WO2004092369A1 - マイクロインジェクション方法および装置 - Google Patents

マイクロインジェクション方法および装置 Download PDF

Info

Publication number
WO2004092369A1
WO2004092369A1 PCT/JP2004/005167 JP2004005167W WO2004092369A1 WO 2004092369 A1 WO2004092369 A1 WO 2004092369A1 JP 2004005167 W JP2004005167 W JP 2004005167W WO 2004092369 A1 WO2004092369 A1 WO 2004092369A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
cell
physiologically active
active substance
cells
Prior art date
Application number
PCT/JP2004/005167
Other languages
English (en)
French (fr)
Inventor
Atsushi Miyawaki
Hiroyuki Imabayashi
Sachiko Karaki
Original Assignee
Riken
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken, Olympus Corporation filed Critical Riken
Priority to JP2005505385A priority Critical patent/JP4530991B2/ja
Priority to US10/552,923 priority patent/US20070087436A1/en
Publication of WO2004092369A1 publication Critical patent/WO2004092369A1/ja
Priority to US12/464,038 priority patent/US8304240B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion

Definitions

  • the present invention relates to a method for introducing a physiologically active substance into cells and a microinjection device used for the method.
  • Techniques for introducing gene DNA into cultured cells include calcium precipitation, lipid transfer, virus vector, electroporation, gene gun, and microinjection.
  • the introduction is in accordance with the probability, and it is impossible to introduce only a specific cell.
  • the microinjection method has a problem that the diameter of the tip of a glass pit is about 1 m, and cells are easily damaged by piercing the tip into a cell nucleus.
  • Japanese Patent Application Laid-Open No. 2003-88883 discloses a needle capable of specifically binding to a biomolecule in order to provide a means for collecting a biomolecule such as RNA from a living cell. It is disclosed that the device is inserted into a living cell and pulled out from the living cell using a device capable of finely controlling the position.
  • Z ⁇ ⁇ ⁇ isker or carbon nanotube is used.
  • the surface of metal oxide whiskers is modified with amino groups, so that it binds specifically to intracellular biomolecules and can be collected. Disclosure of the invention
  • biomolecules are collected from living cells by specifically modifying metal oxide whiskers and carbon nanotubes. It is possible to continuously record changes over time for individual cells thereafter. However, it is not disclosed that the gene is actively introduced and the change over time is continuously recorded, and in the above-described method, a substance that specifically binds to a biomolecule is attached to the surface of the needle. There are problems such as the complexity of modifying the information.
  • An object of the present invention is to solve the above-mentioned problems of the prior art. That is, the present invention relates to a method for introducing a physiologically active substance such as a gene into a cell, and a method for introducing a physiologically active substance such as a gene into a cell within a microscope visual field while extremely reducing the invasiveness of the cell.
  • the task to be solved was to provide a method and an apparatus for introducing an active substance.
  • the present inventors have studied to solve the above problems, and as a result, have found that a needle having a diameter of 500 nm or less can be inserted into a cell within a range that can be introduced into the cell. Thus, they have found that the above problems can be solved, and have completed the present invention.
  • the method includes adhering a physiologically active substance around a needle having a diameter of 500 nm or less in a range to be inserted into a cell, and inserting the needle into the cell.
  • a method for introducing a physiologically active substance into a cell is provided.
  • a needle having a diameter of 50 to 100 nm within a range to be inserted into the cell is used.
  • a needle having a length of 5 ⁇ or less is used.
  • a needle having a tapered shape in a range to be inserted into a cell is used.
  • a needle made of carbon nanotubes is used.
  • a needle made of silicon is used.
  • a needle made of a metal oxide is used.
  • a needle having a diameter of 50 to 500 nm within a range that can be inserted into a cell has conductivity.
  • the bioactive substance is DNA, RNA or protein.
  • a needle charged with a charge opposite to that of the bioactive substance is used, and after the bioactive substance is electrostatically attached to the needle, the needle is inserted into a cell.
  • a needle to which a voltage opposite to the electric charge of the bioactive substance is applied is used, and after the bioactive substance is electrically attached to the needle, the needle is inserted into the cell.
  • a bioactive substance having a negative charge is electrostatically attached to a positively charged needle, and then the needle is inserted into a cell, and the needle is negatively charged to transfer the bioactive substance to the needle. Remove from it.
  • a bioactive substance having a negative charge is electrically attached to a needle to which a positive voltage is applied
  • the needle is inserted into a cell, and a negative voltage is applied to the needle to apply the bioactive substance to the needle. Remove from needle.
  • a negative time-varying voltage is applied to the needle to release the bioactive substance from the needle.
  • the time-varying voltage is a plurality of pulse voltages.
  • the needle to which a voltage opposite to the electric charge of the physiologically active substance is applied has a controlled voltage value and applied voltage time.
  • the method of the present invention comprises the following steps.
  • a needle having a diameter of 50 to 500 nm within a range to be inserted into a cell and a drive for controlling the movement of the needle in order to move the needle into and out of the cell
  • a needle having a diameter of 50 to 500 nm in a range to be inserted into a cell and movement of the needle to insert and withdraw the needle into the cell
  • a microinjection device comprising a cell holding means for holding cells in a predetermined place, and a microscope for observing the cells held in the cell holding means.
  • a microphone port injection device having a container for storing a physiologically active substance.
  • a culture environment maintaining means is mounted on a microscope for observing cells.
  • the driving means for controlling the movement of the needle connected to the needle is a piezoelectric element.
  • the needle is inserted into the cell from the direction of gravity by a driving means for controlling the movement of the needle.
  • the needle is moved by a driving means for controlling the movement of the needle. It descends to a predetermined height with respect to the cell holding surface of the step.
  • a microinjection device having a washing tank for removing a physiologically active substance attached to the surface of the needle is provided.
  • the washing tank performs at least one of sterilized water washing, alkali washing, or acid washing.
  • the time for applying a voltage to the needle is shorter than the time for the needle to stay in the cell
  • the cells are contained in a culture solution in which a physiologically active substance is dispersed.
  • a culture solution in which a physiologically active substance is scattered and a cell holding means for holding cells in a predetermined place, and 50 to 50 cells in a range inserted into cells.
  • a microinjection device is provided, wherein the needle forms a hole serving as a path for introducing a physiologically active substance.
  • a method for introducing a physiologically active substance into a cell comprising performing microinjection using the above-described microinjection device according to the present invention.
  • FIG. 1 shows the outline of the method of the present invention.
  • Figure 2 shows a microinjection device configured on the stage of an inverted microscope.
  • Figure 3 shows the top view of the microscope stage (inside view of the insulation box).
  • FIG. 4 shows the microinjection device and the location of the gene transfer needle.
  • FIG. 5 shows the ⁇ 5 V alternating voltage of 100 Hz used as the applied voltage.
  • FIG. 6 shows a voltage waveform from retention of gene DNA to release.
  • FIG. 7 shows the state of adjacent cells.
  • FIG. 8 shows an example of the voltage pattern of the applied voltage.
  • FIG. 9 shows another example of the voltage pattern of the applied voltage.
  • FIG. 10 shows a schematic diagram in which gene DNA to be introduced into cells is scattered in a culture solution.
  • FIG. 11 shows a needle consisting of carbon nanotubes having a diameter of 50 nm and a length of 3 ⁇ m.
  • Fig. 12 shows a needle with a silicon cantilever whose diameter is reduced by etching and a platinum layer is formed on the surface.
  • 1 is a cantilever
  • 2 is a needle
  • 3 is a cell
  • 4 is a cell nucleus
  • 5 is a petri dish
  • 6 is a cell holding means
  • 7 is a container
  • 8 is a solution containing a physiologically active substance
  • 9 is a driving means
  • 10 is a potential control means
  • 11 is a microinjection device
  • 1 2 is an insulated box
  • 13 is a heater
  • 14 is a fan
  • 15 is an objective lens
  • 16 is a specimen
  • 17 is for transmitted illumination.
  • Light source 18 is a container, 19 is a washing tank, 20 is a stage, 21 is a needle, 22 is a laminated piezoelectric actuator, 23 is a fixed block, 24 is a Z-axis stage, and 25 is the bottom of a petri dish.
  • 26 indicates a cell
  • 27 indicates a cell nucleus
  • 28 indicates gene DNA
  • 29 indicates a needle hole.
  • a physiologically active substance is attached around a needle having a diameter of 500 nm or less, and the bioactive substance is introduced into the cell by inserting the needle into the cell.
  • the present invention is characterized by using a very fine needle (a needle exceeding the optical resolution) for gene transfer.
  • Needles having the following diameters particularly preferably needles having a diameter of 50 to 100 nm, can be used.
  • the needle used in the present invention is desirably a needle whose electrical properties such as chargeability are controlled.
  • a needle DNA molecules can be detached from the surface of the needle by making the surface of the needle positive and attaching DNA molecules, inserting the needle into the cell nucleus, and then making the surface of the needle negative. .
  • a fine needle since a fine needle is used, cell damage can be minimized, and any DNA can be introduced into any target cell.
  • the drug screening and the comprehensive analysis of the interaction between biomolecules are not performed for each well using a 96-well plate, a 384-well plate, or the like as in the related art. It becomes possible to do at the 1-cell level.
  • the material of the needle used in the present invention is not particularly limited as long as it has the above-mentioned properties, and examples thereof include carbon nanotubes.
  • Carbon nanotubes are small crystals composed of 100% carbon atoms, having a cylindrical shape with rounded graphite layers. In recent years, nanotechnology has been in the spotlight, and this carbon nanotube has also attracted attention from many angles.
  • Power Bonn Nanotube Examples of research that uses are the development of screens that use nanotubes in electron guns instead of liquid crystals and plasma displays, applications to fuel cells and solar cells, or hydrogen storage materials. These are unique properties that are different from the conventional ones, due to the combination of various features such as the minuteness of the carbon nanotube itself, the quantum physical properties obtained from its three-dimensional structure, and pure water containing only carbon.
  • Carbon nanotubes also consist of pure water in pure carbon, and unlike carbon black, contain almost no impurities. It also has the characteristic that it does not change when exposed to high temperatures during molding, Z or use.
  • multi-wall carbon nanotubes having a diameter of 50 to: about L0 nm and a length of 3 m or more are available, and such carbon nanotubes are used in the present invention. Is preferred. If the diameter of the needle is too small, the amount of the bioactive substance that can be retained becomes small, while if the diameter of the needle is too large, the invasion to the cells increases, and both are not preferable. Therefore, in the present invention, a needle having a diameter of 500 nm or less is used, and a needle having a diameter of 500 to 100 nm is more preferably used within a range to be inserted into a cell. As for the length of the needle, the height of the cultured cells is usually about 5 ⁇ , so it is sufficient to use a needle with a length of 5 ⁇ or less, for example, a needle of about 3 ⁇ . Can also be used.
  • a needle whose surface is made conductive by using a device such as evaporation or sputtering of gold (Au) or platinum (pt) on a silicon cantilever which is widely used as an atomic force microscope cantilever. Can also be used.
  • the invasion of living cells can be further reduced by forming a conductive film after etching and sharpening the tip of a silicon cantilever using an apparatus such as IPCFIB.
  • the needle strength can be improved by having the needle tip tapered by etching.
  • the needle is A needle having a diameter of 50 to 500 nm within a range that can be introduced into the cell is necessary for reducing damage to the cell, and the needle having the above-described tapered shape is required. Also in this case, it has a shape having a diameter of 50 to 500 nm within a range that can be inserted into cells.
  • the type of the physiologically active substance that can be introduced into cells by the method of the present invention is not particularly limited, but generally includes nucleic acids such as DNA or RNA, and proteins, and is preferably a nucleic acid.
  • the nucleic acid may be DNA or RNA, and the DNA may be genomic DNA or a fragment thereof, cDNA, or a synthetic DNA such as a synthetic oligonucleotide.
  • a needle having a diameter of 50 to 500 nm (a whisker such as a metal oxide having a conductive surface or the like) having a diameter of 50 to 500 nm as described above is inserted into an atom. It can be attached to the tip of a cantilever of an atomic force microscope (AFM) to make an electrical connection.
  • the electrical connection is an electrical connection for controlling the electric charge of the needle to be positive or negative.
  • This cantilever is linked with the image processing of the microscope, and is moved between the container containing the target physiologically active substance and the target cell (cell nucleus, etc.), so that the target physiologically active substance is contained only in the target cell. Can be introduced.
  • the needle is always oriented vertically, and the position of the needle tip can be controlled with high accuracy.
  • the movement of the needle described above can be performed by driving means for controlling the movement of the needle. That is, there is provided a microinjection device having a needle having a diameter of 50 to 500 nm within a range to be inserted into a cell, and a driving means for controlling the movement of the needle. More specifically, the microinjection device of the present invention comprises: (a) a cell holding means for holding cells in a predetermined place; (b) 50 to 50 cells within a range inserted into cells. A needle having a diameter of 0 nm, and driving means for controlling movement of the needle connected to the needle; and (c) a microscope for observing cells held in the cell holding means. can do.
  • the needle using a needle charged with a charge opposite to the charge of the physiologically active substance, After the physiologically active substance is electrostatically (electrically) attached to the needle, the needle can be introduced into cells.
  • the bioactive substance is electrostatically (electrically) attached to a positively charged needle, and then the needle is removed. What is necessary is just to introduce into a cell.
  • the bioactive substance can be retained on or detached from the needle surface at any time by using the electrical polarity of the bioactive substance.
  • the physiologically active substance adheres to the needle surface even when the voltage is applied to the needle, and the polarity of the applied voltage is reversed (reversed). It is possible to be separated.
  • FIG. 1 shows an outline of the method of the present invention.
  • FIG. 1 shows that the needle 2 attached to the force lever 1 connected to the driving means 9 is positioned between the position directly above the cell 3 and the position directly above the container 7 containing the solution 8 containing a physiologically active substance. Is indicated using a double-headed arrow.
  • the cells 3 are cultured inside a Petri dish 5, and the Petri dish 5 is set on a cell holding means 6.
  • the needle 2 is inserted into the container 7 containing the solution 8 containing the physiologically active substance, and the solution containing the physiologically active substance is attached to the surface of the needle 2.
  • the adhesion of the solution to the needle can be performed by controlling the electric charge of the needle by the potential control means 10 electrically connected to the needle 2. That is, when the bioactive substance is a substance having a negative charge such as nucleic acid, the needle 2 is charged positively by the potential control means 10 so that the bioactive substance is efficiently transferred to the needle 2. Can be attached.
  • the needle 2 to which the physiologically active substance is attached is raised, pulled out of the container 7 containing the solution 8 containing the physiologically active substance, and moved laterally to the position directly above the target cell 3 .
  • the needle 2 right above the cell 3 moves down and is inserted into the cell nucleus 4 of the target cell 3.
  • the needle inserted into the cell nucleus 4 releases the physiologically active substance attached to the surface into the cell nucleus 4 in that state.
  • the release of the physiologically active substance can be carried out by controlling the electric charge of the needle by the potential control means 10 electrically connected to the needle 2.
  • the needle 2 when the physiologically active substance is a substance having a negative charge such as a nucleic acid, the needle 2 is negatively charged by the potential control means 10 so that the physiologically active substance can be efficiently removed from the needle 2. Can be released. After releasing the bioactive substance into the cell nucleus 4, the needle is withdrawn from the cell. Thereafter, by repeating the above operation, a desired physiologically active substance can be introduced into a desired cell nucleus. The movement of the needle 2 described above is all controlled by the driving means 9.
  • the present invention further provides a needle having a diameter of 50 to 500 nm within a range that can be inserted into a cell, and a drive for controlling the movement of the needle to move the needle into and out of the cell.
  • a microinjection device for applying a voltage to hold and release the physiologically active substance from the surface of the needle, inserting the needle into the cell, and introducing the physiologically active substance into the cell.
  • the microinjection device is configured on the stage of an inverted microscope and can observe and measure the progress from the start of gene transfer. Insulation box on the microscope stage to maintain the temperature environment at 37 ° C 1 2 The microinjection device is installed inside.
  • Fig. 3 shows the microscope stage viewed from above (inside view of the thermal insulation box).
  • the heat insulation box is made of metal with high thermal conductivity (such as aluminum alloy) inside, and a heater 13 and a fan 14 for stirring the internal air are installed on the inside side.
  • the outer surface of the heat insulation box is covered with heat insulating material to prevent heat from escaping to the external environment.
  • a part of the area is a glass surface above and below the insulated box, and a specimen 16 (such as cells in a petri dish) with an objective lens 15 Can be observed.
  • the sample can be irradiated with light from a light source for transmitted illumination, and phase contrast observation and differential interference observation can be performed.
  • wash containers 18 such as petri dishes (dishes, microplates, etc.) as samples, sample cups containing a solution containing gene DNA, and needles.
  • the cleaning tank 19 and the like are configured on an XY stage 20 operated by a motor or the like.
  • the sample 16, the container 18, and the washing tank 19 can move under the needle for gene introduction, and similarly, the entire area in the sample can be observed.
  • the needle 21 for gene transfer moves only in the Z direction (the direction of gravity) and moves up and down toward the object located below the needle.
  • the needle 21 for gene transfer is placed with the needle point downward on the end face of a laminated piezoelectric actuator 22 in which thin piezoelectric elements (lead zirconate titanate) are laminated. ing.
  • the end face of the other laminated piezoelectric actuator 22 is set on a fixed block 23, and when a voltage is applied to the laminated piezoelectric actuator 22, the needle 21 moves slightly downward.
  • the fixed block 23 is mounted on the ⁇ -axis stage 24,
  • the needle 21 enters the cell 26 by a two-stage drive mechanism of coarse operation by the Z-axis stage 24 and fine operation by the laminated piezoelectric actuator 22.
  • it is located above the petri dish serving as the specimen 16 and performs coarse operation up to the vicinity of the cell 26 in the petri dish, and then performs fine operation when the needle 21 enters the cell 26. Since the needle 21 is very fragile, the operation is stopped immediately before the needle tip comes into contact with the bottom of the sample 16 such as a petri dish (for example, ⁇ from the bottom).
  • the needle 21 may penetrate the cell nucleus 27, and can be easily automated by making the apparatus recognize that only the needle tip is lowered to a height of 1 ⁇ from the bottom at all times.
  • control operations such as detecting the cell membrane surface and descending a few meters from that position are unnecessary, and can reduce expensive detection components.
  • Washing tank 19 is located under needle 21 for gene transfer, and needle 21 descends into washing tank 19. Washing water (sterilized water) and the like are stored in the washing tank 19, and an alternating voltage is applied to the needle 21 while the needle 21 is securely immersed. Garbage stuck to the needle tip ⁇ Remove the previously attached gene DNA. For example, as shown in FIG. 5, an alternating voltage of 10 OHZ of 5 V on the earth is applied as the applied voltage. Thereby, impurities on the needle surface are removed.
  • the cleaning tank 19 may be ultrasonically cleaned, or two chemical cleaning tanks such as acid or alkaline and two sterilizing water cleaning tanks may be provided.
  • the needle 21 rises from the washing tank 19, and in the process, the needle tip may be dried by an air pro or the like.
  • the container 18 containing the gene DNA solution is moved below the needle, and the needle 21 descends into it.
  • a positive voltage is applied to the needle surface while immersed in the solution.
  • the applied voltage is IV and the applied time is 3 seconds or more.
  • the gene DNA has a negative polarity, it adheres to the needle surface.
  • the needle tip then rises and specimen 16 is positioned below the needle. During this time, a voltage may or may not be applied to the needle tip.
  • a negative voltage is applied to the tip of the needle to release the gene DNA on the needle surface and release it into the cell (cell nucleus).
  • the applied voltage is 0.5 V and the applied time is about 1 second (it is desirable to apply the voltage for a sufficient time for the gene DNA of the needle to be detached).
  • Figure 6 shows the voltage waveform from retention of the gene DNA to its release.
  • the voltage applied to the needle tip is not limited to the above, and may be, for example, the voltage patterns shown in FIGS.
  • the time for holding the gene DNA can be shortened, and the amount of the gene DNA attached to the needle tip can be reduced.
  • the amount of gene DNA to be introduced depends on the amount attached at this time. Therefore, if the voltage value is reduced and the application time is shortened, the amount attached will decrease. Can be increased and the amount of introduction increases. It is effective as a means for providing a change (difference) in the amount of gene introduced into cells.
  • Fig. 9 shows that the gene DNA attached to the needle tip is released by pulse voltage (time-varying voltage) at short intervals when the gene DNA is released into the cell nucleus.
  • the application time is preferably as short as possible.
  • a voltage of 10 pulses is applied at an applied voltage of 1 IV and 10 Hz.
  • the laminated piezoelectric actuator 22 for finely moving the needle can be displaced at a high speed almost in response to the application of a voltage.
  • the natural frequency in the bending direction of the laminated piezoelectric actuator 22 with a cross-sectional area of 5 mm square and a length of 2 O mm exists at several kHz, and below that frequency (below the resonance region),
  • the needle tip follows. From this, the needle 21 enters the cell 26 at a high speed of several HZ, and the needle 21 rises in that cycle.
  • the time of the needle 21 staying in the cell 26 can be shortened, and the degree of invasion to the cell 26 can be further reduced. can do.
  • the needle 21 for gene transfer is reciprocated up and down at high speed (one cycle operation cycle of several kHz) by the laminated piezoelectric actuator 22 to form a needle hole 29 in the cell membrane (cell nucleus 27).
  • the needle 21 has a small diameter, and its introduction has little effect on the cell 26, and the needle 21 is quickly pulled out. Due to the insertion, further damage to the cells 26 can be reduced.
  • an introduction route of the gene DNA in the solution is secured in the cells 26 (in the cell nucleus 27), and by culturing in this state, the gene DNA in the solution can be introduced. Therefore, by automatically forming one or more needle holes in each cell 26 by automatic operation, gene DNA can be easily and easily introduced into a plurality of cells.
  • a positive voltage is applied to the needle in a culture solution in which gene DNA 28 is scattered, the gene DNA is retained on the surface of the needle, and a plurality of negative pulse voltages are applied at the time of insertion into the cell.
  • the needle moves in the XY plane in the culture solution, and the gene DNA is successively introduced into another cell. Since the operation of dipping in a container to hold the gene DNA on the needle surface and the washing operation can be omitted, it can be introduced into a large number of cells in a short time, and the introduction efficiency can be increased.
  • the cells into which the gene has been introduced in this manner are then cultured in a warm box mounted on a microscope, and the process until the gene is expressed and the interaction between cells can be observed and measured over time. It becomes possible.
  • DNA was introduced into the nerve cells cultured in the culture dish using the apparatus shown in FIG.
  • PC 12 cells (clonal cells of the nervous system isolated from a rat accessory medulla chromaffin cell type) were used as nerve cells.
  • the medium used was DMEM (Dulbecco's Modified Eagle Medium) containing 10% fetal bovine serum (FBS).
  • FBS fetal bovine serum
  • the culture was performed under the conditions of 37 ° C and 5% Co2.
  • a DNA a recombinant expression vector containing an NGF receptor gene was used, and a DNA solution of 1 ⁇ gZm1 was used.
  • the needle used in the device described in FIG. 1 has a diameter of 50 nm and a length as shown in FIG. This is a needle made of carbon nanotubes having 3 / zm.
  • the needle was immersed in the DNA solution, DNA was attached to the surface, and then the needle was inserted into the nucleus of the neuron to release the DNA. After the DNA was introduced, the nerve cells were further cultured, but the nerve cells were still alive after 3 days.
  • the needle shown in FIG. 12 is obtained by etching a silicon cantilever into a small diameter by etching and forming a platinum layer on the surface. As a result of transfection into He1a cells using this needle, similarly, He3a cells survived 3 days after DNA transfection.
  • the present invention it has become possible to provide a method and an apparatus for introducing a physiologically active substance such as an arbitrary gene into an arbitrary cell in a microscope visual field while extremely reducing the degree of invasion of the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明の目的は、遺伝子などの生理活性物質を細胞内に導入するための方法であって、細胞に与える侵襲度を極端に減らしつつ、顕微鏡視野内の任意の細胞に任意の遺伝子などの生理活性物質を導入するための方法及び装置を提供することである。本発明によれば、細胞内に挿入される範囲で50~500nmの直径を有する針の周囲に生理活性物質を付着させ、該針を細胞内に挿入することを含む、生理活性物質を細胞内に導入する方法、及び上記方法を行うためのマイクロインジェクション装置が提供される。

Description

明細書
マイクロインジヱクション方法およ.ぴ装置 技術分野
本発明は、 細胞内に生理活性物質を導入する方法及びそれに用いるためのマイ クロインジェクション装置に関するものである。 背景技術
培養細胞などに遺伝子 D N Aを導入する技術は、 カルシウム沈殿法、 Lipid transfer法、 ウィルスベクター法、 エレクトロポレーシヨン法、 遺伝子銃 (gene gun)法、マイクロインジェクション法などがある。マイクロインジェクション法 以外の方法では、 いずれも導入は確率に従い、 ある特定の細胞のみを狙って導入 することは不可能である。 一方、 マイクロインジェクション法は、 ガラスピぺッ トの先端の直径が 1 m前後に及び、 これを細胞核にまで刺し入れることによつ て細胞が容易にダメージを受けやすいという問題がある。また、複数の細胞に別々 の遺伝子を導入する場合、 その数だけピペットを用意する必要があり、 準備など が煩雑であった。
また、 特開 2 0 0 3— 8 8 3 8 3号公報には、 生きた細胞から R NAなどの生 体分子を採取する手段を提供するために、 生体分子と特異的に結合し得る針を微 細な位置制御が可能な装置を用いて、 生細胞に刺し込み、 生細胞から引き抜くこ とが開示されている。 ここで用いる針としては、 Z η θゥイスカーやカーボンナ ノチューブを用いている。 例えば、 金属酸化物ゥイスカーの表面はァミノ基が修 飾されており、 細胞内の生体分子と特異的に結合し、 採取できるように施されて いる。 発明の開示
上記した通り 従来のエレクトロポレーシヨンや遺伝子銃では、 一度に大量の 細胞に物質を注入できるが、 特定の細胞だけに物質を注入することは困難であつ た。 また、 従来のマイクロインジェクションでは、 特定の細胞に物質を注入する ことができるが、 注入する針としての中空状のガラスキヤビラリを用いていたた めその外径を小さくすることには限界があった。 そのために細胞に針を注入した 際に細胞が破裂したり、致命的な傷害(ダメージ)を受けてしまうという問題や、 操作が煩雑であるなどの問題があった。
また、 特開 2 0 0 3— 8 8 3 8 3号公報に示されるように、 金属酸化物ゥイス カーやカーボンナノチューブに特異的な修飾を施すことにより、生きた細胞から、 生体分子を採取することが可能であり、 その後の個々の細胞について経時的な変 化を連続的に記録することが可能となっている。 し力 しながら、 積極的に遺伝子 を導入して経時的な変化を連続的に記録することは開示されておらず、 また、 上 記方法では、 生体分子と特異的に結合させる物質を針表面に修飾するための煩雑 さなどの問題が存在する。
本発明は上記に示した従来技術の問題点を解消することを解決すべき課題とし た。 すなわち、 本発明は、 遺伝子などの生理活性物質を細胞内に導入するための 方法であって、 細胞に与える侵襲度を極端に減らしつつ、 顕微鏡視野内の任意の 細胞に任意の遺伝子などの生理活性物質を導入するための方法及ぴ装置を提供す ることを解決すベき課題とした。
本発明者らは上記課題を解決するために検討した結果、 細胞內に揷入される範 囲で 5 0 0 n m以下の直径を有する針を用いて、 該針を細胞内に挿入させること によつて上記課題を解決できることを見出し、 本発明を完成するに至った。
すなわち、 本発明によれば、 細胞内に挿入される範囲で 5 0 0 n m以下の直径 を有する針の周囲に生理活性物質を付着させ、 該針を細胞内に揷入することを含 む、 生理活性物質を細胞内に導入する方法が提供される。
好ましくは、 細胞内に挿入される範囲で 5 0〜1 0 0 n mの直径を有する針を 使用する。
好ましくは、 5 μ πι以下の長さを有する針を使用する。 好ましくは、 細胞内に挿入される範囲でテーパー形状を有する針を使用する。 好ましくは、 カーボンナノチューブからなる針を使用する。
好ましくは、 シリコンからなる針を使用する。
好ましくは、 金属酸化物からなる針を使用する。
好ましくは、 細胞内に挿入される範囲で 5 0〜5 0 0 n mの直径を有する針が 導電性を有している。
好ましくは、 生理活性物質は D NA、 R N A又はタンパク質である。
好ましくは、生理活性物質の有する電荷と反対の電荷で帯電させた針を使用し、 該針に生理活性物質を静電的に付着させた後に、 該針を細胞内に挿入する。
好ましくは、 生理活性物質の有する電荷と反対の電圧を印加した針を使用し、 該針に生理活性物質を電気的に付着させた後に、 該針を細胞内に挿入する。
好ましくは、 負の電荷を有する生理活性物質を正に帯電させた針に静電的に付 着させた後に、 該針を細胞内に挿入し、 針を負に帯電させて生理活性物質を針か ら離脱させる。
好ましくは、 負の電荷を有する生理活性物質を正の電圧を印加した針に電気的 に付着させた後に、 該針を細胞内に挿入し、 針に負の電圧を印加して生理活性物 質を針から離脱させる。
好ましくは、 針に負の時間的に変化する電圧を印加させて生理活性物質を針か ら離脱させる。
好ましくは、 時間的に変化する電圧は複数のパルス電圧である。
好ましくは、 生理活性物質の有する電荷と反対の電圧が印加される針は、 電圧 値および印加電圧時間が制御される。
好ましくは、 本発明の方法は以下の工程を含む。
( 1 ) 針を正に帯電させる工程;
( 2 ) 負に帯電した生理活性物質を含む溶液中に針を浸し、 針の周囲に生理活性 物質を付着させる工程;
( 3 ) 細胞内の標的部位に針を挿入し、 針に負の電圧を印加して生理活性物質を 針から離脱させる工程;
( 4 ) 針を細胞から抜く工程;及び
( 5 ) 上記工程 (1 ) ~ ( 4 ) を繰り返すことにより、 複数の細胞に、 細胞毎に 所望の同一又は異なる少なくとも 1種以上の生理活性物質を導入する工程: 本発明の別の側面によれば、 細胞内に挿入される範囲で 5 0〜5 0 0 n mの直 径を有する針と、 細胞内に該針を揷入離脱するために、 該針の移動を制御するた めの駆動手段と、 生理活性物質を該針表面から保持離脱するために電圧を印加す る電圧印加手段とを有し、 該針を細胞内に挿入し、 生理活性物質を細胞内に導入 することを特徴とするマイクロインジエタション装置が提供される。
本発明のさらに別の側面によれば、 細胞内に挿入される範囲で 5 0〜5 0 0 n mの直径を有する針と、 細胞内に該針を揷入離脱するために、 該針の移動を制御 するための駆動手段と、 生理活性物質を該針表面から保持離脱するために電圧を 印加する電圧印加手段とを有し、 該針を細胞内に挿入し、 生理活性物質を細胞内 に導入することを特徴とする、 上記した本発明の方法で使用するためのマイク口 インジヱクシヨン装置が提供される。
好ましくは、 細胞を所定の場所に保持するための細胞保持手段と、 細胞保持手 段内に保持された細胞を観察するための顕微鏡とを有することを特徴とするマイ クロインジヱクシヨン装置が提供される。
好ましくは、 生理活性物質を収納するための容器を有することを特徴とするマ イク口インジヱクション装置が提供される。
好ましくは、 細胞を観察するための顕微鏡に培養環境維持手段が搭載されてい る。
好ましくは、 該針に連結された該針の移動を制御するための駆動手段は圧電素 子である。
好ましくは、 該針の移動を制御するための駆動手段により、 該針が細胞に対し て重力方向から揷入される。
好ましくは、 該針の移動を制御するための駆動手段により、 該針が細胞保持手 段の細胞保持面に対して所定の高さまで下降する。
好ましくは、 該針の表面に付着した生理活性物質を除去するために洗浄槽を有 するマイクロインジヱクシヨン装置が提供される。
好ましくは、 該洗浄槽は、 滅菌水洗浄又はアルカリ洗浄又は酸洗浄の少なくと も一^ を行う。
好ましくは、 該針が細胞内に滞在している時間よりも該針に電圧を印加する時 間のほうが短い、
好ましくは、 該細胞は生理活性物質が散在した培養液内に含まれている。 本発明のさらに別の側面によれば、 生理活性物質が散在した培養液、 および細 胞を所定の場所に保持するための細胞保持手段と、 細胞内に挿入される範囲で 5 0〜5 0 0 n mの直径を有する針と、 該針に連結された該針の移動を制御するた めの駆動手段と、 細胞保持手段内に保持された細胞を観察するための顕微鏡とを 有し、 細胞へ生理活性物質の導入経路となる穴を該針が形成することを特徴とす るマイクロインジェクション装置が提供される。
本発明のさらに別の側面によれば、 上記した本発明によるマイクロインジエタ ション装置を用いてマイクロインジエタションを行うことを含む、 生理活性物質 を細胞内に導入する方法が提供される。 図面の簡単な説明
図 1は、 本発明の方法の概要を示す。
図 2は、 倒立型顕微鏡のステージ上に構成されたマイクロインジェクション装 置を示す。
図 3は、 顕微鏡ステージを上面から見た図 (保温箱内部図) を示す。
図 4は、 マイクロインジヱクシヨン装置と、 遺伝子導入用の針の位置を示す。 図 5は、 印加電圧として使用する ± 5 Vの 1 0 0 H Zの交番電圧を示す。 図 6は、 遺伝子 DNAを保持してから放出するまでの電圧波形を示す。
図 7は、 隣り合う細胞の様子を示す。 図 8は、 印加電圧の電圧パターンの一例を示す。
図 9は、 印加電圧の電圧パターンの別の例を示す。
図 1 0は、 培養液中に細胞内に導入しょうとする遺伝子 DNAを散在させた場合 の模式図を示す。
図 1 1は、 直径 5 0 n mおよび長さ 3 μ mを有するカーボンナノチューブから 成る針を示す。
図 1 2は、 シリコン製のカンチレバーをエッチングにより細径化し、 表面に白 金層が形成されている針を示す。
上記図中において、 1はカンチレバー、 2は針、 3は細胞、 4は細胞核、 5は シャーレ、 6は細胞保持手段、 7は容器、 8は生理活性物質を含む溶液、 9は駆 動手段、 1 0は電位制御手段、 1 1はマイクロインジヱクション装置、 1 2は保 温箱、 1 3はヒーター、 1 4はファン、 1 5は対物レンズ、 1 6は標本、 1 7は 透過照明用光源、 1 8は容器、 1 9は洗浄槽、 2 0は ステージ、 2 1は針、 2 2は積層型圧電ァクチユエータ、 2 3は固定プロック、 2 4は Z軸ステージ、 2 5はシャーレの底、 2 6は細胞、 2 7は細胞核、 2 8は遺伝子 DNA、 そして 2 9は針穴を示す。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 詳細に説明する。
本発明の方法においては、 5 0 0 n m以下の直径を有する針の周囲に生理活性 物質を付着させ、 該針を細胞内に揷入することによって、 生理活性物質を細胞内 に導入する。
本発明は、 遺伝子導入のために非常に細い針 (光学的分解能を超えるくらいの 針) を使用することを特徴とするが、 具体的には、 細胞内に挿入される範囲で 5 0 0 n m以下の直径を有する針、 特に好ましくは 5 0〜 1 0 0 n mの直径を有す る針を使用することができる。 本発明で使用する針は、 その帯電性などの電気的 性質をコントロールしゃすい針であることが望ましい。 本発明では、 例えば、 針 の表面の電荷をプラスにして D N A分子を付着させ、針を細胞核に刺入してから、 針の表面の電荷をマイナスにすることにより、 D NA分子を針の表面から離脱さ せることができる。 本発明では、 細い針を使用するために、 細胞のダメージを極 力小さくすることができ、 さらに、 任意の狙った細胞に任意の D NAを導入する ことができる。
また、細胞内小器官(ゴルジ体、 ミトコンドリアなど)を針にて損傷させると、 細胞の生存率が低下することが知られており、 細胞内に挿入される範囲で 5 0〜 5 0 0 n mの針を用いることにより、 細胞核大きさに対して十分に小さく、 細胞 核以外の細胞内小器官を傷つけにくい。 さらに、 針を真上 (重力方向) から細胞 に進入させることにより、 細胞核と細胞膜が最も接近した箇所に針を挿入するこ とになる。 ここで、 細胞核と細胞膜の微小な空間領域に細胞内小器官が存在する 確率が下がっており、 この点からも、 細胞內小器官を傷つける事が少なく、 細胞 の生存率を向上できる。
なお、 導電性 (帯電性) を有する表面の針を用いることだけですみ、 特に、 生 体分子に合わせた修飾を針表面に施すことは必要としない。
例えば、 1 0 0種類の D NA溶液と 1 0 0個の細胞を用意し、 針を D NA溶液 に浸し、 細胞の真上から細胞に針を突き刺す。 このように針を D N A溶液に浸す 操作と、 針を細胞に突き刺す操作を繰り返すことによって、 異なる細胞にそれぞ れ所望の D N Aを導入して別々に形質転換することができる。 従って、 本発明の 方法によれば、 薬剤スクリーニングや生体分子間相互作用の網羅的解析を、 従来 のように、 9 6穴プレートゃ 3 8 4穴プレート等を用いてゥエル毎に行うのでは なく、 1細胞レベルで行うことが可能になる。
本発明で用いる針の材料は、 上記した性質を有するものであれば特に限定され ないが、 例えばカーボンナノチューブなどが挙げられる。 カーボンナノチューブ はグラフアイトの一層 (グラフイン) を丸めた円筒形の形状を有し、 1 0 0 %炭 素原子から構成される微小な結晶である。近年、ナノテクノロジーが脚光を浴び、 このカーボンナノチューブも多方面から注目されている。 力 ボンナノチューブ を使用する研究例には、 液晶、 プラズマディスプレイに代わり、 ナノチューブを 電子銃に使用する画面の開発、 燃料電池及び太陽電池への応用、 または水素貯蔵 材料なとが挙げられる。 これらは、 カーボンナノチューブ自体が有する微小さ、 その立体構造から得られる量子物性、 ならびに純水に炭素からのみなるという各 種の特徴の組み合わせから、従来とは異なるユニークな性質を有するためである。 カーボンナノチューブはまた、 純水に炭素のみからなり、 カーボンブラック等と 異なり不純物をほとんど含有しない。 また、 成形時および Zまたは使用時に高温 下に曝されても、 変化しないという特徴も有する。
現在、 Multi wallカーボンナノチューブとしては、 直径が 5 0〜: L 0 0 n m程 度で、 長さが 3 m以上のものが入手可能であり、 本発明ではこのようなカーボ ンナノチューブを使用することが好ましい。 針の直径が細すぎると保持できる生 理活性物質の量が少なくなり、 反対に針の直径が太すぎると細胞への侵襲が大き くなり、 いずれも好ましくない。 従って、 本発明では、 細胞内に挿入される範囲 で 5 0 0 n m以下の直径を有する針を使用し、 さらに好ましくは 5 0〜1 0 0 n mの直径を有する針を使用する。 また、 針の長さについては、 通常め培養細胞の 高さが 5 μ πι程度であるので、 5 μ κι以下の長さの針を使用すれば十分であり、 例えば、 3 μ ΐη程度の針も使用することができる。
このほかに使用できる針としては、 以下のものがある。
従来例に示されているような金属酸化物ゥイスカーに金 (A u ) 又は白金 (p t )等を蒸着'スパッタなどの装置を用いて表面が導電性を有するようにした針。 また、 原子間力顕微鏡のカンチレパーとして多用されているシリコン製カンチレ パーに金 (A u ) 又は白金 (p t ) 等を蒸着 ·スパッタなどの装置を用いて表面 が導電性を有するようにした針なども使用できる。 なお、 シリコン製カンチレバ 一は針先部を I P C F I Bなどの装置を用いてエッチングし、先鋭化した後に、 導電膜を形成することにより、 生細胞への侵襲度はさらに、 低減することができ る。 また、 シリコン製のカンチレバーの場合、 エッチングにより針先にテーパー 形状を有することにより、 針強度を向上することができる。 なお、 前記の針は、 細胞内に揷入される範囲で 5 0〜5 0 0 n mの直径を有する針であることが、 細 胞へのダメージを低減する上で必要であり、 前述のテーパー形状を有する場合の 針の場合も、 細胞内に挿入される範囲で 5 0〜5 0 0 n mの直径を有する形状と なっている。
本発明の方法で細胞に導入することができる生理活性物質の種類は特に限定さ れないが、 一般に D N Aまたは R NAなどの核酸、 およびタンパク質などが挙げ られ、 好ましくは核酸である。 核酸は D NAでも R N Aでもよく、 また、 D NA は、 ゲノム D N Aまたはその断片、 c D NA、 または合成オリゴヌクレオチド等 の合成 D NAのいずれでもよい。
本発明では、 上記したような細胞内に挿入される範囲で 5 0〜5 0 0 n mの直 径を有する針 (カーボンナノプロ一ブゃ導電表面を有する金属酸化物などのウイ スカー) を、 原子間力顕微鏡 (A FM) のカンチレパーの先に装着し、 電気的接 続を行うことができる。 ここで言う電気的接続とは、 針の電荷を正または負に制 御するための電気的接続のことを言う。 このカンチレバーは顕微鏡の画像処理と 連動させて、 目的の生理活性物質を入れてある容器と、 目的の細胞(細胞核など) との間で移動させることにより、 目的の生理活性物質を目的の細胞のみに導入す ることができる。 本発明の好ましい態様では、 針は常に垂直方向を向き、 高い精 度で針先位置をコントロールすることができる。
上記した針の移動は、 針の移動を制御するための駆動手段により行うことがで きる。すなわち、細胞内に挿入される範囲で 5 0〜5 0 0 n mの直径を有する針、 および該針の移動を制御するための駆動手段を有するマイクロインジヱクシヨン 装置が提供される。 さらに、 具体的には、 本発明のマイクロインジェクション装 置は、 (a ) 細胞を所定の場所に保持するための細胞保持手段; (b ) 細胞内に揷 入される範囲で 5 0〜5 0 0 n mの直径を有する針、 およぴ該針に連結された該 針の移動を制御するための駆動手段;および (c ) 細胞保持手段内に保持された 細胞を観察するための顕微鏡から構成することができる。
本発明では、生理活性物質の有する電荷と反対の電荷で帯電させた針を使用し、 該針に生理活性物質を静電的 (電気的) に付着させた後に、 該針を細胞內に揷入 することができる。 D N Aなどの負の電荷を有する生理活性物質を細胞に導入す る場合には、 正に帯電させた針に上記生理活性物質を静電的 (電気的) に付着さ せた後に、 該針を細胞内に揷入すればよい。
なお、 本発明においては、 生理活性物質の電気的な極性を利用して、 任意の時 間に針表面に生理活性物質を保持したり、 離脱させたりできるものである。 つま り、 静電的に保持できること以外にも、 針への電圧印加を維持した状態でも生理 活性物質が針表面に付着することは言うまでも無く、 印加電圧の極性を逆転 (反 転) させることにより離脱させることが可能である。
以上から、 必ずしも静電的な作用に限定されるものではなく、 生理活性物質の 電気的特性に応じて、 又は、 使用目的に応じて、 針への印加電圧方法を選択する ことにより、 様々な用途に適用することができる。
本発明の方法の一例としては、 以下の工程を行うことができる。
( 1 ) 針を正に帯電させる工程;
( 2 ) 負に帯電した生理活性物質を含む溶液中に針を浸し、 針の周囲に生理活性 物質を付着させる工程;
( 3 ) 細胞内の標的部位に針を揷入して細胞内に生理活性物質を導入する工程;
( 4 ) 針を細胞から抜き、 針を負に帯電させて針の周囲に残存した生理活性物質 を除去する工程;および
( 5 ) 上記 (1 ) 〜 (4 ) を繰り返すことにより、 複数の細胞に、 細胞毎に所望 の同一または異なる少なくとも 1種類以上の生理活性物質を導入する工程: 以下に、 本発明の実施の態様の一例を図を参照して説明する。
図 1に本発明の方法の概要を示す。 図 1は駆動手段 9に接続された力ンチレバ 一 1に装着された針 2が、 細胞 3の真上の位置と、 生理活性物質を含む溶液 8を 含む容器 7の真上の位置との間を移動することを両方向の矢印を用いて示す。 細 胞 3はシャーレ 5の内部で培養されており、 シャーレ 5は細胞保持手段 6の上に 設置されている。 先ず初めに、針 2を、生理活性物質を含む溶液 8を含む容器 7の中に挿入して、 針 2の表面に生理活性物質を含む溶液を付着させる。 この溶液の針への付着は、 針 2に電気的に接続されている電位制御手段 1 0によつて針の電荷を制御するこ とにより行うことができる。 すなわち、 生理活性物質が核酸などの負の電荷を有 する物質である場合は、 電位制御手段 1 0によって針 2を正に帯電させておくこ とにより、 生理活性物質を効率的に針 2に付着させることができる。
続いて、 生理活性物質を付着させた針 2を上昇させて、 生理活性物質を含む溶 液 8を含む容器 7から引き出し、 横方向に移動して目的の細胞 3の真上の位置に 移動する。 細胞 3の真上の位置にある針 2は、 下に移動して目的の細胞 3の細胞 核 4の中へと挿入される。 細胞核 4の中に挿入された針は、 その状態で表面に付 着している生理活性物質を細胞核 4の内部に放出する。 生理活性物質の放出は針 2に電気的に接続されている電位制御手段 1 0によって針の電荷を制御すること により行うことができる。 すなわち、 生理活性物質が核酸などの負の電荷を有す る物質である場合は、 電位制御手段 1 0によって針 2を負に帯電させることによ り、 生理活性物質を効率的に針 2から放出させることができる。 生理活性物質を 細胞核 4の内部に放出した後、 針は細胞から引き上げられる。 以後、 上記の操作 を繰り返すことにより、 所望の生理活性物質を所望の細胞核に導入することがで きる。 上記に示した針 2の移動は全て駆動手段 9により制御されている。
本発明はさらに、 細胞内に挿入される範囲で 5 0〜5 0 0 n mの直径を有する 針と、 細胞内に該針を揷入離脱するために、 該針の移動を制御するための駆動手 段と、 生理活性物質を該針表面から保持離脱するために電圧を印加する電圧印加 手段とを有し、 該針を細胞内に挿入し、 生理活性物質を細胞内に導入することを 特徴とするマイクロインジエタション装置に関する。
以下に、 マイクロインジェクション装置について、 詳細を説明する。
図 2に示されるようにマイクロインジヱクション装置は倒立型顕微鏡のステー ジ上に構成されており、 遺伝子導入開始からその後の経過を観察 ·計測できるも のである。 顕微鏡ステージ上には温度環境を 3 7 °Cに維持するための保温箱 1 2 が構成され、 その内部に、 マイクロインジェクション装置が設置される。
図 3は顕微鏡ステージを上面から見た図 (保温箱内部図) である。 保温箱は内 部に熱伝導性に優れた金属 (アルミニウム合金など) で構成され、 内部の側面に ヒーター 1 3や内部空気攪拌用のファン 1 4が設置されている。 保温箱外表面は 断熱材にて覆われ、 外部環境に熱が逃げないようになつている。 また、 倒立型顕 微鏡にて内部を観察するために、 保温箱の上下には、 一部の領域がガラス面とな り、 対物レンズ 1 5にて標本 1 6 (シャーレ内の細胞など) を観察できる。 さら に、 透過照明用の光源からの光が標本に照射でき、 位相差観察や微分干渉観察が 実施できるようになつている。
そして、 細胞の培養液のペーハー (P H) を培養環境に最適化するために、 保 温箱外部より配管を通して 5 % C O 2が供給され、 ファンにより、 保温箱内部は 均一に 5 %濃度の C O 2雰囲気となっている。
保温箱の内部に形成された顕微鏡ステージ上には、 標本となるシャーレ (ディ ッシュやマイクロプレート等) や、 遺伝子 DNAを含む溶液の入ったサンプルカツ プなどの容器 1 8や、 針を洗浄する洗浄槽 1 9などがモータなどで動作する X Y ステージ 2 0上に構成されている。
よって、 遺伝子導入用の針の下には、 標本 1 6、 容器 1 8、 洗浄槽 1 9が移動 してくることができ、 同様に、 標本内の全エリアを観察することができる。 遺伝子導入用の針 2 1は Z方向 (重力方向) にのみ移動し、 針下に位置される 対象に向かって、 上下動される。 図 4に示されるように、 遺伝子導入用の針 2 1 は薄板の圧電素子 (チタン酸ジルコン酸鉛) を積層した積層型圧電ァクチユエ一 タ 2 2の端面に針先を下に向けて設置されている。 もう一方の積層型圧電ァクチ ユエータ 2 2の端面は固定プロック 2 3に設置され、 積層型圧電ァクチユエータ 2 2に電圧を印加すると下方向に針 2 1が微小移動するようになっている。 巿販 されている積層型圧電ァクチユエータにもよるが、 1 0 0 V程度で 1 0 μ πιの移 動量が実現でき、 印加電圧値により、 その変位量を制御することができる。 さらに、 固定ブロック 2 3は Ζ軸ステージ 2 4に搭載され、 針 2 1の Ζ方向位 置は、 Z軸ステージ 2 4により粗動作、 積層型圧電ァクチユエータ 2 2により微 動作の 2段駆動機構により、 細胞 2 6へ針 2 1を進入させる。 例えば、 標本 1 6 となるシャーレの上方に位置し、 シャーレ内の細胞 2 6付近までは粗動作し、 そ の後、 針 2 1を細胞 2 6に進入させる際には、 微動作させる。 針 2 1は非常に折 れやすいため、 針先が標本 1 6のシャーレなどの底に接触する直前 (例えば、 底 から Ι μ πιの高さ) で動作を停止する。
つまり、 針 2 1は細胞核 2 7を貫通してもよく、 常に、 底から 1 μ ΐηの高さに 針先を下降することだけを装置に認識させることにより、 容易に自動化できる。 特に、 細胞膜表面を検出し、 その位置から数 m下降するなどの制御動作は無用 であり、 高額な検出部品などを削減できる。
一方、 遺伝子 DNA溶液が入った容器 1 8や洗浄槽 1 9に下降する場合は、 厳密 な高さ制御は不要であるため Z軸ステージ 2 4による粗動作だけでょレ、。
動作については、 前述した通りであるが、 以下の工程による。
( 1 ) 針の洗浄:遺伝子導入用の針 2 1の下に洗浄槽 1 9が位置し、 洗浄槽 1 9 内に針 2 1が下降する。 洗浄槽 1 9内には、 洗浄水 (滅菌水) などが貯留されて おり、 針 2 1が確実に浸漬された状態で、 針 2 1に交番電圧が印加される。 針先 に付着したゴミゃ前回付着させた遺伝子 DNAを除去する。例えば、図 5のように、 印加電圧としては土 5 Vの 1 0 O H Zの交番電圧を印加する。 これにより、 針表 面の不純物が除去される。 好ましくは、 洗浄槽 1 9を超音波洗浄化したり、 酸又 はアル力リなどの薬品洗浄槽と滅菌水洗浄槽を 2つ設けてもよい。
( 2 ) その後、 洗浄槽 1 9から針 2 1は上昇し、 その過程で、 針先をエアープロ 一などにより、 乾燥させてもよレ、。
( 3 ) 次に、 針下に遺伝子 DNA溶液が入った容器 1 8が移動され、 その中に針 2 1が下降する。溶液に浸漬された状態で、針表面に正の電圧を印加する。例えば、 印加電圧を I V、 印加時間を 3秒間以上とする。 これにより、 遺伝子 DNAが負の 極性を有しているため、 針表面に付着する。 その後、 針先は上昇し、 標本 1 6が 針下に位置される。 この間、 針先に電圧を印加していても、 しなくてもよい。 ( 4 ) 針先が標本 1 6のシャーレ内に下降する際には、 針 2 1への印加電圧を停 止し、 細胞表面付近まで粗動作で下降し、 その後、 微動作で細胞核 2 7に針 2 1 を下降させる。
( 5 )針 2 1の移動が停止した後、針先へ負の電圧を印加し、針表面の遺伝子 DNA を離脱させ、 細胞内 (細胞核内) に放出する。 例えば、 印加電圧は一 0 . 5 V、 印加時間は 1秒程度である (針の遺伝子 DNAが離脱するために十分な時間の電圧 を印加することが望ましい)。遺伝子 DNAを保持してから放出するまでの電圧波形 を示すと、 図 6のようになる。
( 6 ) 電圧印加終了後、 針 2 1を上方に移動させ、 洗浄槽 1 9にて針 2 1を洗浄 し、 異なる遺伝子 DNAが入った容器にて別の遺伝子 DNAを針表面に保持し、 別の 細胞に放出する。
このように、 針表面に保持された遺伝子 DNAを細胞内で放出する場合、 細胞内 に針 2 1が滞在している間だけ、 負の電圧を印加し、 電気的な反発により、 遺伝 子 DNAを離脱できるようにした。 培養液中で電圧を印加する場合には、 電気化学 反応により、 泡の形成が懸念されるために、 必要な時間のみ、 培養液中では電圧 を印加するとこが望ましい。 よって、 細胞内に針が滞在している間のみ電圧を印 加し、 細胞に刺すまでの移動時間および、 細胞から針が退避するまでの移動時間 中は電圧の印加を停止することがよい。
これらの動作を繰り返すことにより、 図 7に示されるように隣り合う細胞 2 6 に異なる遺伝子 DNAを導入することが可能となり、 細胞間の相互作用の解析など に利用することができる。 また、 既存のガラス管を用いたマイクロインジェクシ ヨン装置では、 遺伝子 DNAの溶液を油圧機構により吸引 '排出したり、 針先を細 胞に位置合わせすることを手動動作で利用者が実施しており、 熟練度が必要とさ れていた。 しかしながら、 本発明の構成では、 細胞の画像処理を利用して細胞核 2 7を認識し、 その細胞核 2 7の中心に針先を位置指定し、 その後は、 自動化す ることが容易であり、 熟練度は皆無となる。
なお、 上記の実施の態様では、 異なる遺伝子 DNAをそれぞれの細胞に導入する 工程を述べたが、 針 2 1が非常に細く細胞へのダメージが少ないため、 異なる遣 伝子 D N Aを一つの細胞に複数導入することも可能である。
なお、 針先への印加電圧は上述に限られるものではなく、 例えば、 図 8や図 9 に示される電圧パターンでもよい。 図 8においては、 遺伝子 DNAを保持する時間 を短縮し、 針先への遺伝子 DNAの付着量を少なくすることができる。 つまり、 導 入される遺伝子 DNAの量は、 このときに付着される量に左右されるため、 電圧値 を小さく、 印加時間を短くすると、 付着量は少なくなり、 逆を行えば、 付着量を 多くすることができ、 導入量も増加する。 細胞への遺伝子導入量に変化 (差) を 設ける場合の手段として、 有効である。 また、 図 9は細胞核內に遺伝子 D N Aを 放出する際に、 針先への印加電圧を短い間隔でパルス電圧化 (時間的に変化する 電圧化)することにより、針先に付着した遺伝子 D NAの剥離作用現象を助長し、 ぼぼ全量の離脱を行うことができる。 細胞内での電圧印加は全く影響がないとは 言えず、 刺激となりうる。 このため、 印加時間は少ないほど好ましく、 例えば、 印加電圧を一 I V、 1 0 H Zにて 1 0パルスの電圧を印加する。
さらに、 針を微動作させる積層型圧電ァクチユエータ 2 2はほぼ、 電圧の印加 に応じて高速に変位することが可能である。 例えば、 断面積 5 mm角長さ 2 O m mの積層型圧電ァクチユエータ 2 2の屈曲方向固有振動数は数 k H zに存在し、 その周波数以下 (共振領域以下) では電圧パターンに呼応して、 針先が追従して 動作する。 このことから、細胞 2 6への針 2 1進入を数 HZの高速で進入させ、そ の周期で針 2 1を上昇する。 そして、 その僅かな挿入から退避までの時間中に、 前述の複数のパルス電圧を印加すれば、 細胞 2 6に留まる針 2 1の時間も短縮で き、 より細胞 2 6への侵襲度を低減することができる。
また、 図 1 0に示されるように、 培養液中に細胞内に導入しょうとする遺伝子 DNA を散在させた場合について説明する。 遺伝子導入用の針 2 1を積層型圧電ァ クチユエータ 2 2により高速 (数 kHzの 1サイクル動作周期) に上下往復動作さ せて、 細胞膜 (細胞核 2 7 ) に針穴 2 9を形成する。 前述のように針 2 1は微小 径であり、 その揷入による細胞 2 6への影響は小さく、 また、 針 2 1を高速に抜 き差しするために、 さらに、 細胞 2 6へのダメージを低減することができる。 こ れにより、 細胞 2 6内 (細胞核 2 7内に) に溶液中の遺伝子 D N Aの導入経路が 確保され、 この状態で培養することにより、 溶液中の遺伝子 DNAを導入すること ができる。 よって、 個々の細胞 2 6に 1箇所以上の針穴を自動動作で形成するこ とにより、 複数の細胞に容易に遺伝子 D N Aを簡便に導入できる。
好ましくは、遺伝子 DNA 2 8が散在している培養液中で針に正の電圧を印加し、 針表面に遺伝子 DNAを保持し、 細胞内に挿入された時間帯に、 負のパルス電圧を 複数印加し、 細胞内に遺伝子 DMを放出する。 これらの動作を培養液内で針が X Y面内を動作し、 次々と別の細胞に遺伝子 DNAを導入していく。 遺伝子 DNAを針 表面に保持するために容器に浸漬する動作や、 洗浄動作等が省略できるために、 短時間に多数の細胞に対して導入でき、 その導入効率も高かめられる。
このように遺伝子導入された細胞はその後、 顕微鏡に搭載された保温箱内で培 養を継続し、遺伝子が発現するまでの過程や、細胞間の相互作用を経時的に観察 · 計測することが可能となる。
以下の実施例により本発明をさらに具体的に説明するが、 本発明は実施例によ つて限定されるものではない。 実施例
実施例 1
培養シャーレ内で培養している神経細胞に対して、 図 1に記載の装置を用いて D N Aを導入した。
神経細胞としては P C 1 2細胞 (ラット副賢髄質クロム親和性細胞種より単離 された神経系クローン細胞) を用いた。 培地は、 1 0 %胎児ゥシ血清 (F B S ) を含む DMEM (Dulbecco' s Modified Eagle Medium) を用いた。 培養は 37°C、 5%Co2の条件下で行った。 DNAとしは、 NGF受容体遺伝子を含む組み換え発現べク ターを使用し、 1 ^ g Zm 1の D NA溶液を使用した。
図 1に記載の装置で使用した針は、 図 1 1に示される直径 5 0 n mおよび長さ 3 /zmを有するカーボンナノチューブから成る針である。
先ず、 針を DNA溶液に浸し、 その表面に DN Aを付着させた後、 神経細胞の 核の内部に針を揷入して、 DNAを放出させた。 DNAを導入後、 神経細胞を引 き続き培養したが、 3日経過後においても神経細胞は生存していた。
なお、 図 12に示される針はシリコン製のカンチレバーをエッチングにより細 径ィ匕し、 表面に白金層が形成されている。 こちらの針を用いて、 He 1 a細胞へ の導入を実施した結果、 同様に、 DNAを導入後、 3日経過後においても He 1 a細胞は生存していた。
一方、 比較例として、 直径 50 nmおよび長さ 3 μπιを有するカーボンナノチ ユーブから成る針を使用する代わりに、 上記と同じ DNA溶液を充填したガラス ピペット (内径 300 μπι) を用いて、 マイクロインジェクションを行った。 マ イク口インジヱクシヨン後、 神経細胞を培養したが、 3日後までに神経細胞死ん でしまい、 生存している細胞は皆無であった。 産業上の利用の可能性
本発明により、 細胞に与える侵襲度を極端に減らしつつ、 顕微鏡視野内の任意 の細胞に任意の遺伝子などの生理活性物質を導入するための方法及び装置を提供 することが可能になった。

Claims

請求の範囲
1. 細胞內に揷入される範囲で 500 nm以下の直径を有する針の周囲に生 理活性物質を付着させ、 該針を細胞内に揷入することを含む、 生理活性物質を細 胞内に導入する方法。
2. 細胞内に挿入される範囲で 50〜100 nmの直径を有する針を使用す る、 請求項 1に記載の方法。
3. 5 μ m以下の長さを有する針を使用する、請求項 1又は 2に記載の方法。
4. 細胞内に挿入される範囲でテーパー形状を有する針を使用する、 請求項 1から 3に記載の方法。
5. カーボンナノチューブからなる針を使用する、 請求項 1から 4の何れか に記載の方法。
6. シリコンからなる針を使用する、請求項 1から 4の何れかに記載の方法。
7. 金属酸化物からなる針を使用する、 請求項 1から 4の何れかに記載の方 法。
8. 細胞内に挿入される範囲で 50〜500 nmの直径を有する針が導電性 を有している、 請求項 1から 7の何れかに記載の方法。
9. 生理活性物質が DNA、 RN A又はタンパク質である、 請求項 1から 8 の何れかに記載の方法。
10. 生理活性物質の有する電荷と反対の電荷で帯電させた針を使用し、 該 針に生理活性物質を静電的に付着させた後に、 該針を細胞内に揷入する、 請求項 1力、ら 9の何れかに記載の方法。
11. 生理活性物質の有する電荷と反対の電圧を印加した針を使用し、 該針 に生理活性物質を電気的に付着させた後に、 該針を細胞内に挿入する、 請求項 1 から 9の何れかに記載の方法。
12. 負の電荷を有する生理活性物質を正に帯電させた針に静電的に付着さ せた後に、 該針を細胞内に挿入し、 針を負に帯電させて生理活性物質を針から離 脱させる、 請求項 10又は 11に記載の方法。
13. 負の電荷を有する生理活性物質を正の電圧を印加した針に電気的に付 着させた後に、 該針を細胞内に挿入し、 針に負の電圧を印加して生理活性物質を 針から離脱させる、 請求項 10又は 11に記載の方法。
14. 針に負の時間的に変化する電圧を印加させて生理活性物質を針から離 脱させる、 請求項 10から 13の何れかに記載の方法。
15. 時間的に変化する電圧が複数のパルス電圧である、 請求項 14に記載 の方法。
16. 生理活性物質の有する電荷と反対の電圧が印加される針が、 電圧値お ょぴ印加電圧時間が制御される、 請求項 1 1又は 13に記載の方法。
17. 以下の工程を含む、 請求項 1から 16の何れかに記載の方法。
(1) 針を正に帯電させる工程;
(2) 負に帯電した生理活性物質を含む溶液中に針を浸し、 針の周囲に生理活性 物質を付着させる工程;
(3) 細胞内の標的部位に針を挿入し、 針に負の電圧を印加して生理活性物質を 針から離脱させる工程;
(4) 針を細胞から抜く工程;及び
(5) 上記工程 (1) 〜 (4) を繰り返すことにより、 複数の細胞に、 細胞毎に 所望の同一又は異なる少なくとも 1種以上の生理活性物質を導入する工程:
18. 細胞内に挿入される範囲で 50〜500 nmの直径を有する針と、 細 胞内に該針を挿入離脱するために、 該針の移動を制御するための駆動手段と、 生 理活性物質を該針表面から保持離脱するために電圧を印加する電圧印加手段とを 有し、 該針を細胞内に挿入し、 生理活性物質を細胞内に導入することを特徴とす るマイクロインジェクション装置。
19. 細胞内に挿入される範囲で 50〜500 nmの直径を有する針と、 細 胞内に該針を揷入離脱するために、 該針の移動を制御するための駆動手段と、 生 理活性物質を該針表面から保持離脱するために電圧を印加する電圧印加手段とを 有し、 該針を細胞内に挿入し、 生理活性物質を細胞内に導入することを特徴とす る請求項 1から 1 7の何れかに記載の方法で使用するためのマイクロインジエタ ション装置。
2 0 . 細胞を所定の場所に保持するための細胞保持手段と、 細胞保持手段内 に保持された細胞を観察するための顕微鏡と、 を有することを特徴とする請求項 1 8又は 1 9に記載のマイクロインジェクション装置。
2 1 . 生理活性物質を収納するための容器を有することを特徴とする請求項 1 8から 2 0の何れかに記載のマイクロインジエタション装置。
2 2 . 細胞を観察するための顕微鏡に培養環境維持手段が搭載されている、 請求項 2 0に記載のマイクロインジヱクション装置。
2 3 . 該針に連結された該針の移動を制御するための駆動手段が圧電素子で ある、 請求項 1 8又は 1 9に記載のマイクロインジェクション装置。
2 4 . 該針の移動を制御するための駆動手段により、 該針が細胞に対して重 力方向から挿入されることを特徴とする請求項 1 8又は 1 9に記載のマイクロイ ンジェクション装置。
2 5 . 該針の移動を制御するための駆動手段により、 該針が細胞保持手段の 細胞保持面に対して所定の高さまで下降することを特徴とする請求項 1 8又は 1 9に記載のマイクロインジヱクション装置。
2 6 . 該針の表面に付着した生理活性物質を除去するために洗浄槽を有する ことを特徴とする請求項 1 8又は 1 9に記載のマイクロインジヱクション装置。
2 7 . 該洗浄槽が、 滅菌水洗浄又はアル力リ洗浄又は酸洗浄の少なくとも一 つを行うことを特徴とする請求項 2 6に記載のマイクロインジヱクション装置。
2 8 . 該針が細胞内に滞在している時間よりも該針に電圧を印加する時間の ほうが短いことを特徴とする請求項 1 8又は 1 9に記載のマイクロインジヱクシ ョン装置。
2 9 . 該細胞が、 生理活性物質が散在した培養液内に含まれていることを特 徴とする請求項 1 8又は 1 9に記載のマイクロインジェクション装置。
3 0 . 生理活性物質が散在した培養液、 および細胞を所定の場所に保持する ための細胞保持手段と、 細胞内に挿入される範囲で 5 0〜5 0 0 n mの直径を有 する針と、 該針に連結された該針の移動を制御するための駆動手段と、 細胞保持 手段内に保持された細胞を観察するための顕微鏡とを有し、 細胞へ生理活性物質 の導入経路となる穴を該針が形成することを特徴とするマイクロインジェクショ ン装置。
3 1 . 請求項 1 8から 3 0の何れかに記載のマイクロインジヱクション装置 を用いてマイクロインジェクションを行うことを含む、 生理活性物質を細胞内に 導入する方法。
PCT/JP2004/005167 2003-04-11 2004-04-09 マイクロインジェクション方法および装置 WO2004092369A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005505385A JP4530991B2 (ja) 2003-04-11 2004-04-09 マイクロインジェクション方法および装置
US10/552,923 US20070087436A1 (en) 2003-04-11 2004-04-09 Microinjection method and device
US12/464,038 US8304240B2 (en) 2003-04-11 2009-05-11 Microinjection method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003107267 2003-04-11
JP2003-107267 2003-04-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10552923 A-371-Of-International 2005-11-11
US12/464,038 Continuation US8304240B2 (en) 2003-04-11 2009-05-11 Microinjection method and device

Publications (1)

Publication Number Publication Date
WO2004092369A1 true WO2004092369A1 (ja) 2004-10-28

Family

ID=33295854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005167 WO2004092369A1 (ja) 2003-04-11 2004-04-09 マイクロインジェクション方法および装置

Country Status (3)

Country Link
US (2) US20070087436A1 (ja)
JP (1) JP4530991B2 (ja)
WO (1) WO2004092369A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151489A (ja) * 2005-12-07 2007-06-21 Fujitsu Ltd マイクロインジェクション装置および接触検出方法
JP2008011741A (ja) * 2006-07-04 2008-01-24 Fujitsu Ltd マイクロインジェクション装置
EP1830367A3 (en) * 2006-03-03 2008-02-13 Olympus Corporation Carbon nanotube probe
WO2008065811A1 (fr) 2006-11-30 2008-06-05 Olympus Corporation Appareil et procédé pour un transfert de gène
JP2008136402A (ja) * 2006-11-30 2008-06-19 Olympus Corp 遺伝子導入装置及び方法
JP2008136400A (ja) * 2006-11-30 2008-06-19 Olympus Corp 遺伝子導入装置及び方法
WO2009075238A1 (ja) * 2007-12-10 2009-06-18 Olympus Corporation チップ駆動装置及びチップ駆動方法
WO2009075234A1 (ja) 2007-12-10 2009-06-18 Olympus Corporation チップ駆動装置
WO2009075236A1 (ja) 2007-12-10 2009-06-18 Olympus Corporation ニードル
WO2009084374A1 (ja) * 2007-12-27 2009-07-09 Olympus Corporation チップ駆動装置及びカンチレバーチップ
WO2010079580A1 (ja) * 2009-01-09 2010-07-15 Ntn株式会社 マイクロインジェクション装置および方法
JP2010532997A (ja) * 2007-07-09 2010-10-21 ブリガム・ヤング・ユニバーシティ 荷電分子の操作のための方法および装置
JP2013504334A (ja) * 2009-12-23 2013-02-07 エッペンドルフ アクチェンゲゼルシャフト ツール動作を生成するためのシステム及び方法
US20140093964A1 (en) * 2011-04-27 2014-04-03 Brigham Young University Delivery of biological materials into cellular organelles
WO2016047114A1 (ja) * 2014-09-25 2016-03-31 パナソニックIpマネジメント株式会社 電気化学測定方法および電気化学測定装置
WO2016108526A1 (en) * 2014-12-28 2016-07-07 Femtofab Co., Ltd. Device for putting material into cell
WO2016108527A1 (en) * 2014-12-28 2016-07-07 Femtofab Co., Ltd. Process for modifying a cell by putting material into the cell
JP2018500044A (ja) * 2014-12-28 2018-01-11 フェムトファブ カンパニー リミテッド 細胞に物質を注入する装置および製造方法(Device for Putting Material into Cell)
WO2023002890A1 (ja) * 2021-07-20 2023-01-26 東洋製罐グループホールディングス株式会社 針状体を利用した細胞内反応の制御手段

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121179A1 (en) * 2007-06-01 2011-05-26 Liddiard Steven D X-ray window with beryllium support structure
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
US8736138B2 (en) * 2007-09-28 2014-05-27 Brigham Young University Carbon nanotube MEMS assembly
JP2009139865A (ja) * 2007-12-10 2009-06-25 Olympus Corp チップ駆動装置
US20100239828A1 (en) * 2009-03-19 2010-09-23 Cornaby Sterling W Resistively heated small planar filament
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
JP4873666B2 (ja) * 2009-06-10 2012-02-08 信越化学工業株式会社 パーフルオロポリエーテル基を有するアクリレート化合物
US7983394B2 (en) * 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
US20110242310A1 (en) * 2010-01-07 2011-10-06 University Of Delaware Apparatus and Method for Electrospinning Nanofibers
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US20120295345A1 (en) * 2011-05-18 2012-11-22 Aten Quentin T Apparatuses and related methods for delivering biological material into a cell
WO2012162546A2 (en) * 2011-05-24 2012-11-29 Brigham Young University Lance device and associated methods for delivering a biological material into a cell
US20130102060A1 (en) * 2011-10-21 2013-04-25 Nanoinjection Technologies, L.L.C. Lance device and associated methods for delivering a biological material into a biological structure
US20130102078A1 (en) * 2011-10-21 2013-04-25 Nanoinjection Technologies, L.L.C. Nanoinjection system dna placement pipette coupler
US8785177B2 (en) 2011-11-04 2014-07-22 The Board Of Trustees Of The University Of Illinois, A Body Corporate And Politic Of The State Of Illinois Methods for nano-mechanoporation
WO2013075131A1 (en) * 2011-11-17 2013-05-23 Brigham Young University Cytoplasm to organelle delivery system and associated methods
WO2015175398A1 (en) * 2014-05-12 2015-11-19 President And Fellows Of Harvard College Systems and methods for making and using sensors, probes, and other devices
AU2017349495B2 (en) * 2016-10-31 2023-09-07 Mekonos Limited Improved sensing for automated biological cell injection
SG11201903797SA (en) 2016-10-31 2019-05-30 Mekonos Ltd An array of needle manipulators for biological cell injection
US11402331B2 (en) 2019-05-08 2022-08-02 City University Of Hong Kong Imaging and manipulation of biological sample
AU2020290475B2 (en) 2019-06-13 2023-08-24 Mekonos Inc. Micro-electro-mechanical-system structures and applications thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112976A (ja) * 1987-10-28 1989-05-01 Hitachi Ltd マイクロインジエクション装置
JPH03119989A (ja) * 1989-10-02 1991-05-22 Toshiro Higuchi 微小インジェクション装置及びそのインジェクション制御方法
JPH05192171A (ja) * 1991-08-08 1993-08-03 Hitachi Ltd マイクロインジェクション法及びその装置
JPH06343478A (ja) * 1993-06-08 1994-12-20 Hitachi Ltd マイクロインジェクション方法及び装置
WO1999046361A1 (en) * 1998-03-12 1999-09-16 Center For Advanced Science And Technology Incubation, Ltd. Techniques for piercing specific site of cell
US6063629A (en) * 1998-06-05 2000-05-16 Wolfgang Lummel Microinjection process for introducing an injection substance particularly foreign, genetic material, into procaryotic and eucaryotic cells, as well as cell compartments of the latter (plastids, cell nuclei), as well as nanopipette for the same
JP2003088383A (ja) * 2001-09-19 2003-03-25 Tokyo Inst Of Technol 生細胞からの生体分子の採取方法
JP2003325161A (ja) * 2002-03-06 2003-11-18 National Institute Of Advanced Industrial & Technology 細胞操作装置及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302523A (en) * 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
JP3368603B2 (ja) * 1992-02-28 2003-01-20 オリンパス光学工業株式会社 遺伝子治療用処置具
JP3119989B2 (ja) 1994-03-08 2000-12-25 株式会社ケーブイケー 止水機能付流路切換水栓
US5753814A (en) * 1994-05-19 1998-05-19 Molecular Imaging Corporation Magnetically-oscillated probe microscope for operation in liquids
JP3312867B2 (ja) * 1996-11-08 2002-08-12 北興化学工業株式会社 植物の形質転換方法および形質転換植物の作出方法
GB9815819D0 (en) * 1998-07-22 1998-09-16 Secr Defence Transferring materials into cells and a microneedle array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112976A (ja) * 1987-10-28 1989-05-01 Hitachi Ltd マイクロインジエクション装置
JPH03119989A (ja) * 1989-10-02 1991-05-22 Toshiro Higuchi 微小インジェクション装置及びそのインジェクション制御方法
JPH05192171A (ja) * 1991-08-08 1993-08-03 Hitachi Ltd マイクロインジェクション法及びその装置
JPH06343478A (ja) * 1993-06-08 1994-12-20 Hitachi Ltd マイクロインジェクション方法及び装置
WO1999046361A1 (en) * 1998-03-12 1999-09-16 Center For Advanced Science And Technology Incubation, Ltd. Techniques for piercing specific site of cell
US6063629A (en) * 1998-06-05 2000-05-16 Wolfgang Lummel Microinjection process for introducing an injection substance particularly foreign, genetic material, into procaryotic and eucaryotic cells, as well as cell compartments of the latter (plastids, cell nuclei), as well as nanopipette for the same
JP2003088383A (ja) * 2001-09-19 2003-03-25 Tokyo Inst Of Technol 生細胞からの生体分子の採取方法
JP2003325161A (ja) * 2002-03-06 2003-11-18 National Institute Of Advanced Industrial & Technology 細胞操作装置及び方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151489A (ja) * 2005-12-07 2007-06-21 Fujitsu Ltd マイクロインジェクション装置および接触検出方法
EP1830367A3 (en) * 2006-03-03 2008-02-13 Olympus Corporation Carbon nanotube probe
US7543482B2 (en) 2006-03-03 2009-06-09 Olympus Corporation Carbon thin line probe
JP2008011741A (ja) * 2006-07-04 2008-01-24 Fujitsu Ltd マイクロインジェクション装置
WO2008065811A1 (fr) 2006-11-30 2008-06-05 Olympus Corporation Appareil et procédé pour un transfert de gène
JP2008136402A (ja) * 2006-11-30 2008-06-19 Olympus Corp 遺伝子導入装置及び方法
JP2008136400A (ja) * 2006-11-30 2008-06-19 Olympus Corp 遺伝子導入装置及び方法
US8343765B2 (en) 2006-11-30 2013-01-01 Olympus Corporation Gene injection apparatus and gene injection method
JP2010532997A (ja) * 2007-07-09 2010-10-21 ブリガム・ヤング・ユニバーシティ 荷電分子の操作のための方法および装置
US10119151B2 (en) 2007-07-09 2018-11-06 Brigham Young University Methods and devices for charged molecule manipulation
US20100323419A1 (en) * 2007-07-09 2010-12-23 Aten Quentin T Methods and Devices for Charged Molecule Manipulation
CN101889075A (zh) * 2007-12-10 2010-11-17 奥林巴斯株式会社
WO2009075234A1 (ja) 2007-12-10 2009-06-18 Olympus Corporation チップ駆動装置
JP2009136263A (ja) * 2007-12-10 2009-06-25 Olympus Corp チップ駆動装置及びチップ駆動方法
WO2009075238A1 (ja) * 2007-12-10 2009-06-18 Olympus Corporation チップ駆動装置及びチップ駆動方法
JP2009136260A (ja) * 2007-12-10 2009-06-25 Olympus Corp チップ駆動装置
JP2009136262A (ja) * 2007-12-10 2009-06-25 Olympus Corp ニードル
WO2009075236A1 (ja) 2007-12-10 2009-06-18 Olympus Corporation ニードル
WO2009084374A1 (ja) * 2007-12-27 2009-07-09 Olympus Corporation チップ駆動装置及びカンチレバーチップ
WO2010079580A1 (ja) * 2009-01-09 2010-07-15 Ntn株式会社 マイクロインジェクション装置および方法
JP2013504334A (ja) * 2009-12-23 2013-02-07 エッペンドルフ アクチェンゲゼルシャフト ツール動作を生成するためのシステム及び方法
US9422520B2 (en) 2009-12-23 2016-08-23 Eppendorf Ag System and method for generating a tool motion
US20140093964A1 (en) * 2011-04-27 2014-04-03 Brigham Young University Delivery of biological materials into cellular organelles
WO2016047114A1 (ja) * 2014-09-25 2016-03-31 パナソニックIpマネジメント株式会社 電気化学測定方法および電気化学測定装置
US10619179B2 (en) 2014-09-25 2020-04-14 Panasonic Intellectual Property Management Co., Ltd. Electrochemical measuring method and electrochemical measuring device
JP6078799B2 (ja) * 2014-09-25 2017-02-15 パナソニックIpマネジメント株式会社 電気化学測定方法および電気化学測定装置
JPWO2016047114A1 (ja) * 2014-09-25 2017-04-27 パナソニックIpマネジメント株式会社 電気化学測定方法および電気化学測定装置
WO2016108526A1 (en) * 2014-12-28 2016-07-07 Femtofab Co., Ltd. Device for putting material into cell
JP2018500044A (ja) * 2014-12-28 2018-01-11 フェムトファブ カンパニー リミテッド 細胞に物質を注入する装置および製造方法(Device for Putting Material into Cell)
US10131867B2 (en) 2014-12-28 2018-11-20 Femtobiomed Inc. Device for putting material into cell
WO2016108527A1 (en) * 2014-12-28 2016-07-07 Femtofab Co., Ltd. Process for modifying a cell by putting material into the cell
WO2023002890A1 (ja) * 2021-07-20 2023-01-26 東洋製罐グループホールディングス株式会社 針状体を利用した細胞内反応の制御手段

Also Published As

Publication number Publication date
US20070087436A1 (en) 2007-04-19
JP4530991B2 (ja) 2010-08-25
US8304240B2 (en) 2012-11-06
JPWO2004092369A1 (ja) 2006-07-06
US20090286319A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
WO2004092369A1 (ja) マイクロインジェクション方法および装置
Wang et al. Single-cell electroporation
JP5103185B2 (ja) 空間的に限定されたエレクトロポレーション方法およびその装置
US8222014B2 (en) Planar electroporation apparatus and method
Stett et al. CYTOCENTERING: A Novel Technique Enabling Automated Cell-by-Cell Patch Clamping with the C YTO P ATCH™ Chip
JP4051440B2 (ja) 細胞操作装置及び方法
Rodolfa et al. Nanoscale pipetting for controlled chemistry in small arrayed water droplets using a double-barrel pipet
US20130118905A1 (en) Biological sample immobilizing apparatus
WO2009128483A1 (ja) 細胞選別装置、およびそれを用いた細胞選別方法
Kang et al. Micro-and nanoscale technologies for delivery into adherent cells
JP2004502936A (ja) 液体中に懸濁された生物学的細胞に電気接触させるための装置及びその方法
KR20100037615A (ko) 대전된 분자 조작을 위한 방법 및 이를 위한 장치
US9487747B2 (en) Cell culture device
JP2022532082A (ja) オルガノイド培養のためのシステムおよび方法
WO2019069931A1 (ja) 細胞培養容器、細胞の取得方法、および細胞の培養方法
WO2005116184A1 (ja) 生体試料操作装置
US20040209352A1 (en) Integrated electrode and cell immobilization device equipped with the integrated electrode
JP2006197872A (ja) 電気穿孔法および電気穿孔用キュベット
PT2136921E (pt) Processo e dispositivo para a manipulação de gotas
KR101362076B1 (ko) 주사 탐침 현미경을 이용하는 전기 천공법 및 전기 천공 장치
Khoo et al. Fate-mapping technique: targeted whole-embryo electroporation of DNA constructs into the germ layers of mouse embryos 7-7.5 days post-coitum
CN210176871U (zh) 电穿孔芯片及电穿孔系统
WO2004092363A1 (ja) 細胞の電気刺激方法
Tao Nanoprobe platform for quantifying gene expression levels in single living cell
CN117517633A (zh) 基于囊泡破裂过程检测的机器人化内面朝外膜片钳技术

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505385

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007087436

Country of ref document: US

Ref document number: 10552923

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10552923

Country of ref document: US