマ一電極をよ り容易かつよ り確実に得るこ とができる。
【 0 1 9 1】 更にこの場合、 紫外線硬化樹脂の構成材料となる モノマーの重合反応は、 紫外線照射によ り進行させることができ る。
【 0 1 9 2】 更に、 得られる活物質含有層を、 必要に応じて、 熱平板プレスや熱ロールを使用して熱処理し、 シー ト化する等の 圧延処理を施してもよい。
【 0 1 9 3】 また、 以上の説明では、 複合粒子 P 1 0を用いた 電極の形成方法の一例と して、 複合粒子 P 1 0を含む電極形成用 塗布液 7を調製しこれを用いて電極を形成する場合について説明 したが、 複合粒子 P 1 0を用いた電極の形成方法 (湿式法) はこ れに限定されない。
【 0 1 9 4】 以上説明した湿式法及び乾式方によ り形成された 活物質含有層 (活物質含有層 2 2又は活物質含有層 3 2 ) 中にお いては、 図 6に模式的に示す内部構造が形成されている。 すなわ ち、 活物質含有層 (活物質含有層 2 2又は活物質含有層 3 2 ) に おいては、 結着剤からなる粒子 P 3が使用されているにもかかわ らず、 電極活物質からなる粒子 P 1 と導電助剤からなる粒子 P 2 とが孤立せずに電気的に結合した構造が形成されている。
【 0 1 9 5】 以上、 本発明の好適な実施形態について説明した 力 本発明は上記実施形態に限定されるものではない。
【 0 1 9 6】 例えば、 本発明の電極は、 活物質含有層が本発明 の電極形成用塗布液に含まれる複合粒子 P 1 0を用いて形成され るものであればよく、それ以外の構造は特に限定されない。 また、 電気化学素子も本発明の電極をァノ一ド及びカソー ドのうちの少 なく とも一方の電極と して備えていればよく、 それ以外の構成及 び構造は特に限定されない。例えば、電気化学素子が電池の場合、 図 7に示すよ うに、 単位セル (アノー ド 2、 力ソード 3及びセパ レータを兼ねる電解質層 4からなるセル) 1 0 2を複数積層し、 これを所定のケース 9内に密閉した状態で保持させた (パッケー ジ化した) モジュール 1 0 0の構成を有していてもよい。
【 0 1 9 7】 更に、 この場合、 各単位セルを並列に接続しても よく、 直列に接続してもよい。 また、 例えば、 このモジュール 1 0 0を更に直列又は並列に複数電気的に接続させた電池ュニッ ト を構成してもよい。 この電池ュニッ トと しては、 例えば、 図 8に 示す電池ュニ ッ ト 2 0 0のよ うに、 例えば、 1 つのモジユーノレ 1 0 0の力 ソー ド端子 1 0 4 と別のモジュール 1 0 0のアノー ド端 子 1 0 6 とが金属片 1 0 8により電気的に接続されることによ り, 直列接続の電池ュニッ ト 2 0 0を構成することができる。
【 0 1 9 8】 更に、 上述のモジュール 1 0 0や電池ュニッ ト 2 0 0を構成する場合、 必要に応じて、 既存の電池に備えられてい るものと同様の保護回路 (図示せず) や P T C (図示せず) を更 に設けてもよレ、。
【 0 1 9 9】 また、 上述した電気化学素子の実施形態の説明で は、 2次電池の構成を有するものについて説明したが、 例えば、 本発明の電気化学素子は、 アノー ドと、 力ソー ドと、 イオン伝導 性を有する電解質層とを少なく とも備えており、 アノードとカソ ードとが電解質層を介して対向配置された構成を有していればよ く 、 一次電池であってもよい。 複合粒子 P 1 0の電極活物質と し ては上述の例示物質の他に、 既存の一次電池に使用されているも のを使用してよい。 導電助剤及び結着剤は上述の例示物質と同様 であってよレ、。
【 0 2 0 0】 更に、 本発明の電極は、 電池用の電極に限定され ず、 例えば、 電気分解セル、 電気化学キャパシタ (電気二重層キ ャパシタ、 アルミ電解コンデンサ等)、 又は、 電気化学センサに使 用される電極であってもよい。 また、 本発明の電気化学素子も、 電池のみに限定されるものではなく、 例えば、 電気分解セル、 電 気化学キャパシタ (電気二重層キャパシタ、 アルミ電解コンデン サ等)、 又は、 電気化学センサであってもよい。 例えば、 電気二重 層キャパシタ用電極の場合、 複合粒子 P 1 0を構成する電極活物 質と しては、 ヤシガラ活性炭、 ピッチ系活性炭、 フエノール樹脂 系活性炭等の電気二重層容量の高い炭素材料を使用することがで きる。
【 0 2 0 1 】 更に、 例えば、 食塩電解に使用されるアノードと して、 例えば、 酸化ルテニウム (或いは酸化ルテニウムとこれ以 外の金属酸化物との複合酸化物) を熱分解したものを本発明にお ける電極活物質と して、 複合粒子 P 1 0の構成材料と して使用し、 得られる複合粒子 P 1 0を含む活物質含有層をチタン基体上に形 成した電極を構成してもよい。
【 0 2 0 2】 また、 本発明の電気化学素子が電気化学キャパシ タの場合、 電解質溶液と しては、 特に限定されず、 公知の電気二 重層キャパシタ等の電気化学キャパシタに用いられている非水電 解質溶液 (有機溶媒を使用する非水電解質溶液) を使用すること ができる。
【 0 2 0 3】 更に、 非水電解質溶液 3 0の種類は特に限定され ないが、 一般的には溶質の溶解度、 解離度、 液の粘性を考慮して 選択され、 高導電率でかつ高電位窓 (分解開始電圧が高い) の非 水電解質溶液であることが望ましい。 有機溶媒と しては、 プロピ レンカーボネー ト、 ジエチレンカーボネー ト、 ァセ トニ ト リルが 挙げられる。 また、 電解質と しては、 例えば、 テ トラェチルアン モ-ゥムテ トラフルォロボレー ト ( 4フッ化ホウ素テ トラェチル アンモニゥム) のような 4級アンモニゥム塩が挙げられる。 なお、 この場合、 混入水分を厳重に管理する必要がある。
【 0 2 0 4】 . [実施例]
【 0 2 0 5】 以下、 実施例及び比較例を挙げて本発明について 更に詳しく説明するが、 本発明は以下の実施例に何ら限定される ものではない。
【 0 2 0 6】 (実施例 1 )
【 0 2 0 7】 以下に示す手順によ り、 リチウムイオン 2次電池 の力ソー ドの活物質含有層の形成に使用可能な電極用複合粒子を. 先に述べた造粒工程を経る方法によ り作製した。 ここで、 電極用 複合粒子 P 1 0は、 カソードの電極活物質 ( 9 0質量%)、 導電助 剤 ( 6質量%) 及び結着剤 (4質量%) から構成した。
【 0 2 0 8】 力ソードの電極活物質と しては、 一般式 : L i XM nyN i ZC ο で表される複合金属酸化物のうち、 x = l、 y = 0. 3 3、 z = 0. 3 3、 w = 2 となる条件を満たす複合金属 酸化物の粒子 (B E T比表面積 : 0. 5 5 mV g、 平均粒子径 : 1 2 X m) を用いた。 また、 導電助剤と しては、 アセチレンブラ ックを用いた。 更に、 結着剤と してはポリ フッ化ビニリデンを用 いた。
【 0 2 0 9】 先ず、 原料液調製工程において、 ポリ フッ化ビニ リデンを N, N—ジメチルホルムアミ ド {(DMF) : 溶媒 } に溶 解させた溶液にアセチレンブラックを分散させた 「原料液」 (ァセ チレンブラック 3質量0 /0、 ポリ フッ化ビニリデン 2質量% ) を調 製した。
【 0 2 1 0】 次に、 流動層化工程において、 図 3に示した流動 槽 5 と同様の構成を有する容器内で空気からなる気流を発生させ. 複合金属酸化物の粉体を投入しこれを流動層化させた。 次に、 噴 霧乾燥工程において、 上記の原料液を流動層化した複合金属酸化 物の粉体に噴霧し、 当該粉体表面に溶液を付着させた。 なお、 こ の噴霧を行う際の粉体の置かれる雰囲気中の温度を一定に保持す ることにより、 噴霧とほぼ同時に当該粉体表面から N, N—ジメ チルホルムアミ ドを除去した。 このよ うにして粉体表面にァセチ レンブラ ック及びポリ フッ化ビ-リデンを密着させ、 電極用複合 粒子 P 1 0 (平均粒子径 : 1 5 0 μ m) を得た。
【 0 2 1 1】 なお、 この造粒処理において使用する電極活物質、 導電助剤及び結着剤のそれぞれの量は、 最終的に得られる電極用 複合粒子 P 1 0中のこれらの成分の質量比が上述の値となるよ う に調節した。
【 0 2 1 2】 (実施例 2 )
【 0 2 1 3】 以下に示す手順によ り、 リチウムイオン 2次電池 のァノー ドの活物質含有層の形成に使用可能な電極用複合粒子を 先に述べた造粒工程を経る方法によ り作製した。 ここで、 電極用 複合粒子 P 1 0は、 ァノードの電極活物質 ( 8 5質量%)、 導電助 剤 ( 5質量%) 及び結着剤 ( 1 0質量%) から構成した。
【 0 2 1 4】 ァノードの電極活物質と しては、 人造黒鉛 (B E T比表面積 : 1. 0 m2/ g、 平均粒子径 : 3 0 μ m) を用いた。 また、 導電助剤と しては、 アセチレンブラックを用いた。 更に、 結着剤と してはポリ フッ化ビ二リデンを用いた。
【 0 2 1 5】 先ず、 原料液調製工程において、 ポリ フッ化ビニ リデンを N, N—ジメチルホルムアミ ド { ( D M F ) : 溶媒 } に溶 解させた溶液にアセチレンブラックを分散させた 「原料液」 (ァセ チレンブラック 2質量0 /0、 ポリ フッ化ビニリデン 4質量0 /0) を調 製した。
【 0 2 1 6】 次に、 噴霧乾燥工程において、 上記の原料液を図 3に示した流動槽 5 と同様の構成を有する容器内で流動層化させ た人造黒鉛の粉体に噴霧し、 当該粉体表面に溶液を付着させた。 なお、 この噴霧を行う際の粉体の置かれる雰囲気中の温度を一定 に保持することによ り、 噴霧とほぼ同時に当該粉体表面から N, N—ジメチルホルムアミ ドを除去した。 このよ うにして粉体表面 にアセチレンブラック及びポリ フッ化ビニリデンを密着させ、 電 極用複合粒子 P 1 0 (平均粒子径 : 3 0 0 m) を得た。
【 0 2 1 7】 なお、 この造粒処理において使用する電極活物質、 導電助剤及び結着剤のそれぞれの量は、 最終的に得られる電極用 複合粒子 P 1 0中のこれらの成分の質量比が上述の値となるよ う に調節した。
【 0 2 1 8】 (実施例 3 )
【 0 2 1 9】 以下に示す手順によ り、 電気二重層キャパシタの 電極の活物質含有層の形成に使用可能な電極用複合粒子を先に述 ベた造粒工程を経る方法によ り作製した。 ここで、 電極用複合粒 子 P 1 0は、 ァノードの電極活物質 ( 8 0質量%)、 導電助剤 ( 1 0質量%) 及び結着剤 ( 1 0質量%) から構成した。
【 0 2 2 0】 電極活物質と しては、 活性炭 (B E T比表面積 :
2 5 0 0 m2/ g、 平均粒子径 : 2 0 m) を用いた。 また、 導電 助剤と しては、 アセチレンブラ ックを用いた。 更に、 結着剤と し てはポリ フッ化ビ-リデンを用いた。
【 0 2 2 1 】 先ず、 原料液調製工程において、 ポリ フッ化ビ二 リデンを N , N —ジメチルホルムアミ ド { ( D M F ) : 溶媒 } に溶 解させた溶液にアセチレンブラックを分散させた 「原料液」 (ァセ チレンブラック 2質量0 /0、 ポリ フッ化ビニリデン 2質量0 /0 ) を調 製した。
【 0 2 2 2】 次に、 噴霧乾燥工程において、 上記の原料液を図 3に示した流動槽 5 と同様の構成を有する容器内で流動層化させ た人造黒鉛の粉体に噴霧し、 当該粉体表面に溶液を付着させた。 なお、 この噴霧を行う際の粉体の置かれる雰囲気中の温度を一定 に保持することにより、 噴霧とほぼ同時に当該粉体表面から N , N—ジメチルホルムアミ ドを除去した。 このよ うにして粉体表面 にアセチレンブラック及びポリ フッ化ビユリデンを密着させ、 電 極用複合粒子 P 1 0 (平均粒子径 : 1 0 0 /X m ) を得た。
【 0 2 2 3】 なお、 この造粒処理において使用する電極活物質、 導電助剤及び結着剤のそれぞれの量は、 最終的に得られる電極用 複合粒子 P 1 0中のこれらの成分の質量比が上述の値となるよ う に調節した。
【 0 2 2 4】 (比較例 1 )
【 0 2 2 5】 以下の従来の電極作成手順によ り電極を作成した。 先ず、 電極活物質、 導電剤及び結着剤と して、 それぞれ実施例 1 で使用したものと同じものを使用し、 電極活物質の質量 : 導電剤 の質量 : 結着剤の質量 = 9 0 : 6 : 4 となるようにこれらを混合 し、 混練物を得た。
【 0 2 2 6】 よ り具体的には、 電極活物質、 導電剤及び結着剤 を、 プラネタ リーミル及びホモジナイザを用いて電極活物質、 導 電剤及び結着剤からなる混合物の撹拌混合を行った。 次に、 熱口 ール装置を用いてこの混練物をシー ト化し、 実施例 1の電極用複 合粒子 P 1 0と同様の電極活物質の担持量 ( 5 0 m g Z c m2) 及 び空隙率(空孔率) ( 2 5 %)を有する活物質含有層をアルミ箔(集 電体) 上に作製した。
【 0 2 2 7】 (比較例 2 )
【 0 2 2 8】 以下の従来の電極作成手順により電極を作成した。 先ず、 電極活物質、 導電剤及び結着剤と して、 それぞれ実施例 2 で使用したものと同じものを使用し、 電極活物質の質量 : 導電剤 の質量 : 結着剤の質量 = 8 5 : 5 : 1 0 となるよ うにこれらを混 合し、 混練物を得た。
【 0 2 2 9】 よ り具体的には、 電極活物質、 導電剤及び結着剤 を、 プラネタ リーミル及びホモジナイザを用いて電極活物質、 導 電剤及び結着剤からなる混合物の撹拌混合を行った。 次に、 熱口 ール装置を用いてこの混練物をシー ト化し、 実施例 2の電極用複 合粒子 P 1 0と同様の電極活物質の担持量 ( 3 2 m g / c m2) 及 び空隙率 (空孔率) ( 3 5 %) を有する活物質含有層を銅箔 (集電 体) 上に作製した。
【 0 2 3 0】 (比較例 3 )
【 0 2 3 1 】 以下の従来の電極作成手順により電極を作成した。 先ず、 電極活物質、 導電剤及び結着剤と して、 それぞれ実施例 3 で使用したものと同じものを使用し、 電極活物質の質量 : 導電剤 の質量 : 結着剤の質量 = 8 0 : 1 0 : 1 0 となるよ うにこれらを 混合し、 混練物を得た。
【 0 2 3 2】 より具体的には、 電極活物質、 導電剤及び結着剤 を、 プラネタ リーミル及びホモジナイザを用いて電極活物質、 導 電剤及び結着剤からなる混合物の撹拌混合を行った。 次に、 熱口 ール装置を用いてこの混練物をシー ト化し、 実施例 2の電極用複 合粒子 P 1 0 と同様の電極活物質の担持量 ( l O m g Z c m 2) 及 び空隙率(空孔率) ( 5 0 % )を有する活物質含有層をアルミ箔(集 電体) 上に作製した。
【 0 2 3 3】 [複合粒子の内部抵抗 (イ ンピーダンス) 測定試 験用の測定セルの作製]
【 0 2 3 4】 実施例 1 の複合粒子 P 1 0の内部抵抗 (ィンピー ダンス) 測定するために、 図 9に示す測定セルを作成した。 図 9 は、 実施例 1の電極用複合粒子の内部抵抗 (イ ンピーダンス) の 測定方法を示す説明図である。
【 0 2 3 5】 測定セル 2 0について説明する。 図 9に示すよ う に、 測定セル 2 0は、 グローブボックス 9内に配置した。 そして、 このグローブボックス 9 内を、 アルゴンガスで満たした。 図 9 に 示すように、 測定セル 2 0は、 主と して、 互いに対向するカソー ド C及びァノー ド Aと、 ァノー ド Aとカソード Cとの間に配置さ れた電解質溶液の層 Eとから構成した。
【 0 2 3 6】 図 9に示すよ うに、 アノード Aは、 金属リチウム 箔 A 2 (膜厚: 2 0 0 μ m、 電極面積: 直径 1 5 m mの円形) と、 金属リチゥム箔 A 2の背面 (電解質溶液の層 Eに接触しない側の 面) に接続された白金線からなる端子 A 1 とから構成した。 また、 図 9に示すよ うに、 力ソード Cは、 実施例 1の電極用複合粒子 P 1 0 と、 電極用複合粒子 P 1 0に電気的に接続された白金線から なる端子 C 1 とから構成した。
【 0 2 3 7】 なお、 電極用複合粒子 P 1 0 と白金線からなる端 子 C 1 とは両者の接触抵抗が最小値となる状態で電気的に接続し た。 また、 金属リチウム箔 A 2 と電極用複合粒子 P 1 0 との距離 が一定 ( 1 c m) となるよ うに、 カソー ド Cの電極用複合粒子 P 1 0を電解質溶液の層 E中に含浸させ、 その位置を固定した。 【 0 2 3 8】 電解質溶液の層 Eは、 エチレンカーボネー トとプ ロピレンカーボネー トとを 3 : 1の体積比で混合した溶媒に L i C 1 04 をその濃度が l m o 1 Lとなるよ うに溶解した電解質 溶液から構成した。
【 0 2 3 9】 [複合粒子の内部抵抗 (インピーダンス) 測定試 験]
実施例 1の電極用複合粒子 P 1 0を電極に使用した各測定セル について、 測定温度を室温 ( 2 5 °C) と した場合の内部抵抗 (ィ ンピーダンス) を測定した。
【 0 2 4 0】 なお、 内部抵抗 (イ ンピーダンス) の測定は、 以 下のようにして行った。 すなわち、 実施例 1の電極用複合粒子 P
1 0の 1つ ( 1粒) についてサイク リ ックボルタンメ ト リ ーの測 定を行い、 これに基づいて電極用複合粒子 P 1 0の平衡容量値を 算出した。 次に、 実施例 1の電極用複合粒子 P 1 0の 1つ ( 1粒) についてイ ンピーダンス測定を行い、 得られる複素イ ンピーダン スプロッ トのデータから電極用複合粒子 P 1 0の電荷移動抵抗値 をインピーダンス値と して算出した。 次に、 上記イ ンピーダンス 値を上記平衡容量値で除して、 平衡容量値で規格化されたィンピ 一ダンス値 {= (上記イ ンピーダンス値) Z (上記平衡容量値) } を得た。 この結果を表 1 に示す。 このときの値は、 後述する比較 例 1の値を 1 と した場合の相対値である。
【 0 2 4 1 】 [比較例 1の電極の内部抵抗 (イ ンピーダンス) 測定試験]
【 0 2 4 2】 比較例 1 の電極について、測定温度を室温( 2 5 °C ) と した場合の内部抵抗 (インピーダンス) を測定した。
【 0 2 4 3】 なお、 内部抵抗 (イ ンピーダンス) の測定は、 以 下のようにして行った。 すなわち、 比較例 1の電極の活物質含有 層についてサイク リ ックポルタンメ ト リーの測定を行い、 これに 基づいて活物質含有層の平衡容量値を算出した。 次に、 活物質含 有層についてイ ンピーダンス測定を行い、 得られる複素イ ンピー ダンスプロッ トのデータから活物質含有層の電荷移動抵抗値をィ ンピーダンス値と して算出した。 次に、 上記イ ンピーダンス値を 上記平衡容量値で除して、 平衡容量値で規格化されたィ ンビーダ ンス値 { = (上記インピーダンス値) Z (上記平衡容量値) } を得 た。 この結果を表 1 に示す。 このときの値を 1 と して、 他の例と の比較を行った。
【 0 2 4 4】 [実施例 1 の電極用複合粒子に含まれる電極活物 質の内部抵抗 (インピーダンス) 測定試験]
【 0 2 4 5】 実施例 1 の電極用複合粒子 P 1 0に含まれる電極 活物質からなる粒子について、 測定温度を室温 ( 2 5 °C ) と した 場合の内部抵抗 (インピーダンス) を測定した。
【 0 2 4 6】 なお、 内部抵抗 (イ ンピーダンス) の測定は、 以 下のようにして行った。 すなわち、 実施例 1の電極用複合粒子 P 1 0電極活物質からなる粒子の 1つ ( 1粒) についてサイク リ ツ クボルタンメ ト リーの測定を行い、 これに基づいて電極活物質か らなる粒子の平衡容量値を算出した。 次に、 実施例 1の電極用複 合粒子 P 1 0に含まれる電極活物質粒子の 1つ ( 1粒) について イ ンピーダンス測定を行い、 得られる複素イ ンピーダンスプロ ッ トのデータから電極活物質からなる粒子の電荷移動抵抗値をィン ピーダンス値と して算出した。 次に、 上記インピーダンス値を上 記平衡容量値で除して、 平衡容量値で規格化されたィンピ一ダン ス値 { == (上記ィンピーダンス値) / (上記平衡容量値) } を得た。 この結果を表 1 に示す。 なお、 表 1 の値は、 比較例 1 の値を 1 (基 準) と して算出しているため無次元の値である。
Figure imgf000068_0001
【 0 2 4 7】 表 1 に示した結果から明らかなよ うに、 実施例 1 〜 3の複合粒子によ り電極を作成した場合、 その活物質含有層の 内部抵抗は、 従来の製造方法で作成した電極の活物質含有層の内 部抵抗に比較して十分に低くなることが確認された。
【 0 2 4 8】 また、 表 1に示した結果から明らかなよ うに、 実 施例 1〜 3の複合粒子は結着剤が含まれているにも拘わらず、 そ の内部抵抗値が、 使用されている電極活物質そのものの内部抵抗 値より も低いことが確認された。
【 0 2 4 9】 (実施例 4 )
【 0 2 5 0】 ( 1 ) 複合粒子の作製
【 0 2 5 1 】 先ず、 以下に示す手順によ り、 リチウムイオン 2 次電池の力ソー ドの活物質含有層の形成に使用可能な複合粒子を 先に述べた造粒工程を経る方法により作製した。 ここで、 複合粒 子 P 1 0は、 カソー ドの電極活物質( 9 2質量%)、導電助剤 (4 . 8質量%) 及び結着剤 ( 3. 2質量%) から構成した。
【 0 2 5 2】 力ソー ドの電極活物質と しては、 一般式 : L i XM nyN i ZC o 1_ _ 01>で表される複合金属酸化物のうち、 x = l、 y = 0 · 3 3、 z = 0. 3 3、 w = 2 となる条件を満たす複合金属 酸化物の粒子 (B E T比表面積 : 0. 5 5 m2/ g、 平均粒子径 :
1 2 u m) を用いた。 また、 導電助剤と しては、 アセチレンブラ ックを用いた。 更に、 結着剤と してはポリ フッ化ビニリデンを用 いた。
【 0 2 5 3】 先ず、 原料液調製工程において、 ポリ フッ化ビニ リデンを N, N—ジメチルホルムアミ ド {(DMF) : 溶媒 } に溶 解させた溶液にアセチレンブラックを分散させた 「原料液」 (ァセ チレンブラック 3質量0 /0、 ポリ フッ化ビニリデン 2質量%) を調 製した。
【 0 2 5 4】 次に、 流動層化工程において、 図 3示した流動槽 5 と同様の構成を有する容器内で空気からなる気流を発生させ、 複合金属酸化物の粉体を投入しこれを流動層化させた。 次に、 噴 霧乾燥工程において、 上記の原料液を流動層化した複合金属酸化 物の粉体に噴霧し、 当該粉体表面に溶液を付着させた。 なお、 こ の噴霧を行う際の粉体の置かれる雰囲気中の温度を一定に保持す ることによ り、 嘖霧とほぼ同時に当該粉体表面から N, N—ジメ チルホルムァミ ドを除去した。 このよ うにして粉体表面にァセチ レンブラック及びポリ フッ化ビ二リデンを密着させ、 複合粒子 P 1 0 (平均粒子径 : 2 0 0 m) を得た。
【 0 2 5 5】 なお、 この造粒処理において使用する電極活物質、 導電助剤及び結着剤のそれぞれの量は、 最終的に得られる複合粒 子 P 1 0中のこれらの成分の質量比が上述の値となるよ うに調節 した。
【 0 2 5 6】 ( 2 ) 電極 (力ソー ド) の作製
【 0 2 5 7】 電極 (力ソード) は先に述べた乾式法によ り作製 した。 先ず、 図 4に示したものと同様の構成を有する熱ロールプ レス機を用いて、 これに、 複合粒子 P 1 0 (平均粒子径 : 2 0 0 μ m) を投入し、 活物質含有層となるシー ト (幅 : 1 0 c m) を 作成した (シー ト化工程)。 なお、 このときの加熱温度は、 1 2 0 °C と し、 加圧条件は線圧 2 0 0 k g f / c mと した。 次にこのシー トを打ち抜いて、円板状の活物質含有層を得た(直径: 1 5 mm)。 【 0 2 5 8】 次に、 円板状の集電体 (アルミ箔, 直径 : 1 5 m m, 厚さ : 2 0 /x m) の集電体の一方の面に、 ホッ トメノレト導電 層 (厚さ : 5 m) を形成した。 なお、 このホッ トメル ト導電層 は、 複合粒子の作製に使用したものと同様の導電助剤 (ァセチレ ンブラック) と複合粒子の作製に使用したものと同様の結着剤 (ポ リ フッ化ビユリデン) とからなる層 (アセチレンブラック : 2 0 質量%, ポリフッ化ビニリデン : 8 0質量%) である。
【 0 2 5 9】 次に、 ホッ トメル ト導電層上に、 先に製造した活 物質含有層となるシー トを配置し、 熱圧着した。 なお、 熱圧着条 件は、 熱圧着時間 : 1分、 加熱温度を 1 8 0 °Cと し、 加圧条件は S O k g f Z c m2と した。 このようにして、 活物質含有層の厚さ
1 0 0 m、 活物質担持量: 3 0 m g c m2、 空孔率: 2 5体積% である電極 (力ソード) を得た。
【 0 2 6 0】 (実施例 5 )
【 0 2 6 1】 ( 1 ) 複合粒子の作製
【 0 2 6 2】 先ず、 以下に示す手順により、 リチウムイオン 2 次電池のァノ一ドの活物質含有層の形成に使用可能な複合粒子を 造粒工程を経る方法により作製した。 ここで、複合粒子 P 1 0は、 アノー ドの電極活物質 ( 8 8質量%)、 導電助剤 (4質量%) 及び 結着剤 ( 8質量%) から構成した。
【 0 2 6 3】 ァノードの電極活物質と しては、 繊維状の黒鉛材 料である人造黒鉛の粒子 (B E T比表面積 : 1 . O n^/ g 平均 粒子径 : 1 9 m ) を用いた。 また、 導電助剤と しては、 ァセチ レンブラックを用いた。 更に、 結着剤と してはポリ フッ化ビニリ デンを用いた。
【 0 2 6 4】 先ず、 原料液調製工程において、 ポリ フッ化ビ二 リデンを N, N —ジメチルホルムアミ ド { ( D M F ) : 溶媒 } に溶 解させた溶液にアセチレンブラックを分散させた 「原料液」 (ァセ チレンブラック 3質量%、 ポリ フッ化ビニリデン 2質量% ) を調 製した。
【 0 2 6 5】 次に、 流動層化工程において、 図 3に示した流動 槽 5 と同様の構成を有する容器内で空気からなる気流を発生させ、 複合金属酸化物の粉体を投入しこれを流動層化させた。 次に、 噴 霧乾燥工程において、 上記の原料液を流動層化した複合金属酸化 物の粉体に噴霧し、 当該粉体表面に溶液を付着させた。 なお、 こ の噴霧を行う際の粉体の置かれる雰囲気中の温度を一定に保持す ることにより、 噴霧とほぼ同時に当該粉体表面から N, N—ジメ チルホルムアミ ドを除去した。 このよ うにして粉体表面にァセチ レンブラック及びポリ フッ化ビ二リデンを密着させ、 複合粒子 P 1 0 (平均粒子径 : 2 0 0 μ m ) を得た。
【 0 2 6 6】 なお、 この造粒処理において使用する電極活物質、 導電助剤及び結着剤のそれぞれの量は、 最終的に得られる複合粒 子 P 1 0中のこれらの成分の質量比が上述の値となるよ うに調節 した。
【 0 2 6 7】 ( 2 ) 電極 (ァノード) の作製
【 0 2 6 8】 電極 (アノー ド) は先に述べた乾式法によ り作製 した。 先ず、 図 4に示したものと同様の構成を有する熱ロールプ レス機を用いて、 これに、 複合粒子 P 1 0 (平均粒子径 : 2 0 0 m) を投入し、 活物質含有層となるシー ト (幅 : 1 0 c m) を 作成した (シー ト化工程)。 なお、 このと きの加熱温度は、 1 2 0 °C と し、 加圧条件は線圧 2 0 0 k g f Z c mと した。 次にこのシー トを打ち抜いて、円板状の活物質含有層を得た(直径: 1 5 mm)。 【 0 2 6 9】 次に、 円板状の集電体 (銅箔, 直径 : 1 5 mm, 厚さ : 2 0 m) の集電体の一方の面に、 ホッ トメル ト導電層 (厚 さ : 5 i m) を形成した。 なお、 このホッ トメル ト導電層は、 複 合粒子の作製に使用したものと同様の導電助剤 (アセチレンブラ ック) と結着剤 (メタク リル酸メチル) とからなる層 (ァセチレ ンブラック : 3 0質量0 /0, ポリ フッ化ビエリデン : 7 0質量0 /0) である。
【 0 2 7 0】 次に、 ホッ トメル ト導電層上に、 先に製造した活 物質含有層となるシー トを配置し、 熱圧着した。 なお、 熱圧着条 件は、 熱圧着時間 : 3 0秒、 加熱温度を 1 0 0 °Cと し、 加圧条件 は 1 0 k g f / c m2と した。 このよ うにして、 活物質含有層の厚 さ 1 0 0 m、 活物質担持量 : 1 5 m g c m2、 空孔率 : 2 5体 積%である電極 (アノード) を得た。
【 0 2 7 1】 (比較例 4 )
【 0 2 7 2】 以下の従来の電極作成手順 (湿式法) によ り電極 (力ソー ド) を作成した。 なお、 この電極の構成材料である、 電 極活物質、 導電助剤及び結着剤は、 それぞれ実施例 4で使用した ものと同じものを使用し、 電極活物質の質量 : 導電剤の質量 : 結 着剤の質量が実施例 4 と同一となるよ うに調節した。 また、 使用 する集電体 (ホッ トメルト層を設けたもの) もそれぞれ実施例 4 で使用したものと同様のものを使用した。
【 0 2 7 3】 先ず、 結着剤を N—メチルーピ口 リ ドン (N M P ) 中に溶解し結着剤溶液 (溶液の総質量を基準とする結着剤濃度 : 5質量%) を調製した。 次に、 結着剤溶液に電極活物質、 導電助 剤を上記の比率で投入し、 ハイパーミキサーで混合し、 塗布液を 得た。 次に、 この塗布液を、 ドクターブレード法により、 カソー ド用の集電体のホッ トメルト層上に塗布した。 次いで、 力ソー ド 用の集電体に形成された塗布液からなる液膜をそれぞれ乾燥させ た。
【 0 2 7 4】 次に、 得られる液膜が乾燥された状態の力ソー ド 用の集電体をローラープレス機を用いて圧延処理した。 なお、 こ のときの加熱温度は、 1 8 0 °Cと し、 加熱時間は 1分と し、 加圧 条件は 3 0 k g f Z c m 2と した。 このようにして、 活物質含有層 の厚さ 1 0 0 i m、 活物質担持量 : 3 0 m g c m 2、 空孔率 : 2 5体積%である電極 (力ソー ド) を得た。
【 0 2 7 5】 (比較例 5 )
【 0 2 7 6】 以下の従来の電極作成手順 (湿式法) によ り電極
(アノード) を作成した。 なお、 この電極の構成材料である、 電 極活物質、 導電助剤及び結着剤は、 それぞれ実施例 4で使用した ものと同じものを使用し、 電極活物質の質量 : 導電剤の質量 : 結 着剤の質量が実施例 5 と同一となるように調節した。 また、 使用 する集電体 (ホッ トメル ト層を設けたもの) もそれぞれ実施例 5 で使用したものと同様のものを使用した。 【 0 2 7 7】 先ず、 結着剤を N—メチル一ピロ リ ドン (NMP) 中に溶解し結着剤溶液 (溶液の総質量を基準とする結着剤濃度 : 5質量%) を調製した。 次に、 結着剤溶液に電極活物質、 導電助 剤を上記の比率で投入し、 ハイパーミキサーで混合し、 塗布液を 得た。 次に、 この塗布液を、 ドクターブレー ド法によ り、 ァノー ド用の集電体のホッ トメルト層上に塗布した。 次いで、 アノー ド 用の集電体に形成された塗布液からなる液膜をそれぞれ乾燥させ た。
【 0 2 7 8】 次に、 得られる液膜が乾燥された状態のアノー ド 用の集電体をローラープレス機を用いて圧延処理した。 なお、 こ のときの加熱温度は、 1 0 0 °Cと し、 加熱時間は 3 0秒と し、 力 Π 圧条件は 1 O k g f / c m2と した。 このよ う にして、 活物質含有 層の厚さ 1 0 0 / m、 活物質担持量 : 1 5 m g Z c m2、 空孔率 : 2 5体積%である電極 (アノード) を得た。
【 0 2 7 9】 〔電極特性評価試験〕
【 0 2 8 0】 実施例 4及び実施例 5並びに比較例 4及び比較例 5の各電極を 「試験極 (作用極)」、 リチウム金属箔 (直径 : 1 5 mm, 厚さ : 1 0 0 /z m) を対極とする電気化学セルを作製し、 以下の特性評価試験を行い、 各電極 (試験極) の電極特性を評価 した。 なお、 評価試験の結果を表 2に示した。
【 0 2 8 1】 ( 1 ) 電解質溶液の調製
【 0 2 8 2】 電解質層となる電解質溶液を以下の手順によ り調 製した。 すなわち、 L i C 1 04をその体積モル濃度が 1 m o 1 Lとなるよ うに、 溶媒 {エチレンカーボネー ト (E C) 及びジェ チルカーボネー ト (D E C) を体積比 1 : 1で混合したもの } 中 に溶解した。 【 0 2 8 3】 ( 2 ) 電極特性評価試験用の電気化学セルの作製 【 0 2 8 4】 先ず、 各試験極及び対極を互いに対向させ、 その 間にポリエチレン多孔膜からなるセパレータ (直径 : 1 5 mm、 厚さ : 3 0 i m) を配置し、 アノー ド、 セパレータ及び力ソー ド がこの順で順次積層された積層体 (素体) を形成した。 この積層 体のアノー ド及び力ソー ドのそれぞれにリード (幅 : 1 0 mm、 長さ : 2 5 mm、 厚さ : 0. 5 0 mm) を超音波溶接によ り接続 した。 そして、 電気化学セルの金型となる密閉容器中にこの積層 体を入れ、 調製した電解質溶液を注入した。 そして、 積層体のァ ノー ド及び力ソードの両側から一定の圧力をかけた状態と した。 このよ うにして、 各試験極毎に電気化学セルを作製した。
【 0 2 8 5】 ( 3 ) 電極特性評価試験
【 0 2 8 6】 試験極が力ソー ドの場合 (実施例 4の電極及び比 較例 4の電極の場合)、 試験極の電位を、 対極のリチウム金属のレ ドックスポテンシャルを基準と して、 + 2. 5 V〜+ 4. 3 Vの 電位範囲 (定電流一定電圧) で分極させた。 なお、 測定評価試験 は 2 5 °Cで行った。
【 0 2 8 7】 また、 試験極がァノ一ドの場合 (実施例 5の電極 及び比較例 5の電極の場合)、 試験極の電位を、 対極のリチウム金 属のレドックスポテンシャルを基準と して、 + 0. 0 1 V〜+ 3
Vの電位範图 (定電流一定電圧) で分極させた。 なお、 測定評価 試験は 2 5 °Cで行った。
【 0 2 8 8】 得られた分極特性よ り、 試験時の各電極の活物質 容量 (A) (m A h · g—1) と、 活物質容量 (A) を引き出せる最 大電流密度 (mA · c m—2) を求めた。 その結果を表 2に示す。 表 2 試験時の活物質容量 活物質容量 (A) を引き出せ (A) る
/ m A h . g— 1 最大電流密度
/ m A · c m— 2
実施例 4 1 5 5 9. 2
実施例 5 3 1 1 8. 8
比較例 4 1 5 5 0. 4
比較例 5 3 0 5 0. 8
【 0 2 8 9】 表 2に示した結果よ り、 実施例 4及び実施例 5の 電極は、比較例 4及び比較例 5の電極に比較して、活物質容量(A) を引き出すことのできる最大電流密度が大きく、 優れた出力特性 を有していることが確認された。 この結果から、 実施例 4及び実 施例 2の電極の活物質含有層においては、 電極活物質と導電助剤 とが孤立せずに電気的に結合しているおり、 良好な電子伝導ネッ トワーク及びイオン伝導ネッ トワークが形成されていると考えら れる。
【 0 2 9 0】 (活物質含有層の断面観察)
【 0 2 9 1】 ★実施例 4及び★比較例 4の電極の一部を矩形状
( 5 mm X 5 mm) に打ち抜いた断片を得た。 そして、 ★実施例 4及び★比較例 4の電極の各断片の活物質含有層に樹脂埋めの処 理 (樹脂 : エポキシ) を行い、 更に、 得られる活物質含有層を表 面研磨した。 次に、 ミクロ トームで、 ★実施例 4及び★比較例 4 の電極の各断片から、 S EM写真及び T EM写真観察用の測定サ ンプル ( 0. I mmX O . l mm) をそれぞれ得た。 そして、 そ れぞれの測定サンプルについて S EM写真及び T EM写真を撮影 した。
【 0 2 9 2】 ★実施例 4の電極の活物質含有層の S EM写真及 び T EM写真を撮影結果を図 1 0〜図 1 5に示す。 また、 ★比較 例 4の電極の活物質含有層の S E M写真及び T E M写真を撮影結 果を図 1 6〜図 2 1に示す。
【 0 2 9 3】 図 1 0は本発明の製造方法 (乾式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面を撮 影した S E M写真を示す図である。 図 1 1は本発明の製造方法(乾 式法) によ り製造された電極 (電気二重層キャパシタ) の活物質 含有層の断面 (図 1 0に示した部分と同一部分) を撮影した T E M写真を示す図である。
【 0 2 9 4】 図 1 2は本発明の製造方法 (乾式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面を撮 影した S E M写真を示す図である。 図 1 3は本発明の製造方法(乾 式法) によ り製造された電極 (電気二重層キャパシタ) の活物質 含有層の断面 (図 1 2に示した部分と同一部分) を撮影した T E M写真を示す図である。
【 0 2 9 5】 図 1 4は本発明の製造方法 (乾式法) によ り製造 された電極 (電気二重層キャパシタ) の活物質含有層の断面を撮 影した S E M写真を示す図である。 図 1 5は本発明の製造方法(乾 式法) によ り製造された電極 (電気二重層キャパシタ) の活物質 含有層の断面 (図 1 4に示した部分と同一部分) を撮影した T E M写真を示す図である。
【 0 2 9 6】 図 1 6は従来の製造方法 (湿式法) により製造さ れた電極 (電気二重層キャパシタ) の活物質含有層の断面を撮影 した S E M写真を示す図である。 図 1 7は従来の製造方法 (湿式 法) によ り製造された電極 (電気二重層キャパシタ) の活物質含 有層の断面 (図 1 6に示した部分と同一部分) を撮影した T E M 写真を示す図である。 【 0 2 9 7】 図 1 8は従来の製造方法 (湿式法) によ り製造さ れた電極 (電気二重層キャパシタ) の活物質含有層の断面を撮影 した S EM写真を示す図である。 図 1 9は従来の製造方法 (湿式 法) により製造された電極 (電気二重層キャパシタ) の活物質含 有層の断面 (図 1 8に示した部分と同一部分) を撮影した T EM 写真を示す図である。
【 0 2 9 8】 図 2 0は従来の製造方法 (湿式法) によ り製造さ れた電極 (電気二重層キャパシタ) の活物質含有層の断面を撮影 した S EM写真を示す図である。 図 2 1は従来の製造方法 (湿式 法) によ り製造された電極 (電気二重層キャパシタ) の活物質含 有層の断面 (図 2 0に示した部分と同一部分) を撮影した T EM 写真を示す図である。
【 0 2 9 9】 図 1 0〜図 1 5に示した結果から明らかなように、 ★実施例 4の電極については以下の構造を有していることが確認 された。 すなわち、 例えば、 図 1 0の R 1〜R 5の撮影領域、 及 び、 図 1 1の R 1 A〜R 5 Aの撮影領域 (それぞれ図 1 0の R 1 〜R 5 と同一の部分) の観察結果よ り、 近接した活性炭粒子同士 を導電助剤及び結着剤からなる凝集体が電気的及び物理的に接合 しており、 良好な電子伝導ネッ トワーク及びイオン伝導ネッ トヮ —クが形成されていることが確認された。
【 0 3 0 0】 また、 上記の活物質含有層の内部構造は、 倍率を 変えた写真である、 図 1 2の R 6〜R 8の撮影領域、 及び、 図 1 3の R 6 A〜R 8 Aの撮影領域 (それぞれ図 1 2の R 6 ~R 8 と 同一の部分) の観察結果、 並びに、 図 1 4の R 9の撮影領域、 及 び、 図 1 5の R 9 Aの撮影領域 (図 1 4の R 9 と同一の部分) の 観察結果からもより明確に確認された。
7S 【 0 3 0 1】 一方、 図 1 6〜図 1 7に示した結果から明らかな ように、 ★比較例 4の電極については以下の構造を有しているこ とが確認された。 すなわち、 例えば、 図 1 6の R 1 0〜 R 5 0の 撮影領域、 及び、 図 1 7の R 1 0 A〜R 5 0 Aの撮影領域 (それ ぞれ図 1 6の尺 1〜!^ 5 と同ーの部分) の観察結果より、 活性炭 粒子に対して、 導電助剤及び結着剤からなる凝集体が電気的及び 物理的に孤立して存在しているのが顕著に観察され、 ★実施例 4 の活物質含有層に比較すると、 電子伝導ネッ トワーク及びイオン 伝導ネッ トワークが十分に形成されていないことが確認された。 【 0 3 0 2】 また、 上記の活物質含有層の内部構造は、 倍率を 変えた写真である、 図 1 8の R 6 0〜R 8 0の撮影領域、 及び、 図 1 9の R 6 0 A〜R 8 0 Aの撮影領域 (それぞれ図 1 8の R 6 0〜R 8 0と同一の部分) の観察結果、 並びに、 図 2 0の R 9 0 の撮影領域、 及び、 図 1 5の R 9 0 Aの撮影領域 (図 2 0の R 9 0と同一の部分) の観察結果からもより明確に確認された。
産業上の利用可能性
【 0 3 0 3】 以上説明したように、 本発明によれば、 電極の構 成材料に結着剤を使用した場合であっても、 優れた電極特性を有 する電極を容易かつ確実に形成することのできる電極用複合粒子 を提供することができる。
【 0 3 0 4】 また、 本発明によれば、 内部抵抗が十分に低減さ れており、 電気化学素子の出力密度を十分に増大させることが容 易に可能な優れた電極特性を有する電極を提供することができる
【 0 3 0 5】 更に、 本発明によれば、 上記の電極を用いること により、 負荷要求が急激に然も大きく変動する場合であってもこ れに十分に追随可能な優れた充放電特性を有する電気化学素子を 9
提供することができる。
【 0 3 0 6】 更に、 本発明によれば、 上記の本発明の電極用複 合粒子、 電極及び電気化学素子のそれぞれを容易かつ確実に得る ことのできるの製造方法を提供することができる。

Claims

請求の範囲
1 . 電極活物質と、 電子伝導性を有する導電助剤と、 前記電 極活物質と前記導電助剤とを結着させることが可能な結着剤と、 を含む電極用複合粒子であって、
前記電極活物質からなる粒子に対し、 前記導電助剤と前記結着 剤とを密着させて一体化させる造粒工程を経て形成されており、 前記造粒工程は、
前記結着剤と前記導電助剤と溶媒とを含む原料液を調製する原 料液調製工程と、
流動槽中に前記電極活物質からなる粒子を投入し、 前記電極活 物質からなる粒子を流動層化させる流動層化工程と、
前記電極活物質からなる粒子を含む前記流動層中に前記原料液 を噴霧することにより、 前記原料液を前記電極活物質からなる粒 子に付着、 乾燥させ、 前記電極活物質からなる粒子の表面に付着 した前記原料液から前記溶媒を除去し、 前記結着剤により前記電 極活物質からなる粒子と前記導電助剤からなる粒子とを密着させ る噴霧乾燥工程と、
を含むこと、
を特徴とする電極用複合粒子。
2 . 前記結着剤が導電性高分子からなることを特徴とする請求 項 1に記載の電極用複合粒子。
3 . 導電性高分子を更に含むことを特徴とする請求項 1に記載 の電極用複合粒子。
4 . イオン伝導性を有することを特徴とする請求項 2又は 3に 記載の電極用複合粒子。
5 . 電子伝導性を有することを特徴とする請求項 2又は 3に記 載の電極用複合粒子。
6 . 前記電極活物質が 1次電池又は 2次電池の力ソード及びァ ノードのうちの少なく とも一方に使用可能な活物質であることを 特徴とする請求項 1〜 5の何れか 1項に記載の電極用複合粒子。
7 . 前記電極活物質が電気化学キャパシタを構成する電極に使 用可能な電子伝導性を有する炭素材料又は金属酸化物であること を特徴とする請求項 1〜 6の何れか 1項に記載の電極用複合粒子
8 . 電極活物質と、 電子伝導性を有する導電助剤と、 前記電極 活物質と前記導電助剤とを結着させることが可能な結着剤と、 を 含む複合粒子を構成材料と して含む導電性の活物質含有層と、 前記活物質含有層に電気的に接触した状態で配置される導電性 の集電体と、
を少なく とも有しており、
前記複合粒子は、 前記電極活物質からなる粒子に対し、 前記導 電助剤と前記結着剤とを密着させて一体化させる造粒工程を経て 形成されており、
前記活物質含有層において、 前記電極活物質と前記導電助剤と が孤立せずに電気的に結合していること、
を特徴とする電極。
9 . 前記造粒工程は、
前記結着剤と前記導電助剤と溶媒とを含む原料液を調製する原 料液調製工程と、
流動槽中に前記電極活物質からなる粒子を投入し、 前記電極活 物質からなる粒子を流動層化させる流動層化工程と、
前記電極活物質からなる粒子を含む前記流動層中に前記原料液 を噴霧することによ り、 前記原料液を前記電極活物質からなる粒 子に付着、 乾燥させ、 前記電極活物質からなる粒子の表面に付着 した前記原料液から前記溶媒を除去し、 前記結着剤によ り前記電 極活物質からなる粒子と前記導電助剤からなる粒子とを密着させ る噴霧乾燥工程と、
を含んでいること、
を特徴とする請求項 8に記載の電極。
1 0 . 前記活物質含有層の厚さ Tと、 .該活物質含有層に含有さ れる前記複合粒子の平均粒子径 d とが下記式 ( 1 ) 〜 ( 3 ) で表 される条件を満たしていること、 を特徴とする請求項 8又は 9に 記載の電極。
0 . 0 0 0 5 ≤ ( T/ d ) ( 1 )
1 m≤ ι'≥ 1 o 0 μ ( 2 )
l ^ m≤ d ≤ 2 0 0 0 /x m ( 3 )
1 1 . 前記活物質含有層が導電性高分子を更に含有することを 特徴とする請求項 8〜 1 0のうちの何れか 1項に記載の電極。
1 2 . 前記複合粒子が導電性高分子を更に含有することを特徴 とする請求項 8〜 1 1のうちの何れか 1項に記載の電極。
1 3 . 前記結着剤が導電性高分子からなることを特徴とする請 求項 8〜 1 2のうちの何れか 1項に記載の電極。
1 4. 前記導電性高分子がイオン伝導性を有することを特徴と する請求項 1 1〜 1 3のうちの何れか 1項に記載の電極。
1 5 . アノー ドと、 力ソー ドと、 イオン伝導性を有する電解質 層とを少なく とも備えており、 前記ァノードと前記力ソー ドとが 前記電解質層を介して対向配置された構成を有する電気化学素子 であって、 請求項 8〜 1 4のうちの何れか 1項に記載の電極が前記ァノ一 ド及び前記力ソードのうちの一方或いは両方の電極と して備えら れていること、
を特徴とする電気化学素子。
1 6 . 電極活物質からなる粒子に対し、 導電助剤と、 前記電極 活物質と前記導電助剤とを結着させることが可能な結着剤とを密 着させて一体化することにより、 前記電極活物質と、 前記導電助 剤と、 前記結着剤とを含む複合粒子を形成する造粒工程を有して おり、
前記造粒工程は、
前記結着剤と前記導電助剤と溶媒とを含む原料液を調製する原 料液調製工程と、
流動槽中に前記電極活物質からなる粒子を投入し、 前記電極活 物質からなる粒子を流動層化させる流動層化工程と、
前記電極活物質からなる粒子を含む前記流動層中に前記原料液 を噴霧することにより、 前記原料液を前記電極活物質からなる粒 子に付着、 乾燥させ、 前記電極活物質からなる粒子の表面に付着 した前記原料液から前記溶媒を除去し、 前記結着剤により前記電 極活物質からなる粒子と前記導電助剤からなる粒子とを密着させ る噴霧乾燥工程と、
を含むこと、
を特徴とする電極用複合粒子の製造方法。
1 7 . 前記造粒工程において、 前記流動槽中の温度を 5 0 °C以 上で、 前記結着剤の融点以下に調節すること、
を特徴とする請求項 1 6に記載の電極用複合粒子の製造方法。
1 8 . 前記造粒工程において、 前記流動槽中に発生させる前記 気流は、 空気、 窒素ガス、 又は、 不活性ガスからなる気流である こと、
を特徴とする請求項 1 6又は 1 7に記載の電極用複合粒子の製造 方法。
1 9 . 前記原料液に含まれる前記溶媒は、 前記結着剤を溶解又 は分散可能であると ともに前記導電助剤を分散可能であること、 を特徴とする請求項 1 7又は 1 8に記載の電極用複合粒子の製造 方法。
2 0 . 前記結着剤と して導電性高分子を使用することを特徴と する請求項 1 6〜 1 9の何れか 1項に記載の電極用複合粒子の製 造方法。
2 1 . 前記原料液には、 導電性高分子が更に溶解されているこ とを特徴とする請求項 1 7〜 2 0の何れか 1項に記載の電極用複 合粒子の製造方法。
2 2 . 前記導電性高分子がイオン伝導性を有することを特徴と する請求項 2 0又は 2 1に記載の電極用複合粒子の製造方法。
2 3 . 前記導電性高分子が電子伝導性を有することを特徴とす る請求項 2 0又は 2 1 に記載の電極用複合粒子の製造方法。
2 4 . 前記電極活物質が 1次電池又は 2次電池の力ソード及び アノードのうちの少なく とも一方に使用可能な活物質であること を特徴とする請求項 1 6〜 2 3の何れか 1項に記載の電極用複合 粒子の製造方法。
2 5 . 前記電極活物質が電気化学キャパシタを構成する電極に 使用可能な電子伝導性を有する炭素材料又は金属酸化物であるこ とを特徴とする請求項 1 6〜 2 4の何れか 1項に記載の電極用複 合粒子の製造方法。
2 6 . 電極活物質を含む導電性の活物質含有層と、 前記活物質 含有層に電気的に接触した状態で配置される導電性の集電体と、 を少なく とも有する電極の製造方法であって、
電極活物質からなる粒子に対し、 導電助剤と、 前記電極活物質 と前記導電助剤とを結着させることが可能な結着剤とを密着させ て一体化することにより、 前記電極活物質と、 前記導電助剤と、 前記結着剤とを含む複合粒子を形成する造粒工程と、
前記集電体の前記活物質含有層を形成すべき部位に、 前記複合 粒子を用いて前記活物質含有層を形成する活物質含有層形成工程 と、
を有しており、
前記造粒工程は、
前記結着剤と前記導電助剤と溶媒とを含む原料液を調製する原 料液調製工程と、
流動槽中に前記電極活物質からなる粒子を投入し、 前記電極活 物質からなる粒子を流動層化させる流動層化工程と、
前記電極活物質からなる粒子を含む前記流動層中に前記原料液 を噴霧することにより、 前記原料液を前記電極活物質からなる粒 子に付着、 乾燥させ、 前記電極活物質からなる粒子の表面に付着 した前記原料液から前記溶媒を除去し、 前記結着剤により前記電 極活物質からなる粒子と前記導電助剤からなる粒子とを密着させ る噴霧乾燥工程と、
を含むこと、
を有することを特徴とする電極の製造方法。
2 7 . 前記造粒工程において、 前記流動槽中の温度を 5 0 °C以 上で、 前記結着剤の融点以下に調節すること、 を特徴とする請求 項 2 6に記載の電極の製造方法。
2 8 . 前記造粒工程において、 前記流動槽中に発生させる前記 気流は、 空気、 窒素ガス、 又は、 不活性ガスからなる気流である こと、 を特徴とする請求項 2 6に記載の電極の製造方法。
2 9 . 前記原料液に含まれる前記溶媒は、 前記結着剤を溶解又 は分散可能であるとともに前記導電助剤を分散可能であること、 を特徴とする請求項 2 7又は 2 8に記載の電極の製造方法。
3 0 . 前記原料液には、 導電性高分子が更に溶解されているこ とを特徴とする請求項 2 6〜 2 9のうちの何れか 1項に記載の電 極の製造方法。
3 1 . 前記結着剤と して導電性高分子を使用することを特徴と する請求項 2 6〜 2 9のうちの何れか 1項に記載の電極の製造方 法。
3 2 . 前記導電性高分子がイオン伝導性を有することを特徴と する請求項 3 0又は 3 1に記載の電極の製造方法。
3 3 . 前記活物質含有層形成工程は、
前記複合粒子を少なく とも含む粉体に加熱処理及び加圧処理を 施してシート化し、 前記複合粒子を少なく とも含むシー トを得る シート化工程と、
前記シートを前記活物質含有層と して前記集電体上に配置する 活物質含有層配置工程と、
を有すること、
を特徴とする請求項 2 6〜 3 2のうちの何れか 1項に記載の電極 の製造方法。
3 4 . 前記活物質含有層形成工程は、
前記複合粒子を分散又は混練可能な液体に前記複合粒子を添加 して電極形成用塗布液を調製する塗布液調製工程と、
前記集電体の前記活物質含有層を形成すべき部位に、 前記電極 形成用塗布液を塗布する工程と、
前記集電体の前記活物質含有層を形成すべき部位に塗布された 前記電極形成用塗布液からなる液膜を固化させる工程と、 を含む こと、
を特徴とする請求項 2 6〜3 2のうちの何れか 1項に記載の電極 の製造方法。 、
3 5 . 前記活物質含有層形成工程において、 前記活物質含有層 の厚さ Tと、 該活物質含有層に含有される前記複合粒子の平均粒 子径 d とが下記式 ( 1 ) 〜 ( 3 ) で表される条件を満たすよ うに 前記活物質含有層を形成するこ と、 を特徴とする請求項 2 6〜 3 4のうちの何れか 1項に記載の電極の製造方法。
0. 0 0 0 5 ≤ ( T / d ) ≤ 1 · · · ( 1 )
l /i m≤ T≤ 1 5 0 /i m - - · ( 2 )
l /i m≤ d ≤ 2 0 0 0 /i m ' —— ( 3 )
3 6 . アノー ドと、 力ソー ドと、 イオン伝導性を有する電解質 層とを少なく とも備えており、 前記ァノ一ドと前記力ソー ドとが 前記電解質層を介して対向配置された構成を有する電気化学素子 の製造方法であって、
前記ァノード及び前記力ソー ドのうちの一方或いは両方の電極 と して、 請求項 2 6〜3 5のうちの何れか 1項に記載の電極の製 造方法により製造された電極を使用すること、
を特徴とする電気化学素子の製造方法。
PCT/JP2004/006879 2003-05-14 2004-05-14 電極用複合粒子及びその製造方法、電極及びその製造方法、並びに電気化学素子及びその製造方法 WO2004102597A2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/556,567 US20070003836A1 (en) 2003-05-14 2004-05-14 Composite particle for electrode and method for producing same, electrode and method for producing same, and electrochemical device and method for producing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003136270A JP4204380B2 (ja) 2003-05-14 2003-05-14 電極用複合粒子及び電極用複合粒子の製造方法
JP2003-136270 2003-05-14
JP2003-270720 2003-07-03
JP2003270720A JP4204407B2 (ja) 2003-07-03 2003-07-03 電極及び電気化学素子並びに電極の製造方法及び電気化学素子の製造方法
JP2003307733A JP4204419B2 (ja) 2003-08-29 2003-08-29 電極及び電気化学素子並びに電極の製造方法及び電気化学素子の製造方法
JP2003-307733 2003-08-29

Publications (2)

Publication Number Publication Date
WO2004102597A2 true WO2004102597A2 (ja) 2004-11-25
WO2004102597A3 WO2004102597A3 (ja) 2005-02-17

Family

ID=33458356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006879 WO2004102597A2 (ja) 2003-05-14 2004-05-14 電極用複合粒子及びその製造方法、電極及びその製造方法、並びに電気化学素子及びその製造方法

Country Status (2)

Country Link
US (1) US20070003836A1 (ja)
WO (1) WO2004102597A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126665A1 (ja) * 2005-05-26 2006-11-30 Zeon Corporation 電気化学素子電極材料および複合粒子
WO2008001791A1 (en) * 2006-06-27 2008-01-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
WO2009081703A1 (ja) * 2007-12-25 2009-07-02 Kao Corporation 複合金属酸化物焼成体及びその製造方法
JP5557793B2 (ja) 2011-04-27 2014-07-23 株式会社日立製作所 非水電解質二次電池
US9685658B2 (en) 2011-07-15 2017-06-20 Zeon Corporation Composite particles for electrochemical device electrode, material for electrochemical device electrode, and electrochemical device electrode
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
DE102012213219A1 (de) * 2012-07-27 2014-01-30 Robert Bosch Gmbh Elektrode für einen elektrochemischen Energiespeicher und Verfahren zum Herstellen einer solchen
JP6369739B2 (ja) 2013-01-11 2018-08-08 株式会社Gsユアサ 蓄電素子及びその製造方法
US10497970B2 (en) 2013-03-14 2019-12-03 Arizona Board Of Regents On Behalf Of Arizona State University Alkali ion conducting plastic crystals
WO2014153146A1 (en) 2013-03-14 2014-09-25 Angell C Austen Inorganic plastic crystal electrolytes
US10886526B2 (en) 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites
WO2015024004A1 (en) 2013-08-16 2015-02-19 Envia Systems, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
DE102018200977A1 (de) 2018-01-23 2019-07-25 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenmaterials
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334721A (ja) * 2001-03-19 2002-11-22 Atofina 充填材とフルオロポリマーとをベースにしたミクロ複合粉末から作られるリチウムイオン電池の要素
JP2004186089A (ja) * 2002-12-05 2004-07-02 Tdk Corp 電極形成用塗布液、電極及び電気化学素子、並びに、電極形成用塗布液の製造方法、電極の製造方法及び電気化学素子の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864169A (en) * 1973-02-13 1975-02-04 Nl Industries Inc A method for making laminated electrodes
US4379772A (en) * 1980-10-31 1983-04-12 Diamond Shamrock Corporation Method for forming an electrode active layer or sheet
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
DE4426970A1 (de) * 1994-07-29 1996-02-01 Varta Batterie Gasdicht verschlossener alkalischer Akkumulator in Form einer Knopfzelle
US6753112B2 (en) * 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
CN100438142C (zh) * 2001-09-26 2008-11-26 三星Sdi株式会社 电极材料、制备电极材料方法、电极和包括该电极的电池
JP2003109875A (ja) * 2001-10-01 2003-04-11 Katsuhiko Naoi 電極材料およびその使用
US7195844B2 (en) * 2002-03-28 2007-03-27 Tdk Corporation Lithium secondary battery
US7087348B2 (en) * 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334721A (ja) * 2001-03-19 2002-11-22 Atofina 充填材とフルオロポリマーとをベースにしたミクロ複合粉末から作られるリチウムイオン電池の要素
JP2004186089A (ja) * 2002-12-05 2004-07-02 Tdk Corp 電極形成用塗布液、電極及び電気化学素子、並びに、電極形成用塗布液の製造方法、電極の製造方法及び電気化学素子の製造方法

Also Published As

Publication number Publication date
US20070003836A1 (en) 2007-01-04
WO2004102597A3 (ja) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4552475B2 (ja) 電極用複合粒子、電極及び電気化学素子、並びに、電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法
TWI257633B (en) Electrochemical device
KR100683440B1 (ko) 전극용 복합 입자 및 이의 제조방법, 전극 및 이의제조방법, 및 전기화학 소자 및 이의 제조방법
JP4204407B2 (ja) 電極及び電気化学素子並びに電極の製造方法及び電気化学素子の製造方法
JP4173870B2 (ja) 電気化学デバイス用電極の製造方法
JP4184057B2 (ja) 電極形成用塗布液、電極及び電気化学素子、並びに、電極形成用塗布液の製造方法、電極の製造方法及び電気化学素子の製造方法
US20050064289A1 (en) Electrode, electrochemical device, method for manufacturing electrode, and method for manufacturing electrochemical device
JP4204380B2 (ja) 電極用複合粒子及び電極用複合粒子の製造方法
WO2004102597A2 (ja) 電極用複合粒子及びその製造方法、電極及びその製造方法、並びに電気化学素子及びその製造方法
CN108110257A (zh) 一种双极性集流体及由其组装的双极性固态锂二次电池
JP4150331B2 (ja) 電極及び電気化学素子、並びに電極の製造方法及び電気化学素子の製造方法
JP3785407B2 (ja) 電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法、並びに、電極用複合粒子製造装置、電極製造装置及び電気化学素子製造装置
JP2005078943A (ja) 電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法、並びに、電極用複合粒子製造装置、電極製造装置及び電気化学素子製造装置
JP4204419B2 (ja) 電極及び電気化学素子並びに電極の製造方法及び電気化学素子の製造方法
JP4256741B2 (ja) 電極用複合粒子及びその製造方法、電極及びその製造方法、並びに、電気化学素子及びその製造方法
JP2017220380A (ja) 非水電解質二次電池
EP3660955A1 (en) Electrode, power storage element, and method for manufacturing electrode
JP4347631B2 (ja) 電気化学キャパシタの電極用複合粒子の製造方法、電極の製造方法、並びに、電気化学キャパシタの製造方法
JPH09306546A (ja) 非水電解質二次電池用正極板及び非水電解質二次電池
JP2004247180A (ja) 電極合剤ならびにそれを用いた電極構造体および非水系電気化学素子
CN110783518B (zh) 固体电池用电极的制造方法
CN100553023C (zh) 电化学元件
JP5395044B2 (ja) 電池用セパレータ、イオン伝導体、及び電池、並びにこれらの製造方法
JP2020119802A (ja) 全固体リチウムイオン二次電池用負極

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048130955

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007003836

Country of ref document: US

Ref document number: 10556567

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10556567

Country of ref document: US