WO2004096712A1 - チタン酸バリウム粉末およびその製造方法 - Google Patents

チタン酸バリウム粉末およびその製造方法 Download PDF

Info

Publication number
WO2004096712A1
WO2004096712A1 PCT/JP2004/005824 JP2004005824W WO2004096712A1 WO 2004096712 A1 WO2004096712 A1 WO 2004096712A1 JP 2004005824 W JP2004005824 W JP 2004005824W WO 2004096712 A1 WO2004096712 A1 WO 2004096712A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
titanate powder
halogen
temperature
powder
Prior art date
Application number
PCT/JP2004/005824
Other languages
English (en)
French (fr)
Inventor
Tetsu Umeda
Yoshio Uchida
Takumi Shibuta
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US10/554,054 priority Critical patent/US8084014B2/en
Publication of WO2004096712A1 publication Critical patent/WO2004096712A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants

Definitions

  • the present invention relates to parium titanate powder and a method for producing the same.
  • Barium titanate is widely used as a dielectric for multilayer capacitors.
  • a laminated capacitor using barium titanate has a dielectric layer made of barium titanate and an electrode layer for applying a voltage to the dielectric layer, and the dielectric layer and the electrode layer are alternately arranged. It is laminated.
  • a multilayer capacitor is manufactured by laminating a layer made of barium titanate powder and an electrode layer and sintering the layer at about 140 ° C.
  • the melting point of nickel (145 ° C) is a platinum group element (melting point of platinum: 1770
  • the present inventors have conducted intensive studies on barium titanate powder having excellent low-temperature sinterability, and as a result, have completed the present invention.
  • the present invention has a perovskite structure,
  • the ratio of the length of the a-axis to the c-axis, cZa, is greater than or equal to 1.008, and the average particle diameter d measured by the laser scattering method is:
  • the present invention also provides a method for producing parium titanate powder including the steps (1) and (2).
  • the barium titanate powder of the present invention has excellent low-temperature sinterability and is useful as a raw material for high-density dielectrics for multilayer capacitors.
  • the barium titanate powder of the present invention has a perovskite structure, and the ratio c / a of the lengths of the a-axis and the c-axis in the perovskite structure is 1.008 or more.
  • the ratio d / D of the average particle diameter d to the equivalent diameter D of the BET specific surface area is 1 or more and 1.5 or less.
  • the upper limit of d / D is preferably 1.3, and more preferably 1.2.
  • the barium titanate powder of the present invention preferably has a small average particle size, for example, 0.3 ⁇ or less.
  • Barium titanate powder having a small average particle diameter is suitably used as a raw material for forming a dielectric layer having a small thickness (for example, 1 to 2; uni).
  • a multilayer capacitor in which the thickness of the dielectric layer is reduced is preferable because the capacitance per unit volume increases.
  • the average particle diameter of the barium titanate powder obtained in the present invention is usually about 0.05 ⁇ m or more.
  • the barium titanate powder of the present invention has an average particle density of 5.8 g / cm 3 or more. Preferably, there is. In the barium titanate powder having a low average particle density, it is presumed that individual particles have voids or hydroxyl groups.
  • the barium titanate powder of the present invention preferably has a high light bulk density, for example, preferably 1.4 g / cm 3 or more. Further, the barium titanate powder preferably has a high bulk density, for example, preferably 1.8 g / cm 3 or more.
  • the upper limit of the light bulk density of the barium titanate powder is not particularly limited, but is about 2 g / cm 3 . The upper limit of the bulk bulk density of the barium titanate powder is not particularly limited, but is about 2.5 gZcm 3 .
  • the above-mentioned cZa, d / D, barium titanate powder with light bulk density and heavy bulk density is suitable as a raw material from the viewpoint that a high density sintered body can be obtained even at low temperature sintering and the amount of solvent used can be reduced.
  • the solvent used in the doctor blade method is, for example, an organic solvent such as toluene, ethanol, or acetone; water whose pH has been adjusted with an alkali such as ammonia, ammonium carbonate, or ammonium hydrogencarbonate.
  • the dispersant is, for example, a cationic compound, an anionic compound, a polyester compound, an amine polycarboxylic acid compound, or a vinyl compound.
  • the barium titanate powder may be unframed by mixing using an apparatus such as an ultrasonic dispersing machine, a ball mill, a vibration mill, and a rod mill.
  • the barium titanate powder is also suitably used as a raw material for a bead / dup substrate.
  • the build-up substrate has been developed in recent years, and is obtained by kneading and molding a resin such as a powder of titanium titanate and a resin.
  • the barium titanate powder of the present invention is excellent not only in low-temperature sinterability but also in dispersibility and filling property. Furthermore, since the barium titanate powder of the present invention can provide a sintered body having a smooth surface (for example, one having no pores or protrusions having a size of 0.5 / m or more on the surface), Barium titanate powder is useful as a raw material for dielectric filters, insulators for PDP display electrodes, and dielectric layers for inorganic EL.
  • the barium titanate powder of the present invention can be obtained, for example, by a production method including the following steps (1) and (2).
  • the titanium compound contained in the mixture used in the step (1) may be any as long as it can react with the barium compound to form barium titanate by the calcination described below.
  • titanium oxide, hydroxide And neutralized precipitates of titanium dioxide and titanium tetrachloride titanium hydroxide or hydroxide gel.
  • the barium compound contained in the mixture used in the step (1) may be any as long as it can react with the titanium compound to produce barium titanate by calcination described later.
  • barium oxide, carbonate, It is a hydroxide or a carboxylate, and examples thereof include barium carbonate, barium hydroxide, and barium acetate.
  • a multi-component compound of titanium and barrier may be used as a mixture containing a titanium compound and a barrier compound. Examples of such multi-component compounds include titanyl barium oxalate tetrahydrate.
  • the mixture used in the step (1) may contain an auxiliary agent (flux) for improving the crystallinity of the titanium titanate in addition to the titanium compound, the barium compound, or the multi-component compound of titanium and barium.
  • auxiliary agent for improving the crystallinity of the titanium titanate in addition to the titanium compound, the barium compound, or the multi-component compound of titanium and barium.
  • Auxiliaries include, for example, borates and ammonium salts.
  • the above mixture may be prepared, for example, by a method of mixing a titanium compound, a barium compound, and an optional auxiliary in a dry or wet manner. Further, the obtained mixture may be ground if necessary. Mixing is usually performed using equipment such as a ball mill, vibrating mill, frenzy mixer, verticole granulator, and dynamic minole. Also, grinding is ball mill, vibrating mill, dynamics If you use Tamil etc. Mixing and pulverization are preferably performed using a ball mill, a vibrating mill, or the like because mixing and pulverization can be performed by the same apparatus.
  • the heating in the step (1) is performed in a gas atmosphere containing halogen.
  • the halogen at this time is chlorine, bromine and iodine, preferably chlorine.
  • gas containing a halogen such as C 1 2, B r 2, I 2, HC 1, HB r, hydrogen halides such as HI, Nono androgenic compound, and the like.
  • molecular halogen and hydrogen halide are preferred, hydrogen halide is more preferred, and hydrogen chloride is particularly preferred.
  • the halogen concentration in the atmosphere is usually about 0.5% by volume or more, preferably about 1% by volume or more, more preferably about 3% by volume or more, and usually about 50% by volume or less, preferably about 30% by volume or less. % Or less, more preferably about 20% by volume or less.
  • the atmosphere typically contains non-halogen gases, such as nitrogen, oxygen, air, and argon.
  • the total pressure of the heating atmosphere is usually about 0.1 MPa or more and about IMPa or less.
  • the heating in the step (1) is performed at a temperature of about 200 ° C. or higher and lower than the temperature at which barium titanate is formed.
  • the heating temperature is preferably about 300 ° C. or more, more preferably about 500 ° C. or more, and less than about 800 ° C., and more preferably about 700 ° C. or less.
  • the heating time is generally about 1 minute or more, more than about 1 0 h ⁇
  • the baking in the step (2) is performed in an atmosphere substantially free of halogen, unlike the heating described above.
  • the halogen at this time is chlorine, bromine, iodine and fluorine, and their concentration is usually about 0.1% by volume or less.
  • the total pressure of the firing atmosphere is usually about 0.1 MPa or more and about IMPa or less.
  • the firing temperature may be at least the temperature at which barium titanate is produced from the mixture containing the titanium compound and the barium compound, and is, for example, about 800 ° C. or more.
  • the upper limit of the firing temperature is not particularly limited, but is usually about 100 ° C.
  • the firing time may be a time during which the production of barium titanate is sufficiently advanced, and varies depending on the firing temperature. It is usually about 10 minutes or more and about 10 hours or less.
  • the temperature at which barium titanate is formed from the mixture containing the titanium compound and the barium compound may be determined from the peak position of an endothermic curve determined by thermal analysis (TG-DTA).
  • the temperature range of the heating for example, 200 ° C. or higher, (Less than 100 ° C)
  • a halogen-containing gas is introduced into the furnace, the mixture is heated in a halogen-containing gas atmosphere, and then the gas in the furnace is released with a halogen-free gas (for example, air).
  • the mixture may be heated to a temperature at which titanium titanate is formed (for example, 800 ° C.) and fired.
  • the barium titanate powder obtained in the step (2) is preferably washed.
  • the washing is, for example, an aqueous solution of water or carbonate, preferably an aqueous solution of carbonate.
  • the deposits on the particle surface of the barium titanate powder can be removed).
  • the washed powder is refired.
  • the recalcination is performed, for example, in an atmosphere (eg, air) substantially free of halogens such as chlorine, bromine, iodine, and fluorine at a temperature of 800 ° C or higher and 110 ° C or lower. Just do it.
  • the atmosphere of the re-firing has a halogen concentration of usually less than about 0.1% by volume, and a total pressure of usually about 0.1 MPa or more and about IM Pa or less.
  • the barium titanate powder obtained in the step (2) or the washed and refired powder may be further classified and pulverized.
  • the barium titanate powder obtained by the above-mentioned production method is usually fine, and the following particles are easily dispersed. That is, since the barium titanate powder has a small amount of agglomerated particles, and even if the agglomerated particles are present, the degree of agglomeration is low. Therefore, the pulverization energy required for laminating the agglomerated particles is small. Aggregated particles can be reduced by short-time milling.
  • the X-ray diffraction pattern was determined using an X-ray diffraction measurement device (“RINT type”, manufactured by Rigaku), and the crystal phase was identified.
  • the obtained X-ray diffraction pattern was analyzed by the Rietveld method, the lengths of the a-axis and c-axis were calculated, and c / a was determined.
  • the powder was dispersed in an aqueous solution of 0.2% by weight of sodium hexametaphosphate, subjected to ultrasonic treatment, and then measured using a laser diffraction scattering particle size distribution analyzer ("Mastersizer-1 2000", manufactured by Malvern). BET specific surface area equivalent diameter D ( ⁇ .):
  • the BET specific surface area was measured by a BET one-point method using a BET specific surface area measurement device ("Huguchi I Soap II 2300", manufactured by Shimadzu Corporation). 6 [Theoretical density of barium titanate (g / cm 3 ) XBET specific surface area (m 2 nog)] As the theoretical density, 6.02 gZcm 3 which is the density of tetragonal barium titanate was used. Particle density (g / cm 3 ):
  • the sample was dried at 1 20 ° C, and Perret uniaxially molded at a molding pressure of 300 kg / cm 2
  • the pellets were obtained, and the pellets were measured using a density measuring device ("Ultra Pycnometer UPY-14", manufactured by Weassa Ionitas).
  • the peak intensity of the halogen was measured for each of the sample and the standard sample using an X-ray fluorescence spectrometer (“PW1480”, manufactured by Phillips), and the halogen content of the sample was determined from the peak intensity ratio with the standard sample. I asked. The halogen content of the standard sample was determined by chemical titration after dissolving the standard sample in acid.
  • PW1480 X-ray fluorescence spectrometer
  • Barium carbonate (trade name "LC-1”, manufactured by Nippon Kagaku, BET specific surface area: 10.2 m 2 / g) and titanium dioxide (trade name "PT-401M”, manufactured by Ishihara Techno, BE T specific surface area: 20.7 m 2 / g, rutile ratio: 50.7%) were weighed so that the molar ratio of barium carbonate to titanium dioxide was 1: 1.
  • Loss on ignition (weight loss when water and volatile components were removed by heating to 700 ° C) was measured in advance, and the weight corrected for weight change due to evaporation of water and the like by heating was weighed.
  • the weighed potassium carbonate and titanium dioxide (total of 1 lkg) were dry-mixed for 20 hours using a 10 L internal volume polyethylene-made pot mill containing a medium (a plastic ball containing an iron core of 15 mm).
  • the mixture had a BET specific surface area of 13.8 m 2 / g.
  • TG-DTA the temperature at which barium titanate was produced from this mixture was 820 ° C.
  • the resulting mixture was placed in a quartz glass furnace core tube (internal volume: 20 L) of a tubular furnace, and the inside of the tube was set to a nitrogen atmosphere, and then the temperature was raised.
  • a gas containing 3% by volume of hydrogen chloride and 97% by volume of nitrogen was introduced, and heating was performed until the temperature reached 700 ° C.
  • the atmosphere was switched to an air atmosphere, the temperature was raised to 950 ° C., and firing was performed at 950 ° C. for 2 hours.
  • the total pressure of the atmosphere was atmospheric pressure (approximately 0. IMPa).
  • the powder obtained by calcining was dispersed in a 0.8% by weight aqueous solution of ammonium hydrogen carbonate, and then washed by filtration. Dry the washed powder at 130 ° C and 900 in air. It was kept at C for 3 hours and fired again.
  • the powder obtained by recalcination was ground for 20 hours using a 10 L polyethylene pot containing a medium (a plastic ball with an iron core of 15 ⁇ ) for 20 hours to obtain parium titanate powder. .
  • the physical properties of this barium titanate powder are shown in Tables 1 and 2.
  • the above-mentioned barium titanate powder was formed into a cylinder having a diameter of 13 mm by a uniaxial press, and then pressed by a hydrostatic press under a condition of a forming pressure of 1.5 tZcm 2 .
  • the obtained molded body was sintered in air at 1100 ° C. for 3 hours to obtain a sintered body.
  • the density of the compact is measured with the volume calculated by measuring the inner diameter, outer shape and length of the cylinder. Determined from the weight.
  • the density of the sintered body was determined by the underwater Archimedes method.
  • Example 3 The same procedure was carried out as in [Production of Palladium Titanate Powder I] of Example 1 except that the firing temperature was changed from 950 ° C. to 900 ° C., to obtain a barium titanate powder.
  • Tables 1 and 2 show the physical properties of the obtained barium titanate powder.
  • the barium titanate powder was evaluated by performing the same operation as [Evaluation 1 of barium titanate powder] in Example 1.
  • Table 3 shows the results. Further, this barium titanate powder was evaluated by performing the same operation as [Evaluation 2 of barium titanate powder] in Example 1.
  • the sintered body obtained at this time had a density of 5.69 g / cm 3 (94.6% of the theoretical density) and had no pores or protrusions with a size of 0.5 ⁇ m or more on its surface.
  • Example 3 Example 3
  • Barium titanate powder was obtained in the same manner as in [Production of barium titanate powder I] of Example 1 except that the refiring temperature was changed from 900 ° C. to 950 ° C. Tables 1 and 2 show the physical properties of the obtained barium titanate powder. The barium titanate powder was evaluated by performing the same operation as [Evaluation 1 of barium titanate powder] in Example 1. Table 3 shows the results. Comparative Example 1
  • Barium titanate powder was obtained in the same manner as in [Production of barium titanate powder I] of Example 1 except that the heating (and firing) atmosphere was changed to air.
  • Tables 1 and 2 show the physical properties of the obtained barium titanate powder.
  • the barium titanate powder was evaluated in the same manner as in [Evaluation 1 of barium titanate powder] in Example 1.
  • Table 3 shows the results. Comparative Example 2
  • a neutralized solution of titanium tetrachloride aqueous solution (manufactured by Sumitomo Citix) and a 5% by weight sodium hydroxide aqueous solution diluted with water to a pH of 2.5 mo 1 / L in terms of titanium dioxide using a pH controller. Adjust so that ⁇ ⁇ is in the range of 3.7 to 4.3 .
  • the solution was poured into 1 L of ion-exchanged water cooled with ice.
  • the resulting precipitate of hydrated titanium dioxide was filtered and washed using a suction filter.
  • the powder obtained by drying this precipitate at 110 ° C. had a BET specific surface area of 200 to 24 O m 2 / g.
  • Barium titanate powder was obtained in the same manner as in [Production of barium titanate powder] of Comparative Example 2 except that the firing temperature was changed from 600 ° C to 800 ° C. Tables 1 and 2 show the physical properties of the obtained barium titanate powder. The barium titanate powder was evaluated in the same manner as in [Evaluation 1 of barium titanate powder] in Example 1. Table 3 shows the results. Production Example 1
  • Barium titanate powder was obtained in the same manner as in [Production of barium titanate powder I] of Example 1 except that the firing temperature was changed from 950 ° C to 900 ° C. Tables 4 and 5 show the physical properties of the obtained parium titanate powder. Production Example 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

チタン酸バリウム粉末およびその製造方法。チタン酸バリウム粉末は、ペロブスカイト構造をもち、ペロブスカイト構造におけるa軸とc軸の長さの比c/aが1.008以上であり、かつレーザー散乱法で測定した平均粒子径dと、BET比表面積相当径Dの比d/Dが1以上、1.5以下である。チタン酸バリウム粉末の製造方法は、工程(1)および(2)を含む。(1)チタン化合物とバリウム化合物を含む混合物を、ハロゲンを含むガス雰囲気下、約200℃以上、チタン酸バリウムが生成する温度未満の条件で加熱する工程、(2)加熱して得られた混合物を、ハロゲンを実質的に含まない雰囲気下、チタン酸バリウムが生成する温度以上の条件で焼成する工程。

Description

チタン酸パリゥム粉末およびその製造方法 技術分野 .
本発明は、 チタン酸パリゥム粉末およびその製造方法に関する。
明 背景技術
チタン酸バリゥムは、 積層コンデンサの誘電体として広く用いられている。 チタン酸バリウムを用いた積層コンデ田ンサは、 チタン酸バリウムからなる誘電 体層と、 その誘電体層に電圧を印加するための電極層を有し、 かつ誘電体層と電 極層は交互に積層されている。 積層コンデンサの製造は、 チタン酸バリウム粉末 からなる層と、 電極層を積層し、 これを約 1 4 0 0 °Cで焼結する方法により行わ れている。
従来、 電極層の材料として高価な白金族元素が用いられてきたが、 コスト削減 の観点から、 ニッケルなどの安価な金属の適用が検討されている。
し力 し、 ニッケルの融点 (1 4 5 0 °C) は白金族元素 (白金の融点: 1 7 7 0
°C) に比べて低温であるので、 従来の焼結温度では二ッケルが拡散して積層コン デンサを形成することが困難であった。
一方、 焼結温度を下げると、 高密度の、 チタン酸バリウムからなる誘電体層を 形成することが困難になる。
従って、 低温 (例えば、 1 1 0 0〜 1 2 0 0 °C) で焼結した場合でも、 高密度 の誘電体層を形成することができるチタン酸パリゥム粉末の開発が要望されてい る。
発明の開示
本発明者らは、 低温焼結性に優れたチタン酸バリゥム粉末について鋭意検討し た結果、 本発明を完成するに至った。
すなわち本発明は、 ぺロブスカイト構造をもち、 ぺロブスカイト構造における a軸と c軸の長さの比 c Z aが 1. 008以上であり、 かつレーザー散乱法で測 定した平均粒子径 dと、 :6£丁比表面積相当径13の比(1/0が1以上、 1. 5以 下であるチタン酸バリゥム粉末を提供する。
また本発明は、 工程 (1) および (2) を含むチタン酸パリゥム粉末の製造方 法を提供する。
(1) チタン化合物とパリゥム化合物を含む混合物を、 ハロゲンを含むガス雰囲 気下、 約 200°C以上、 チタン酸バリウムが生成する温度未満の条件で加熱する 工程、
(2) 加熱して得られた混合物を、 ハロゲンを実質的に含まない雰囲気下、 チタ ン酸パリゥムが生成する温度以上の条件で焼成する工程。
本発明のチタン酸バリウム粉末は、 低温焼結性に優れ、 積層コンデンサ用高密 度誘電体の原料として有用である。
また、 本発明の製造方法によれば、 このようなチタン酸バリウム粉末が容易に 得られる。 発明を実施するための形態
本発明のチタン酸バリウム粉末は、 ぺロブスカイト構造をもち、 ぺロブスカイ ト構造における a軸と c軸の長さの比 c/aが 1. 008以上である。
また、 本発明のチタン酸バリウム粉末は、 平均粒子径 dと、 BET比表面積相 当径 Dの比 d/Dが 1以上、 1. 5以下である。 d/Dの上限は、 好ましくは 1 . 3であり、 さらに好ましくは 1. 2である。
本発明のチタン酸バリウム粉末は、 平均粒子径が小さいものが好ましく、 例え ば 0. 3 μπι以下のものが好ましい。 平均粒子径が小さいチタン酸バリウム粉末 は、 厚みが薄い (例えば、 l〜2 ;uni) 誘電体層を形成するための原料として好 適に用いられる。 誘電体層の厚みを薄くした積層コンデンサは、 単位体積あたり の電気容量が高くなるので、 好ましい。 なお、 本発明で得られるチタン酸バリウ ム粉末の平均粒子径は、 通常、 約 0 · 05 ^ m以上である。
本発明のチタン酸バリゥム粉末は、 粒子の平均密度が 5. 8 g/cm3以上で あることが好ましい。 粒子の平均密度が低いチタン酸バリウム粉末では、 個々の 粒子が空隙を有しているか、 または水酸基を有していると推察される。
また、 本発明のチタン酸バリウム粉末は、 軽装嵩密度が高いことが好ましく、 例えば 1 · 4 g/ cm3以上であることが好ましい。 さらに、 チタン酸バリウム 粉末は、 重装嵩密度が高いことが好ましく、 例えば 1. 8 g/cm3以上である ことが好ましい。 一方、 チタン酸バリウム粉末の軽装嵩密度の上限は特に限定さ れないが、 約 2 g/ cm3である。 また、 チタン酸バリゥム粉末の重装嵩密度の 上限も、 特定限定されないが、 約 2. 5 gZcm3である。
チタン酸バリゥム粉末、 溶媒およぴ分散剤を混合し、 得られたスラリーからシ ートを成形し、 これを焼成して誘電体層を得る方法 (ドクタープレード法) では 、 上述の cZa、 d/D, 軽装嵩密度及び重装嵩密度をもつチタン酸バリウム粉 末が、 低温焼結でも高密度の焼結体が得られ、 また溶媒の使用量を減らせるとい う観点から、 原料として好適に用いられる。 ドクタープレード法で用いる溶媒は 、 例えば、 トルエン、 エタノール、 アセトンのような有機溶媒;アンモニア、 炭 酸アンモニア、 炭酸水素アンモニゥムのようなアルカリにより pHを調節した水 などである。 分散剤は、 例えば、 カチオン系、 ァニオン系、 ポリエステル系、 ポ リカルボン酸ァミン系、 ビニル系の化合物などである。 超音波分散機、 ボールミ ル、 振動ミル、 ロッドミルのような装置を用いる混合により、 チタン酸バリウム 粉末を解枠してもよい。
また、 このチタン酸バリウム粉末は、 ビ^/ドアップ基板用の原料としても好適 に用いられる。 ビルドアップ基板は、 近年開発されたものであり、 チタン酸バリ ゥムのような粉末と樹脂を混練、 成形することにより得られる。
前述のように、 本発明のチタン酸バリウム粉末は、 低温焼結性に優れるだけで なく、 分散性、 充填性も良好である。 さらに、 本発明のチタン酸バリウム粉末か ら、 平滑な表面をもつ焼結体 (例えば、 表面に大きさ 0. 5 / m以上の空孔また は突起が存在しないもの) が得られるので、 このチタン酸バリウム粉末は、 誘電 体フィルター、 PDP表示電極の絶縁体、 無機 ELの誘電体層等の原料として有 用である。 本発明のチタン酸バリウム粉末は、 例えば、 以下に示す工程 (1 ) および (2 ) を含む製造方法により得られる。
( 1 ) チタン化合物とバリウム化合物を含む混合物を、 ハロゲンを含むガス雰囲 気下、 約 2 0 0 °C以上、 チタン酸バリゥムが生成する温度未満の条件で加熱する 工程、
( 2 ) 加熱して得られた混合物を、 チタン酸バリウムが生成する温度以上の条件 で焼成する工程。 工程 (1 ) に用いる混合物に含まれるチタン化合物は、 後述する焼成によりバ リウム化合物と反応してチタン酸バリウムを生成し得るものであればよく、 例え ば、 チタンの酸ィ匕物、 水酸化物または水酸ィ匕物ゲル等であり、 例えば、 二酸化チ タン、 四塩化チタンの中和析出物 (水酸化チタンまたは水酸化物ゲル) が挙げら れる。 工程 (1 ) に用いる混合物に含まれるバリウム化合物は、 後述する焼成に より、 前記チタン化合物と反応してチタン酸バリウムを生成し得るものであれば よく、 例えば、 バリウムの酸化物、 炭酸塩、 水酸化物またはカルボン酸塩等であ り、 例えば、 炭酸バリウム、 水酸化バリウム、 酢酸バリウムが挙げられる。 また、 チタン化合物とバリゥム化合物を含む混合物として、 チタンとバリゥム の多成分系化合物を用いてもよい。 このような多成分系化合物の例には、 蓚酸チ タニルバリゥム四水和物が挙げられる。
工程 ( 1 ) に用いる混合物は、 チタン化合物、 バリウム化合物またはチタンと バリゥムの多成分系化合物の他に、 チタン酸バリゥムの結晶性を向上させるため の助剤 (フラックス) を含むものであってもよい。 助剤としては、 例えば、 ホウ 酸塩、 アンモニゥム塩が挙げられる。
前記の混合物は、 例えば、 チタン化合物、 バリウム化合物及ぴ任意の助剤を、 乾式または湿式にて、 混合する方法により調製すればよい。 さらに、 得られた混 合物は、 必要に応じて、 粉碎してもよい。 混合は、 通常、 ボールミル、 振動ミル 、 へンシエノレミキサ一、 バーチカノレグラニュレーター、 ダイナミツクミノレのよう な装置を用いて行えばょレヽ。 また、 粉砕は、 ボールミル、 振動ミル、 ダイナミツ タミル等を用いて行えばよレ、。 混合と粉碎を同じ装置で行えることから、 混合お よび粉砕はボールミル、 振動ミル等を用いて行うことが好ましい。 工程 (1 ) の加熱は、 ハロゲンを含むガス雰囲気下で行われる。 このときのハ ロゲンは、 塩素、 臭素およびョゥ素であり、 好ましくは塩素である。 ハロゲンを 含むガスの例としては、 C 1 2、 B r 2、 I 2のような分子状ハロゲン、 H C 1、 H B r、 H Iのようなハロゲン化水素、 ノヽロゲン化物等が挙げられる。 これらの うち、 好ましくは分子状ハロゲン、 ハロゲン化水素であり、 さらに好ましくはハ 口ゲン化水素であり、 特に好ましくは塩化水素である。
雰囲気のハロゲン濃度は、 通常約 0 . 5体積%以上、 好ましくは約 1体積%以 上、 さらに好ましくは約 3体積%以上であり、 また通常約 5 0体積%以下、 好ま しくは約 3 0体積%以下、 さらに好ましくは約 2 0体積%以下である。 雰囲気に は、 通常、 窒素、 酸素、 空気、 アルゴンのような、 ハロゲンガス以外のガスが含 まれる。 加熱雰囲気の全圧は、 通常、 約 0 . I MP a以上、 約 I MP a以下であ る。
また、 工程 (1 ) の加熱は、 約 2 0 0 °C以上であり、 チタン酸バリウムの生成 温度未満の温度範囲にて行なわれる。 加熱温度は、 好ましくは約 3 0 0 °C以上、 さらに好ましくは約 5 0 0 °C以上であり、 また約 8 0 0 °C未満、 さらに好ましく は約 7 0 0 °C以下である。 加熱時間は、 通常約 1分以上、 約 1 0時間以下である σ
工程 (2 ) の焼成は、 前記の加熱と異なり、 ハロゲンを実質的に含まない雰囲 気下で行われる。 このときのハロゲンは、 塩素、 臭素、 ヨウ素およびフッ素であ り、 これらの濃度は、 通常、 約 0 . 1体積%以下である。 焼成雰囲気の全圧は、 通常、 約 0 . I MP a以上、 約 I MP a以下である。
焼成温度は、 チタン化合物とバリウム化合物を含む混合物からチタン酸バリウ ムが生成する温度以上であればよく、 例えば約 8 0 0 °C以上である。 焼成温度の 上限は特に限定されないが、 通常約 1 0 0 0 °Cである。 焼成時間は、 チタン酸バ リゥムの生成が十分に進行する時間であればよく、 焼成温度により異なるが、 通 常約 1 0分以上、 約 1 0時間以下である。 なお、 チタン化合物とバリゥム化合物 を含む混合物からチタン酸バリウムが生成する温度は、 熱分析 (T G - D TA) により求められる吸発熱曲線のピーク位置から求めればよい。 工程 ( 1 ) および工程 ( 2 ) は、 例えば、 炉に、 チタン化合物とバリウム化合 物を含む混合物を炉内で昇温しながら、 前記加熱の温度範囲 (例えば、 2 0 0 °C 以上、 8 0 0 °C未満) のとき、 ハロゲンを含むガスを炉内に導入して、 混合物を ハロゲン含有ガス雰囲気下で加熱し、 次いで、 ハロゲンを含まないガス (例えば 、 空気) により炉内のガスを置換した後、 混合物をチタン酸バリゥムが生成する 温度 (例えば、 8 0 0 °C) まで昇温して、 焼成する方法で行ってもよい。 工程 (2 ) で得られるチタン酸バリウム粉末は、 洗浄することが好ましい。 洗 浄は、 例えば、 水、 炭酸塩の水溶液、 好ましくは炭酸塩の水溶液である。 洗浄に より、 チタン酸バリウム粉末の粒子表面の付着物 (加熱のときの雰囲気ガスであ るハロゲンまたはその化合物などが残留したもの) を除去することができる。 洗 浄した粉末は、 再焼成することが好ましい。 再焼成は、 例えば、 塩素、 臭素、 ョ ゥ素およびフッ素のようなハロゲンを実質的に含有しない雰囲気 (例えば、 空気 ) 下、 8 0 0 °C以上、 1 1 0 0 °C以下の温度で行えばよい。 再焼成の雰囲気は、 ハロゲン濃度が、 通常、 約 0 . 1体積%未満であり、 全圧が、 通常、 約 0 . 1 M P a以上、 約 I MP a以下である。
工程 (2 ) で得られたチタン酸バリウム粉末または上記洗浄、 再焼成された粉 末を、 さらに、 分級ゃ粉碎してもよい。 前記の製造方法により得られるチタン酸バリウム粉末は、 通常、 微粒であり、 —次粒子が容易に分散するものである。 すなわち、 このチタン酸バリウム粉末は 、 凝集粒子が少なく、 たとえ凝集粒子があっても、 凝集の程度は低いため、 凝集 粒子を壌すために必要な粉碎エネルギーは小さく、 ボールミルや振動ミルを用い る短時間の粉碎により凝集粒子を減少させることができる。 また、 強く凝集した 粒子を含む粉末を強力に粉砕すると、 ボールミルゃ振動ミルに入れられた媒体が 破損して、 破片が混入したり、 また、 ミルパッキングによって粒子が再凝集して 粗大粒子が発生したりすることがあるが、 本発明の製造方法により得られるチタ ン酸バリゥム粉末を用いると、 これらの発生を抑制することができる。 実 施 例
以下、 本発明を実施例により詳細に説明するが、 本発明はこれらに限定される ものではない。 チタン酸バリゥム粉末の物性は以下の方法により測定した。 結晶相、 c/a :
X線回折測定装置 ( "R I NT型" 、 リガク製) を用いて X線回折パターンを 求め、 結晶相を同定した。 また、 得られた X線回折パターンをリートベルト法に より解析し、 a軸および c軸の長さを算出し、 c/aを求めた。 平均粒子径 d ( im) :
粉末を 0. 2重量%へキサメタリン酸ナトリウム水溶液中に分散させ、 超音波 処理した後、 レーザー回折散乱法粒度分布測定装置 ( "マスターサイザ一 200 0型" 、 マルバーン製) を用いて測定した。 BET比表面積相当径 D (μ ϊΏ.) :
BET 1点法による B E T比表面積測定装置 ( "フ口一ソープ II 2300型" 、 島津製作所製) により測定した BET比表面積から、 次式により算出した。 6ノ [チタン酸バリウムの理論密度 (g/cm3)XBET比表面積 (m2ノ g ) ] 理論密度として、 正方晶チタン酸バリウムの密度である 6. 02 gZcm3を用 いた。 粒子密度(g/ cm3) :
試料を 1 20°Cで乾燥した後、 成形圧 300 k g / c m2で一軸成形してペレ ットを得、 このペレットについて密度測定装置 ( "ウルトラピクノメータ UPY 一 4型" 、 ュアサアイォニタス製) を用いて測定した。 軽装嵩密度、 重装嵩密度(g/ cm3) :
試料 50 gを 10 OmLガラス製メスシリンダ一に入れて、 試料の見掛け体積 VLを測定した。 重量 W (=50 g) と体積 VLから軽装嵩密度 (二 W/VL) を 算出した。
次に、 試料を入れたメスシリンダーを高さ 5 cmから 100回落下させてタッ ビングを行なって、 試料の見掛け体積 VPを測定した。 重量 W (-50 g) と体 積 VPから重装嵩密度 (=W/VP) を算出した。 タッピングの途中において、 メスシリンダ一内の試料体積の減少は止まり、 試料体積は一定値を示した。 原子比 B aZT i : ,
試料と標準試料について、 蛍光 X線分析装置 ( "PW1480型" 、 フィリツ ブス製) を用いて、 それぞれ、 B aと T iのピーク強度を測定した。 (糸且成が化 学分析により求められ、 組成が既知である) 標準試料について、 検量線を作成し 、 それから試料の B a /T i比を求めた。 ハロゲン (塩素) 含有量 (p pm) :
試料と標準試料について、 蛍光 X線分析装置 ( "PW1480型" 、 フィリツ ブス製) を用いて、 それぞれ、 ハロゲンのピーク強度を測定し、 標準試料とピー ク強度比から、 試料のハロゲン含有量を求めた。 標準試料のハロゲン含有量は、 標準試料を酸溶解後、 化学滴定法により求めた。 実施例 1
〔チタン酸パリゥム粉末の製造 I〕
炭酸バリウム (商品名 "LC—1" 、 日本化学製、 BET比表面積: 10. 2 m2/g) と、 二酸化チタン (商品名 " P T - 401 M" 、 石原テクノ製、 BE T比表面積: 20. 7m2/g、 ルチル化率: 50. 7%) を、 炭酸バリウムと 二酸化チタンのモル比が 1 : 1となるように、 秤量した。 あらかじめ、 強熱減量 (700 °Cに加熱して水分や揮発成分を除去したときの重量減少) を測定し、 加 熱により水分等の揮発による重量変化を補正した重量を秤量した。 秤量した炭酸 バリゥムと二酸化チタン (合計 1. l k g) を、 媒体 (1 5 mm ψ鉄芯入りプラ スチックボール) を入れた内容積 10 Lボリエチレン製ポットミルを用いて、 2 0時間乾式混合した。 混合物は、 BET比表面積が 13. 8 m2 / gであった。 また、 TG— DTAの結果、 この混合物からチタン酸バリウムが生成する温度は 820°Cであった。
得られた混合物を、 管状炉の石英ガラス製炉芯管 (内容積: 20 L) の中に置 き、 管内を窒素雰囲気にした後、 昇温を開始した。 温度が 600°Cになったとき 、 塩化水素 3体積%—窒素 97体積%のガスを導入して、 700 °Cになるまで加 熱を行った。 次いで、 空気雰囲気に切り替えて 950°Cまで昇温し、 950°Cで 2時間保持して焼成を行った。 加熱および焼成のとき、 雰囲気の全圧力は大気圧 (約 0. IMP a) であった。
焼成して得られた粉末を、 0. 8重量%炭酸水素アンモニゥム水溶液に分散さ せた後、 濾過することにより、 洗浄した。 洗浄した粉末を 130°Cで乾燥し、 空 気中 900。Cで 3時間保持して再焼成した。
再焼成して得られた粉末を、 媒体 (1 5πιιηφの鉄芯入りプラスチック製ボー ル) を入れた内容積 10 Lポリエチレン製ポットを用いて、 20時間粉砕して、 チタン酸パリゥム粉末を得た。 このチタン酸バリゥム粉末の物性を表 1およぴ表 2に示す。
〔チタン酸バリゥム粉末の評価 1〕
前記のチタン酸バリゥム粉末を、 一軸プレスにより 13 mm φの円筒に成形し 、 次いでこれを静水圧プレスにより成形圧 1. 5 tZcm2の条件で加圧した。 得られた成形体を空気中、 1 100°C、 3時間の条件で焼結して焼結体を得た。 成形体の密度は、 円筒の内径、 外形および長さを測定して算出した体積と測定し た重量から求めた。 焼結体の密度は、 水中アルキメデス法により求めた。
また、 前記のチタン酸バリゥム粉末 75重量部に、 エタノール 25重量部、 及 ぴ分散剤 (商品名 "SN—9228" 、 サンノプコ製) 0. 1 5重量部を添加、 撹拌し、 さらに超音波分散処理して、 スラリーを得た。 このスラリーの粘度を、 B型粘度計を用いて No. 4ローター、 12 p r mの条件で測定した。 これらの 結果を表 3に示す。
〔チタン酸バリウム粉末の評価 2〕
前記のチタン酸バリゥム粉末 100重量部、 溶媒 (トルエン/エタノール = 1 : 9) 100重量部、 およぴ分散剤 (商品名 "SN— 9228" 、 サンノプコ製 ) 1重量部を、 媒体 (商品名 "ハイプラボール" 、 鉄芯入りナイロン製ポール) を入れたボールミルを用いて、 2時間混合して、 スラリーを得た。 このスラリー をスリップキャストして得られた成形体を乾燥し、 次いで空気中、 1200°Cで 3時間焼結した。 得られた焼結体は、 密度が 5. 75 g/cm3 (理論密度の 9 5. 6%) であった。 また、 焼結体の表面のうち、 縦 5mm、 横 5 mmの範囲を 走査電子顕微鏡により観察した結果、 大きさ 0. 5 /i m以上の空孔ゃ突起はなか つた。 実施例 2
実施例 1の 〔チタン酸パリゥム粉末の製造 I〕 において、 焼成温度を 950 °C から 900°Cに変更した以外、 同じ操作を行ってチタン酸バリゥム粉末を得た。 得られたチタン酸バリウム粉末の物性を表 1、 表 2に示す。 また、 このチタン酸 バリウム粉末について、 実施例 1の 〔チタン酸バリウム粉末の評価 1〕 と同じ操 作を行って評価した。 この結果を表 3に示す。 さらに、 このチタン酸バリウム粉 末について、 実施例 1の 〔チタン酸バリウム粉末の評価 2〕 と同じ操作を行って 評価した。 このとき得られた焼結体は、 密度が 5. 69 g/cm3 (理論密度の 94. 6%) であり、 その表面に、 大きさ 0. 5 μ m以上の空孔ゃ突起はなかつ た。 実施例 3
実施例 1の 〔チタン酸バリゥム粉末の製造 I〕 において、 焼成温度を 9 5 0 °C から 8 5 0 °Cに変更したこと、 再焼成温度を 9 0 0 °Cから 1 0 0 0 °Cに変更した 以外、 同じ操作を行ってチタン酸バリゥム粉末を得た。 得られたチタン酸バリウ ム粉末の物性を表 1、 表 2に示す。 また、 このチタン酸バリゥム粉末について、 実施例 1の 〔チタン酸バリウム粉末の評価 1〕 と同じ操作を行って評価した。 こ の結果を表 3に示す。 実施例 4
実施例 1の 〔チタン酸バリウム粉末の製造 I〕 において、 再焼成温度を 9 0 0 °Cから 9 5 0 °Cに変更した以外、 同じ操作を行ってチタン酸バリゥム粉末を得た 。 得られたチタン酸バリウム粉末の物性を表 1、 表 2に示す。 また、 このチタン 酸バリウム粉末について、 実施例 1の 〔チタン酸バリウム粉末の評価 1〕 と同じ 操作を行って評価した。 この結果を表 3に示す。 比較例 1
実施例 1の 〔チタン酸バリウム粉末の製造 I〕 において、 加熱 (および焼成) の雰囲気を空気中に変更した以外、 同じ操作を行ってチタン酸バリゥム粉末を得 た。 得られたチタン酸バリウム粉末の物性を表 1、 表 2に示す。 また、 このチタ ン酸バリウム粉末について、 実施例 1の 〔チタン酸バリウム粉末の評価 1〕 と同 様に評価した。 この結果を表 3に示す。 比較例 2
〔チタン酸バリウム粉末の製造 Π〕
二酸化チタン換算で 2 . 5 m o 1 / Lとなるように、 水で希釈した四塩化チタ ン水溶液 (住友シチックス製) と、 5重量%水酸化ナトリウム水溶液を、 p Hコ ントローラーによって中和液の ϋ Ηが 3 . 7〜4 . 3の範囲になるように調整し ながら、 氷で冷やしたィオン交換水 1 Lに注液した。 得られた水和二酸化チタン の沈殿物を、 吸引濾過器を用いて濾過、 洗浄した。 この沈殿物を 1 1 0 °Cで乾燥 して得られた粉末は、 B E T比表面積が 2 0 0〜2 4 O m2 / gであった。
得られた沈殿物を、 二酸化チタン換算で 1 5 g秤量し、 これにイオン交換水を 添加して懸濁液を得た。 この懸濁液と水酸化パリウム 8水和物 (和光純薬工業製 ) を、 原子比 B a ZT iが 1 . 4となるように、 混合した。 得られた混合物を、 オートクレープを用いて 1 5 0 °C、 1時間水熱処理した。 次いで、 混合物中の固 形物を濾過、 洗浄し、 1 1 0 °Cで乾燥し、 さらに空気中、 6 0 0 °Cで焼成してチ タン酸バリゥム粉末を得た。 得られたチタン酸バリゥム粉末の物性を表 1、 表 2 に示す。 また、 このチタン酸バリウム粉末について、 実施例 1の 〔チタン酸バリ ゥム粉末の評価 1〕 と同様に評価した。 この結果を表 3に示す。 比較例 3
比較例 2の 〔チタン酸バリウム粉末の製造 Π〕 において、 焼成温度を 6 0 0 °C から 8 0 0 °Cに変更した以外、 同じ操作を行ってチタン酸バリウム粉末を得た。 得られたチタン酸バリウム粉末の物性を表 1、 表 2に示す。 また、 このチタン酸 バリウム粉末について、 実施例 1の 〔チタン酸バリウム粉末の評価 1〕 と同様に 評価した。 この結果を表 3に示す。 製造例 1
実施例 1の 〔チタン酸バリウム粉末の製造 I〕 において、 焼成温度を 9 5 0 °C から 9 0 0 °Cに変更した以外、 同じ操作を行ってチタン酸バリゥム粉末を得た。 得られたチタン酸パリゥム粉末の物性を表 4、 表 5に示す。 製造例 2
実施例 1の 〔チタン酸バリウム粉末の製造 I〕 において、 加熱のときに導入す るガスを塩化水素 3体積%—窒素 9 7体積%から、 塩化水素 1 0体積%—窒素 9 0体積%に変更した以外、 同じ操作を行ってチタン酸バリゥム粉末を得た。 得ら れたチタン酸パリゥム粉末の物性を表 4、 表 5に示す。 製造例 3
実施例 1の 〔チタン酸バリゥム粉末の製造 I〕 において、 焼成温度を 9 5 0 °C から 8 5 0 °Cに変更したこと、 加熱 (および焼成) の雰囲気を空気中に変更した 以外、 同じ操作を行って粉末を得た。 得られた粉末は、 B a T i 03単相ではな く、 B a C 03、 B a O、 T i 02の相が含まれていた。 製造例 4
実施例 1の 〔チタン酸バリウム粉末の製造 I〕 において、 焼成のときに導入す るガスを空気から、 塩ィヒ水素 3体積%—窒素 9 7体積%に変更した以外、 同じ操 作を行ってチタン酸バリゥム粉末を得た。 得られたチタン酸バリウム粉末の物性 を表 4、 表 5に示す。 この例では、 焼成後の粉末に、 塩化バリウムが含まれてい た。
チタン酸パリゥム粉末の諸物性
ο o
Figure imgf000015_0001
チタン酸パリゥム粉末の諸物性
軽装嵩密度 重装嵩密度 原子比 Ba/Ti 塩素含有量 g/cm3 g/cm3 PPm 実施例 1 1.61 2.04 1.000 26 実施例 2 1.55 2.00 1.001 35 実施例 3 1.44 2.00 46 実施例 4 1.45 1.92 0.997 29 比較例 1 1.40 1.78 0.998 - 比較例 2 1.08 1.45 57 比較例 3 1.07 1.45 0.997 ― 表 3 チタン酸バリゥム粉末の評価結果
Figure imgf000016_0001
チタン酸パリゥム粉末の諸物性
Figure imgf000016_0002
表 5 チタン酸パリゥム粉末の諸物性
¾:衣 ス 重装嵩密度 原子比 Ba/Ti 塩素含有量
G/cm3 g/cm3 PPm 製造例 1 1. 47 2. 00 0. 998 一
製造例 2 1. 56 2. 01 0. 998 - 製造例 4 1. 33 1. 88 0. 996 260

Claims

請 求 の 範 囲
I. ぺロブスカイト構造をもち、 ぺロプスカイト構造における a軸と c軸の長さ の比 cZaが 1. 008以上であり、 かつ平均粒子径 dと、 BET比表面積相当 径 Dの比 dZDが 1以上、 1. 5以下であるチタン酸バリゥム粉末。
2. 平均粒子径が 0. 3 μ m以下である請求項 1記載のチタン酸バリゥム粉末。
3. 平均粒子径が 0. 05 πι以上である請求項 2記載のチタン酸バリゥム粉末
4. 粒子の平均密度が 5. 8 g Z c m 3以上である請求項 1記載のチタン酸バリ ゥム粉末
5. 軽装嵩密度が 1. 4 gZ cm3以上であり、 かつ重装嵩密度が 1. 8 g/c m3以上である請求項 1〜 4のいずれかに記載のチタン酸バリゥム粉末。
6. 工程 (1) および (2) を含むチタン酸バリウム粉末の製造方法。
(1) チタン化合物とバリウム化合物を含む混合物を、 ハロゲンを含むガス雰囲 気下、 約 200°C以上、 チタン酸バリウムが生成する温度未満の条件で加 熱する工程、
(2) 加熱して得られた混合物を、 ハロゲンを実質的に含まない雰囲気下、 チタ ン酸バリゥムが生成する温度以上の条件で焼成する工程。
7. 工程 (1) のハロゲンは、 塩素、 臭素おょぴヨウ素から選ばれる少なくとも 1つである請求項 6記載の方法。
8. 工程 (1) のハロゲンは、 塩素である請求項 7記載の方法。
9. ハロゲンを含むガスは、 分子状ハロゲン、 ノ、ロゲン化水素おょぴハロゲン化 物から選ばれる請求項 7または 8記載の方法。
10. ハロゲンを含むガスは、 分子状ハ口ゲンおよぴハ口ゲン化水素から選ばれ る請求項 9記載の方法。
I I. 工程 (1) の加熱雰囲気のハロゲン濃度は、 約 0. 5体積%以上、 約 50 体積%以下である請求項 6記載の方法。
12. 工程 (1) の加熱雰囲気の全圧は、 約 0. IMP a以上、 約 IMP aであ る請求項 6記載の方法。
13. 工程 (2) で得られる粉末を、 ハロゲンを実質的に含まない雰囲気下、 8 00 °C以上、 1100 °C以下の温度で再焼成する請求項 6〜 12のいずれかに記 載の方法。
PCT/JP2004/005824 2003-04-25 2004-04-22 チタン酸バリウム粉末およびその製造方法 WO2004096712A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/554,054 US8084014B2 (en) 2003-04-25 2004-04-22 Barium titanate powder and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-121284 2003-04-25
JP2003121284 2003-04-25
JP2003-380777 2003-11-11
JP2003380777 2003-11-11

Publications (1)

Publication Number Publication Date
WO2004096712A1 true WO2004096712A1 (ja) 2004-11-11

Family

ID=33422037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005824 WO2004096712A1 (ja) 2003-04-25 2004-04-22 チタン酸バリウム粉末およびその製造方法

Country Status (3)

Country Link
US (1) US8084014B2 (ja)
TW (1) TW200500320A (ja)
WO (1) WO2004096712A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674846B1 (ko) 2005-03-29 2007-01-26 삼성전기주식회사 유전체용 세라믹분말의 제조방법, 및 그 세라믹분말을이용하여 제조된 적층세라믹커패시터
EP2108620A1 (en) * 2008-04-04 2009-10-14 Evonik Degussa GmbH A method to produce barium titanate powder from pyrogenic titanium dioxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236713A (ja) * 1987-03-25 1988-10-03 Teikoku Kako Kk ペロブスカイト型化合物の無機微粉体の製造方法
JPH0474715A (ja) * 1990-07-13 1992-03-10 Colloid Res:Kk 複合酸化物粉末の製造方法
JPH04132614A (ja) * 1990-09-25 1992-05-06 Murata Mfg Co Ltd ペロブスカイト型複合酸化物粉末の製造方法
JP2001316114A (ja) * 2000-03-02 2001-11-13 Murata Mfg Co Ltd ペロブスカイト構造を有する酸化物、チタン酸バリウムおよびその製造方法ならびに誘電体セラミックおよびセラミック電子部品
JP2002060219A (ja) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd 微粒チタン酸バリウム粉末、カルシウム変性微粒チタン酸バリウム粉末、ならびにその製造方法
JP2002167281A (ja) * 2000-11-29 2002-06-11 Kyocera Corp 誘電体粉末及びその製造方法並びに焼結体及びそれを用いたコンデンサ
JP2002211926A (ja) * 2000-11-13 2002-07-31 Toda Kogyo Corp 球状チタン酸バリウム粒子粉末及びその製造法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246902A (ja) 1990-02-23 1991-11-05 Sumitomo Metal Ind Ltd 正特性サーミスタの製造方法
JP3738454B2 (ja) * 1993-08-11 2006-01-25 住友化学株式会社 複合金属酸化物粉末およびその製造方法
JP3772354B2 (ja) 1994-10-18 2006-05-10 株式会社村田製作所 セラミック粉体の製造方法
EP0714850B1 (en) * 1994-11-30 1999-07-28 Sumitomo Chemical Company, Limited Method for producing double metal oxide powder
KR100743413B1 (ko) * 2000-10-16 2007-07-30 스미또모 가가꾸 가부시끼가이샤 복합 금속 산화물 분말의 제조 방법
US6808697B2 (en) * 2000-11-13 2004-10-26 Toda Kogyo Corporation Spherical tetragonal barium titanate particles and process for producing the same
JP3835254B2 (ja) 2000-12-27 2006-10-18 株式会社村田製作所 チタン酸バリウム粉末の製造方法
JP4660935B2 (ja) 2001-02-05 2011-03-30 株式会社村田製作所 正方晶ペロブスカイト構造を有するチタン酸バリウム系セラミック粉末の製造方法
JP3770096B2 (ja) * 2001-03-12 2006-04-26 株式会社村田製作所 チタン酸バリウム粉末の製造方法、誘電体セラミック、ならびに積層セラミックコンデンサ
TWI288121B (en) * 2001-06-04 2007-10-11 Sumitomo Chemical Co Process for producing zirconia powder
JP4830216B2 (ja) 2001-06-15 2011-12-07 株式会社村田製作所 ペロブスカイト構造を有する酸化物粉末の製造方法、ペロブスカイト構造を有する酸化物粉末、誘電体セラミックおよびセラミック電子部品
JP2003002739A (ja) * 2001-06-19 2003-01-08 Murata Mfg Co Ltd チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末およびその評価方法、誘電体セラミック、ならびに積層セラミックコンデンサ
JP4200427B2 (ja) * 2001-12-28 2008-12-24 株式会社村田製作所 複合酸化物粉末の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236713A (ja) * 1987-03-25 1988-10-03 Teikoku Kako Kk ペロブスカイト型化合物の無機微粉体の製造方法
JPH0474715A (ja) * 1990-07-13 1992-03-10 Colloid Res:Kk 複合酸化物粉末の製造方法
JPH04132614A (ja) * 1990-09-25 1992-05-06 Murata Mfg Co Ltd ペロブスカイト型複合酸化物粉末の製造方法
JP2001316114A (ja) * 2000-03-02 2001-11-13 Murata Mfg Co Ltd ペロブスカイト構造を有する酸化物、チタン酸バリウムおよびその製造方法ならびに誘電体セラミックおよびセラミック電子部品
JP2002060219A (ja) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd 微粒チタン酸バリウム粉末、カルシウム変性微粒チタン酸バリウム粉末、ならびにその製造方法
JP2002211926A (ja) * 2000-11-13 2002-07-31 Toda Kogyo Corp 球状チタン酸バリウム粒子粉末及びその製造法
JP2002167281A (ja) * 2000-11-29 2002-06-11 Kyocera Corp 誘電体粉末及びその製造方法並びに焼結体及びそれを用いたコンデンサ

Also Published As

Publication number Publication date
US20060280675A1 (en) 2006-12-14
TW200500320A (en) 2005-01-01
US8084014B2 (en) 2011-12-27

Similar Documents

Publication Publication Date Title
JP3963962B2 (ja) ペロブスカイト化合物の結晶性セラミック粉体の合成方法
TWI290539B (en) Barium titanate and capacitor
Testinon et al. Synthesis of BaTiO3 particles with tailored size by precipitation from aqueous solutions
US20070202036A1 (en) Production Of Barium Titanate Compounds
JP3798652B2 (ja) シュウ酸塩工程によるチタン酸バリウム系粉末の製造方法
US20090202426A1 (en) Method for producing dielectric powder
Yen et al. Characterization of barium titanyl oxalate tetrahydrate
JP4743481B2 (ja) チタン含有ペロブスカイト型化合物およびその製造方法
KR101904579B1 (ko) 옥살산바륨티타닐의 제조 방법 및 티탄산바륨의 제조 방법
Kaur et al. Enhancement in the dielectric and ferroelectric behaviour by interface between the electrode and grain bulk boundaries of Ca, Zr-doped Barium Titanate
WO2006090488A1 (ja) 組成物の製造方法
JP2017071537A (ja) チタン酸バリウム粉末の製造方法
JP4438495B2 (ja) チタン酸バリウム粉末
Kholodkova et al. Synthesis of fine-crystalline tetragonal barium titanate in low-density water fluid
Hwu et al. Characterization of dielectric barium titanate powders prepared by homogeneous precipitation chemical reaction for embedded capacitor applications
WO2004096712A1 (ja) チタン酸バリウム粉末およびその製造方法
Ali et al. Synthesis and Processing Characteristics of Ba0. 65Sr0. 35TiO3 Powders from Catecholate Precursors
KR101555375B1 (ko) 페로브스카이트형 티탄산바륨 분말의 제조 방법
JP7110306B2 (ja) シュウ酸バリウムチタニルの製造方法及びチタン酸バリウムの製造方法
TWI694979B (zh) 鈦酸鋇粉末的製造方法
JP2010202610A (ja) シュウ酸バリウムチタニルの製造方法及びチタン酸バリウムの製造方法
Baek et al. Hydrothermal Synthesis and Dielectric Properties of Ba1− x Sr x TiO3 Nanoparticles with Enhanced Uniformity
JP2006206363A (ja) チタン酸バリウム粉末およびその製法
JP7202778B2 (ja) 二チタン酸バリウム系セラミックスおよび圧電素子
JP4534001B2 (ja) ジルコニウム酸カルシウム粉末

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006280675

Country of ref document: US

Ref document number: 10554054

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10554054

Country of ref document: US