WO2004096418A1 - Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci - Google Patents

Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci Download PDF

Info

Publication number
WO2004096418A1
WO2004096418A1 PCT/CN2004/000295 CN2004000295W WO2004096418A1 WO 2004096418 A1 WO2004096418 A1 WO 2004096418A1 CN 2004000295 W CN2004000295 W CN 2004000295W WO 2004096418 A1 WO2004096418 A1 WO 2004096418A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
membrane
diazanaphthalene
polyethersulfone
poly
Prior art date
Application number
PCT/CN2004/000295
Other languages
English (en)
French (fr)
Inventor
Cuixian Chen
Zhen Chen
Jiding Li
Yanbin Yun
Shintani Takuji
Ando Masaaki
Original Assignee
Tsinghua University
Nitto Denko Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 03124222 external-priority patent/CN1251793C/zh
Priority claimed from CNB2003101155444A external-priority patent/CN100506365C/zh
Application filed by Tsinghua University, Nitto Denko Corp. filed Critical Tsinghua University
Publication of WO2004096418A1 publication Critical patent/WO2004096418A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/32Melting point or glass-transition temperatures

Definitions

  • the invention belongs to the technical field of hollow fiber ultrafiltration membrane separation. Specifically, the present invention relates to diazanaphthalene-polyethersulfone, -polyetherketone, and -polyethersulfone-type hollow fiber ultrafiltration membrane and a preparation method thereof. Background technique
  • Ultrafiltration membranes are one of the most widely used separation membranes. Ultrafiltration membranes can be used to separate macromolecular, colloidal and small molecule solvents. Ultrafiltration membranes have been widely used in water treatment, wastewater treatment and water resource recycling; or used in petrochemical, biochemical, fine chemical, pharmaceutical and chemical, mechanical metallurgy, textile printing and dyeing, food light industry, agriculture, animal husbandry and aquatic products industries In the separation, purification and concentration of raw materials and products. In the application process of ultrafiltration membranes, due to different processing objects, different operating conditions, different methods of membrane pretreatment, sterilization, and cleaning, different requirements are often imposed on the material of the membrane.
  • biotechnology the pillar of economic development in the 21st century, the separation and purification of its products is the key to the transfer of biotechnology from laboratory research to industrial production.
  • Purification and separation of most biological products require membranes to withstand high-temperature sterilization above 120 ° C and resistance to organic solvent corrosion.
  • ultrafiltration membranes are required to have good characteristics such as resistance to oxidation, acid and alkali, and resistance to free chlorine.
  • materials for preparing ultrafiltration membranes include inorganic ceramics and organic polymer materials.
  • Inorganic ceramic materials can be resistant to high temperatures, solvents, and chemical corrosion, but the film is expensive to manufacture, expensive, and not conducive to large-scale applications.
  • the organic polymer film has low cost and low price, and can be popularized and applied on a large scale.
  • the ultrafiltration membrane products provided to users in various countries around the world mainly include cellulose acetate membrane (CA), polysulfone membrane (PSF), polyethersulfone membrane (PES), polyacrylonitrile membrane (PAN), and polyvinylidene fluoride membrane. (PVDF) and so on.
  • the operating temperature of these ultrafiltration membranes must not exceed 70 ° C.
  • the maximum operating temperature of the CA membrane is 30 ° C
  • the maximum operating temperature of the PAN membrane is 60 ° C
  • the maximum operating temperature of the PVDF membrane, PSF membrane, and PES membrane At 70 ° C, this limits the application of the membrane.
  • the pure water flux was 580 Kg / m 2 .h, and the membrane's rejection rate to polyethylene glycol with a molecular weight of 12,000 was above 90%. After the membrane was treated in water at a temperature of 100 ° C for 10 minutes, the retention rate of the peroxanthracene dye increased, and the flux decreased by 30%.
  • hollow fiber membrane Compared with flat membrane, hollow fiber membrane has the advantages of simple membrane module manufacturing process, large filling area and low manufacturing cost, which is conducive to large-scale popularization and application. Summary of the Invention
  • the object of the present invention is to provide diazanaphthalene-polyethersulfone, -polyetherketone and -polyethersulfone ketone hollow fiber ultrafiltration membrane and a preparation method thereof.
  • the invention selects three novel polymers as membrane materials, and prepares an ultrafiltration membrane with high temperature resistance, solvent resistance, oxidation resistance, acid and alkali resistance, and chlorine resistance, and a large membrane flux.
  • the diaza-naphthalene-polyethersulfone, -polyetherketone, or -polyethersulfone ketone hollow fiber ultrafiltration membrane of the present invention contains: a polymer P, which is selected from polyetherketone (PPEK) containing a diazanaphthalene structure 2, polyethersulfone (PPES) containing diaza-naphthalene structure and polyethersulfone (PPESK) containing diaza-naphthalene structure, wherein the polyethersulfone (PPES) containing diaza-naphthalene structure is represented by I) means:
  • PPEK polyether ketone
  • n 400-600, and their glass transition temperatures are 253-263 ⁇ ; polyethersulfone ketone (PPESK) containing diazanaphthalene structure is represented by formula (m):
  • the weight ratio of F / P is 0-1 / 2.
  • the invention also provides a method for preparing diazanaphthalene-polyethersulfone, -polyetherketone and -polyethersulfone ketone hollow fiber ultrafiltration membrane, which comprises the following steps:
  • a film-forming liquid having the following composition is prepared in a melting pot:
  • Polymer P selected from polyethersulfone (PPES) containing a diazanaphthalene structure represented by formula (I), polyetherketone (PPEK) containing a diazanaphthalene structure represented by formula ( ⁇ ), and Polyethersulfone ketone (PPESK) containing a diazanaphthalene structure represented by formula ( ⁇ ),
  • Solvent S which is selected from N, N-dimethylacetamide (DMAc :), N-methylpyrrolidone (MP), N, N-dimethylformamide (DMF), chloroform (CHC1 3 ), dichloro Methane (CH 2 C1 2 ) and a mixture of any two of them,
  • Additive A which is selected from the group consisting of Tween, polyethylene glycol, polyethylene's pyrrolidone, ethanol, isopropanol, glycerol, acetone, ethylene glycol, diethylene glycol, hydroxyethyl methacrylate, Lithium chloride, lithium nitrate and C 2 ⁇ C 5 organic acids, and '
  • Optional filler F selected from nano titanium dioxide and nano silicon dioxide
  • the weight ratio of P / (P + S) is 15 ⁇ 25%
  • a / P weight ratio is 0.01-1 / 1
  • F / P weight ratio is 0-1 / 2;
  • the prepared film-forming liquid is stirred at a temperature of 80 to 100 ° C for 15 to 24 hours, so that the polymer P and the additive A are sufficiently dissolved in the solvent S, and the filler F is uniformly dispersed in the film-forming liquid to become Uniform film-forming solution,
  • Core fluid ultrafiltration water, or an aqueous solution containing 1 to 50% by weight of the above solvent, the temperature is 5 to 60 ° C, the flow rate is 0.3 to 3.0 IJh,
  • Air gap 0 ⁇ 1500mm, evaporation temperature is room temperature,
  • First gel bath ultrafiltration water or demineralized water with a hardness of 2 to 3 mol / L, or an aqueous solution containing 1 to 10% by weight of the above-mentioned solvent, which optionally contains 0 to 1% by weight of a surfactant at a temperature of 0 ⁇ 60 ° C,
  • Second gel bath ultrafiltration water, temperature 30 ⁇ 60 ° C, '
  • the forming steps are:
  • the primary ecological fiber membrane is sequentially introduced into the first gel tank and the second gel tank through the air gap, and then directed to the winding roller.
  • PPEK polyetherketone
  • PPES polyethersulfone
  • PPESK polyethersulfone ketone
  • the present invention has performed experiments on the chemical stability of these three materials, and the results are shown in Table 2.
  • the experimental conditions were: a film with a thickness of 50 to 60 m was prepared from these three materials, and the film was immersed in 11 kinds of aqueous solutions shown in Table 2, the temperature of the solution was 40 ° C, and the soaking time was 30 days. After experimental tests, the quality, thickness, and strength of the film did not change before and after immersion, proving that these three materials have good acid and alkali resistance, oxidation resistance, and chlorine resistance.
  • PPESK Solvents used in the present invention include N, N-dimethylacetamide (DMAc), ⁇ , ⁇ -dimethylformamide (DMF), N-methylpyrrolidone (NMP), chloroform (CHC1 3 ), two For chloroformamidine (CH 2 C1 2 ) or a mixture of the two, DMAc or MP is preferably used.
  • the percentage concentration of polymers in the hollow-fiber ultrafiltration membrane-forming solution is greater than 14%, which is different from existing literatures. High polymer concentration (10 ⁇ 14%).
  • Additives used in the present invention include Tween, polyethylene glycol, polyvinylpyrrolidone, ethanol, isopropanol, glycerol, acetone, ethylene glycol, diethylene glycol, and hydroxyethyl methacrylate , Lithium chloride, lithium nitrate, C 2 ⁇ C 5 organic acids, etc., preferably Tween (T-60, T-40, T-20), polyethylene glycol (molecular weight 400, 600, 1000, 2000) and oxalic acid .
  • the additives of the present invention have an important effect on improving membrane flux.
  • the filler used in the present invention includes nano titanium dioxide and nano silicon dioxide, and the diameter of the particles is preferably 10 to 50 nm. Since the porous membrane of polymer materials will have a certain degree of shrinkage and deformation at high temperatures, adding a certain amount of inorganic nanomaterials as fillers can improve the stability of the membrane structure and reduce its shrinkage and deformation under high temperature conditions.
  • a dry-wet spinning method and a dipping gel phase inversion method are used to prepare a hollow fiber ultrafiltration membrane.
  • the hollow fiber ultrafiltration membrane prepared according to the method of the present invention has an outer diameter of 0.5 to 2 ir and a wall thickness of 0.1 to 0.4 mm.
  • the present invention measures the pure water flux and rejection rate of the produced hollow fiber membrane.
  • the measurement was performed using deionized water at 25 V, the operating pressure was 0.1 MPa, the molecular weight of bovine serum protein was 67,000, and the molecular weight of Y globulin was 150,000.
  • the hollow fiber ultrafiltration membrane prepared by the present invention can withstand high temperature and solvent corrosion, and has good oxidation resistance and acid resistance. Alkali and chlorine resistance.
  • the water flux measured after treatment in 100 ⁇ of water for 30 minutes was only 1 to 5% lower than that of the untreated membrane.
  • the PPESK hollow fiber ultrafiltration membrane prepared by using the oxalic acid as an additive in the present invention has excellent comprehensive performance, not only has good high temperature resistance, oxidation resistance, solvent resistance performance, but also has a large flux.
  • This large-throughput ultrafiltration membrane has a sponge-like structure.
  • the inner surface pores of the hollow fiber belong to ultrafiltration, and the outer surface pores belong to microfiltration.
  • hollow fiber membranes were prepared according to steps 5.1-5.4 of the preparation method described above, wherein the spinning kettle pressure was 0.1 MPa, the spinning dope temperature (pot temperature) was 30 ° C, and the draft speed was 25 m / min, ultrafiltration water with a core fluid of 60 ° C and an air gap of 0, and the first gel bath and the second gel bath are both 60 ⁇ ultrafiltration water.
  • the performance of the obtained hollow ultrafiltration membrane was tested. Under the conditions of operating pressure of 0.1 MPa and temperature of 25 ° C, the pure water flux of the membrane was 650 L / m 2 .h, and the rejection rate of the membrane to bovine serum protein was 80%, and the rejection rate to gamma globulin was 91%.
  • Example 11 The hollow fiber ultrafiltration membranes of Examples 2 to 10 were prepared with different raw material compositions and preparation conditions shown in Table 3 below. The test performances of the membranes are also listed in Table 3.
  • Example 11 The test performances of the membranes are also listed in Table 3.
  • hollow fiber membranes are prepared according to steps 5.1-5.4 of the preparation method of the present invention, wherein the spinning kettle pressure is 0.4 MPa, and the spinning dope temperature ( Kettle temperature) 60 V, traction speed 30m / min, 'core fluid temperature is 60 ° C, water flow is 3L / h, air gap is 1500mm, the first gel bath is demineralized water with a hardness of 3 mol / L, the temperature is 60 ° C, the second gel bath is 60 ° C ultrafiltration water.
  • the spinning kettle pressure is 0.4 MPa
  • the spinning dope temperature Kettle temperature
  • traction speed 30m / min traction speed 30m / min
  • 'core fluid temperature 60 ° C
  • water flow is 3L / h
  • air gap is 1500mm
  • the first gel bath is demineralized water with a hardness of 3 mol / L
  • the temperature is 60 ° C
  • the second gel bath is 60 ° C ultrafiltration water.
  • the filter membrane has a sponge-like structure.
  • the inner surface pores of the hollow fiber belong to ultrafiltration, and the outer surface pores belong to microfiltration.
  • the hollow fiber ultrafiltration membranes of Examples 12 to 18 were prepared with different raw material compositions and preparation conditions shown in Table 4 below. The test performances of the membranes are listed in Table 4 at the same time. Examples 19 to 24
  • the hollow fiber ultrafiltration membranes of Examples 19 to 26 were prepared by using different raw material compositions and preparation conditions shown in Table 5 below.
  • the number in [] is the mass of the raw material for film making (g);
  • Ti0 2 nanoparticle diameter of 10 ⁇ 30 nm, particle diameter of the nano Si0 2 is 30 ⁇ 50 nanometers t
  • the quantity in [] is the mass of the raw material for film making (g);
  • the average molecular weight of PPESK is 220,000;
  • Test conditions operating pressure O.lMpa, operating temperature 25 ⁇ .
  • the number in [] is the mass of the raw material for film making (g);
  • the average molecular weight of PPES is 200,000, and the average molecular weight of PPEK is 160,000;
  • Test conditions operating pressure O.lMpa, operating temperature 25 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

二氮杂萘-聚醚砜、 -聚醚酮和-聚醚砜酮类中空纤维超滤膜及其制备方法 - 技术领域
本发明属于中空纤维超滤膜分离技术领域。 具体地说, 本发明涉及二氮杂萘- 聚醚砜、 -聚醚酮和-聚醚砜酮类中空纤维超滤膜及其制备方法。 背景技术
超滤膜是使用最广泛的分离膜之一。 用超滤膜可以实现大分子物质、 胶体物 质与小分子溶剂的分离。 超滤膜已广泛用于水处理、 废水处理和水资源的再生回 用; 或用于石油化工、 生物化工、 精细化工、 医药化工、 机械冶金、 纺织印染、 食品轻工、 农畜水产等工业中进行原料及产品的分离、 提纯及浓缩。 超滤膜在应 用过程中, 由于处理对象不同、 运行条件不同、 膜的预处理、 消毒灭菌、 清洗方 法的不同, 往往对膜的材质提出各种不同的要求。 例如作为 21世纪促进经济发展 支柱的生物技术, 其产品的分离、 提纯是生物技术从实验室研究转为工业化生产 的关键。大多数生物产品的提纯与分离, 要求膜能经受 120°C以上的高温灭菌, 且 耐有机溶剂腐蚀。 又如, 在水处理、 废水处理中应用时要求超滤膜有好的耐氧化、 耐酸碱、 耐游离氯等特性。
目前, 制备超滤膜的材料有无机陶瓷及有机高分子材料。 无机陶瓷材料可耐 高温、 耐溶剂、 耐化学腐蚀, 但膜制造成本高, 价格昂贵、 不利于大规模推广应 用。 而有机高分子膜成本低, 价格便宜, 可以大规模推广应用。 当前世界各国提 供给用户的超滤膜商品, 主要有醋酸纤维素膜 (CA)、 聚砜膜 (PSF)、 聚醚砜膜 (PES ), 聚丙烯腈膜(PAN)、 聚偏氟乙烯膜 (PVDF) 等。 这些超滤膜的使用温 度均不能超过 70°C, 例如 CA膜的最髙使用温度为 30°C, PAN膜的最高使用温度 为 60°C, PVDF膜、 PSF膜、 PES膜的最高使用温度为 70°C, 这就限制了膜的应 用。 为了满足各个工业领域对超滤膜日益增长的需求, 迫切需要研究和开发同时 兼有耐高温、 耐有机溶剂、 耐酸碱化学腐蚀、 耐氧化、 耐游离氯等性能优良的超 滤膜。
蹇锡高等人, Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application, Journal of membrane science, 1999, 161(1), 185-191,在实验室中用含二氮杂萘结构的聚醚砜酮 (PPESK)制备了平板 超滤膜, 采用 N—甲基吡咯焼酮为溶剂, 以丁酮、 乙二醇甲醚或乙醚作为添加剂 进行制膜。制膜液中 PPESK的质量百分比浓度是 10〜14%,添加剂的质量百分比 浓度为 2〜18%。研究膜材料耐化学腐蚀性的结果表明, 膜在常温下, 在表 1所示 的 8种溶液中浸泡 2周, 膜的厚度保持不变。 表 1 PPESK平板膜在 8种溶液中浸泡 2周的实验结果
Figure imgf000003_0002
他们还考察了聚合物的含量、 添加剂的种类和含量以及蒸发时间对膜性能的 影响。 研究得出, 当 PPESK在制膜液中的含量为 10重量%, 丁酮为添加剂, 蒸 发时间 25秒, 凝胶浴为 60Ό水时, 制出的平板超滤膜在 O.lMPa的压力下纯水通 量为 580Kg/m2.h、 膜对分子量为 12000的聚乙二醇的截留率均在 90%以上。 膜在 温度为 100'C的水中处理 10分钟后, 对双氧氮蒽染料的截留率有所上升, 而通量 下降 30%。
与平板膜相比, 中空纤维膜具有膜组件制造工艺简单, 装填面积大, 制造成 本低等优点, 利于大规模推广应用。 发明内容
本发明的目的是提供二氮杂萘-聚醚砜、 -聚醚酮和 -聚醚砜酮类中空纤维超滤 膜及其制备方法。 本发明选用三种新型高聚物作为膜材料, 制备了耐高温、 耐溶 剂、 耐氧化、 耐酸碱腐蚀和耐氯性能好, 并且具有大的膜通量的超滤膜。
本发明的二氮杂萘-聚醚砜、 -聚醚酮或-聚醚砜酮类中空纤维超滤膜含有: 聚合物 P, 其选自含二氮杂萘结构的聚醚酮(PPEK)、含二氮杂萘结构的聚醚 砜(PPES)和含二氮杂萘结构的聚醚砜酮(PPESK), 其中所述的含二氮杂萘结构 的聚醚砜 (PPES) 由式(I)表示:
Figure imgf000003_0001
其中 n=400-600, 其玻璃化温度为 274-305 °C; 含二氮杂萘结构的聚醚酮 (PPEK) 由式(Π)表示:
Figure imgf000004_0001
其中 n=400— 600, 其玻璃化温度分别为 253-263Ό ; 含二氮杂萘结构的聚醚砜酮 (PPESK)由式 (m)表示:
Figure imgf000004_0002
(ΙΠ) 其中 m=200—600, n= 100-500, 其玻璃化转变温度为 264-284 °C; 或任选存在的填充剂 F, 其选自纳米二氧化钛和纳米二氧化硅,
其中: F/P的重量比为 0-1/20。 本发明还提供二氮杂萘-聚醚砜、 -聚醚酮和 -聚醚砜酮类中空纤维超滤膜的制 备方法, 其包括以下步骤:
( 1 )在溶料釜中配制具有下列组成的制膜液:
. 聚合物 P, 其选自式(I)所示的含二氮杂萘结构的聚醚砜(PPES)、 式(Π) 所示的含二氮杂萘结构的聚醚酮(PPEK)和式 (ΠΙ)所示的含二氮杂萘结构的聚 醚砜酮 (PPESK),
溶剂 S, 其选自 Ν,Ν—二甲基乙酰胺(DMAc:)、 N—甲基吡咯烷酮( MP)、 Ν,Ν—二甲基甲酰胺(DMF)、 氯仿(CHC13)、 二氯甲烷(CH2C12) 以及其中任意 两者的混合物,
添加剂 A, 其选自吐温、 聚乙二醇、 聚乙'錄吡咯烷酮、 乙醇、 异丙醇、 丙三 醇、 丙酮、 乙二醇、一縮二乙二醇, 甲基丙烯酸羟乙酯, 氯化锂, 硝酸锂和 C2〜 C5有机酸, 以及 '
任选存在的填充剂 F, 其选自纳米二氧化钛和纳米二氧化硅;
其中: P/(P+S)的重量比为 15~25% , A/P的重量比为 0.01-1/1,
F/P的重量比为 0-1/20;
(2)溶解
把所配制的制膜液在 80〜100°C的温度下搅拌 15〜24小时, 使高聚物 P和添 加剂 A充分溶解于溶剂 S中, 使填充剂 F均匀分散在制膜液中, 成为均匀的制膜 液,
(3)过滤
在热状态下过滤溶解均匀的制膜液以除去不溶杂质,
(4)脱气
在 25〜35°C条件下进行真空脱气,
(5)成型
在下述工艺条件下, 依以下步骤成型:
纺丝釜压力: 0.1〜0.4MPa,
纺丝原液的温度: 30〜60°C,
牵引速度: 10〜40m/min,
芯液: 超滤水, 或含有 1〜50重量%上述溶剂的水溶液, 温度为 5〜60°C, 流量 0.3〜3.0IJh,
空气间隙: 0〜1500mm, 蒸发气氛空气温度为室温,
第一凝胶浴: 超滤水或硬度为 2〜3 mol/L的软化水, 或含有 1一 10重 量%上述溶剂的水溶液, 其中任选含有 0〜1重量%的表 面活性剂, 温度 0〜60°C,
第二凝胶浴: 超滤水, 温度 30〜60°C , '
成型步骤依次为:
(5.1 ) 开启溶料釜放料阀, 使制膜液从喷丝板环隙喷出,
(5.2)打开中空纤维纺丝机的内凝胶浴(芯液), 并通过调节阀使芯液从喷液 板中心孔流出, 形成初生态中空纤维膜,
(5.3)把初生态纤维膜经空气间隙顺序引入第一凝胶槽和第二凝胶槽, 再引 向绕丝辊,
(5.4) 调节牵引速度、 纺丝釜压力和芯液流量, 制出具有合适壁厚的中空纤 维膜。 具体实施方式
本发明采用含二氮杂萘结构的-聚醚酮 (PPEK)、 -聚醚砜 (PPES) 或-聚醚砜 酮 (PPESK)这三种新材料制备耐高温、 耐溶剂、 耐氧化和耐酸碱的中空纤维超 滤膜。 其中 PPEK的制备见中国专利申请 93109179.9, PPES和 PPESK的制备见 中国专利申请 93109180.2。本发明中所用的 PPEK和 PPES的平均聚合度 n为 400〜 600, 平均分子量大约为 160,000〜280,000, PPESK的平均聚合度为 m=200~600, n= 100〜500, 平均分子量大约为 180,000〜500,000。 本发明对这三种材料的化学 稳定性进行了实验,结果如表 2所示。实验条件为:用这三种材料制备厚度为 50〜 60 m的薄膜, 将膜浸泡于表 2所示的 11种水溶液中, 溶液的温度为 40Ό , 浸泡 时间为 30天。 经实验测试, 浸泡前后膜的质量、 厚度及强度均未发生变化, 证明 这三种材料具有好的耐酸碱、 耐氧化、 耐氯性。 膜在 40°C温度下的化学稳定性实验结果
浸泡液 03 HCI ¾S04 HNO; NaOH NaOH NaCIO NaCIO H202 H202 lOppm (2%) (2%) (2%) (2%) (5%) (1%) (5%) (1%) (5%)
PPES
PPEK 膜的外观、 质量、 厚度、 强度均无变化
PPESK 本发明所采用的溶剂包括 N, N—二甲基乙酰胺(DMAc)、 Ν,Ν-二甲基甲酰胺 (DMF)、 N—甲基吡咯烷酮 (NMP)、 氯仿 (CHC13)、 二氯甲垸 (CH2C12)或者 其中两者的混合物, 优选使用 DMAc或 MP。
根据 PPESK、 PPES和 PPEK三种材料制膜液的可纺性及膜强度等综合因素, 本发明的中空纤维超滤膜制膜液中高聚物的百分比浓度均大于 14% , 不同于已有 文献中所用的高聚物浓度(10〜14% )。
本发明所采用的添加剂包括吐温、 聚乙二醇、 聚乙烯吡咯垸酮、 乙醇、 异丙 醇、 丙三醇、 丙酮、 乙二醇、 一缩二乙二醇, 甲基丙烯酸羟乙酯, 氯化锂, 硝酸 锂, C2〜C5有机酸等, 优选吐温 (T-60、 Τ-40、 Τ-20)、 聚乙二醇 (分子量 400, 600, 1000, 2000)和草酸。 本发明的添加剂对改进膜通量有重要的作用。
本发明所采用的填充剂包括纳米二氧化钛和纳米二氧化硅, 优选颗粒的直径 为 10〜50nm。 由于高分子材料多孔膜在高温下会产生一定程度的收缩变形, 加入 一定量的无机纳米材料作为填充剂, 可以改善膜结构的稳定性, 减少其在高温条 件下的收縮变形。
本发明采用干湿法纺丝, 浸渍凝胶相转换化法制备中空纤维超滤膜。 按照本 发明的方法制备的中空纤维超滤膜的外径为 0.5〜2ir皿, 壁厚为 0.1〜0.4mm。
本发明对制出的中空纤维膜的纯水通量及截留率进行了测定。 测定使用 25V 下的去离子水, 操作压力为 O.lMPa, 牛血清蛋白的分子量为 67000, Y球蛋白的 分子量为 150000。 在 100'C水中热处理 30min, 测定膜的水通量变化情况。
本发明制备的中空纤维超滤膜能耐高温、 耐溶剂腐蚀, 有好的抗氧化、 耐酸 碱性及耐氯性。为了考察膜结构的稳定性,在 100Ό的水中处理 30min后, 测得其 水通量结果比未经处理的膜下降仅 1〜5%。
下面以实施例的方式进一步描述本发明, 但是这些实施例不是对本发明的范 围的限制。
本发明以草酸为添加剂制备的 PPESK中空纤维超滤膜具有优异的综合性能, 不但有好的耐高温、 耐氧化、 耐溶剂性能, 而且具有大的通量。 这种大通量的超 滤膜具有海绵状结构, 中空纤维的内表面孔属于超滤, 外表面孔属于微滤。 实施例 1
取膜原料平均分子量为 240, 000的 PPES(P) 65g, 溶剂 DMAc (SI) 135g和 NMP (S2) 200g, 添加剂吐温 60 (A) 40g, 颗粒直径为 10〜30nm的纳米 Ti023g, 配制成 443g制膜液。 在 90Ό温度下搅拌 15小时, 制成均匀的制膜液。 经过滤、 脱气后, 按上文所述的制备方法步骤 5.1-5.4制备中空纤维膜, 其中紡丝釜压力 O.lMPa, 纺丝原液温度(釜温)为 30°C, 牵伸速度 25m/min, 芯液为 60°C的超滤 水, 空气间隙为 0, 第一凝胶浴和第二凝胶浴均为 60Ό的超滤水。
在 25°C的水中浸泡 24小时后, 测试所得中空超滤膜的性能。 在操作压力为 O.lMPa,温度为 25°C的条件下膜的纯水通量为 650L/m2.h,膜对牛血清蛋白的截留 率为 80%, 对 γ球蛋白的截留率为 91 %。
该中空超滤膜在 100'C的水中处理 30min后, 测得其水通量比未热处理时下降 5.0% 实施例 2— 10
以下表 3中所示的不同原料组成和制备条件分别制备实施例 2— 10的中空纤 维超滤膜, 膜的测试性能同时列于表 3。 实施例 11 '
取膜材料平均分子量为 220, 000的 PPESK (P) 125g, 溶剂 DMAc (S^ 175g 和 NMP (S2) 200g, 添加剂聚乙二醇(PEG400) lOOg, 配制 600g制膜液。在 100 °C温度下搅拌 15小时, 制成均勾的制膜液。 经过滤、 脱气后, 按本发明的制备方 法步骤 5.1-5.4制备中空纤维膜, 其中纺丝釜压 0.4Mpa, 纺丝原液温度(釜温) 60 V, 牵引速度 30m/min,'芯液温度为 60°C, 水流量为 3L/h, 空气间隙 1500mm, 第一凝胶浴为硬度为 3 mol/L的软化水, 温度为 60°C, 第二凝胶浴为 60°C的超滤 水。
在 25°C的水中浸泡 24小时后, 测试膜的性能。 在操作压力为 O.lMpa, 温度 25Ό的条件下, 膜的纯水通量为 250L/m2.h, 对 Y球蛋白的截留率为 99.7%。 该超 滤膜具有海绵状结构, 中空纤维的内表面孔属于超滤、 外表面孔属于微滤。 实施例 12— 18 _
以下表 4中所示的不同原料组成和制备条件分别制备实施例 12— 18的中空纤 维超滤滤膜, 膜的测试性能同时列于表 4。 实施例 19一 24
以下表 5中所示的不同原料组成和制备条件分别制备实施例 19一 26的中空纤 维超滤滤膜, 膜的测试性能同时列于表 5。
表 3.实施例 2〜10的制备条件及膜性能列表 (12)
Figure imgf000009_0001
1. [ ]内数量为制膜原料的质量(g);
2.纳米 Ti02的颗粒直径为 10〜30纳米, 纳米 Si02的颗粒直径为 30〜50纳米 t
表 4. 实施例 12〜18的制备条件及膜性能列表 (1)
Figure imgf000010_0001
注: 1. [ ]内数量为制膜原料的质量 (g);
2. PPESK的平均分子量为 220,000;
3.测试条件: 操作压力 O.lMpa, 操作温度 25Ό.
表 5.实施例 19~24的制备条件及膜性能列表 (1)
Figure imgf000011_0001
1. [ ]内数量为制膜原料的质量 (g);
2. PPES的平均分子量为 200,000, PPEK的平均分子量为 160,000;
3.测试条件: 操作压力 O.lMpa, 操作温度 25°C.

Claims

权利要求
1、 二氮杂萘-聚醚砜、 -聚醚酮或-聚醚砜酮类中空纤维超滤膜, 含有: 聚合物 P,其选自含二氮杂萘结构的聚醚砜 PPES、含二氮杂萘结构的聚醚酮
PPEK和含二氮杂萘结构的聚醚砜酮 PPESK, 其中所述的含二氮杂萘结构的聚醚 砜 PPES由式 (I)表示:
Figure imgf000012_0001
其中 n=400-600, 其玻璃化温度为 274-305 °C; 含二氮杂萘结构的聚醚酮 PPEK由式(Π)表示:
Figure imgf000012_0002
(Π) 其中 n=400— 600, 其玻璃化温度分别为 253-263 °C ; 以及 含二氮杂萘结构的聚醚砜酮 PPESK由式 (ΙΠ)表示:
Figure imgf000012_0003
(m) 其中 m=200— 600, n= 100— 500, 其玻璃化转变温度为 264-284 °C; 和任选存在的填充剂 F, 其选自纳米二氧化钛和纳米二氧化硅, 其中: F/P的重量比为 0-1/20。
2、·如权利要求 1所述的二氮杂萘-聚醚砜、 -聚醚酮和-聚醚砜酮类中空纤维超 滤膜的制备方法, 其包括以下步骤:
( 1 )在溶料釜中配制具有下列组成的制膜液:
聚合物 P, 其选自式(I)所示的含二氮杂萘结构的聚醚砜 PPES、 式(II)所 示的含二氮杂萘结构的聚醚酮 PPEK和式 (ΠΙ)所示的含二氮杂萘结构的聚醚砜 酮 PPESK,
溶剂 S, 其选自 Ν,Ν—二甲基乙酰胺、 Ν—甲基吡咯烷酮、 Ν,Ν—二甲基甲酰 胺、 氯仿、 二氯甲垸以及其中任意两者的混合物,
添加剂 Α, 其选自吐温、 聚乙二醇、 聚乙烯吡咯垸酮、 乙醇、 异丙醇、 丙三 醇、 丙酮、 乙二醇、 一缩二乙二醇, 甲基丙烯酸羟乙酯, 氯化锂, 硝酸锂和 C2〜 C5有机酸, 以及
任选存在的填充剂 F, 其选自纳米二氧化钛和纳米二氧化硅;
其中: P/(P+S)的重量比为 15-25% ,
A/P的重量比为 0.01-1/1
F/P的重量比为 0-1/20;
(2)溶解
把所配制的制膜液在 80〜100Ό的温度下搅拌 15〜24小时,形成均匀的制膜 液, '
(3)过滤
在热状态下过滤溶解均匀的制膜液以除去不溶杂质,
(4)脱气
在 25〜35°C条件下 ¾行真空脱气,
(5)成型
在下述工艺条件下成型, 制出具有所需壁厚的中空纤维膜:
纺丝釜压力: 0.1〜0.4MPa,
紡丝原液的温度: 30〜60°C,
牵引速度: 10〜40m/min,
芯液: 超滤水,或含有 1〜50重量%上述溶剂的水溶液,温度为 5〜60°C,
流量 0.3〜3.0L/h,
空气间隙: 0~1500mm, 蒸发气氛空气温度为室温,
第一凝胶浴: 超滤水或硬度为 2~3μιηο1/ΐ;的软化水, 或含有 1一 10重量% 上述溶剂的水溶液, 其中任选含有 0〜1重量%的表面活性 剂,' '温度 0〜60°C, 第二凝胶浴: 超滤水, 温度 30〜60°C。
3、如权利要求 2所述的制备方法,其中所述的溶剂为 Ν,Ν—二甲基乙酰胺或 Ν—甲基吡咯烧酮。
4、 如权利要求 2所述的制备方法, 其中所述的添加剂选自吐温、 聚乙二醇、 异丙醇、 氯化锂、 硝酸锂、 冰醋酸和草酸中的至少之一。
5、 如权利要求 4所述的制备方法, 其中所述的添加剂选自吐温 Τ-60、 吐温 Τ-40、 吐温 Τ-20、 分子量分别为 400、 600、 1000和 2000的聚乙二醇以及草酸中 的至少之一。
PCT/CN2004/000295 2003-05-01 2004-03-31 Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci WO2004096418A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN03124222.7 2003-05-01
CN 03124222 CN1251793C (zh) 2003-05-01 2003-05-01 二氮杂萘聚醚砜酮类新材料中空纤维超滤膜及其制备方法
CNB2003101155444A CN100506365C (zh) 2003-11-28 2003-11-28 二氮杂萘聚醚砜酮中空纤维超滤膜及其制法
CN200310115544.4 2003-11-28

Publications (1)

Publication Number Publication Date
WO2004096418A1 true WO2004096418A1 (fr) 2004-11-11

Family

ID=34065174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000295 WO2004096418A1 (fr) 2003-05-01 2004-03-31 Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci

Country Status (1)

Country Link
WO (1) WO2004096418A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077553A1 (en) 2007-12-18 2009-06-25 Solvay Advanced Polymers, L.L.C. Polyphenyl sulfone ketone copolymers
WO2012106583A3 (en) * 2011-02-04 2013-03-21 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
CN111701459A (zh) * 2020-07-01 2020-09-25 浙江工业大学 一种含氮杂环的聚芳醚酮/砜的超/微滤膜及其结构调控方法
CN112221360A (zh) * 2020-09-15 2021-01-15 大连理工大学 含二氮杂萘酮结构共聚醚砜血液透析膜及其制备方法
CN112221361A (zh) * 2020-09-15 2021-01-15 大连理工大学 聚醚砜/含二氮杂萘酮结构共聚醚砜共混中空纤维血液透析膜及其制备方法
CN112295415A (zh) * 2019-08-02 2021-02-02 北京新源国能科技集团股份有限公司 一种中空纤维纳滤膜的制备方法及装置
CN113024925A (zh) * 2021-03-15 2021-06-25 四川汇利实业有限公司 一种能够提高自修复性能的改性pe膜及制备方法
CN113530464A (zh) * 2020-04-17 2021-10-22 中国石油化工股份有限公司 油井管及其制造方法
CN115369517A (zh) * 2022-08-30 2022-11-22 烟台民士达特种纸业股份有限公司 一种聚醚醚酮纳米纤维膜的制备方法及应用
CN117771983A (zh) * 2023-04-04 2024-03-29 赛普(杭州)过滤科技有限公司 一种聚醚砜超滤膜及其制备方法、应用以及超滤设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098113A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚砜及制备法
CN1098097A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚酮及制备法
CN1326812A (zh) * 2001-05-17 2001-12-19 东华大学 腹水超滤浓缩回输器新材料及制造方法
CN1076630C (zh) * 1997-12-17 2001-12-26 四川联合大学 聚醚砜中空纤维膜及其制造方法和用途
CN1359744A (zh) * 2000-12-20 2002-07-24 吉林市双捷高科技开发有限公司 中空纤维纳米级分离膜及其制备工艺
CN1375351A (zh) * 2001-12-28 2002-10-23 上海益尔康医用设备有限公司 共混聚醚砜中空纤维透析膜的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098113A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚砜及制备法
CN1098097A (zh) * 1993-07-26 1995-02-01 大连理工大学 含二氮杂萘结构的聚醚酮及制备法
CN1076630C (zh) * 1997-12-17 2001-12-26 四川联合大学 聚醚砜中空纤维膜及其制造方法和用途
CN1359744A (zh) * 2000-12-20 2002-07-24 吉林市双捷高科技开发有限公司 中空纤维纳米级分离膜及其制备工艺
CN1326812A (zh) * 2001-05-17 2001-12-19 东华大学 腹水超滤浓缩回输器新材料及制造方法
CN1375351A (zh) * 2001-12-28 2002-10-23 上海益尔康医用设备有限公司 共混聚醚砜中空纤维透析膜的制造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAI YING ET AL.: "Preparation of novel ultrafiltration membrane of poly (ether sulfone ketone) and its performance research", JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY, vol. 39, no. 4, June 1999 (1999-06-01), pages 509 - 513, XP008041430 *
LI XIUHUA ET AL.: "Synthesis and properties of copoly(ether ketone) containing hydroquinone and phthalazinone moieties", POLYMER MATERIALS SCIENCE AND ENGINEERING, vol. 14, no. 4, June 1998 (1998-06-01), pages 37 - 42, XP008041433 *
PENG JING ET AL.: "Study of modification of poly(phthalazinone ether sulfone ketone) film treated by carbon dioxide microwave plasma", ACTA POLYMERICA SINICA, no. 3, June 2000 (2000-06-01), pages 354 - 357, XP008041439 *
XIGAO JIAN ET AL.: "Preparation of UF and NF poly(phthalazine ether sulfone ketone ketone membranes for high temperature application", JOURNAL OF MEMBRANE SCIENCE, vol. 161, no. 1, 1999, pages 185 - 191, XP004172641 *
XIGAO JIAN ET AL.: "Study on novel heat resisting poly(phthalazinone ether sulfone ketone) hollow fiber microporous membrane", NATIONAL MACROMOLECULE ACADEMIC THESIS SEMINAR SYMPOSIUM IN 2001, October 2001 (2001-10-01), pages 172 - 173 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742062B2 (en) 2007-12-18 2014-06-03 Solvay Advanced Polymers, L.L.C. Polyphenyl sulfone ketone copolymers
WO2009077553A1 (en) 2007-12-18 2009-06-25 Solvay Advanced Polymers, L.L.C. Polyphenyl sulfone ketone copolymers
USRE48703E1 (en) 2011-02-04 2021-08-24 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
US9617421B2 (en) 2011-02-04 2017-04-11 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
WO2012106583A3 (en) * 2011-02-04 2013-03-21 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
CN112295415A (zh) * 2019-08-02 2021-02-02 北京新源国能科技集团股份有限公司 一种中空纤维纳滤膜的制备方法及装置
CN113530464A (zh) * 2020-04-17 2021-10-22 中国石油化工股份有限公司 油井管及其制造方法
CN111701459A (zh) * 2020-07-01 2020-09-25 浙江工业大学 一种含氮杂环的聚芳醚酮/砜的超/微滤膜及其结构调控方法
CN112221360A (zh) * 2020-09-15 2021-01-15 大连理工大学 含二氮杂萘酮结构共聚醚砜血液透析膜及其制备方法
CN112221361A (zh) * 2020-09-15 2021-01-15 大连理工大学 聚醚砜/含二氮杂萘酮结构共聚醚砜共混中空纤维血液透析膜及其制备方法
CN113024925A (zh) * 2021-03-15 2021-06-25 四川汇利实业有限公司 一种能够提高自修复性能的改性pe膜及制备方法
CN115369517A (zh) * 2022-08-30 2022-11-22 烟台民士达特种纸业股份有限公司 一种聚醚醚酮纳米纤维膜的制备方法及应用
CN115369517B (zh) * 2022-08-30 2023-09-01 烟台民士达特种纸业股份有限公司 一种聚醚醚酮纳米纤维膜的制备方法及应用
CN117771983A (zh) * 2023-04-04 2024-03-29 赛普(杭州)过滤科技有限公司 一种聚醚砜超滤膜及其制备方法、应用以及超滤设备
CN117771983B (zh) * 2023-04-04 2024-05-31 赛普(杭州)过滤科技有限公司 一种聚醚砜超滤膜及其制备方法、应用以及超滤设备

Similar Documents

Publication Publication Date Title
CN100463712C (zh) 增强型有机-无机杂化膜的制备方法
US9364797B2 (en) High flux hollow fiber ultrafiltration membranes and process for the preparation thereof
CN104607064A (zh) 一种聚偏氟乙烯-氧化石墨烯复合中空纤维膜的制备方法
CN103394293B (zh) 一种亲水性聚偏氟乙烯中空纤维膜的制备方法
JP7157790B2 (ja) 多孔質膜、多孔質膜モジュール、多孔質膜の製造方法、清澄化された液体の製造方法およびビールの製造方法
CN110813103A (zh) 一种抗菌抗污染中空纤维膜的制备方法
WO2004096418A1 (fr) Membrane d'ultrafiltration a fibres creuses a base de poly(phtalazinone ether-fulfone), du poly(phtalazinone-ether-cetone) ou du poly(phtalazinone ether-sulfone-cetone) et preparation de celle-ci
CN106731897A (zh) 一种高抗污染型聚偏氟乙烯中空纤维超滤膜、制备方法及装置
CN103861480A (zh) 一种亲水性聚偏氟乙烯平板膜和中空纤维膜的制备方法
CN106178989A (zh) 亲水性共聚物包覆纳米氧化物改性中空纤维膜的制备方法
CN112755812A (zh) 一种具有中间层的高通量交联复合纳滤膜及其制备方法
CN103272494B (zh) 用于高含盐食品加工废水处理的聚偏氟乙烯合金膜的制法
CN108479414B (zh) 一种中空纤维聚合物膜、制备方法及其在盐水精制中的用途
She et al. Improvement of persistent hydrophilicity and pore uniformity of polyvinyl chloride ultrafiltration membranes by in-situ crosslinking reaction assisted phase separation
CN110052177B (zh) 一种中空微球增强高通量聚丙烯腈过滤膜的制备方法
WO2022199554A1 (zh) 一种复合超滤膜材料及其制备方法
CN114588792B (zh) 一种聚乙烯醇缩丁醛共混增强的聚偏二氯乙烯超滤膜及其制备方法
KR20120077011A (ko) Ectfe 수처리 분리막 및 그의 제조방법
KR101068437B1 (ko) 투수도 및 내약품성이 우수한 다공성 pvdf 막 및 그 제조방법
CN103638833B (zh) 一种用于饮用水净化的大通量中空纤维膜的制备方法
CN103638830B (zh) 用于饮用水处理的热法聚偏氟乙烯中空纤维膜的制备方法
CN110975637B (zh) 一种没食子酸-壳聚糖/聚砜复合纳滤膜的制备方法
CN110201557B (zh) 一种大通量加强型超滤膜及其制备方法
CN108905641B (zh) 一种纳滤膜及其制备方法
CN103638831B (zh) 用于饮用水处理的聚偏氟乙烯中空纤维超滤膜的制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase