WO2004096418A1 - Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci - Google Patents

Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci Download PDF

Info

Publication number
WO2004096418A1
WO2004096418A1 PCT/CN2004/000295 CN2004000295W WO2004096418A1 WO 2004096418 A1 WO2004096418 A1 WO 2004096418A1 CN 2004000295 W CN2004000295 W CN 2004000295W WO 2004096418 A1 WO2004096418 A1 WO 2004096418A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
membrane
diazanaphthalene
polyethersulfone
poly
Prior art date
Application number
PCT/CN2004/000295
Other languages
English (en)
Chinese (zh)
Inventor
Cuixian Chen
Zhen Chen
Jiding Li
Yanbin Yun
Shintani Takuji
Ando Masaaki
Original Assignee
Tsinghua University
Nitto Denko Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 03124222 external-priority patent/CN1251793C/zh
Priority claimed from CNB2003101155444A external-priority patent/CN100506365C/zh
Application filed by Tsinghua University, Nitto Denko Corp. filed Critical Tsinghua University
Publication of WO2004096418A1 publication Critical patent/WO2004096418A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/32Melting point or glass-transition temperatures

Definitions

  • the invention belongs to the technical field of hollow fiber ultrafiltration membrane separation. Specifically, the present invention relates to diazanaphthalene-polyethersulfone, -polyetherketone, and -polyethersulfone-type hollow fiber ultrafiltration membrane and a preparation method thereof. Background technique
  • Ultrafiltration membranes are one of the most widely used separation membranes. Ultrafiltration membranes can be used to separate macromolecular, colloidal and small molecule solvents. Ultrafiltration membranes have been widely used in water treatment, wastewater treatment and water resource recycling; or used in petrochemical, biochemical, fine chemical, pharmaceutical and chemical, mechanical metallurgy, textile printing and dyeing, food light industry, agriculture, animal husbandry and aquatic products industries In the separation, purification and concentration of raw materials and products. In the application process of ultrafiltration membranes, due to different processing objects, different operating conditions, different methods of membrane pretreatment, sterilization, and cleaning, different requirements are often imposed on the material of the membrane.
  • biotechnology the pillar of economic development in the 21st century, the separation and purification of its products is the key to the transfer of biotechnology from laboratory research to industrial production.
  • Purification and separation of most biological products require membranes to withstand high-temperature sterilization above 120 ° C and resistance to organic solvent corrosion.
  • ultrafiltration membranes are required to have good characteristics such as resistance to oxidation, acid and alkali, and resistance to free chlorine.
  • materials for preparing ultrafiltration membranes include inorganic ceramics and organic polymer materials.
  • Inorganic ceramic materials can be resistant to high temperatures, solvents, and chemical corrosion, but the film is expensive to manufacture, expensive, and not conducive to large-scale applications.
  • the organic polymer film has low cost and low price, and can be popularized and applied on a large scale.
  • the ultrafiltration membrane products provided to users in various countries around the world mainly include cellulose acetate membrane (CA), polysulfone membrane (PSF), polyethersulfone membrane (PES), polyacrylonitrile membrane (PAN), and polyvinylidene fluoride membrane. (PVDF) and so on.
  • the operating temperature of these ultrafiltration membranes must not exceed 70 ° C.
  • the maximum operating temperature of the CA membrane is 30 ° C
  • the maximum operating temperature of the PAN membrane is 60 ° C
  • the maximum operating temperature of the PVDF membrane, PSF membrane, and PES membrane At 70 ° C, this limits the application of the membrane.
  • the pure water flux was 580 Kg / m 2 .h, and the membrane's rejection rate to polyethylene glycol with a molecular weight of 12,000 was above 90%. After the membrane was treated in water at a temperature of 100 ° C for 10 minutes, the retention rate of the peroxanthracene dye increased, and the flux decreased by 30%.
  • hollow fiber membrane Compared with flat membrane, hollow fiber membrane has the advantages of simple membrane module manufacturing process, large filling area and low manufacturing cost, which is conducive to large-scale popularization and application. Summary of the Invention
  • the object of the present invention is to provide diazanaphthalene-polyethersulfone, -polyetherketone and -polyethersulfone ketone hollow fiber ultrafiltration membrane and a preparation method thereof.
  • the invention selects three novel polymers as membrane materials, and prepares an ultrafiltration membrane with high temperature resistance, solvent resistance, oxidation resistance, acid and alkali resistance, and chlorine resistance, and a large membrane flux.
  • the diaza-naphthalene-polyethersulfone, -polyetherketone, or -polyethersulfone ketone hollow fiber ultrafiltration membrane of the present invention contains: a polymer P, which is selected from polyetherketone (PPEK) containing a diazanaphthalene structure 2, polyethersulfone (PPES) containing diaza-naphthalene structure and polyethersulfone (PPESK) containing diaza-naphthalene structure, wherein the polyethersulfone (PPES) containing diaza-naphthalene structure is represented by I) means:
  • PPEK polyether ketone
  • n 400-600, and their glass transition temperatures are 253-263 ⁇ ; polyethersulfone ketone (PPESK) containing diazanaphthalene structure is represented by formula (m):
  • the weight ratio of F / P is 0-1 / 2.
  • the invention also provides a method for preparing diazanaphthalene-polyethersulfone, -polyetherketone and -polyethersulfone ketone hollow fiber ultrafiltration membrane, which comprises the following steps:
  • a film-forming liquid having the following composition is prepared in a melting pot:
  • Polymer P selected from polyethersulfone (PPES) containing a diazanaphthalene structure represented by formula (I), polyetherketone (PPEK) containing a diazanaphthalene structure represented by formula ( ⁇ ), and Polyethersulfone ketone (PPESK) containing a diazanaphthalene structure represented by formula ( ⁇ ),
  • Solvent S which is selected from N, N-dimethylacetamide (DMAc :), N-methylpyrrolidone (MP), N, N-dimethylformamide (DMF), chloroform (CHC1 3 ), dichloro Methane (CH 2 C1 2 ) and a mixture of any two of them,
  • Additive A which is selected from the group consisting of Tween, polyethylene glycol, polyethylene's pyrrolidone, ethanol, isopropanol, glycerol, acetone, ethylene glycol, diethylene glycol, hydroxyethyl methacrylate, Lithium chloride, lithium nitrate and C 2 ⁇ C 5 organic acids, and '
  • Optional filler F selected from nano titanium dioxide and nano silicon dioxide
  • the weight ratio of P / (P + S) is 15 ⁇ 25%
  • a / P weight ratio is 0.01-1 / 1
  • F / P weight ratio is 0-1 / 2;
  • the prepared film-forming liquid is stirred at a temperature of 80 to 100 ° C for 15 to 24 hours, so that the polymer P and the additive A are sufficiently dissolved in the solvent S, and the filler F is uniformly dispersed in the film-forming liquid to become Uniform film-forming solution,
  • Core fluid ultrafiltration water, or an aqueous solution containing 1 to 50% by weight of the above solvent, the temperature is 5 to 60 ° C, the flow rate is 0.3 to 3.0 IJh,
  • Air gap 0 ⁇ 1500mm, evaporation temperature is room temperature,
  • First gel bath ultrafiltration water or demineralized water with a hardness of 2 to 3 mol / L, or an aqueous solution containing 1 to 10% by weight of the above-mentioned solvent, which optionally contains 0 to 1% by weight of a surfactant at a temperature of 0 ⁇ 60 ° C,
  • Second gel bath ultrafiltration water, temperature 30 ⁇ 60 ° C, '
  • the forming steps are:
  • the primary ecological fiber membrane is sequentially introduced into the first gel tank and the second gel tank through the air gap, and then directed to the winding roller.
  • PPEK polyetherketone
  • PPES polyethersulfone
  • PPESK polyethersulfone ketone
  • the present invention has performed experiments on the chemical stability of these three materials, and the results are shown in Table 2.
  • the experimental conditions were: a film with a thickness of 50 to 60 m was prepared from these three materials, and the film was immersed in 11 kinds of aqueous solutions shown in Table 2, the temperature of the solution was 40 ° C, and the soaking time was 30 days. After experimental tests, the quality, thickness, and strength of the film did not change before and after immersion, proving that these three materials have good acid and alkali resistance, oxidation resistance, and chlorine resistance.
  • PPESK Solvents used in the present invention include N, N-dimethylacetamide (DMAc), ⁇ , ⁇ -dimethylformamide (DMF), N-methylpyrrolidone (NMP), chloroform (CHC1 3 ), two For chloroformamidine (CH 2 C1 2 ) or a mixture of the two, DMAc or MP is preferably used.
  • the percentage concentration of polymers in the hollow-fiber ultrafiltration membrane-forming solution is greater than 14%, which is different from existing literatures. High polymer concentration (10 ⁇ 14%).
  • Additives used in the present invention include Tween, polyethylene glycol, polyvinylpyrrolidone, ethanol, isopropanol, glycerol, acetone, ethylene glycol, diethylene glycol, and hydroxyethyl methacrylate , Lithium chloride, lithium nitrate, C 2 ⁇ C 5 organic acids, etc., preferably Tween (T-60, T-40, T-20), polyethylene glycol (molecular weight 400, 600, 1000, 2000) and oxalic acid .
  • the additives of the present invention have an important effect on improving membrane flux.
  • the filler used in the present invention includes nano titanium dioxide and nano silicon dioxide, and the diameter of the particles is preferably 10 to 50 nm. Since the porous membrane of polymer materials will have a certain degree of shrinkage and deformation at high temperatures, adding a certain amount of inorganic nanomaterials as fillers can improve the stability of the membrane structure and reduce its shrinkage and deformation under high temperature conditions.
  • a dry-wet spinning method and a dipping gel phase inversion method are used to prepare a hollow fiber ultrafiltration membrane.
  • the hollow fiber ultrafiltration membrane prepared according to the method of the present invention has an outer diameter of 0.5 to 2 ir and a wall thickness of 0.1 to 0.4 mm.
  • the present invention measures the pure water flux and rejection rate of the produced hollow fiber membrane.
  • the measurement was performed using deionized water at 25 V, the operating pressure was 0.1 MPa, the molecular weight of bovine serum protein was 67,000, and the molecular weight of Y globulin was 150,000.
  • the hollow fiber ultrafiltration membrane prepared by the present invention can withstand high temperature and solvent corrosion, and has good oxidation resistance and acid resistance. Alkali and chlorine resistance.
  • the water flux measured after treatment in 100 ⁇ of water for 30 minutes was only 1 to 5% lower than that of the untreated membrane.
  • the PPESK hollow fiber ultrafiltration membrane prepared by using the oxalic acid as an additive in the present invention has excellent comprehensive performance, not only has good high temperature resistance, oxidation resistance, solvent resistance performance, but also has a large flux.
  • This large-throughput ultrafiltration membrane has a sponge-like structure.
  • the inner surface pores of the hollow fiber belong to ultrafiltration, and the outer surface pores belong to microfiltration.
  • hollow fiber membranes were prepared according to steps 5.1-5.4 of the preparation method described above, wherein the spinning kettle pressure was 0.1 MPa, the spinning dope temperature (pot temperature) was 30 ° C, and the draft speed was 25 m / min, ultrafiltration water with a core fluid of 60 ° C and an air gap of 0, and the first gel bath and the second gel bath are both 60 ⁇ ultrafiltration water.
  • the performance of the obtained hollow ultrafiltration membrane was tested. Under the conditions of operating pressure of 0.1 MPa and temperature of 25 ° C, the pure water flux of the membrane was 650 L / m 2 .h, and the rejection rate of the membrane to bovine serum protein was 80%, and the rejection rate to gamma globulin was 91%.
  • Example 11 The hollow fiber ultrafiltration membranes of Examples 2 to 10 were prepared with different raw material compositions and preparation conditions shown in Table 3 below. The test performances of the membranes are also listed in Table 3.
  • Example 11 The test performances of the membranes are also listed in Table 3.
  • hollow fiber membranes are prepared according to steps 5.1-5.4 of the preparation method of the present invention, wherein the spinning kettle pressure is 0.4 MPa, and the spinning dope temperature ( Kettle temperature) 60 V, traction speed 30m / min, 'core fluid temperature is 60 ° C, water flow is 3L / h, air gap is 1500mm, the first gel bath is demineralized water with a hardness of 3 mol / L, the temperature is 60 ° C, the second gel bath is 60 ° C ultrafiltration water.
  • the spinning kettle pressure is 0.4 MPa
  • the spinning dope temperature Kettle temperature
  • traction speed 30m / min traction speed 30m / min
  • 'core fluid temperature 60 ° C
  • water flow is 3L / h
  • air gap is 1500mm
  • the first gel bath is demineralized water with a hardness of 3 mol / L
  • the temperature is 60 ° C
  • the second gel bath is 60 ° C ultrafiltration water.
  • the filter membrane has a sponge-like structure.
  • the inner surface pores of the hollow fiber belong to ultrafiltration, and the outer surface pores belong to microfiltration.
  • the hollow fiber ultrafiltration membranes of Examples 12 to 18 were prepared with different raw material compositions and preparation conditions shown in Table 4 below. The test performances of the membranes are listed in Table 4 at the same time. Examples 19 to 24
  • the hollow fiber ultrafiltration membranes of Examples 19 to 26 were prepared by using different raw material compositions and preparation conditions shown in Table 5 below.
  • the number in [] is the mass of the raw material for film making (g);
  • Ti0 2 nanoparticle diameter of 10 ⁇ 30 nm, particle diameter of the nano Si0 2 is 30 ⁇ 50 nanometers t
  • the quantity in [] is the mass of the raw material for film making (g);
  • the average molecular weight of PPESK is 220,000;
  • Test conditions operating pressure O.lMpa, operating temperature 25 ⁇ .
  • the number in [] is the mass of the raw material for film making (g);
  • the average molecular weight of PPES is 200,000, and the average molecular weight of PPEK is 160,000;
  • Test conditions operating pressure O.lMpa, operating temperature 25 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne une membrane d'ultrafiltration à fibres creuses à base de poly(phtalazinone éther-fulfone) (PPES), de poly(phtalazinone-éther-cétone) (PPEK), ou de poly(phtalazinone-éther-sulfone-cétone) (PPESK), ainsi que la préparation de cette membrane. Le procédé permettant de préparer la membrane consiste à utiliser du PPES, du PPEK ou du PPESK en tant que matière première pour préparer une membrane d'ultrafiltration à fibres creuses présentant des températures de vitrification supérieures de 63-115 °C environ à celles des polysulfones commerciaux habituels, ainsi qu'une stabilité chimique est très élevée, et à ajouter à la solution de préparation un additif choisi parmi tween, polyglycol, polyvinylpyrrolidone, éthanol, isopropanol, propanétriol, acétone, éthylène glycol, diglycol, hydroxyéthyl-méthacrylate, chlorure de lithium, nitrate de lithium, ETAL acide organique C2-C5. L'invention concerne en outre un procédé de formage et des modes d'utilisation d'une membrane ultrafine à fibres creuses contenant du PPES, du PPEK ou du PPESK. Les membranes d'ultrafiltration à fibres creuses résultantes présentent de bonnes caractéristiques notamment en ce qui concerne la résistance aux hautes températures, la résistance aux dissolvants, la résistance aux acides et aux alcalis, et aux antioxydants, et permettent en outre un flux de perméation plus important.
PCT/CN2004/000295 2003-05-01 2004-03-31 Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci WO2004096418A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 03124222 CN1251793C (zh) 2003-05-01 2003-05-01 二氮杂萘聚醚砜酮类新材料中空纤维超滤膜及其制备方法
CN03124222.7 2003-05-01
CNB2003101155444A CN100506365C (zh) 2003-11-28 2003-11-28 二氮杂萘聚醚砜酮中空纤维超滤膜及其制法
CN200310115544.4 2003-11-28

Publications (1)

Publication Number Publication Date
WO2004096418A1 true WO2004096418A1 (fr) 2004-11-11

Family

ID=34065174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000295 WO2004096418A1 (fr) 2003-05-01 2004-03-31 Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci

Country Status (1)

Country Link
WO (1) WO2004096418A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077553A1 (fr) 2007-12-18 2009-06-25 Solvay Advanced Polymers, L.L.C. Copolymères à teneur en polyphényle, sulfone et cétone
WO2012106583A3 (fr) * 2011-02-04 2013-03-21 Fresenius Medical Care Holdings, Inc. Additifs pour améliorer l'efficacité pour formation de fibres et fibres de polysulfone
CN111701459A (zh) * 2020-07-01 2020-09-25 浙江工业大学 一种含氮杂环的聚芳醚酮/砜的超/微滤膜及其结构调控方法
CN112221361A (zh) * 2020-09-15 2021-01-15 大连理工大学 聚醚砜/含二氮杂萘酮结构共聚醚砜共混中空纤维血液透析膜及其制备方法
CN112221360A (zh) * 2020-09-15 2021-01-15 大连理工大学 含二氮杂萘酮结构共聚醚砜血液透析膜及其制备方法
CN112295415A (zh) * 2019-08-02 2021-02-02 北京新源国能科技集团股份有限公司 一种中空纤维纳滤膜的制备方法及装置
CN113024925A (zh) * 2021-03-15 2021-06-25 四川汇利实业有限公司 一种能够提高自修复性能的改性pe膜及制备方法
CN113530464A (zh) * 2020-04-17 2021-10-22 中国石油化工股份有限公司 油井管及其制造方法
CN115369517A (zh) * 2022-08-30 2022-11-22 烟台民士达特种纸业股份有限公司 一种聚醚醚酮纳米纤维膜的制备方法及应用
CN117771983A (zh) * 2023-04-04 2024-03-29 赛普(杭州)过滤科技有限公司 一种聚醚砜超滤膜及其制备方法、应用以及超滤设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098113A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚砜及制备法
CN1098097A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚酮及制备法
CN1326812A (zh) * 2001-05-17 2001-12-19 东华大学 腹水超滤浓缩回输器新材料及制造方法
CN1076630C (zh) * 1997-12-17 2001-12-26 四川联合大学 聚醚砜中空纤维膜及其制造方法和用途
CN1359744A (zh) * 2000-12-20 2002-07-24 吉林市双捷高科技开发有限公司 中空纤维纳米级分离膜及其制备工艺
CN1375351A (zh) * 2001-12-28 2002-10-23 上海益尔康医用设备有限公司 共混聚醚砜中空纤维透析膜的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098113A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚砜及制备法
CN1098097A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚酮及制备法
CN1076630C (zh) * 1997-12-17 2001-12-26 四川联合大学 聚醚砜中空纤维膜及其制造方法和用途
CN1359744A (zh) * 2000-12-20 2002-07-24 吉林市双捷高科技开发有限公司 中空纤维纳米级分离膜及其制备工艺
CN1326812A (zh) * 2001-05-17 2001-12-19 东华大学 腹水超滤浓缩回输器新材料及制造方法
CN1375351A (zh) * 2001-12-28 2002-10-23 上海益尔康医用设备有限公司 共混聚醚砜中空纤维透析膜的制造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAI YING ET AL.: "Preparation of novel ultrafiltration membrane of poly (ether sulfone ketone) and its performance research", JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY, vol. 39, no. 4, June 1999 (1999-06-01), pages 509 - 513, XP008041430 *
LI XIUHUA ET AL.: "Synthesis and properties of copoly(ether ketone) containing hydroquinone and phthalazinone moieties", POLYMER MATERIALS SCIENCE AND ENGINEERING, vol. 14, no. 4, June 1998 (1998-06-01), pages 37 - 42, XP008041433 *
PENG JING ET AL.: "Study of modification of poly(phthalazinone ether sulfone ketone) film treated by carbon dioxide microwave plasma", ACTA POLYMERICA SINICA, no. 3, June 2000 (2000-06-01), pages 354 - 357, XP008041439 *
XIGAO JIAN ET AL.: "Preparation of UF and NF poly(phthalazine ether sulfone ketone ketone membranes for high temperature application", JOURNAL OF MEMBRANE SCIENCE, vol. 161, no. 1, 1999, pages 185 - 191, XP004172641 *
XIGAO JIAN ET AL.: "Study on novel heat resisting poly(phthalazinone ether sulfone ketone) hollow fiber microporous membrane", NATIONAL MACROMOLECULE ACADEMIC THESIS SEMINAR SYMPOSIUM IN 2001, October 2001 (2001-10-01), pages 172 - 173 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742062B2 (en) 2007-12-18 2014-06-03 Solvay Advanced Polymers, L.L.C. Polyphenyl sulfone ketone copolymers
WO2009077553A1 (fr) 2007-12-18 2009-06-25 Solvay Advanced Polymers, L.L.C. Copolymères à teneur en polyphényle, sulfone et cétone
USRE50084E1 (en) 2011-02-04 2024-08-20 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
WO2012106583A3 (fr) * 2011-02-04 2013-03-21 Fresenius Medical Care Holdings, Inc. Additifs pour améliorer l'efficacité pour formation de fibres et fibres de polysulfone
US9617421B2 (en) 2011-02-04 2017-04-11 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
USRE48703E1 (en) 2011-02-04 2021-08-24 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
CN112295415A (zh) * 2019-08-02 2021-02-02 北京新源国能科技集团股份有限公司 一种中空纤维纳滤膜的制备方法及装置
CN113530464A (zh) * 2020-04-17 2021-10-22 中国石油化工股份有限公司 油井管及其制造方法
CN111701459A (zh) * 2020-07-01 2020-09-25 浙江工业大学 一种含氮杂环的聚芳醚酮/砜的超/微滤膜及其结构调控方法
CN112221361A (zh) * 2020-09-15 2021-01-15 大连理工大学 聚醚砜/含二氮杂萘酮结构共聚醚砜共混中空纤维血液透析膜及其制备方法
CN112221360A (zh) * 2020-09-15 2021-01-15 大连理工大学 含二氮杂萘酮结构共聚醚砜血液透析膜及其制备方法
CN113024925A (zh) * 2021-03-15 2021-06-25 四川汇利实业有限公司 一种能够提高自修复性能的改性pe膜及制备方法
CN115369517B (zh) * 2022-08-30 2023-09-01 烟台民士达特种纸业股份有限公司 一种聚醚醚酮纳米纤维膜的制备方法及应用
CN115369517A (zh) * 2022-08-30 2022-11-22 烟台民士达特种纸业股份有限公司 一种聚醚醚酮纳米纤维膜的制备方法及应用
CN117771983A (zh) * 2023-04-04 2024-03-29 赛普(杭州)过滤科技有限公司 一种聚醚砜超滤膜及其制备方法、应用以及超滤设备
CN117771983B (zh) * 2023-04-04 2024-05-31 赛普(杭州)过滤科技有限公司 一种聚醚砜超滤膜及其制备方法、应用以及超滤设备

Similar Documents

Publication Publication Date Title
CN100463712C (zh) 增强型有机-无机杂化膜的制备方法
US9364797B2 (en) High flux hollow fiber ultrafiltration membranes and process for the preparation thereof
CN104607064A (zh) 一种聚偏氟乙烯-氧化石墨烯复合中空纤维膜的制备方法
JP7157790B2 (ja) 多孔質膜、多孔質膜モジュール、多孔質膜の製造方法、清澄化された液体の製造方法およびビールの製造方法
CN103394293B (zh) 一种亲水性聚偏氟乙烯中空纤维膜的制备方法
CN110813103A (zh) 一种抗菌抗污染中空纤维膜的制备方法
WO2004096418A1 (fr) Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci
CN103861480A (zh) 一种亲水性聚偏氟乙烯平板膜和中空纤维膜的制备方法
CN206500037U (zh) 一种高抗污染型聚偏氟乙烯中空纤维超滤膜的制备装置
CN106178989A (zh) 亲水性共聚物包覆纳米氧化物改性中空纤维膜的制备方法
CN112755812A (zh) 一种具有中间层的高通量交联复合纳滤膜及其制备方法
CN103272494B (zh) 用于高含盐食品加工废水处理的聚偏氟乙烯合金膜的制法
CN118236861A (zh) 一种小孔径聚砜类中空纤维超滤膜及其制备方法
CN108479414B (zh) 一种中空纤维聚合物膜、制备方法及其在盐水精制中的用途
CN107803122B (zh) 一种含pvp-va共聚物亲水超滤膜及其制备方法
She et al. Improvement of persistent hydrophilicity and pore uniformity of polyvinyl chloride ultrafiltration membranes by in-situ crosslinking reaction assisted phase separation
WO2022199554A1 (fr) Matériau de membrane d'ultrafiltration composite et son procédé de préparation
CN114588792B (zh) 一种聚乙烯醇缩丁醛共混增强的聚偏二氯乙烯超滤膜及其制备方法
KR20120077011A (ko) Ectfe 수처리 분리막 및 그의 제조방법
KR101068437B1 (ko) 투수도 및 내약품성이 우수한 다공성 pvdf 막 및 그 제조방법
CN103638833B (zh) 一种用于饮用水净化的大通量中空纤维膜的制备方法
Jiang et al. Preparation and characterization of high-flux poly (m-phenylene isophthalamide)(PMIA) hollow fiber ultrafiltration membrane
CN103638830B (zh) 用于饮用水处理的热法聚偏氟乙烯中空纤维膜的制备方法
CN110975637B (zh) 一种没食子酸-壳聚糖/聚砜复合纳滤膜的制备方法
CN110201557B (zh) 一种大通量加强型超滤膜及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase