WO2004100927A2 - Injizierbare depots aus liposomalen aggregaten zum wirkstoffdelivery - Google Patents

Injizierbare depots aus liposomalen aggregaten zum wirkstoffdelivery Download PDF

Info

Publication number
WO2004100927A2
WO2004100927A2 PCT/DE2004/001020 DE2004001020W WO2004100927A2 WO 2004100927 A2 WO2004100927 A2 WO 2004100927A2 DE 2004001020 W DE2004001020 W DE 2004001020W WO 2004100927 A2 WO2004100927 A2 WO 2004100927A2
Authority
WO
WIPO (PCT)
Prior art keywords
depot
liposomes
depot system
active ingredient
poly
Prior art date
Application number
PCT/DE2004/001020
Other languages
English (en)
French (fr)
Other versions
WO2004100927A8 (de
WO2004100927A3 (de
Inventor
Steffen Panzner
Silke Lutz
Original Assignee
Novosom Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003122123 external-priority patent/DE10322123A1/de
Priority claimed from DE102004017996A external-priority patent/DE102004017996A1/de
Application filed by Novosom Ag filed Critical Novosom Ag
Priority to US10/556,703 priority Critical patent/US20070053918A1/en
Priority to CA002525468A priority patent/CA2525468A1/en
Priority to EP04731879A priority patent/EP1624857A2/de
Publication of WO2004100927A2 publication Critical patent/WO2004100927A2/de
Publication of WO2004100927A8 publication Critical patent/WO2004100927A8/de
Publication of WO2004100927A3 publication Critical patent/WO2004100927A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids

Definitions

  • the invention relates to the use of a depot system for delayed drug release in basic research and medicine.
  • Peptide and protein active ingredients are broken down or excreted very quickly in the body after application and must therefore be administered by repeated injections.
  • a suitable delivery system is required which protects the active substance from degradation in the body and only releases it slowly into the bloodstream.
  • Depot systems which are injected subcutaneously or intramuscularly are used as such delivery systems.
  • Liposomes are a possible form
  • Such a carrier system is composed of one or more lipid bilayers and encloses an aqueous compartment inside which water-soluble substances can be enclosed in. Lipophilic substances can be incorporated into the lipid bilayer.
  • depot systems use liposomes which are composed of neutral, anionic or PEG lipids, for example in WO 9920301 for a depot of ⁇ -interferon, in Diabetes 31 (1982), 506-511 for a depot of Insulin; still in Proc. Natl. Acad. Be. 88 (1991) for vaccination.
  • liposomes are used for liposeal depot systems.
  • the liposomes must have a minimum size in order not to migrate into the lymph.
  • Such basic structures can consist of synthetic polymers (Bos et al. Biopharm Europe, Nov. 2001, 64-74, Bezemer et al. J. Controlled release 62 (1999) 393-405), Stenekes et al. Pharm. Res. 17 (2000), 690-695) or use natural structures such as a fibrin network (Meyenburg et al., J. Controlled Release 69 (2000), 159-168).
  • synthetic polymers Bos et al. Biopharm Europe, Nov. 2001, 64-74, Bezemer et al. J. Controlled release 62 (1999) 393-405), Stenekes et al. Pharm. Res. 17 (2000), 690-695) or use natural structures such as a fibrin network (Meyenburg et al., J. Controlled Release 69 (2000), 159-168).
  • such polymers often have a disadvantageous effect on the stability of the liposomes, especially under in vivo conditions. In this
  • the object of the invention was therefore to provide new stable liposomal depot formulations which have a long-lasting release of the active ingredient over at least one week achieve and have a good tolerance in the organism, especially in a mammalian organism.
  • the invention solves this technical problem by using a sustained release drug depot system comprising anionic liposomes with (a) saturated synthetic phosphatidylcholines selected from the group DMPC, DPPC and / or DSPC, (b) cholesterol with a content of 35 to 50 mol%, (c) anionic lipids selected from the group DMPG, DPPG, DSPG, DMPS, DPPS and / or CHEMS with a share of 5 to 20 mol% in the liposome membrane and at least one protein and / or peptide active ingredient and a cationic polymer.
  • anionic liposomes with (a) saturated synthetic phosphatidylcholines selected from the group DMPC, DPPC and / or DSPC, (b) cholesterol with a content of 35 to 50 mol%, (c) anionic lipids selected from the group DMPG, DPPG, DSPG, DMPS, DPPS and / or CHEMS with a share of 5 to 20 mol
  • the lipid composition according to the invention contains saturated framework lipids and cholesterol, which ensure the integrity of the liposomes even in the aggregated state and thus advantageously bring about better protection of the active ingredient or also a longer depot duration.
  • the anionic lipids advantageously cause the formation of aggregates which, due to their size and charge or due to aggregation with serum components and components of the interstitial fluid, remain at the puncture site and e.g. does not migrate into the lymph.
  • the liposomal aggregates according to the invention advantageously have a depot duration of at least one week, preferably more than 10 to 14 days, very particularly preferably more than 3 weeks.
  • the manufacturing process can advantageously be carried out without organic, water-immiscible solvents, which can cause regulatory problems, since they are difficult to remove completely or damage the active substance, such as the proteins.
  • cationic liposomes are used as aggregate-forming polymers.
  • the aggregates can be formed during production and are ready to use. However, it is also possible to mix both components as a solution or suspension only shortly before use or immediately therewith.
  • the production of the liposomal containers and the formation of the larger aggregates are two process steps, each of which can advantageously be designed in such a way that the solutions or suspensions in question can be sterile filtered.
  • the larger units, which prevent diffusion from the injection site, are only created in a downstream and very simple process step.
  • liposomes which are composed of neutral and anionic lipids are used as a liposomal depot system for the delayed release of therapeutic peptides and proteins of various molecular weights.
  • J. Pharm. Sei., 89 (3), 297-310, 2000 discloses the absolute bioavailability of peptides and proteins of different sizes after subcutaneous application, with no significant reduction in bioavailability being observed with increasing molar mass. Depot systems for membrane proteins are not the subject of the teaching according to the invention.
  • TGF-alpha Transfor ing growth factors
  • TGF-beta Transfor ing growth factors
  • interleukins e.g.
  • factor VIII factor VIII
  • factor IX thromboplastin activators
  • tissue plasminogen activators streptokinase, vasopressin, muramyl dipeptide (MDP), atrial naturetic factor (ANF), calcitonin gene-related peptide (CGRP), bombesin, enkephaline, enfuvirtide, vasoactive intestinal peptide (VIP), epidermal growth factor (EGF), fibroblast growth factor (FGF), growth hormone releasing hormone (GRH), bone morphogenetic proteins (BMP), antibodies and antibody fragments (e.g.
  • Tetracycline hydrochloride kanamycin, penicillin G
  • Antifungal agents preferably amphotericin B and / or
  • Glucocorticoids preferably dexamethasone, prednisolone,
  • Hydrocortisone and / or betamethasone Hydrocortisone and / or betamethasone.
  • carbohydrates such as Heparin or hyaluronic acid be relevant drug molecules for this invention.
  • Membrane proteins which are difficult to introduce into the interior of liposomes are not suitable active substances in the sense of the invention.
  • Suitable lipids for the drug-filled liposomes are membrane-forming and membrane-bound lipids, which can be of natural or synthetic origin. These include in particular cholesterol and derivatives, phosphatidylcholines, phosphatidylethanolamines as neutral lipids.
  • the fully saturated compounds of this class are particularly preferably used, for example
  • DMPC Dimyristoylphosphatidylcholine
  • DPPC Dipalmitoylphosphatidylcholine
  • DSPC Distearoylphosphatidylcholine
  • Preferred anionic lipids for carrying out the invention are preferably cholesterol hemisuccinate (CHEMS),
  • Phosphatidylglycerols Phosphatidylglycerols, phosphatidylserines and phosphatidic acids.
  • other membrane-forming or membrane-containing substances with a negative charge such as alkyl carboxylic acids or dialkyl phosphates with alkyl chains between 16 and 20 carbon atoms, can be incorporated into the liposomal bilayer.
  • saturated synthetic phosphatidylcholines such as DMPC, DPPC or DSPC, cholesterol and the anionic lipids DMPG, DPPG, DSPG or DMPS, DPPS or CHEMS, are used, the proportion of the anionic lipids in the liposome membrane being between 5 and 20 mol% and the proportion of cholesterol is between 35 and 50 mol%.
  • the size of the liposomes varies from 20-1000 nm, in particular from 50-800 nm, preferably from 50-500 nm and very particularly preferably from 50-300 nm.
  • Passive inclusion is preferably used when large amounts of a readily soluble active ingredient are to be included.
  • liposomes with a lipid concentration of 30 to 150 mM, preferably with a lipid concentration of 50 to 120 mM and very particularly preferably with a lipid concentration of 80 to 110 mM, are prepared in the presence of the dissolved active ingredient.
  • Another method for the inclusion of water-soluble active substances is the so-called “advanced loading method, which is described in WO 01/34115 A2 and whose disclosure content is included at this point.
  • the active ingredient is enclosed in the liposomes in a further embodiment of the invention by means of the advanced loading method.
  • This method is preferably used when the active ingredient is to be included in the liposomes as efficiently as possible and thus, for example, to save costs.
  • This method which is based on an interaction between the active ingredient and membrane-forming substances, works at low ionic strengths and at a pH at which the active ingredient is in a cationic charge state in order to have a reversible electrostatic interaction with the anionic liposome membrane.
  • the charge of the active ingredients at a given pH can be taken from databases, such as the SWISS-PROT, or can be calculated using known algorithms.
  • the passive inclusion method is combined with the advanced loading process.
  • the advanced loading process is carried out with a lipid concentration of 30 to 150 mM, preferably with a lipid concentration of 50 to 120 mM and very particularly preferably with a lipid concentration of 80 to 110 mM, in order to significantly increase the inclusion rates compared to the individual methods.
  • active substance adhering to the outside of the liposome membrane can be detached from the surface of the liposomes and removed.
  • This step is of central importance for the properties of the liposomal depot. If the active substance is detached from the liposome surface and removed from the liposome suspension, depot formulations are obtained which show practically no or only minimal "burst release". This feature is of particular importance when active substances are to be administered, for which a short-term high concentration of active substance, like this at the initial Flooding is the case, which can lead to toxic reactions in the body. An example of this is insulin, the overdose of which can lead to life-threatening hypoglycemic conditions.
  • the existing interaction can be dissolved, for example, by changing the pH or increasing the ionic strength.
  • the final separation can be carried out by methods known to those skilled in the art, such as centrifugation, ultrafiltration, dialysis or other chromatic processes, so that at least 90% of the active ingredient is included in the liposo and less than 10%, preferably less than 5%, of the active ingredient is outside the Liposomes.
  • the active substance adhering to the liposomal membrane is not detached from the membrane, i.e. the pH or the ionic strength are not changed.
  • This embodiment is used in particular in the case of active substances in which an initial flooding of the active substance is toxicologically unobjectionable, for example in the case of leuprolide acetate or many antibodies. This embodiment is also given when the active substance is detached from the membrane as described but not removed.
  • the free active ingredient remains in whole or in part, but more than 5%, preferably more than 10%, in the liposome suspension and ensures that the active ingredient quickly floods into the blood.
  • Another advantage of this embodiment is that the suspension can be lyophilized, since release of the active substance enclosed inside is minimized during the lyophilization process, since the same active substance concentration is present both on the inside and on the outside of the membrane.
  • anionic and active substance-containing liposomes thus produced are then used to form the aggregates and brought into contact with a polycation.
  • Suitable polycations are in particular chitosan, poly-dimethyldiallylammonium chloride, poly-allylamine,
  • Polyethyleneimine poly-dimethylaminoethyl acrylate, poly-lysine, poly-histidine, poly-ornithine, poly-arginine, polyquats (starch derivatives with amino or ammonium groups), and copolymers thereof.
  • Such aggregates can also be formed with cationic liposomes.
  • stable cationic liposomes are used that hardly fuse with anionic liposomes.
  • Such liposomes contain cationic lipids such as:
  • DOTAP 1-dioleoyloxypropyl
  • DOSPER 1-dioleoyloxy-2- (6-carboxy-spermyl) propylamide
  • DORIE (1, 2-dioleyloxypropyl) -3 dimethylhydroxyethyl ammonium bromide
  • DOSC (1, 2-dioleoyl-3-succinyl-sn-glycerol choline ester
  • DOGSDSO 1-dioleoyl-sn-glycero-3-succinyl-2hydroxyethyl disulfide ornithine
  • DOEPC 2-dioleoyl-sn-glycero-3-ethylphosphocholine or other O-alkyl-phosphatidylcholine or -ethanol, 1, 3-bis- (1, 2-bis-tetradecyloxypropyl-3 dimethylethoxy ammonium bromide) propane 2-ol (Neophectin®), and of all the lipids mentioned with unsaturated fatty acid and / or fatty alcohol chains and their saturated derivatives with dimyristoyl, dipalmitoyl or distearoyl chains.
  • Preferred cationic lipids for carrying out the invention include: DC-chol cholesteryl 3 ⁇ -N- (dimethylaminoethyl) carbamate,
  • DOTAP N- [1- (2,3-dioleoyloxy) ropyl] -N, N, N-trimethylammonium
  • the cationic liposomes contain, in particular, cholesterol and saturated neutral phosphatidylcholines, preferably DPPC or DSPC.
  • the proportion of cholesterol is particularly preferably between 35 and 50 mol%, the cationic lipids are preferably used with 5 to 20 mol% in the mixture.
  • Active ingredient-containing anionic liposomes and the polycation used for aggregation are preferably combined in a ratio of 5: 1 to 1: 5, this information relating to the molar ratio of the charge carriers. Mixtures around the equivalence point, between a 2: 1 and 1: 2 proportion of the components, are particularly preferred.
  • both components are supplied in a double-chamber syringe and mixed by injection.
  • the aggregates can also be produced industrially and then these structures can be made stable in the long term, for example by lyophilization.
  • Such units are particularly preferably and controlled in a continuous flow reactor, as described in WO 01 64330.
  • a device is disclosed which allows a continuous coating of liposomes with polyelectrolytes.
  • a particular advantage of the method disclosed here lies in the production of larger structures, which are obtained by combining previously sterile-filterable solutions (active substance liposomes and polycation). This enables high regulatory requirements to be met.
  • the liposomal, active substance-containing aggregates according to the invention can be injected subcutaneously or intramuscularly as a depot pharmaceutical form.
  • the depot systems according to the invention can also be used to accelerate the healing process or for postoperative care.
  • the invention accordingly relates to (a) a depot system, in particular for delayed drug release, comprising anionic liposomes comprising (i) saturated synthetic phosphatidylcholines selected from the group comprising DMPC, DPPC and / or DSPC, (ii) cholesterol with a proportion of 35 to 50 mol%, (iii) anionic lipids selected from the group comprising DMPG, DPPG, DSPG, DMPS, DPPS and / or CHEMS with a proportion of 5 to 20 mol% of the liposome membrane, (iv) at least one protein and / or peptide active ingredient and (v) a cationic polymer and (b) the use of the depot system preferably in in vivo systems, the depot system preferably having a depot duration of at least one week, preferably more than 10 to 14 days, very particularly preferably more than 3 weeks. Of course, it can also be preferred for certain applications that the depot duration is less than one week, for example two, three, preferably four, particularly
  • the invention also relates to a kit which comprises the depot system according to the invention, optionally together with information for combining the contents of the kit.
  • the kit can be used in basic research and medicine.
  • the information can e.g. can also be a reference to an Internet address at which further information can be obtained.
  • the information can be a treatment regimen for a disease or, for example, instructions for using the kit in research.
  • Lipid film is covered with as much human insulin solution (recombinant
  • Insulin (7.5 mg / ml insulin in 10 M glycine HCl, 300 mM
  • Thawing processes with a 5-minute treatment in an ultrasound bath after thawing.
  • the liposomes are extruded several times through a membrane with a pore size of 200nm or 400nm (Avestin LiposoFast, polycarbonate membrane with a pore size of 200 or 400nm).
  • HEPES stock solutions
  • pH 7.5
  • NaCl stock solutions
  • the liposomes had been filtered through 0.8 ⁇ m
  • the insulin which had not been enclosed was separated off by gel filtration (S-200 column, Pharmacia).
  • the amount of insulin included is determined after the release from the liposomes using an ELISA (DRG-ELISA kit). Inclusion rates of 50-70% insulin result.
  • a mixture of 50 mol% DPPC, 10 mol% DPPG and 40 mol% chol is dissolved in chloroform at 50 ° C. and then completely dried in a rotary evaporator in a vacuum.
  • Sufficient 3H-inulin solution (18.5 MBq / ml 3H-inulin in 10 mM HEPES, 150 mM NaCl, pH 7.5) is added to the lipid film to form a 100 mm suspension. This suspension is then hydrated for 45 minutes in a water bath at 50 ° C while swirling. The suspension is then frozen.
  • the liposomes are extruded several times through a membrane with a pore size of 50, 200 or 400 nm (Avestin LiposoFast, polycarbonate membrane with a pore size of 50 nm, 200 nm or 400 nm).
  • the 3H-inulin which is not included is separated off by gel filtration (G75 ⁇ column, Pharmacia). The amount of 3H-inulin included is determined after separation in the scintillation counter. Inclusion rates of 20-30% 3H inulin result.
  • Negatively charged liposomes (3H inulin cargo), which were aggregated with positive polymers or liposomes (see Examples 2 and 3), were subcutaneously in healthy rats at a concentration of 12.5 mM in lipid in a volume of 0.5 ml injected. A control sample with empty liposomes and 3H inulin was also administered subcutaneously in a volume of 0.5 mL.
  • the pharmacokinetic data were determined by taking blood samples at various times and subsequent scintillation measurements. The entire trial duration of the animal study was 2 weeks. Only two formulations showed that the animals showed slight, local adverse reactions (reddening at the injection site), which had healed after 10 days at the latest. The general condition of all animals was good over the test period.
  • leuprolide acetate solution (2.5 mg / ml in 10 mM HEPES, 150 mM NaCl, pH 6) is added to the lipid film to form a 100 mM suspension. This suspension is then hydrated for 45 minutes in a water bath at 50 ° C while swirling. The suspension is then frozen. Another 3 freezing and thawing processes follow.
  • the liposomes are extruded several times through a membrane with a pore size of 400 nm (Avestin LiposoFast, polycarbonate membrane with a pore size of 400 nm).
  • the fraction of the enclosed leuprolide acetate is determined after separation of the free leuprolide acetate by sedimentation three times in the ultracentrifuge at 60,000 xg for 45 min. After extraction with CHC1 3 and CH 3 OH, leuprolide acetate is determined by RP-HPLC. Inclusion rates of approximately 15% leuprolide acetate result.
  • Liposomes (12.5 mM in lipid) are cationic with 250 ⁇ L
  • the liposomal aggregates according to Example 5 were injected subcutaneously into healthy male rats (3 animals) in a volume of 0.5 ml without removal of the active substance present on the outside.
  • the dose of leuprolide acetate per animal was 2.5 mg.
  • the pharmacokinetic data were obtained by taking blood at various times, collecting serum and determining the serum leuprolide acetate concentration using an ELISA (Peninsula). The entire trial duration of the animal study was 6 weeks. The general condition of all animals was good over the test period.
  • the pharmacokinetic data are shown in Figure 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung betrifft Formulierungen aus Liposomen und Polymeren zur Herstellung eines injizierbaren Depots von Wirkstoffen, das eine langanhaltende Freisetzung und Wirkung in einem Säugetierorganismus aufweist.

Description

Injizierbare Depots aus liposomalen Aggregaten zum Wirkstoffdelivery
Die Erfindung betrifft die Verwendung eins Depotsystems zur verzögerten Wirkstofffreisetzung in Grundlagenforschung und Medizin.
Peptid- und Proteinwirkstoffe werden im Körper nach Applikation sehr schnell abgebaut oder ausgeschieden und müssen daher durch wiederholte Injektionen verabreicht werden. Um die „patient compiliance" zu erhöhen wird ein geeignetes Deliverysystem benötigt, das den Wirkstoff im Körper vor Abbau schützt und ihn nur langsam in die Blutbahn freigibt. Als solche Deliverysysteme werden Depotsysteme eingesetzt, die subkutan oder intramuskulär injiziert werden. Liposomen sind eine mögliche Form eines solchen Trägersystems. Sie sind aufgebaut aus einer oder mehreren Lipid-Doppelschichten und umschließen in ihrem Innern ein wässriges Kompartiment, in welches wasserlösliche Substanzen eingeschlossen werden können. In die Lipid-Doppelschicht können lipophile Substanzen eingebaut werden.
Für Depotsysteme finden nach dem Stand der Technik Liposomen Verwendung, die aus neutralen, anionischen oder PEG-Lipiden zusammengesetzt sind, etwa in der WO 9920301 für ein Depot von γ-Interferon, in Diabetes 31 (1982) , 506-511 für ein Depot von Insulin; weiterhin in Proc. Natl. Acad. Sei. 88 (1991) zur Vakzinierung.
In BBA 1328 (1997), 261-272 werden verschiedene liposomale Systeme (unila ellar und multilamellar) aus Ei-PC, Ei-PG, DPPC, DPPG, PS und Cholesterin auf deren Aufnahme ins Lymphsystem und der Bioverteilung nach subkutaner Gabe hin untersucht. Der Review-Artikel Advanced Drug Delivery Reviews 50 (2001), 143-156 schließt an diese Untersuchungen an. Hier wird gezeigt, dass kleinere Liposomen (<150nm) aus einem subkutanen Depot in die Lymphe auswandern.
Nach dem Stand der Technik werden also neutrale und negativ geladene Liposomen für liposo ale Depotsysteme verwendet. Die Liposomen müssen eine Mindestgröße aufweisen, um nicht in die Lymphe abzuwandern.
In weiteren Veröffentlichungen wird auf diese Grössenabhängigkeit Bezug genommen und die kleinen Liposomen werden in verschiedene Matrizes verpackt, mit deren Hilfe eine Abwanderung verhindert wird. Solche Grundstrukturen können aus synthetischen Polymeren bestehen (Bos et al . Biopharm Europe, Nov. 2001, 64-74, Bezemer et al . J. Controlled release 62 (1999) 393-405), Stenekes et al . Pharm. Res . 17 (2000), 690- 695) oder natürliche Strukturen wie ein Fibrinnetzwerk nutzen (Meyenburg et al . , J. Controlled Release 69 (2000), 159-168). Oft wirken sich jedoch solche Polymere, insbesondere unter in vivo-Bedingungen, nachteilig auf die Stabilität der Liposomen aus. So erreichen Meyenburg et al. nur eine kurze Halbwertszeit von Tagen, die nicht wesentlich über der des freien Wirkstoffs liegt.
Einen weiteren Ansatz zur steuerbaren Freisetzung von in Liposomen eingeschlossenen Wirkstoffen wird in der Publikation von Cullis et al . beschrieben (BBA 1565 (2002) 129-135). Doxorubicin wurde in anionische Liposomen eingeschlossen und mit kationischen Liposomen in Kontakt gebracht, wodurch es zu einem schnellen Austritt des Wirkstoffes kam. Durch Änderung der Liposomenzusammensetzung konnte die Austrittsphase des Wirkstoffes in einer in vitro Versuchsanordnung auf mehrere Stunden verlängert werden. Für zahlreiche Anwendungen sind in vivo jedoch Monatsdepots erforderlich, die bisher aber noch nicht bereitgestellt werden konnten.
Aufgabe der Erfindung war es daher, neue stabile liposomale Depotformulierungen bereitzustellen, die eine langanhaltende Freisetzung des Wirkstoffes über mindestens eine Woche erreichen und eine gute Verträglichkeit im Organismus aufweisen, insbesondere in einem Säugetierorganismus.
Die Erfindung löst dieses technische Problem durch die Verwendung eines Depotsystem zur verzögerten Wirkstofffreisetzung umfassend anionische Liposomen mit (a) gesättigten synthetischen Phosphatidylcholinen ausgewählt aus der Gruppe DMPC, DPPC und/oder DSPC, (b) Cholesterol mit einem Anteil von 35 bis 50 mol%, (c) anionischen Lipide ausgewählt aus der Gruppe DMPG, DPPG, DSPG, DMPS, DPPS und/oder CHEMS mit einem Anteil von 5 bis 20 mol% an der Liposomenmembran sowie mindestens einem Protein- und/oder Peptidwirkstoff und einem kationisches Polymer. Durch die Verwendung dieser Formulierung der Wirkstoffe liegen sie insbesondere bei der Anwendung als Depot in Form von Aggregaten vor. Solche liposomalen Aggregate sind aus anionischen Liposomen und kationischen Polymeren aufgebaut .
Die erfindungsgemäße Lipidzusammensetzung enthält gesättigte Gerüstlipide und Cholesterol, die für eine Integrität der Liposomen auch im aggregierten Zustand sorgen und vorteilhafterweise so einen besseren Schutz des Wirkstoffes bewirken bzw. auch eine längere Depotdauer. Die anionischen Lipide bewirken durch ihre Wechselwirkung mit den kationischen Polymeren mit Vorteil eine Bildung von Aggregaten, welche durch ihre Größe und Ladung bzw. durch Aggregation mit Serumkomponenten und Komponenten der Interstitialflüssigkeit an der Einstichstelle verbleibt und z.B. nicht in die Lymphe abwandert .
Die erfindungsgemäßen liposomalen Aggregate besitzen vorteilhafterweise eine Depotdauer von mindestens eine Woche, bevorzugt mehr als 10 bis 14 Tage, ganz besonders bevorzugt mehr als 3 Wochen. Der Herstellungsprozess kann vorteilhafterweise ohne organische nicht mit Wasser mischbaren Lösungsmittel durchgeführt werden, die regulatorische Probleme verursachen können, da sie schwierig vollständig zu entfernen sind oder den Wirkstoff - wie z.B. die Proteine - schädigen.
In einer besonders vorteilhaften Ausführung werden kationische Liposomen als aggregatbildenden Polymere verwendet. Die Aggregate können während der Produktion gebildet werden und bei der Anwendung fertig vorliegen. Es ist aber auch möglich, beide Komponenten als Lösung bzw. Suspension erst kurz vor der Anwendung oder unmittelbar dabei zu mischen. Die Herstellung der liposomalen Container und die Bildung der größeren Aggregate sind zwei Prozessschritte, wobei sich jeder dieser Schritte vorteilhaft so gestalten lässt, dass sich die betreffenden Lösungen oder Suspensionen steril filtrieren lassen. Somit entstehen die größeren Aggregate, mit denen ein Wegdiffundieren von der Einstichstelle vermieden wird, erst in einem nachgelagerten und sehr einfachen Prozessschritt.
Verfahren zum Einschluss von wasserlöslichen Protein- und/oder Peptidwirkstoffen in Liposomen sind dem Fachmann bekannt: Extrusion durch Polycarbonat-Membranen, Ethanolinjektion oder Hochdruckho ogenisation .
In einer weiteren bevorzugten Ausführung der vorliegenden Erfindung werden Liposomen, die aus neutralen und anionischen Lipiden aufgebaut sind, als liposomales Depotsystem für die verzögerte Freisetzung von therapeutischen Peptiden und Proteinen verschiedenster Molmassen eingesetzt. J. Pharm. Sei., 89 (3), 297-310, 2000 offenbart die absolute Bioverfügbarkeiten verschieden großer Peptide und Proteine nach subkutaner Applikation an, wobei mit zunehmender Molmasse keine signifikante Verringerung der Bioverfügbarkeit beobachtet wird. Depotsysteme für Membranproteine sind nicht Gegenstand der erfindungsgemäßen Lehre.
Da therapeutische Peptide und Proteine im Körper sehr schnell abgebaut werden, müssen diese durch wiederholte Injektionen verabreicht werden. Die für diese Ausführung der Erfindung relevanten Peptide und Proteine, deren Analoga, zugehörige Peptide, Fragmente, Inhibitoren und Anatagonisten, umfassen: Transfor ing growth factors (TGF-alpha, TGF-beta) , Interleukine (z.B. IL-1, IL-2, IL-3), Interferone (IFN-alpha, IFN-beta, IFN-gam a) , Calcitonine, Insulin-like growth factors (IGF-1, IGF-2), Parathyroid hormone, Granulozyten- stimulierender Faktor (GCSF) , Granulozyten-Makrophagen stimulierender Faktor (GMCSF) , Makrophagen stimulierender Faktor (MCSF) , Erythropoetin, Insuline, Amyline, Glucagone, Lipocortine, Wachstumshormone, Somatostatin, Angiostatin, Endostatin, Octreotid, Gonadotropin releasing hormone (GNRH) , Luteinizing hormone releasing hormone (LHRH) und wirksame Agonisten wie Leuprolidacetat, Buserelin, Goserelin, Triptorelin; Platelet-derived growth factor; Blutgerinnungsfaktoren (z.B. Faktor VIII, Faktor IX), Thromboplastin-Aktivatoren, Gewebe Plasminogen Aktivatoren, Streptokinase, Vasopressin, Muramyldipeptide (MDP) , Atrial naturetic factor (ANF) , Calcitonin gene-related Peptid (CGRP) , Bombesin, Enkephaline, Enfuvirtide, Vasoaktives intestinales Peptid (VIP) , Epidermal growth factor (EGF) , Fibroblast growth factor (FGF) , Growth hormone releasing hormone (GRH) , Bone morphpogenetic proteins (BMP) , Antikörper und Antikörperfragmente (z.B. scFv-Fragmente, Fab-Fragmente) , Peptid T und Peptid T Amide, Herpes Virus Inhibitor, Virus Replikations Inhibitions Faktor, Antigene und Antigenfragmente, lösliches CD4, ACTH und Fragmente, Angiotensine, und ACE Inhibitoren, Bradykinin (BK) , Hypercalcemia malignancy factor (PTH like adenylate cyclase- stimulating protein) , beta-casomorphins, chemotactie peptides and Inhibitors, corticotropin releasing factor (CRF) , caerulein, cholecystokinins + Fragmente und Analoga, Galanin, gastric inhibitory polypeptide (GIP) , gastrins, gastrin releasing peptide (GRP) , motilin, PHI peptides, PHM peptides, peptide YY, secretins, melanocyte stimulating hormone (MSH) , neuropeptide Y (NPY) , neuromedins, neuropeptide K, neurotensins, phosphate acceptor peptide (c-AMP protein kinase Substrates) , Oxytocine, substance P, TRH - sowie Fragmente, Analoga und Derivate dieser Stoffe. In einer weiteren bevorzugten Ausführungsform werden wasserlösliche Wirkstoffe oder wasserlösliche Wirkstoff- Derivate folgender Wirkstoffklassen verwendet: - Antibiotika, bevorzugt Rifamycin SV Na-Salz, Rifampicin,
Tetracyclinhydrochlorid, Kanamycin, Penicillin G,
Ampicillin und/oder Novobiocin,
Antimykotika, bevorzugt Amphotericin B und/oder
Flucytosin, - Cytostatika, bevorzugt Doxorubicin, Daunorubicin,
Vincristin und/oder Cytarabin,
Glucocorticoide, bevorzugt Dexamethason, Prednisolon,
Hydrocortison und/oder Betamethason.
Neben den genannten Wirkstoffklassen können auch Kohlenhydrate wie z.B. Heparin oder Hyaluronsäure für diese Erfindung relevante Wirkstoffmoleküle sein. Keine geeigneten Wirkstoffe im Sinne der Erfindung sind Membranproteine, die sich nur schlecht in den Innenraum von Liposomen einbringen lassen.
Als Lipide für die wirkstoffbefüllten Liposomen kommen membranbildende und membranständige Lipide in Frage, wobei diese natürlichen oder synthetischen Ursprungs sein können. Hierzu zählen insbesondere Cholesterin und Derivate, Phosphatidylcholine, Phosphatidylethanolamine als neutrale Lipide. Besonders bevorzugt werden die vollständig gesättigten Verbindungen dieser Klasse verwendet, beispielsweise
- Dimyristoylphosphatidylcholin (DMPC)
- Dipalmitoylphosphatidylcholin (DPPC) und/oder - Distearoylphosphatidyl-cholin (DSPC) .
Bevorzugte anionische Lipide zur Ausführung der Erfindung sind bevorzugt Cholesterolhemisuccinat (CHEMS),
Phosphatidylglycerole, Phosphatidylserine und Phosphatidsäuren. Daneben können weitere membranbildende oder membranständige Substanzen mit negativer Ladung, wie z.B. Alkylcarbonsäuren oder Dialkylphosphate mit Alkylketten zwischen 16 und 20 C-Atomen in die liposomalen Bilayer eingebaut werden. In einer besonders bevorzugten Zusammensetzung werden gesättigte synthetische Phosphatidylcholine, wie DMPC, DPPC oder DSPC, Cholesterol und die anionischen Lipide DMPG, DPPG, DSPG oder DMPS, DPPS oder CHEMS verwendet, wobei ganz besonders bevorzugt der Anteil der anionischen Lipide in der Liposomenmembran zwischen 5 und 20 mol% beträgt und der Anteil des Cholesterols zwischen 35 und 50 mol% beträgt.
Die Größe der Liposomen variiert von 20-1000 nm, insbesondere von 50-800 nm, bevorzugt von 50-500 nm und ganz besonders bevorzugt von 50-300 nm.
Für die Herstellung der Liposomen werden nach dem Stand der Technik etablierte Verfahren, wie Extrusion durch Polycarbonat-Membranen, Ethanolinjektion oder
Hochdruckhomogenisation verwendet .
Verfahren zum Einschluss von wasserlöslichen Wirkstoffen in Liposomen sind dem Fachmann bekannt. Für den Einschluss des gewünschten Wirkstoffes in die Liposomen wird dieser in einer Pufferlösung gelöst, mit welcher dann die Liposomen hergestellt werden. Bei dem sogenannten passiven Einschluss zählt das relative Volumen, das von den gebildeten Liposomen umschlossen wird. Die Einschlusseffizienz wird beim passiven Einschluss mit zunehmender Lipidkonzentration gesteigert, da das von der Lipiddoppelschicht umschlossene Flüssigkeitsvolu en zunimmt.
Der passive Einschluss wird bevorzugt dann verwendet, wenn große Mengen eines gut löslichen Wirkstoffes eingeschlossen werden sollen. Dafür werden Liposomen mit einer Lipidkonzentration von 30 bis 150 mM, bevorzugt mit einer Lipidkonzentration von 50 bis 120 mM und ganz besonders bevorzugt einer Lipidkonzentration von 80 bis 110 mM in Gegenwart des gelösten Wirkstoffes hergestellt.
Ein weiteres Verfahren zum Einschluß von wasserlöslichen Wirkstoffen ist das sogenannte „Advanced Loading -Verfahren, welches in der in WO 01/34115 A2 beschrieben ist und deren Offenbarungsgehalt an dieser Stelle mitaufgenommen wird. Um hohe Einschlusseffizienzen zu erzielen, wird der Wirkstoff in einer weiteren Ausführung der Erfindung mittels des Advanced Loading Verfahrens in die Liposomen eingeschlossen. Dieses Verfahren wird bevorzugt dann verwendet, wenn der Wirkstoff möglichst effizient und damit z.B. kostensparend in die Liposomen eingeschlossen werden soll. Bei diesem Verfahren, das auf einer Wechselwirkung zwischen Wirkstoff und membranbildenden Substanzen beruht, wird bei niedrigen Ionenstärken und bei einem pH-Wert gearbeitet, bei welchem der Wirkstoff in einem kationischen Ladungszustand vorliegt, um mit der anionischen Liposomenembran eine reversible elektrostatische Wechselwirkung einzugehen.
Die Ladung der Wirkstoffe bei einem gegebenen pH kann aus Datenbanken entnommen werden, etwa der SWISS-PROT oder lässt sich nach bekannten Algorithmen berechnen.
In einer weiteren Ausführungsform der Erfindung wird das passive Einschlussverfahren mit dem Advanced Loading Prozess kombiniert. Bei diesem Verfahren wird der Advanced Loading Prozess mit einer Lipidkonzentration von 30 bis 150 mM, bevorzugt mit einer Lipidkonzentration von 50 bis 120 mM und ganz besonders bevorzugt einer Lipidkonzentration von 80 bis 110 mM durchgeführt, um die Einschlussraten gegenüber den einzelnen Verfahren signifikant zu erhöhen.
Nach der Liposomenpräparation kann aussen an der Liposomenmembran anhaftender Wirkstoff von der Oberfläche der Liposomen abgelöst und entfernt werden. Dieser Schritt ist von zentraler Bedeutung für die Eigenschaften des liposomalen Depots. Wird der Wirkstoff von der Liposomenoberflache abgelöst und aus der Liposomensuspension entfernt, so werden Depotformulierungen erhalten, die praktisch keinen oder einen nur minimalen „burst release" zeigen. Dieses Merkmal ist insbesondere von zentraler Bedeutung, wenn Wirkstoffe verabreicht werden sollen, bei denen schon eine kurzzeitige hohe Wirkstoffkonzentration, wie dies bei der initialen Anflutung der Fall ist, zu toxischen Reaktionen im Körper führen kann. Ein Beispiel hierfür ist Insulin, dessen Überdosierung zu lebendsbedrohlichen hypoglykämischen Zuständen führen kann.
Die Auflösung der bestehenden Wechselwirkung kann beispielsweise durch Änderung des pH-Wertes oder Erhöhung der lonenstärke bewirkt werden. Die endgültige Abtrennung kann durch dem Fachmann bekannte Verfahren, wie Zentrifugation, Ultrafiltration, Dialyse oder andere chromatische Verfahren erfolgen, so dass der Wirkstoff zu mindestens 90% im Liposo eingeschlossen ist und weniger als 10%, bevorzugt weniger als 5% des Wirkstoffes sich ausserhalb des Liposoms befinden.
In einer weiteren Ausführungsform der Erfindung wird der an der liposomalen Membran anhaftende Wirkstoff nicht von der Membran abgelöst, d.h. der pH-Wert oder die lonenstärke werden nicht verändert. Diese Ausführungsform findet insbesondere Anwendung bei Wirkstoffen, bei denen ein initiales Anfluten des Wirkstoffes toxikologisch unbedenklich ist, wie beispielsweise bei Leuprolidacetat oder vielen Antikörpern. Diese Ausführungsform ist auch dann gegeben, wenn der Wirkstoff wie beschrieben von der Membran gelöst, aber nicht entfernt wird.
Der freie Wirkstoff verbleibt ganz oder teilweise, aber zu mehr als 5%, bevorzugt mehr als 10% in der Liposomensuspension und sorgt für das schnelle initiale Anfluten des Wirkstoffes im Blut.
Ein weiterer Vorteil dieser Ausführung liegt in der Lyophilisierbarkeit der Suspension, da eine Freisetzung des innen eingeschlossenen Wirkstoffes während des Lyophilisationsvorganges minimiert wird, da sowohl auf der Innen- wie auf der Außenseite der Membran die gleich Wirkstoffkonzentration vorliegt.
Die so hergestellten, anionischen und wirkstoffhaltigen Liposomen werden dann zur Bildung der Aggregate eingesetzt und dazu mit einem Polykation in Kontakt gebracht. Geeignete Polykationen sind insbesondere Chitosan, Poly- Dimethyldiallylammoniumchlorid, Poly-allylamin,
Polyethylenimin, Poly-dimethylaminoethylacrylat, Poly-Lysin, Poly-Histidin, Poly-Ornithin, Poly-Arginin, Polyquats (Stärkederivate mit Amino- oder Ammoniumgruppen) , sowie Copolymere derselben.
Es wurde überraschenderweise gefunden, dass sich auch mit kationischen Liposomen solche Aggregate bilden lassen. Dazu werden stabile kationische Liposomen eingesetzt, die mit anionischen Liposomen kaum fusionieren. Solche Liposomen enthalten kationische Lipide wie beispielsweise:
DAC-Chol 3-beta- [N- (N,N" -dimethylaminoethane) carbamoyl] cholesterol
DC-Chol 3-beta- [N- (N' , N' -dimethylaminoethane) carbamoyl] cholesterol
TC-Chol 3-beta- [N- (N' ,N' , N'-trimethylaminoethane) carbamoyl] cholesterol
BGSC Bis-guanidinium-spermidine-cholesterol
BGTC Bis-guanidinium-tren-cholesterol,
DOTAP (1, 2-dioleoyloxypropyl) ~N,N,N-trimethylammonium Chlorid DOSPER (1, 3-dioleoyloxy-2- (6-Carboxy-spermyl) -propylamid)
DOTMA (1, 2-dioleyloxypropyl) -N,N,N-trimethylammonium Chlorid)
(Lipofectin®)
DORIE (1, 2-dioleyloxypropyl) -3 dimethylhydroxyethyl ammoniumbromid) DOSC (1, 2-dioleoyl-3-succinyl-sn-glycerl cholinester)
DOGSDSO (1, 2-dioleoyl-sn-glycero-3-succinyl-2hydroxyethyl disulfide ornithin) ,
DDAB Dimethyldioctadecylam onium bromid DOGS ( (C18) 2GlySper3+) N,N-dioctadecylamido-glycyl-spermin (Transfectam®) (C18) 2Gly+ N,N-dioctadecylamido-glycin
DOEPC 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholin oder andere O-Alkyl-Phosphatidylcholin oder-ethanola ine, 1, 3-bis- (1, 2-bis tetradecyloxy-propyl-3 dimethylethoxy ammonium-bromid) propan- 2-ol (Neophectin®) , sowie von allen genannten Lipiden mit ungesättigten Fettsäure- und/oder Fettalkoholketten deren gesättigte Derivate mit Dimyristoyl-, Dipalmitoyl-, oder Distearoylketten.
Bevorzugte kationische Lipide zur Ausführung der Erfindung umfassen: DC-Chol Cholesteryl 3ß-N- (Dimethyl- aminoethyl) carbamat,
DAC-Chol 3-beta- [N- (N, N' -dimethylaminoethane) carbamoyl] cholesterol DMTAP (N- [1- (2, 3-Dimyristoyloxy) propyl] - N,N,N-trimethylammonium Salz DPTAP (N-[l-(2,3-
Dipalmitoyloxy) propyl ] -N, N, N-trimethylammonium Salz
DOTAP (N- [1- (2, 3-Dioleoyloxy) ropyl] -N, N, N-trimethylammonium
Salz .
Die kationischen Liposomen enthalten, neben dem kationischen Lipid selbst, insbesondere Cholesterol und gesättigte neutrale Phosphatidylcholine, bevorzugt DPPC oder DSPC.
Der Anteil des Cholesterols beträgt besonders bevorzugt zwischen 35 und 50 mol%, die kationischen Lipide werden bevorzugt mit 5 bis 20 mol% in der Mischung eingesetzt.
Wirkstoffhaltige anionische Liposomen und das zur Aggregation benutzte Polykation werden bevorzugt in einem Verhältnis von 5:1 bis 1:5 zusammengegeben, wobei sich diese Angabe auf das molare Verhältnis der Ladungsträger bezieht. Besonders bevorzugt sind Mischungen um den Äquivalenzpunkt, zwischen einem 2:1 und 1:2 Anteil der Komponenten.
Die Aggregate formen sich sehr schnell beim einfachen Mischen der liposomalen Suspension mit dem Polykation oder den kationischen Liposomen. Es ist daher möglich, die beiden Suspensionen getrennt zu produzieren und zu lagern und sie erst unmittelbar vor der Anwendung zusammen zu führen. Das kann durch einfaches Mischen vor der Injektion erfolgen. In einer besonders bevorzugten Ausführung werden beide Komponenten in einer Doppelkammerspritze geliefert und durch die Injektion gemischt.
Man kann die Aggregate aber auch industriell produzieren und diese Strukturen dann beispielsweise durch Lyophilisation langfristig lagerstabil machen.
Besonders bevorzugt und kontrolliert erfolgt die Herstellung solcher Aggregate in einem kontinuierlichen Flussreaktor, wie er in der WO 01 64330 beschrieben ist. In der genannten Druckschrift wird eine Vorrichtung offenbart, die eine kontinuierliche Beschichtung von Liposomen mit Polyelektrolyten erlaubt.
Die erfindungsgemäße Lehre der Aggregatbildung lässt sich in dieser Maschine besonders gut steuern. Ein besonderer Vorteil der hier offenbarten Methode liegt in der Herstellung größerer Strukturen, die durch Zusammenführung von vorher steril filtrierbaren Lösungen (Wirkstoffliposomen und Polykation) gewonnen werden. Damit lassen sich hohe regulatorische Anforderungen erfüllen.
Die erfindungsgemäßen liposomalen, wirkstoffhaltigen Aggregate können als Depotarzneiform subkutan oder intramuskulär iniziert werden.
Weiterhin können sie lokal oder topisch appliziert werden, beispielsweise zur Wundversorgung oder zur Krebstherapie. Die erfindungsgemäßen Depotsysteme lassen sich auch zur Beschleunigung des Heilungsprozesses oder zur postoperativen Versorgung einsetzen.
Die Erfindung betrifft demgemäss (a) ein Depotsystem, insbesondere zur verzögerten Wirkstofffreisetzung, umfassend anionische Liposomen umfassend (i) gesättigte synthetische Phosphatidylcholine ausgewählt aus der Gruppe umfassend DMPC, DPPC und/oder DSPC, (ii) Cholesterol mit einem Anteil von 35 bis 50 mol%, (iii) anionischen Lipide ausgewählt aus der Gruppe umfassend DMPG, DPPG, DSPG, DMPS, DPPS und/oder CHEMS mit einem Anteil von 5 bis 20 mol% an der Liposomenmembran, (iv) mindestens einem Protein- und/oder Peptidwirkstoff und (v) einem kationisches Polymer sowie (b) die Verwendung des Depotsystems bevorzugt in in-vivo Systemen, wobei das Depotsystem bevorzugt eine Depotdauer von mindestens eine Woche, bevorzugt mehr als 10 bis 14 Tage, ganz besonders bevorzugt mehr als 3 Wochen aufweist. Selbstverständlich kann es für bestimmte Anwendungen auch bevorzugt sein, dass die Depotdauer weniger als eine Woche beträgt, beispielsweise zwei, drei, bevorzugt vier, besonders bevorzugt fünf oder ganz besonders bevorzugt sechs Tage.
Die Erfindung betrifft auch einen Kit, der das erfindungsgemäße Depotsystem umfasst, ggf. zusammen mit einer Information zum Kombinieren der Inhalte des Kits. Der Kit kann in Grundlagenforschung und Medizin angewandt werden. Die Information kann z.B. auch ein Hinweis auf eine Internetadresse sein, unter der weitere Informationen erhalten werden können. Die Information kann ein Behandlungsschema für eine Krankheit sein oder beispielsweise eine Gebrauchsanleitung zum Handhaben des Kits in der Forschung.
Anschließend wird die Erfindung an Beispielen weiter erläutert, ohne auf diese Ausführungen begrenzt zu sein.
Abkürzungen
DMPC Dimyristoylphosphatidylcholin DPPC Dipalmitoylphosphatidylcholin DSPC Distearoylphosphatidylcholin
DMPG Dimyristoylphosphatidylglycerol DPPG Dipal itoylphosphatidylglycerol DSPG Distearoylphosphatidylglycerol DMPS Dimyristoylphosphatidylserin DPPS Dipalmitoylphosphatidylserin DSPS Distearoylphosphatidylserin DMPA Dimyristoylphosphatidsäure DPPA Dipalmitoylphosphatidsäure Che s Cholesterolhemisuccinat
Beispiel 1
Einschluss von Insulin in Liposomen
Ein Gemisch aus 50 mol% DPPC, 10 mol% DPPG und 40 mol% Chol wird bei 50 °C in Chloroform gelöst und anschließend im
Rotationsverdampfer im Vakuum vollständig getrocknet. Der
Lipidfilm wird mit soviel human-Insulin-Lösung (rekombinantes
Insulin) (7,5 mg/ml Insulin in lO M Glycin-HCl, 300 mM
Sucrose, pH 3) versetzt, dass eine 50mM Suspension entsteht. Anschließend wird diese Suspension für 45 Minuten im Wasserbad bei 50°C durch Schwenken hydratisiert und für weitere 5
Minuten im Ultraschallbad behandelt. Danach wird die
Suspension eingefroren. Es folgen 3 Einfrier- und
Auftauprozesse, wobei nach dem Auftauen jeweils eine 5- minütige Behandlung im Ultraschallbad erfolgt.
Nach dem letzten Auftauen werden die Liposomen mehrfach durch eine Membran mit einer Porenweite von 200nm oder 400nm extrudiert (Avestin LiposoFast, Polycarbonat-Me bran mit einer Porenweite von 200 oder 400nm) . Nach der Extrusion wird die erhaltene Suspension durch Zugabe von Stammlösungen HEPES, pH=7,5 und NaCl umgepuffert. Nach einer Filtration der Liposomen durch 0,8 μm erfolgt die Abtrennung des nicht- eingeschlossenen Insulins über eine Gelfiltration (S-200- Säule, Pharmacia) . Die Menge des eingeschlossenen Insulins wird nach der Freisetzung aus den Liposomen mittels eines ELISA (DRG-ELISA-Kit) bestimmt. Es ergeben sich Einschlussquoten von 50-70 % Insulin.
Beispiel 2
Einschluss eines radioaktiv markierten Modellcargos in Liposomen
Ein Gemisch aus 50 mol% DPPC, 10 mol% DPPG und 40 mol% Chol wird bei 50 °C in Chloroform gelöst und anschließend im Rotationsverdampfer im Vakuum vollständig getrocknet. Der Lipidfilm wird mit soviel 3H-Inulin-Lösung (18,5 MBq/ml 3H- Inulin in 10 mM HEPES, 150 mM NaCl, pH 7,5) versetzt, dass eine lOOmM Suspension entsteht. Anschließend wird diese Suspension für 45 Minuten im Wasserbad bei 50°C unter Schwenken hydratisiert. Danach wird die Suspension eingefroren.
Nach dem Auftauen werden die Liposomen mehrfach durch eine Membran mit einer Porenweite von 50, 200 oder 400 nm extrudiert (Avestin LiposoFast, Polycarbonat-Membran mit einer Porenweite von 50 nm, 200 nm oder 400 nm) . Die Abtrennung des nicht-eingeschlossenen 3H-Inulins erfolgt über eine Gelfiltration (G75~Säule, Pharmacia) . Die Menge des eingeschlossenen 3H-Inulins wird nach der Abtrennung im Scintillationszähler bestimmt. Es ergeben sich Einschlussquoten von 20-30 % 3H-Inulin.
Analog werden 3H-Inulin gefüllten Liposomen der Zusammensetzung 60 mol% DPPC, 10mol% DC-Chol und 30mol% Chol hergestellt (Extrusion durch 200 nm) . Bei spiel 3
Aggregation von negativ geladenen Liposomen mit positiv geladenen Polymeren und positiv geladenen Liposomen
Je 2mL der aus Beispiel 2 erhaltenen Liposomen der Zusammensetzung 50 mol% DPPC, 10 mol% DPPG und 40 mol% Chol (Extrusion durch 100 oder 200 nm) werden im Anschluß an die Gelfiltration mit einer Lösung der Polymere PLL oder Chitosan oder mit kationischen Leerliposomen der Zusammensetzung 60 mol% DPPC, 10mol% DC-Chol und 30mol% Chol in einem Röhrchen schnell gemischt:
Formulierung /Konzentration Polymer / Liposom pH-Wert der Menge Aggregation
DPPC/DPPG/Chol 50:10:40 (200 nm) Chitosan 5
12,5 mM 2,5 mg in lOOμl
DPPC/DPPG/Chol 50:10:40 (200 nm) Poly-L-Lysin 7,5
12,5 mM 0, 625 mg in lOOμl
DPPC/DPPG/Chol 50:10:40 (200 nm) DC-Chol-Liposomen 7,5
12, 5 mM (100 M) 250 μl
DPPC/DPPG/Chol 50:10:40 (100 nm) Poly-L-Lysin 7,5 12,5 mM 0, 625 mg in lOOμl Tabelle 1: Aggregation von negativen Liposomen mit verschiedenen positiven Polymeren bzw. Liposomen
Beispiel 4
Einsatz von liposomalen Depotsystemen im Tiermodell
Negativ geladene Liposomen (3H-Inulin-Cargo) , die mit positiven Polymeren oder Liposomen aggregiert wurden (vgl. Beispiel 2 und 3), wurden in einer Konzentration von 12,5 mM in Lipid in einem Volumen von 0,5mL subkutan in gesunde Ratten injiziert. Eine Kontrollprobe mit Leerliposomen und 3H-Inulin wurde ebenfalls in einem Volumen von 0,5 mL subkutan verabreicht. Die pharmakokinetischen Daten wurden durch Blutabnahmen zu verschiedenen Zeitpunkten und anschliessende Scintillationsmessungen bestimmt. Die gesamte Versuchsdauer der Tierstudie betrug 2 Wochen. Nur bei zwei Formulierungen zeigten die Tiere laut Befundung leichte, lokale adverse Reaktionen (Rötungen an der Injektionsstelle) , die aber nach spätestens 10 Tagen abgeheilt waren. Das Allgemeinbefinden aller Tiere war über die Versuchsdauer gut. Die Formulierungen und die relativen Bioverfügbarkeiten bis t=336 h sind in folgender Tabelle dargestellt:
Formulierung Zusammensetzung Relative Bioverfügbarkeit bis t=336 h [%] K 2 DPPC/DPPG/Chol ΪÖÖ
50:10:40 (200 nm)
+ 3H-Inulin aussen P12 DPPC/DPPG/Chol 27,03
50:10:40 (200 nm)
+ Chitosan P13 DPPC/DPPG/Chol 23,45
50:10:40 (200 nm)
+ PLL P14 DPPC/DPPG/Chol 28,4
50:10:40 (200 nm)
+ DC-Chol-Liposomen P19 DPPC/DPPG/Chol 34 , 45
50 : 10 : 40 ( 100 nm)
+ PLL Beispiel 5
Einschluss von Leuprolidacetat in Liposomen
Ein Lipidmischung folgender Zusammensetzung :
Formulierung Zusammensetzung
Figure imgf000019_0001
60 : 10 : 40 (mol% )
wird bei 50 °C in Chloroform gelöst und anschließend im Rotationsverdampfer im Vakuum vollständig getrocknet. Der Lipidfilm wird mit soviel Leuprolidacetat-Lösung (2,5 mg/ml in 10 mM HEPES, 150 mM NaCl, pH 6) versetzt, dass eine 100 mM Suspension entsteht. Anschließend wird diese Suspension für 45 Minuten im Wasserbad bei 50°C unter Schwenken hydratisiert. Danach wird die Suspension eingefroren. Es folgen weitere 3 Einfrier- und Auftauprozesse .
Nach dem letzten Auftauen werden die Liposomen mehrfach durch eine Membran mit einer Porenweite von 400 nm extrudiert (Avestin LiposoFast, Polycarbonat-Membran mit einer Porenweite 400 nm) .
Der Anteil des eingeschlossenen Leuprolidacetats wird nach Abtrennung des frei vorliegenden Leuprolidacetats durch dreimalige Sedimentation in der Ultrazentrifuge bei 60000 x g über 45 min ermittelt. Nach Extraktion mit CHC13 und CH3OH wird Leuprolidacetat mittels RP-HPLC bestimmt. Es ergeben sich Einschlussraten von ca. 15 % Leuprolidacetat.
Für die Tierversuchsproben wird das nichteingeschlossene Leuprolidacetat nicht abgetrennt. 2mL der leuprolidhaltigen
Liposomen (12,5 mM in Lipid) werden mit 250μL kationischen
Leerliposomen der Zusammensetzung 60 mol% DPPC, 10mol% DC-Chol und 30mol% Chol (100 mM in Lipid) in einem Röhrchen schnell gemischt .
Beispiel 6
Einsatz des liposomalen Depotsystems im Tiermodell
Die liposomalen Aggregate nach Beispiel 5 wurden ohne Abtrennung des aussen vorliegenden Wirkstoffes in einem Volumen von 0,5mL subkutan in gesunde männliche Ratten (3 Tiere) injiziert. Die Leuprolidacetat-Dosis pro Tier betrug 2,5 mg. Die pharmakokinetischen Daten wurden erhalten durch Blutabnahmen zu verschiedenen Zeitpunkten, das Gewinnen von Serum und die Bestimmung der Leuprolidacetatkonzentration im Serum mittels ELISA (Peninsula) . Die gesamte Versuchsdauer der Tierstudie betrug 6 Wochen. Das Allgemeinbefinden aller Tiere war über die Versuchsdauer gut. Die pharmakokinetischen Daten werden in Abbildung 2 gezeigt.

Claims

Patentansprüche
1. Verwendung eines Depotsystem umfassend anionische Liposomen umfassend
- gesättigte synthetische Phosphatidylcholine ausgewählt aus der Gruppe umfassend DMPC, DPPC und/oder DSPC,
- Cholesterol mit einem Anteil von 35 bis 50 mol%,
- anionischen Lipide ausgewählt aus der Gruppe umfassend DMPG, DPPG, DSPG, DMPS, DPPS und/oder CHEMS mit einem
Anteil von 5 bis 20 mol% an der Liposomenmembran,
- mindestens einem Protein- und/oder Peptidwirkstoff und
- einem kationisches Polymer zur verzögerten Wirkstofffreisetzung.
2. Verwendung des Depotsystems nach dem vorgehenden Anspruch, dadurch gekennzeichnet, dass das kationische Polymer ausgewählt ist aus der Gruppe umfassend Chitosan, Poly- Dimethyldiallylammoniumchlorid, Poly-allylamin, Polythylenimin, Poly-dimethylaminoethylacrylat, Poly- Lysin, Poly-Histidin, Poly-Ornithin, Poly-Arginin, Polyquats, sowie Copolymere derselben.
3. Verwendung des Depotsystems nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass Wirkstoff zu mindestens 90% in dem Liposom eingeschlossen ist und weniger als 10% sich außerhalb des Liposoms befindet.
4. Verwendung des Depotsystems nach einem Anspruch 1 oder 2, dadurch gekennzeichnet, dass Wirkstoff in dem Liposom eingeschlossen ist und mehr als 10% sich außerhalb des Liposoms befindet.
5. Verwendung des Depotsystems nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass es statt kationischen Polymeren kationische Liposomen umfasst.
6. Verwendung des DepotSystems nach Anspruch 5, dadurch gekennzeichnet, dass die kationischen Liposomen, - 5 bis 20 mol% kationisches Lipid, - 35 bis 50 mol% Cholesterol und gesättigte Phosphatidylcholine, bevorzugt DPPC und/oder DSPC umfassen.
7. Verwendung des Depotsystems nach Anspruch 6, dadurch gekennzeichnet, dass die kationischen Lipide ausgewählt werden aus der Gruppe umfassend DAC-Chol, DC-Chol, DMTAP, DPTAP und/oder DOTAP.
8. Verwendung des Depotsystems nach einem der vorgehenden
Ansprüche, dadurch gekennzeichnet, dass die anionischen
Liposomen im molaren Ladungsträgerverhältnis von 5:1 bis 1:5, bevorzugt von 2:1 bis 1:2 mit dem Polykation oder den kationischen Liposomen gemischt werden.
9. Verwendung des Depotsystems nach einem der vorgehenden
Ansprüche, dadurch gekennzeichnet, dass die Abgabe des Wirkstoffes mindestens 1 Woche anhält.
10. Verwendung des Depotsystems nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Größe der anionischen Liposomen variiert von 20-1000 nm, insbesondere von 50-800 nm, bevorzugt von 50-300 nm.
11. Verwendung des Depotsystems nach einem der vorgehenden Ansprüche zur verzögerten Wirkstofffreisetzung über mindestens eine Woche, wobei der Wirkstoff ein wasserlösliches Wirkstoff-Derivat ausgewählt aus den Wirkstoffklassen der Antibiotika, Antimykotika, Cytostatika oder der Glucocorticoide umfasst.
12. Verwendung des Depotsystems nach einem der vorgehenden Ansprüche für ein Depot von LHRH-Agonisten oder GnRH- Analoga, wobei die Liposomen LHRH-Agonisten und/oder GnRH- Analoga umfassen, bevorzugt Leuprolidacetat, Buserelin, Goserelin und/oder Triptorelin als Wirkstoff
13. Verwendung des Depotsystems nach Anspruch 1, 2 oder 3 für ein Depot für Insulin, wobei der Wirkstoff ein therapeutisch nutzbares Insulin umfasst.
14. Verwendung des Depotsystems nach einem der vorgehenden Ansprüche für ein Depot von Heparin, wobei der Wirkstoff Heparin umfasst.
15. Verwendung des Abgabesystems nach einem der vorgehenden Ansprüche für ein Depot von Antigenfragmenten zur Vakzinierung.
16. Verwendung des Depotsystems nach einem der vorhergehenden Ansprüche zur Herstellung eines Arzneimittels.
17. Verwendung des Depotsystems nach einem der vorangegangenen Ansprüche zur subkutanen oder intramuskulären Applikation.
18. Verwendung des DepotSystems nach einem der vorangegangenen Ansprüche zur Unterstützung der Wundheilung.
19. Verwendung des DepotSystems nach einem der vorangegangenen Ansprüche zur lokalen oder topischen Applikation. Abbildungen
Abbildung 1
Vergleich der liposomalen Depotsysteme der vorliegenden Erfindung mit der injizierten Kontrollprobe im Tiermodell
Figure imgf000024_0001
100 200 300 time [h]
Figure imgf000025_0001
Zeit [Tage]
Abbildung 2
Liposomales Depotsystem mit Leuprolidacetat aus Beispiel 6
(Serumspiegel Leuprolidacetat)
PCT/DE2004/001020 2003-05-12 2004-05-10 Injizierbare depots aus liposomalen aggregaten zum wirkstoffdelivery WO2004100927A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/556,703 US20070053918A1 (en) 2003-05-12 2004-05-10 Injectable depots consisting of liposomal aggregates for the delivery of active substances
CA002525468A CA2525468A1 (en) 2003-05-12 2004-05-10 Injectable depots consisting of liposomal aggregates for the delivery of active substances
EP04731879A EP1624857A2 (de) 2003-05-12 2004-05-10 Injizierbare depots aus liposomalen aggregaten zur wirkstoffverabreichung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10322123.9 2003-05-12
DE2003122123 DE10322123A1 (de) 2003-05-12 2003-05-12 Injizierbare Depots aus Liposomen und Polymeren zum Peptid- & Proteindelivery
DE102004017996A DE102004017996A1 (de) 2004-04-10 2004-04-10 Injizierbare Depots aus liposomalen Aggregaten zum Wirkstoffdelivery
DE102004017996.4 2004-04-10

Publications (3)

Publication Number Publication Date
WO2004100927A2 true WO2004100927A2 (de) 2004-11-25
WO2004100927A8 WO2004100927A8 (de) 2005-03-24
WO2004100927A3 WO2004100927A3 (de) 2005-07-21

Family

ID=33453862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001020 WO2004100927A2 (de) 2003-05-12 2004-05-10 Injizierbare depots aus liposomalen aggregaten zum wirkstoffdelivery

Country Status (4)

Country Link
US (1) US20070053918A1 (de)
EP (1) EP1624857A2 (de)
CA (1) CA2525468A1 (de)
WO (1) WO2004100927A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074487A2 (en) * 2006-12-19 2008-06-26 Novosom Ag Lipids and lipid assemblies comprising transfection enhancer elements

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662405B2 (en) * 2005-08-09 2010-02-16 The Research Foundation Of State University Of New York Compositions and methods of preparation of liposomal microparticulate IL-12
ES2373704B1 (es) 2010-02-18 2013-01-24 Lipotec S.A. Liposomas para el tratamiento de materiales textiles.
CN102133405B (zh) * 2011-03-08 2012-10-17 大连民族学院 脂质体-壳聚糖复合基因载体的制备方法及应用
MX367123B (es) 2012-05-09 2019-08-06 Univ Western Health Sciences Formulaciones de pruebas de testosterona proliposomal.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776991A (en) * 1986-08-29 1988-10-11 The United States Of America As Represented By The Secretary Of The Navy Scaled-up production of liposome-encapsulated hemoglobin
WO1992011841A1 (en) * 1991-01-14 1992-07-23 Board Of Regents, The University Of Texas Anti-hiv activity of liposomal nystatin and amphotericin b
US5916588A (en) * 1984-04-12 1999-06-29 The Liposome Company, Inc. Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use
WO2000028972A2 (de) * 1998-11-17 2000-05-25 Novosom Gmbh Nanokapseln und verfahren zur herstellung dieser
WO2001034115A2 (de) * 1999-11-09 2001-05-17 Novosom Ag Verfahren zur verkapselung von proteinen oder peptiden in liposomen, mit dem verfahren hergestellte liposomen und deren verwendung
EP1304160A1 (de) * 2001-10-19 2003-04-23 Novosom AG Stabilisierte Mischungen von Liposomen und Emulsionen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997899A (en) * 1996-10-01 1999-12-07 Skyepharma Inc. Method for producing liposomes with increased percent of compound encapsulated
US7273620B1 (en) * 2002-05-20 2007-09-25 University Of British Columbia Triggered release of liposomal drugs following mixing of cationic and anionic liposomes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916588A (en) * 1984-04-12 1999-06-29 The Liposome Company, Inc. Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use
US4776991A (en) * 1986-08-29 1988-10-11 The United States Of America As Represented By The Secretary Of The Navy Scaled-up production of liposome-encapsulated hemoglobin
WO1992011841A1 (en) * 1991-01-14 1992-07-23 Board Of Regents, The University Of Texas Anti-hiv activity of liposomal nystatin and amphotericin b
WO2000028972A2 (de) * 1998-11-17 2000-05-25 Novosom Gmbh Nanokapseln und verfahren zur herstellung dieser
WO2001034115A2 (de) * 1999-11-09 2001-05-17 Novosom Ag Verfahren zur verkapselung von proteinen oder peptiden in liposomen, mit dem verfahren hergestellte liposomen und deren verwendung
EP1304160A1 (de) * 2001-10-19 2003-04-23 Novosom AG Stabilisierte Mischungen von Liposomen und Emulsionen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074487A2 (en) * 2006-12-19 2008-06-26 Novosom Ag Lipids and lipid assemblies comprising transfection enhancer elements
WO2008074487A3 (en) * 2006-12-19 2009-04-23 Novosom Ag Lipids and lipid assemblies comprising transfection enhancer elements

Also Published As

Publication number Publication date
WO2004100927A8 (de) 2005-03-24
EP1624857A2 (de) 2006-02-15
WO2004100927A3 (de) 2005-07-21
CA2525468A1 (en) 2004-11-25
US20070053918A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
DE69837339T2 (de) Veränderung der Wirkstoffladung in multivesikulären Liposomen
DE69708919T2 (de) Neue liposomkomplexe mit erhöhter systemischer verabreichung
DE69110281T2 (de) Aus einem nichteinheitlichen bläschen bestehende liposomen.
DE69409361T2 (de) Herstellung von liposomen und verfahren zur substanzverkapselung
DE69407292T2 (de) Verfahren zur herstellung von liposomen
DE69535297T2 (de) Zubereitung multivesikulärer liposomen zur gesteuerten freisetzung von wirkstoffen
DE69425901T2 (de) Vesikel mit gesteuerter wirkstofffreisetzung
DE68915001T2 (de) Liposome.
DE69631149T2 (de) Formulierungen in form von emulsionen zur verabreichung von nukleinsäuren an zellen
EP1363601B1 (de) Amphotere liposomen und verwendung dieser
DE3650302T2 (de) Auf alpha-tocopherol basierte bläschen.
DE69713615T2 (de) Ionophorenvermitteltes aufladen von liposomen mit schwach basischen arzneistoffen
DE3780925T2 (de) Nasale formulierungen und verfahren zu deren herstellung.
DE69825137T2 (de) Liposomale Erythropoietin-Dispersion
EP0056781A2 (de) Verfahren zur Herstellung von liposomalen Arzneimitteln
DE69819338T2 (de) Lipid haltige zusammenstellungen und deren verwendungen
DE69332276T2 (de) Liposomenzusammensetzung
DE2907303A1 (de) Verfahren zur einkapselung biologisch aktiver substanzen
WO2004100928A1 (de) Injizierbare liposomale depots zum wirkstoffdelivery
EP0451791A2 (de) Langwirksame Liposomenpräparate von Peptidarzneistoffen und Verfahren zu ihrer Herstellung
EP1663152A2 (de) Verfahren zur herstellung von homogenen liposomen und lipoplexen
DE69417397T2 (de) Lösung, die igf-1 enthält
WO2004100927A2 (de) Injizierbare depots aus liposomalen aggregaten zum wirkstoffdelivery
EP0776194A1 (de) Unilamellare liposomenzubereitungen mit hohem wirkstoffanteil
DE69113036T2 (de) Verzögerte arzneistoffabgabe durch topische anwendung bioadhäsiver liposomen.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page

Free format text: UNDER (54) PUBLISHED TITLE IN GERMAN REPLACED BY CORRECT TITLE.

WWE Wipo information: entry into national phase

Ref document number: 2525468

Country of ref document: CA

Ref document number: 2007053918

Country of ref document: US

Ref document number: 10556703

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004731879

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004731879

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10556703

Country of ref document: US