WO2004092269A1 - 電解質組成物および電池 - Google Patents

電解質組成物および電池 Download PDF

Info

Publication number
WO2004092269A1
WO2004092269A1 PCT/JP2004/005370 JP2004005370W WO2004092269A1 WO 2004092269 A1 WO2004092269 A1 WO 2004092269A1 JP 2004005370 W JP2004005370 W JP 2004005370W WO 2004092269 A1 WO2004092269 A1 WO 2004092269A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolyte composition
polymer
lithium
group
Prior art date
Application number
PCT/JP2004/005370
Other languages
English (en)
French (fr)
Inventor
Shouhei Matsui
Yoshihiko Wada
Katsuhito Miura
Masato Tabuchi
Miyuki Terado
Original Assignee
Daiso Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co. Ltd. filed Critical Daiso Co. Ltd.
Priority to JP2005505441A priority Critical patent/JP4640172B2/ja
Priority to CA002522234A priority patent/CA2522234A1/en
Publication of WO2004092269A1 publication Critical patent/WO2004092269A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte composition comprising a lithium salt compound and a cyclic carbonate having an unsaturated group, and more particularly to an electrolyte composition suitable as a material for electrochemical devices such as batteries, capacitors, and sensors.
  • an electrolyte or a polymer electrolyte containing an electrolyte to form a gel is used from the viewpoint of ionic conductivity. It has been pointed out that there is a risk of damage to the equipment due to leakage of the electrolyte, and that the electrolyte reacts with the positive electrode and the negative electrode, resulting in deterioration of electrochemical characteristics.
  • solid electrolytes such as inorganic crystalline substances, inorganic glasses, and organic polymer substances have been proposed.
  • Organic polymer-based substances generally have excellent processability and formability, and the resulting solid electrolyte has flexibility and bendability, and the progress has been made in terms of increasing the degree of freedom in designing devices to be applied. Is expected. However, it is currently inferior to other materials in terms of ion conductivity.
  • Japanese Patent Application Laid-Open No. 9-324114 proposes an attempt to incorporate a specific metal salt into a crosslinked diethyleneglyconolemethyldaricidinoleatethrethylene oxide and apply it to a polymer solid electrolyte.
  • practically sufficient conductivity values have not been obtained.
  • a solid polymer electrolyte containing an aprotic organic solvent or a derivative of a branched polyethylene glycol has been proposed in WO98 / 07772 including the present applicant.
  • lithium metal is used for the electrodes, these electrolytes react with the lithium metal or precipitate dendrites on the surface of the lithium metal, and the electrochemical characteristics are significantly reduced. Disclosure of the invention
  • An object of the present invention is to provide an electrolyte composition having excellent ionic conductivity and electrochemical properties, particularly a polymer electrolyte.
  • the present invention is a.
  • an electrolyte composition comprising at least one of the components (1) and (2).
  • the present invention also provides a battery using the electrolyte composition.
  • the solid electrolyte composition of the present invention is excellent in processability, moldability, mechanical strength, flexibility, heat resistance, and the like, and its electrochemical properties to lithium metal are remarkably improved. Therefore, including solid-state batteries (especially secondary batteries), large-capacity capacitors, It can be applied to display devices, for example, electronic devices such as elect-open chromic displays. Preferred embodiments of the invention
  • the electrolyte composition of the present invention contains at least one of the polymer (1) and the additive (2).
  • the electrolyte composition may include both the polymer (1) and the additive (2).
  • the polymer having an ether bond (1) is a copolymer having a structural unit represented by the following formula (i) and a structural unit represented by the following formula (ii), or the structural unit (i) It is preferable that the copolymer is a copolymer having a structural unit (ii) and a crosslinkable structural unit represented by the following formula (iii). Further, a random copolymer is preferred. -CH 2 -CH -0 +
  • R 1 represents an alkyl group having 1 to 6 carbon atoms, a phenyl group or -C3 ⁇ 40_R 2
  • R 2 represents an alkyl group having 1 to 6 carbon atoms or a fuel group or-(-CH 2 -CH 2 -0_ ) a -R 2 'or -CH [CH 2 -0- (-CH 2 -CH 2 _0-) b -R 2 '] 2
  • R 2 ' is an alkyl group having 1 to 6 carbon atoms
  • a and b is an integer from 0 to 12.
  • R 3 represents (a) a reactive silicon group, (b) a methyl epoxy group, (c) an ethylenically unsaturated group, or (d) a reactive group having a halogen atom]
  • the monomer constituting the structural unit (i) in the polymer (1) is ethylene oxide.
  • the oxysilane compound constituting the structural unit (ii) in the polymer (1) includes an alkylene oxide which may have a substituent, a glycidyl ether compound, and the like.
  • an alkylene oxide which may have a substituent, a glycidyl ether compound, and the like.
  • propylene compounds methyldaricidyl ether, butyl glycidyl / leatenole, styreneoxide, phenyldaricide / leetezole, 1,2-epoxyhexane and other oxysilane compounds, ethylene glycol methyldaricidyl ether, diethylene glycol methyl davisidyl Ether, triethylene glycol methyldaricidyl ether, 1,3_bis (2-methoxetoxy) propane 2-glycidyl ether, 1,3_bis [2- (2-methoxetoxy) ethoxy] propane 2-glycidyl Ether
  • the reactive functional groups of the oxysilane compound forming the crosslinkable structural unit (iii) in the polymer (1) include (a) a reactive silicon group, (b) a methyl epoxy group,
  • Oxysilane compounds having a reactive silicon group (a) include 2-glycidoxyshethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-dalicydoxypropyltrimethoxysilane, and 4-glycidoxybutyl. Methyltrimethoxysilane, 3- (1,2-epoxy) propyltrimethoxysilane, 4- (1,2-epoxy) ptinoletrimethoxysilane, 5- (1,2-epoxy) pentyltrimethoxysilane,
  • Examples thereof include 1- (3,4-epoxycyclohexyl) methylmethinoresimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Of these, 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane are particularly preferred.
  • the oxysilane compounds having a methyl epoxy group (b) include 2,3-epoxypropyl-2 ', 3, -epoxy-2'-methinolepropynoleatenoate, ethylene glycol-2,3-epoxypropyl- 2 ', 3'-epoxy-2'-methylpropyl ether, and diethylene glycol 1,2,3-epoxypropinole 2', 3'-epoxy-2'-methinolepropynoleether, 2-methyl- 1,2,3,4-diepoxybutane, 2-methyl-1,2,4,5-diepoxypentane, 2-methyl-1,2,5,6-diepoxyhexane, hydroquinone-2,3- Epoxypropyl-
  • 2,3-epoxypropyl-2 ', 3'-epoxy-2, -methylpropylether, and ethylene glycol-2,3-epoxypropyl-2', 3, -epoxy-2'- Methyl propyl ether is preferred.
  • Oxysilane compounds having an ethylenically unsaturated group (c) include aryl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, ⁇ -tervinyl darici dinore enoate, cyclohexenyl methyl daricidinoreatenore, ⁇ -vinylinvenezinole glycidyl.
  • Ether phenylphenyldaricidyl ether, bulglycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy -5,9-cyclododecadiene, 3,4-epoxy-1-vinyl bin hexene, 1,2-epoxy-5-cycline otaten, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, cay skin Glycidyl acid, glycidyl crotonate, and glycidyl-4-hexenoate are used.
  • allylic glycidyl ether, glycidyl acrylate, and glycidyl methacrylate are exemplified.
  • Examples of the oxysilane compound having a halogen atom (d) include epibromohydrin, epipodhydrin, and epichlorohydrin.
  • Polymerization of a polymer having an ether bond is a polymerization method for obtaining a multi-component copolymer by a ring-opening reaction of an ethylene oxide portion, and is described in JP-A-63-154736 and JP-A-62-169823. It is performed in the same way as the method.
  • the polymerization reaction can be performed as follows. Each monomer is used in the presence or absence of a solvent using a catalyst system mainly composed of organic aluminum, a catalyst system mainly composed of organic zinc, a catalyst system composed of an organotin-phosphate ester condensate, etc. as a catalyst for ring-opening polymerization.
  • the reaction is carried out at a reaction temperature of 10 to 80 ° C. under stirring to obtain a polyether copolymer.
  • an organic tin-phosphate ester condensate catalyst system is particularly preferred in view of the degree of polymerization or the properties of the copolymer to be produced.
  • the reactive functional groups do not react in the polymerization reaction, and a polymer (1) having a reactive functional group is obtained.
  • the proportion of ethylene oxide constituting the structural unit (i) is 10 to 95% by weight, preferably 20 to 90% by weight, based on the polymer (1) having an ether bond used in the electrolyte composition of the present invention.
  • the amount of the oxysilane compound constituting the structural unit (ii) is 90 to 5% by weight, preferably 80 to 10% by weight, and the amount of the oxirane compound constituting the crosslinkable structural unit (iii) is 0 to 30% by weight, preferably Is 0 ⁇ 20 weight ° / 0 , especially 0.1 ⁇ 20 weight ° / 0 It is.
  • the crosslinked polymer has good ionic conductivity.
  • the lithium salt compound When the amount of ethylene oxide constituting the structural unit (i) is 10% by weight or more, the lithium salt compound is easily dissolved even at a low temperature, so that the ionic conductivity is high.
  • the ion conductivity is improved by lowering the glass transition temperature.
  • the effect of improving the ion conductivity was found to be extremely large.
  • the molecular weight of the polymer used in the polymer electrolyte composition should be in the range of 10 4 to 10 8 , preferably 10 5 to 10 to obtain good processability, moldability, mechanical strength, and flexibility. Those within the range of 10 7 are suitable.
  • crosslinking can be performed by reacting the reactive silicon group with water.
  • tin compounds such as dibutyltin diallate and dibutyltin malate, titanium conjugates such as tetrabutyl titanate and tetrapropyl titanate, aluminum trisacetyl acetate, aluminum trisethyl acetate and aluminum trisethyl acetate
  • An organic metal compound such as an aluminum compound such as aluminum such as tate, or an amine compound such as butylamine and octylamine may be used as a catalyst.
  • polyamines examples include aliphatic polyamines such as diethylenetriamine and dipropylenetriamine, and aromatic polyamines such as 4,4′-diaminodiphenylether, diaminodiphenylinolenolephone, m-phenylenediamine, and xylylenediamine.
  • the amount of the polyamine varies depending on the type of the polyamine, but is usually in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer electrolyte composition excluding the plasticizer (i.e., the additive (2)).
  • acid anhydrides examples include maleic anhydride, phthalic anhydride, methylhexahydroanhydrophthalic acid, tetramethylene maleic anhydride, tetrahydrophthalic anhydride and the like.
  • the amount of acid anhydride to be added depends on the type of acid anhydride, but usually plasticizer Is in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer electrolyte composition excluding the above. Accelerators may be used for these cross-links.
  • Examples of the cross-linking reaction of polyamines include phenol, cresol, and resorcinol, and those for the cross-linking reaction of acid anhydrides include benzyldimethylamine and 2- (dimethylaminoethyl) phenol. , Dimethylaniline and the like.
  • the amount of the accelerator added varies depending on the accelerator, but is usually in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the crosslinking agent.
  • the reactive functional group is an ethylenically unsaturated group (c)
  • a radical initiator selected from organic peroxides, azo compounds, etc., ultraviolet rays, electron beams, etc. Active energy rays are used.
  • a crosslinking agent having silicon hydride can be used.
  • organic peroxides those commonly used for cross-linking, such as ketone peroxides, hydroxyketals, hide peroxides, dialkyl peroxides, disilyl oxides, and peroxide esters, are used. , 1, 1-bis ( ⁇ -butylperoxy)-3,3,5-trimethylcyclohexane, di-t-butylperoxide, t-butyltamyl peroxide, dicumyl peroxide, 2,5-dimethyl- 2,5-di (t-butylperoxy) hexane, benzoyl peroxide, and the like.
  • the amount of the organic peroxide varies depending on the type of the organic peroxide, but is usually in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer electrolyte composition excluding the plasticizer.
  • azo compound azonitrile compounds, azomido compounds, azamidine compounds, and the like, which are usually used for cross-linking applications, are used.
  • Nitrile 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2-azobis (2-methynole-N-phenyllpionamidine) dihydrochloride, 2, 2'- Azobis [2- (2-imidazoline-2-inole) propane], 2,2, -zozobis [2-methyl-N- (2-hydroxyethyl) propionamide],
  • the amount of the azo compound to be added varies depending on the type of the azo compound, but is usually in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer electrolyte composition excluding the plasticizer.
  • active energy rays such as ultraviolet rays
  • glycidyl ether acrylate, glycidyl methacrylate, and glycidyl citrate are particularly preferable.
  • acetophenones such as jetoxyacetophenone, 2-hydroxy-2-methinole-1-phenylpropan-1-one, and phenylketone
  • benzoins such as benzoin and benzoin methinooleatenole.
  • benzophenone, benzophenones such as 4-phenobenzobenzophenone
  • thioxanthones such as 2-isopropylthioxanthone and 2,4-dimethylthioxanthone
  • 3-sulfonyl azide benzoic acid 3-sulfonyl azide benzoic acid
  • 4-sulfonyl azide benzoate Azides such as acids can be used arbitrarily.
  • a compound having at least two silicon hydrides is used.
  • a polysiloxane compound or a polysilane compound is preferable.
  • Examples of the catalyst for the hydrosilylation reaction include transition metals such as palladium and platinum, or compounds and complexes thereof. Also, peroxides, amines and phosphines are used. The most common catalysts are dichlorobis (acetonitrile) palladium (II), chlorotris (triphenylphosphine) rhodium (I), and chloroplatinic acid.
  • crosslinking agents such as polyamines, mercaptoimidazolines, mercaptopyrimidines, thiopereas, and polymercapbutanes are used.
  • polyamines include triethylenetetramine, hexamethylenediamine and the like.
  • mercaptoimidazolines include 2-mercaptoimidazoline, 4-methyl-2-mercaptoimidazoline, and the like.
  • mercaptopyrimidines include 2-mercaptopyrimidine, 4,6-dimethyl-2-mercaptopyrimidine, and the like. No.
  • Examples of the thiorea include ethylene thiorea and dibutyl thiourea.
  • Examples of the polymercaptans include 2-dibutylamino-4,6-dimethylcapto-s-triazine, 2_phenylamino-4,6-dimercaptotriazine, and the like.
  • the amount of the crosslinking agent varies depending on the type of the crosslinking agent, but is usually in the range of 0.1 to 30 parts by weight based on 100 parts by weight of the polymer electrolyte composition excluding the plasticizer. Further, it is effective to further add a metal compound serving as an acid acceptor to the solid polymer electrolyte, in view of the thermal stability of the NOGEN-containing polymer.
  • the metal oxide serving as the acid acceptor examples include oxides, hydroxides, carbonates, carbonates, silicates, borates, and phosphites of Group II metals of the periodic table. And Periodic Table VI Group a metal oxides, basic carbonates, basic carboxylates, basic phosphites, basic sulfites, tribasic sulfates and the like. Specific examples include magnesia, magnesium hydroxide, magnesium carbonate, calcium silicate, calcium stearate, lead gall, tin stearate, and the like.
  • the amount of the metal compound serving as the acid acceptor varies depending on the type, but is usually in the range of 0.1 to 30 parts by weight based on 100 parts by weight of the polymer electrolyte composition excluding the plasticizer.
  • the additive (2) containing an ether compound having an ethylene oxide unit functions as a plasticizer.
  • an additive (2) containing an ether compound having an ethylene oxide unit is added to the polymer electrolyte composition, crystallization of the polymer is suppressed, the glass transition temperature is reduced, and many amorphous phases are formed even at a low temperature. Therefore, the ion conductivity increases. .
  • an additive represented by any of the following formulas (iv) to (vii) is preferable.
  • R 18 is an alkyl group having 1 to 6 carbon atoms, and cr is a number of 0 to 12.
  • the mixing ratio of the additive (2) is arbitrary, but the total of the polymer (1) and the additive (2) is 100 parts by weight.
  • the lithium salt compound (3) used in the present invention is preferably soluble in the mixture of the polymer (1), the additive (2) and the cyclic carbonate (4). In the present invention, the following lithium salt compounds are preferably used.
  • X 2 , 3 ⁇ 4, and Y are electron-withdrawing groups.
  • X 2 , and 3 ⁇ 4 each independently have 1 to 6 carbon atoms A perfluoroalkyl group or a perfluoroalkyl group;
  • Y is a nitro group, a nitroso group, a carboxy group, a carboxy group or a cyano group.
  • 3 ⁇ 4, x 2 and x 3 may be the same or different.
  • the amount of the lithium salt compound (3) used is 0.1 to 100 parts by weight, preferably 100 parts by weight, based on 100 parts by weight of the polymer (1) and the additive (2) in total.
  • the ff is less than 100 parts by weight, the stiffness, the moldability, the mechanical strength and the flexibility of the obtained solid electrolyte are high, and the heat conductivity is also high.
  • Flame retardants include brominated epoxy compounds, halides such as tetrabromobisphenol, chlorinated paraffin, antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphate esters, and polyphosphoric acid.
  • An effective amount (for example, 10 parts by weight or less based on 100 parts by weight of the total of the polymer (1) and the additive (2)) is selected from acid salts and zinc borate.
  • the unsaturated group is generally a carbon-carbon double bond.
  • the cyclic carbonate (4) reacts with the lithium metal of the negative electrode to form a stable film, and suppresses the reaction between the electrolyte and the lithium metal and the growth of dendrites.
  • the cyclic carbonate (4) is preferably biene carbonate or a derivative thereof, or ethylene carbonate having an unsaturated group.
  • bilene carbonate or a derivative thereof is a compound represented by the following formula (viii-1)! / ,.
  • R 21 is H or an alkyl group having 1 to 6 carbon atoms
  • R 22 is an alkenyl group having 1 to 6 carbon atoms or -C3 ⁇ 4R 22 ′
  • R 22 ′ is a carbon atom having 1 to 6 carbon atoms. 6 alkenyl groups.
  • the amount of the cyclic carbonate (4) used is in the range of 1 to 100 parts by weight, preferably 5 to 80 parts by weight, based on 100 parts by weight of the total of the components (1) and (2).
  • the optimal amount is such that the surface of the lithium metal reacts with the cyclic carbonate to form a stable film. If excess cyclic carbonate is present in the polymer electrolyte composition, the electrochemical properties will be reduced.
  • the method for containing the cyclic carbonate (4) is not particularly limited as long as the components (1), (2) and (3) are not crosslinked.
  • the cyclic carbonate (4) is obtained from the components (1), (2) and (3). It is necessary to impregnate the electrolyte compound after crosslinking. If the crosslinking is carried out after the inclusion of the cyclic carbonate (4) before the crosslinking of the electrolyte compound comprising the components (1), (2) and (3), the electrochemical properties are not improved. This is probably because the ethylenically unsaturated group of the cyclic carbonate (4) has disappeared due to crosslinking.
  • the method of impregnating the cyclic carbonate (4) is not particularly limited, but the components (1) and (2)
  • the method for producing the polymer electrolyte composition of the present invention is not particularly limited, but each component may be usually mechanically mixed.
  • the components are mechanically mixed and then cross-linked. good.
  • mechanically mixing various kinds of eders, open rolls, extruders and the like can be arbitrarily used.
  • the amount of water used for the cross-linking reaction is not particularly limited because it is easily caused by moisture in the atmosphere.
  • Cross-linking can also be achieved by passing the mixture through a cold or hot water bath for a short time, or by exposing it to a steam atmosphere.
  • the crosslinking reaction is completed in a temperature of 10 ° C to 200 ° C for 1 minute to 20 hours.
  • an energy ray such as an ultraviolet ray
  • a sensitizer is generally used.
  • the crosslinking reaction is completed in 0.1 second to 1 hour under the temperature condition of 10 ° C. to 150 ° C.
  • the crosslinking reaction is completed within 10 minutes to 10 hours at a temperature of 10 ° C to 180 ° C.
  • the method of mixing the lithium salt conjugate (3) and the additive (2) with the polymer (1) is not particularly limited, but an organic solvent may be used if necessary. Can be. When using an organic solvent, various polar solvents such as tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, dioxane, methylethylketone, and methylisobutylketone are used alone or in combination. Used.
  • the polymer electrolyte composition shown in the present invention is excellent in mechanical strength and flexibility, and can be easily obtained as a large area thin film solid electrolyte by utilizing its properties.
  • a battery can be produced using the polymer electrolyte composition of the present invention.
  • the positive electrode material lithium-manganese composite oxide, lithium cobalt oxide, vanadium pentoxide, olivine-type iron phosphate, polyacetylene, polypyrene, polyaniline, polyphenylene, polyphenylene sulfide, polyphenylene oxide , Polypyrrole, polyfuran, polyazulene, etc.
  • the negative electrode material examples include an intercalation compound in which lithium is occluded between graphite and a carbon layer, lithium metal, lithium-lead alloy, and the like.
  • cations such as metal ions, Cu ions, Ca ions, and Mg ions can be used as a diaphragm for ion electrodes.
  • the polymer electrolyte composition of the present invention is particularly suitable as a material for electrochemical devices such as batteries, capacitors and sensors.
  • the monomer-equivalent composition of the polyether copolymer was determined by using the R spectrum.
  • the molecular weight of the polyether copolymer was measured by gel permeation chromatography, and the molecular weight was calculated in terms of standard polystyrene.
  • Genoleme permeation chromatography was performed using Shimadzu Corporation's RID-6A measuring instrument, Showa Denko KK column Showdex KD-807, KD-806, KD-806M and KD-803, and solvent dimethylformamide. (DMF) at 60 ° C.
  • the glass transition temperature was measured using a DSC 220 manufactured by Seiko Iden Kogyo Co., Ltd., and the heat of fusion was measured using a differential scanning calorimeter DSC 7 manufactured by PerkinElmer, Inc., in a nitrogen atmosphere, in the temperature range of -100 to 80 ° C, and the temperature was raised. Measured at a rate of 10 ° C / min.
  • the sample film was vacuum dried at 30 ° C. for 12 hours in advance to measure the conductivity ⁇ .
  • the conductivity was measured at 10 ° C, the film was sandwiched between SUS electrodes, and the complex impedance method was used, using an AC method with a voltage of 30 mV and a frequency range of 10 Hz to 10 MHz.
  • the stability evaluation with lithium metal in the battery system was determined by a lithium deposition dissolution efficiency test.
  • Nagano Corporation BTS-2004W charge / discharge tester was used for the lithium deposition dissolution efficiency test.
  • a test cell was prepared by using metallic lithium for the copper foil and the counter electrode, and sandwiching the polymer electrolyte composition between the two electrodes. Li was deposited at room temperature at a current density of 0.1 IraA / cm 2 for 10 hours, and then dissolved at a current density of 0.1 mA m 2 to a final voltage of 2.0 V.
  • Lithium deposition The melting angle / efficiency was determined by the following equation.
  • Lithium precipitation dissolution efficiency (%) (time required for dissolution of nth cycle / time required for precipitation of nth cycle) X100 Synthesis example (manufacture of catalyst)
  • the inside of a three-liter glass four-necked flask was replaced with nitrogen, and as a catalyst, 2 g of the condensed substance shown in the preparation example of the catalyst, 100 g of propylene oxide adjusted to a water content of 100 ppm or less, 10 g of glycidyl methacrylate, and a solvent Then, 1,000 g of n-hexane was charged, and 200 g of ethylene oxide was added successively while tracking the polymerization rate of propylene oxide by gas chromatography. The polymerization reaction was stopped with methanol.
  • a 3-liter glass four-necked flask was replaced with nitrogen, and the catalyst was replaced with 2 g of the condensed substance shown in the catalyst production example and adjusted to less than lOppm of water.
  • 100 g, 10 g of arylglycidyl ether, and 1,000 g of n_hexane as a solvent were charged, and 120 g of ethylene oxide was added successively while tracking the polymerization rate of GM by gas chromatography.
  • the polymerization reaction was stopped with methanol. After removing the polymer by decantation, it was dried at 40 ° C under normal pressure for 24 hours, and further reduced at 45 ° C for 10 hours under reduced pressure to obtain 205 g of a polymer.
  • the glass transition temperature of this copolymer was -74 ° C, the weight-average molecular weight was 1.15 million, and the amount of heat generated was 3 J / g. 3 ⁇ 4 ⁇ ⁇ ⁇ ⁇ ⁇
  • the monomer analysis result of this copolymer based on R spectrum was 53 wt% ethylene oxide, 43 wt% GM, and 4 wt ° / aryl glycidyl ether. Met.
  • iv-1 lithium bis (trifluoromethylsulfonyl) imide
  • 1 g an ether compound having an ethylene oxide unit of the above formula (iv-1) was prepared.
  • Example 3 Example 3
  • LiBETI lithium bis (perfluoroethylsulfoninole) imide
  • LiTFSI lithium bis (trifluoromethylsulfonyl) imide
  • Example 8 The electrolyte crosslinked film of Example 3 0.2 wt. /.
  • the results are shown in Table 1.
  • Example 8 The average value of the lithium precipitation dissolution efficiency of the electrolyte composition impregnated with 0.02 g of the ether compound having an ethylene oxide unit of the above formula (vii-1) containing vinylene carbonate was 92%. The results are shown in Table 1.
  • Example 8 The results are shown in Table 1.
  • Example 9 The electrolyte crosslinked film of Example 3 40 wt / Og. /.
  • the results are shown in Table 1.
  • Lithium deposition dissolution efficiency of electrolyte composition impregnated with 0.02 g of ether compound having ethylene oxide unit of the above formula (vii-1) containing 60 wt% of vinylene carbonate with respect to Olg was 91%.
  • the result See Table 1. Comparative Example 1
  • Ethylene oxide / EM / aryl glycidyl ether ternary copolymer lg having a weight-average molecular weight of S1.3 million obtained in Polymerization Example 3 lg, an ether compound having an ethylene oxide unit of the above formula (iv-1) 2 g of an additive containing, 0.7 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) as a lithium salt compound, 0.015 g of benzoyl peroxide as an initiator, and ethylene glycol diacrylate as a crosslinking aid After mixing 0.3 g of the rate and 20 wt% of vinylene carbonate with respect to the electrolyte in 50 g of acetonitrile until uniform, the mixture was uniformly applied to a PET film.
  • LiTFSI lithium bis (trifluoromethylsulfonyl) imide
  • Ethylene oxide / GM / aryl glycidyl ether ternary copolymer lg having a weight average molecular weight of 1.3 million obtained in Polymerization Example 4, an ether compound having an ethylene oxide unit of the above formula (vii-1) 2 g, containing lithium bis (perfluoroethylsulfoninole) imide (LiBETI) 0.8 g as a lithium salt compound, 0.015 g benzoyl peroxide as an initiator, and ethylene glycol diamine as a crosslinking aid After mixing 0.3 g of acrylate and 50 wt% of vinylene carbonate with respect to the electrolyte in 50 g of acetonitrile until uniform, the mixture was uniformly applied to a PET film.
  • LiBETI lithium bis (perfluoroethylsulfoninole) imide
  • Lithium deposition efficiency of the electrolyte composition impregnated with 0.02 g of an athenole compound having an ethylene oxide unit of the above formula (vii-1) containing 120 wt% of vinylene carbonate with respect to Olg in the electrolyte crosslinked film of Example 2 was 71%. The results are shown in Table 1.
  • a secondary battery was formed using the electrolyte composition obtained in Example 6, a lithium metal foil as a negative electrode, and lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material.
  • Lithium copartate was prepared by mixing predetermined amounts of lithium carbonate and cobalt carbonate powder and then calcining at 900 ° C for 5 hours. Next, this was ground, and 5 parts by weight of acetylene black and 10 parts by weight of the polymer obtained in Polymerization Example 2 were added to 85 parts by weight of the obtained lithium cobaltate, and lithium bis (trifluoromethylsulfonyl) was used. After adding 5 parts by weight of imid (LiTFSI) and mixing with a roll, press molding at a pressure of 30 MPa Positive electrode of the pond.
  • LiTFSI imid
  • Example 6 The electrolyte composition obtained in Example 6 was sandwiched between a lithium metal foil and a positive electrode plate, and the charge / discharge characteristics of the battery were examined at room temperature while applying a pressure of 1 MPa so that the interface was in close contact. Charging was performed at a constant current and voltage up to 4.2 V, and discharging was performed at a constant current. The discharge current was 0.1 mA m 2 , and charging was performed at 0.1 mA / cm 2 . The discharge capacity after 100 cycles of charge and discharge showed 90% of the initial capacity.
  • Example 11 The discharge capacity after 100 cycles of charge and discharge showed 90% of the initial capacity.
  • Example 7 Using the electrolyte composition obtained in Example 7, a lithium metal foil as the negative electrode, and the positive electrode prepared in Example 10, a secondary battery was prepared, and the charge / discharge characteristics were examined in the same manner. The discharge capacity after charge / discharge of 100 ital showed 91% of the initial capacity. Comparative Example 5
  • Example 1 2 Using the electrolyte composition obtained in Comparative Example 3, a lithium metal foil as a negative electrode, and the positive electrode prepared in Example 10, a secondary battery was prepared, and charge / discharge characteristics were examined in the same manner. The discharge capacity after charge / discharge of 100 tals was 78% of the initial capacity.
  • Example 1 2 Using the electrolyte composition obtained in Comparative Example 3, a lithium metal foil as a negative electrode, and the positive electrode prepared in Example 10, a secondary battery was prepared, and charge / discharge characteristics were examined in the same manner. The discharge capacity after charge / discharge of 100 tals was 78% of the initial capacity.
  • Example 1 2 Using the electrolyte composition obtained in Comparative Example 3, a lithium metal foil as a negative electrode, and the positive electrode prepared in Example 10, a secondary battery was prepared, and charge / discharge characteristics were examined in the same manner. The discharge capacity after charge / discharge of 100 tals was 78% of the initial capacity.
  • Example 1 2 Using the electrolyte composition obtained in Comparative Example 3,
  • Example 18 Using 0.060 g (50 wt%) of vinylene carbonate and 0.060 g (50 wt%) of an ether compound having an ethylene oxide unit represented by the above formula (vii-1), and using the same lithium electrolyte as in Example 12 except for the above. The average value of the precipitation dissolution efficiency was 91%. The results are shown in Table 2.
  • Example 18
  • the average value was obtained by averaging the values of the lithium precipitation dissolution efficiency up to the 20th cycle.
  • Example 13 A porous separator impregnated with the electrolyte of Example 3 (E25MMS thickness 25 ⁇ , manufactured by Tonen Tapils Co., Ltd., porosity 38%), a lithium metal foil as a negative electrode, and lithium cobalt oxide as a positive electrode active material were used. To form a secondary battery.
  • Lithium conolate was prepared by mixing predetermined amounts of lithium carbonate and cobalt carbonate powder and then calcining at 900 ° C for 5 hours. (7) The mixture is ground on a fire, 4 parts by weight of acetylene black and 6 parts by weight of polyvinylidene fluoride are added to 90 parts by weight of the obtained lithium cobaltate, mixed with a roll, and press-molded at a pressure of 30 MPa. Used as the positive electrode of the battery.
  • Example 20 The porous separator impregnated with the electrolyte of Example 13 was sandwiched between a lithium metal foil and a positive electrode plate, and the charge / discharge characteristics of the battery were examined at 25 ° C while applying IMPa pressure so that the interface was in close contact. Charging current density 0. 1 mA N m 2, line Le , discharged at a constant current and constant voltage up to the upper limit voltage 4. 2V was performed at a constant current of m 2 N current density 0. 1 mA. The discharge capacity after 100 cycles of charge and discharge was 86% of the initial capacity.
  • Example 20 The porous separator impregnated with the electrolyte of Example 13 was sandwiched between a lithium metal foil and a positive electrode plate, and the charge / discharge characteristics of the battery were examined at 25 ° C while applying IMPa pressure so that the interface was in close contact. Charging current density 0. 1 mA N m 2, line Le , discharged at a constant current and constant voltage up to the upper limit voltage 4. 2V was performed at
  • a secondary battery was prepared using the porous separator impregnated with the electrolyte of Example 15, a lithium metal foil as the negative electrode, and the positive electrode prepared in Example 19, as in Example 19.
  • the charge and discharge characteristics were examined in the same manner.
  • the discharge capacity after 100 cycles of charge / discharge showed 88% of the initial capacity. Comparative Example 9
  • a secondary battery was prepared using the porous separator impregnated with the electrolyte of Comparative Example 7, a lithium metal foil as the negative electrode, and the positive electrode prepared in Example 19, and the charge / discharge characteristics were examined in the same manner as in Example 19 Was.
  • the discharge capacity after 100 cycles of charge and discharge showed 64% of the initial capacity. Comparative Example 10
  • a secondary battery was prepared using the porous separator impregnated with the electrolyte of Comparative Example 8, a lithium metal foil as the negative electrode, and the positive electrode prepared in Example 19, and the charge / discharge characteristics were examined in the same manner as in Example 19 Was.
  • the discharge capacity after 100 cycles of charging and discharging represents 43% of the initial capacity.
  • a lithium salt compound 0.7 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) is mixed in 50 g of acetonitrile until uniform, and both sides are coated on a porous film having a thickness of 20 ⁇ . Drying under reduced pressure at 12 ° C for 12 hours gave a 63 ⁇ 4mi electrolyte film including a porous membrane.
  • Example 22 1 g of an ethylene oxide / propylene oxide / glycidyl methacrylate terpolymer having a weight average molecular weight of 1.7 million obtained in Polymerization Example 2, containing an ether compound having an ethylene oxide unit of the above formula (iv-1) 2 g of additive, 0.7 g of LiTFSI as lithium chloride, 0.015 g of benzoyl peroxide as initiator, and 0.3 g of ethylene glycol diacrylate as a cross-linking aid are mixed in 50 g of acetonitrile until uniform. After that, it was uniformly applied to a polyethylene terephthalate resin (PET) film. Thereafter, the resultant was dried under reduced pressure at 30 ° C. for 12 hours, and further heated at 100 ° C. for 3 hours under a nitrogen atmosphere to obtain a 50 ⁇ ⁇ ⁇ electrolyte crosslinked film.
  • PET polyethylene terephthalate resin
  • Example 21 6 wt% with respect to the electrolyte film O. Olg of 1. /.
  • Example 26
  • Example 22 Crosslinked electrolyte film excluding PET film of Example 2 0.Ether compound having an ethylene oxide unit of the above formula (vii-1) containing 12% by weight of vinylethylene carbonate and 1 mol / kg of LiTFSI based on Olg. The average value of the lithium precipitation dissolution efficiency of the polymer electrolyte composition impregnated with 02 g was 82%. The results are shown in Table 3.
  • Example 2 7
  • Example 23 Electrolyte crosslinked film of 3. 18 wt ° / Og to Olg.
  • the results are shown in Table 3.
  • Example 24 Electrolyte cross-linked film of 4. 20 wt ° / with respect to Olg. The average value of the lithium precipitation dissolution efficiency of the polymer electrolyte composition impregnated with 0.02 g of the ether compound having ethylene oxide units of the above formula (vii-1) containing Bier ethylene carbonate was 93%. The results are shown in Table 3.
  • Example 24 The electrolyte crosslinked film of 4 O / Olg 50wt ° /. The average value of the lithium precipitation dissolution efficiency of a polymer electrolyte composition impregnated with 0.02 g of an ethylene oxide compound having an ethylene oxide unit of the above formula (vii-1) containing butyl ethylene carbonate was 90%. The results are shown in Table 3. Comparative Example 1 1
  • Example 22 A polymer electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of the above formula (vii-1) containing no vinyl ethylene carbonate with respect to the electrolyte crosslinked film O. Olg of 2 The average value of the lithium precipitation dissolution efficiency was 62%. The results are shown in Table 3. Comparative Example 1 2
  • Example 23 A polymer impregnated with 0.02 g of an ether compound having an ethylene oxide unit of the above formula (vii-1) containing 20% by weight of ethylene carbonate based on the electroporous crosslinked film O. Olg of 3 The average value of the lithium deposition dissolution efficiency of the electrolyte composition was 58%. The results are shown in Table 3. Comparative Example 1 3
  • Example 23 An ether compound having an ethylene oxide unit of the above formula (vii-1) containing 20 wt% of propylene carbonate with respect to the electrolyte crosslinked film O. Olg of 3
  • Example 22 A polymer impregnated with 0.02 g of an ether compound having an ethylene oxide unit of the above formula (vii-1) containing 120 wt% of ethylene oxide / bottle with respect to 0.01 g of the electrolyte crosslinked film of 2
  • the average lithium deposition efficiency of the electrolyte composition was 65%.
  • Table 3 The results are shown in Table 3.
  • a secondary battery was formed using the polymer electrolyte composition obtained in Example 26, a lithium metal foil as a negative electrode, and lithium cobalt oxide (LiCo02) as a positive electrode active material.
  • Lithium conoretate was prepared by mixing predetermined amounts of lithium carbonate and cobalt carbonate powder and then calcining at 900 ° C for 5 hours. This was pulverized on fire, and 5 parts by weight of acetylene black, 10 parts by weight of the polymer obtained in Polymerization Example 2 and 5 parts by weight of LiTFSI were added to 85 parts by weight of the obtained lithium cobaltate, and mixed with a roll. Press forming was performed at a pressure of 30 MPa to obtain a positive electrode of the battery.
  • Example 26 The polymer electrolyte composition obtained in Example 26 was sandwiched between a lithium metal foil and a positive electrode plate, and the charge / discharge characteristics of the battery were examined at room temperature while applying a pressure of 1 MPa so that the interface was in close contact. Charging was performed at a constant current and voltage up to 4.2 V, and discharging was performed at a constant current. The discharge current was 0.1 mA / cm 2 , and charging was performed at 0.1 mA m 2 . The discharge capacity after 100 cycles of charge and discharge showed 90% of the initial capacity.
  • Example 3 1 The discharge capacity after 100 cycles of charge and discharge showed 90% of the initial capacity.
  • Example 15 Using the polymer electrolyte composition obtained in Example 28, the lithium metal foil as the negative electrode, and the positive electrode prepared in Example 30, a secondary battery was prepared, and the charge / discharge characteristics were examined in the same manner. The discharge capacity after 100 cycles of charge and discharge showed 91% of the initial capacity. Comparative Example 15
  • Example 3 2 Using the polymer electrolyte composition obtained in Comparative Example 11, a lithium metal foil as a negative electrode, and the positive electrode prepared in Example 30, a secondary battery was prepared, and the charge / discharge characteristics were similarly examined. The discharge capacity after 100 cycles of charge and discharge showed 80% of the initial capacity.
  • Example 3 2 Using the polymer electrolyte composition obtained in Comparative Example 11, a lithium metal foil as a negative electrode, and the positive electrode prepared in Example 30, a secondary battery was prepared, and the charge / discharge characteristics were similarly examined. The discharge capacity after 100 cycles of charge and discharge showed 80% of the initial capacity.
  • Example 3 2 Using the polymer electrolyte composition obtained in Comparative Example 11, a lithium metal foil as a negative electrode, and the positive electrode prepared in Example 30, a secondary battery was prepared, and the charge / discharge characteristics were similarly examined. The discharge capacity after 100 cycles of charge and discharge showed 80% of the initial capacity.
  • Example 3 2 Using the polymer electrolyte composition obtained in Comparative Example 11, a lithium metal foil as
  • Example 3 5 The same electrolyte as in Example 32 was used except that 0.012 g (10 wt%) of vinylene ethylene carbonate and 0.108 g (90 wt%) of an ether compound having an ethylene oxide unit represented by the above formula (iv-2) were used. The average value of the lithium precipitation dissolution efficiency was 93%. The results are shown in Table 4.
  • Example 3 5 The same electrolyte as in Example 32 was used except that 0.012 g (10 wt%) of vinylene ethylene carbonate and 0.108 g (90 wt%) of an ether compound having an ethylene oxide unit represented by the above formula (iv-2) were used. The average value of the lithium precipitation dissolution efficiency was 93%. The results are shown in Table 4.
  • Example 3 5 The same electrolyte as in Example 32 was used except that 0.012 g (10 wt%) of vinylene ethylene carbonate and 0.108 g (90 wt%) of an ether compound having an ethylene oxide unit represented by the above formula (iv-
  • Example 3 7 Using 0.024 g (20 wt%) of butyl ethylene carbonate and 0.096 g (80 wt%) of an ether compound having an ethylene oxide unit of the above formula (vii_l), and otherwise dissolving lithium in the electrolyte in the same manner as in Example 35 The average efficiency was 89%. The results are shown in Table 4.
  • Example 3 7 Using 0.024 g (20 wt%) of butyl ethylene carbonate and 0.096 g (80 wt%) of an ether compound having an ethylene oxide unit of the above formula (vii_l), and otherwise dissolving lithium in the electrolyte in the same manner as in Example 35 The average efficiency was 89%. The results are shown in Table 4.
  • Example 3 7 Using 0.024 g (20 wt%) of butyl ethylene carbonate and 0.096 g (80 wt%) of an ether compound having an ethylene oxide unit of the above formula (vii_l), and otherwise dissolving lithium in the electrolyte in the same manner as
  • the average value was obtained by averaging the values of lithium deposition and dissolution efficiency up to the 20th cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Abstract

(1)必要により存在する、エーテル結合を有するポリマーと、(2)必要により存在する、エチレンオキシド単位を有するエーテル化合物からなる添加剤と、(3)リチウム塩化合物と、(4)不飽和基を有する環状カーボネートからなることを特徴とする電解質組成物は、加工性、成形性、機械的強度、柔軟性や耐熱性などに優れており、かつそのリチウム金属への電気化学的特性は著しく改善されている。

Description

明 細 書 電解質組成物および電池 技術分野
本発明は、 リチウム塩化合物と不飽和基を有する環状カーボネートを含んでな る電解質組成物に関し、 特に、 電池、 キャパシター、 センサー等の電気化学デバ イス用材料として好適な電解質組成物に関する。 背景技術
従来、 電池、 キャパシター、 センサーなどの電気化学デバイスを構成する電角军 質は、 イオン伝導性の点から電解液または電解液を含有させてゲル状にしたポリ マー電解質が用いられているが、 電解液の液漏れによる機器の損傷の恐れがある こと、 また電解液が正極や負極と反応して、 電気化学的特性が低下する等の問題 点が指摘されている。 これに対し無機結晶性物質、 無機ガラス、 有機高分子系物 質などの固体電解質が提案されている。 有機高分子系物質は一般に加工性、 成形 性に優れ、 得られる固体電解質が柔軟性、 曲げ加工性を有し、 応用されるデバィ スの設計の自由度が高くなることなどの点からその進展が期待されている。 しか しながら、 イオン伝導性の面では他の材質より劣っているのが現状である。
エチレンォキシドの単独重合体とアルカリ金属イオン系におけるイオン伝導性 の発見より、 高分子固体電解質の研究は活発に行われるようになった。 その結果、 ポリマーマトリックスとしては、 その運動性の高さ及ぴ金属カチオンの溶解性の 点でポリエチレンォキシドなどのポリエーテルが最も有望と考えられている。 ィ オンの移動はポリマーの結晶部ではなくァモルフ了ス部分で起こることが予測さ れている。 それ以来、 ポリエチレンォキシドの結晶性を低下させるために、 種々 のエポキシドとの共重合が行われてきている。 米国特許 USP 4, 818, 644号公報に はェチレンォキシドとメチルダリシジルエーテノレとの共重合体からなる固体電解 質が示されている。 しかしながら、 いずれもイオン伝導度は必ずしも満足のいく ものではなかった。 このため、 ジエチレングリコーノレメチルダリシジノレエーテスレーエチレンォキシ ド架橋体に特定のアル力リ金属塩を含有させて高分子固体電解質に応用する試み が特開平 9- 324114号公報に提案されているが、 実用的に充分な伝導度の値は得 られていない。 このィオン伝導度を更に向上させるために、 非プロトン性有機溶 媒または分岐型ポリエチレングリコールの誘導体などを含む高分子固体電解質も 本出願人を含む W098/07772号公報に提案されている。 し力 し、 これらの電解質 は電極にリチウム金属を用いた場合、 リチウム金属と反応あるいはリチウム金属 の表面にデンドライドが析出し、 電気化学的特性が著しく低下する。 発明の開示
(発明が解決しようとする技術的課題)
本発明の目的は、 イオン伝導性および電気化学特性が優れた電解質組成物、 特 にポリマー電解質を提供することにある。
(課題を解決するための手段)
本発明は、
( 1 ) 必要により存在する、 エーテル結合を有するポリマーと、
( 2 ) 必要により存在する、 エチレンォキシド単位を有するエーテル化合物か らなる添加剤と、
( 3 ) リチウム塩ィ匕合物と、
( 4 ) 不飽和基を有する環状カーボネート
からなり、 成分 (1 ) および (2 ) の少なくとも一方が存在することを特徴とす る電解質組成物を提供する。
加えて、 本発明は、 前記電解質組成物を用いた電池をも提供する。
本発明の電解質組成物を用いると、 リチウム金属に安定な高性能の電池が得ら れることも見いだした。
(従来技術より有利な効果)
本発明の固体電解質組成物は加工性、 成形性、 機械的強度、 柔軟性や耐熱性な どに優れており、 かつそのリチウム金属への電気化学的特性は著しく改善されて いる。 したがって固体電池 (特に、 二次電池) をはじめ、 大容量コンデンサー、 表示素子、 例えばエレクト口クロミックディスプレイなど電子機器へ応用できる。 発明の好ましい態様
本究明の電解質組成物は、 ポリマー ( 1 ) および添加剤 ( 2 ) の少なくとも一 方を含む。 電解質組成物は、 ポリマー ( 1 ) と添加剤 ( 2) の両方を含んでよい。 エーテル結合を有するポリマー ( 1 ) は、 下記式 (i) で表される構成単位と、 下記式 (ii) で表される構成単位とを有してなる共重合体、 あるいは構成単位 (i) 、 構成単位 (ii)、 および下記式 (iii) で表される架橋可能な構成単位を有 してなる共重合体であることが好ま iしい。 更にはランダム共重合体の方が好まし い。 - CH2-CH -0 +
Figure imgf000004_0001
[式中、 R1は炭素数 1〜6のアルキル基、 フエニル基または - C¾0_R2を表し、 R2 は炭素数 1〜6のアルキル基またはフエエル基または- (- CH2- CH2- 0_) a-R2'または- CH[CH2- 0- (- CH2- CH2_0-)b- R2']2を表し、 R2'は炭素数 1~6のアルキル基、 aおよび b は 0〜12の整数である。 ]
Figure imgf000004_0002
[式中、 R3は (a) 反応性ケィ素基、 (b) メチルエポキシ基、 (c) エチレン 性不飽和基または (d) ハ口ゲン原子を有する反応性基を表す]
ポリマー (1 ) における構成単位 (i) を構成する単量体は、 エチレンォキシ ドである。
ポリマー (1 ) における構成単位 (ii) を構成するォキシラン化合物には、 置 換基を有していてもよいアルキレンォキサイド、 グリシジルエーテル化合物など がある。 具体的には、 プロピレンォキシド、 メチルダリシジルエーテル、 ブチル グリシジ /レエーテノレ、 スチレンォキシド、 フエニルダリシジ /レエーテゾレ、 1, 2-ェ ポキシへキサンなどのォキシラン化合物、 エチレングリコールメチルダリシジル エーテル、 ジエチレングリコールメチルダ Vシジルエーテル、 トリエチレングリ コールメチルダリシジルエーテル、 1, 3_ビス (2-メ トキシェトキシ)プロパン 2 - グリシジルエーテル、 1, 3_ビス [2- (2 -メ トキシェトキシ)ェトキシ]プロパン 2-グ リシジルエーテルが挙げられる。
ポリマー ( 1 ) における架橋可能な構成単位 (iii) を形成するォキシラン化 合物の反応性官能基は、 (a ) 反応性ケィ素基、 (b ) メチルエポキシ基、
( c ) エチレン性不飽和基、 または (d ) ハロゲン原子である。
反応性ケィ素基 (a ) を有するォキシラン化合物には、 2 -グリシドキシェチル トリメ トキシシラン、 3-グリシドキシプロピルメチルジメ トキシシラン、 3 -ダリ シドキシプロピルトリメトキシシラン、 4-グリシドキシプチルメチルトリメ トキ シシラン、 3- (1, 2—エポキシ)プロビルトリメ トキシシラン、 4- (1,2—エポキシ) プチノレトリメトキシシラン、 5- (1, 2—エポキシ)ペンチルトリメ トキシシラン、
1 - (3, 4-エポキシシク口へキシル)メチルメチノレジメ トキシシラン、 2- (3, 4-ェポ キシシクロへキシル)ェチルトリメ トキシシランなどが挙げられる。 これらの中 で、 3-グリシドキシプロピルトリメトキシシランおよび 3-グリシドキシプロピル メチルジメ トキシシランが特に好ましい。
メチルエポキシ基 (b ) を有するォキシラン化合物には、 2, 3-エポキシプロピ ル -2', 3, -エポキシ- 2' -メチノレプロピノレエーテノレ、 エチレングリコール- 2, 3 -ェポ キシプロピル- 2', 3' -エポキシ- 2' -メチルプロピルエーテル、 及びジエチレング リコール一 2, 3 -エポキシプロピノレー 2' , 3' -エポキシ—2'—メチノレプロピノレエ一テル、 2-メチル -1, 2, 3, 4 -ジエポキシブタン、 2 -メチル- 1, 2, 4, 5 -ジエポキシペンタン、 2 -メチル- 1, 2, 5, 6-ジエポキシへキサン、 ヒドロキノン- 2, 3 -エポキシプロピル-
2, , 3' -エポキシ- 2, -メチルプロピルエーテル、 カテコール- 2, 3 -エポキシプロピ ル -2', 3, -エポキシ- 2' -メチルプロピルエーテルなどが挙げられる。
その中でも、 特に 2, 3-エポキシプロピル -2' , 3' -エポキシ- 2, -メチルプロピル エーテル、 及びエチレングリコール- 2, 3-エポキシプロピル- 2', 3, -エポキシ - 2' - メチルプロピルエーテルが好ましい。
エチレン性不飽和基 (c ) を有するォキシラン化合物には、 ァリルグリシジル エーテル、 4-ビニルシクロへキシルグリシジルエーテル、 α-テルビニルダリシ ジノレエーテノレ、 シクロへキセニルメチルダリシジノレエーテノレ、 ρ-ビニノレべンジノレ グリシジルエーテル、 了リルフェニルダリシジルエーテル、 ビュルグリシジルェ 一テル、 3, 4-エポキシ- 1-ブテン、 3, 4-エポキシ- 1-ペンテン、 4, 5-エポキシ - 2- ペンテン、 1, 2-エポキシ- 5, 9-シクロドデカジエン、 3, 4-エポキシ- 1 -ビニ ンク 口へキセン、 1, 2-エポキシ- 5-シク口オタテン、 ァクリノレ酸グリシジル、 メタク リル酸グリシジル、 ソルビン酸グリシジル、 ケィ皮酸グリシジル、 クロトン酸グ リシジル、 グリシジル- 4-へキセノエートが用いられる。
好ましくは、 ァリルグリシジルエーテル、 アタリル酸グリシジル、 メタクリノレ 酸グリシジルが挙げられる。
ハロゲン原子 ( d ) を有するォキシラン化合物には、 ェピブロモヒドリン、 ェ ピョードヒドリン、 ェピクロロヒドリンなどが挙げられる。
エーテル結合を有するポリマーの重合法は、 エチレンオキサイド部分の開環反 応により多元共重合体を得る重合法であり、 特開昭 63- 154736号公報および特開 昭 62- 169823号公報に記載の方法と同様にして行われる。
重合反応は次のようして行える。 開環重合用触媒として有機アルミニウムを主 体とする触媒系、 有機亜鉛を主体とする触媒系、 有機錫 -リン酸エステル縮合物 触媒系などを用いて、 各モノマーを溶媒の存在下又は不存在下、 反応温度 10~ 80°C、 撹拌下で反応させることによってポリエーテノレ共重合体が得られる。 なか でも、 重合度、 あるいは作られる共重合体の性質などの点から、 有機錫-リン酸 エステル縮合物触媒系が特に好ましい。 重合反応において反応性官能基は反応せ ず、 反応性官能基を有するポリマー (1 ) が得られる。
本発明の電解質組成物に使われるエーテル結合を有するポリマー ( 1 ) に対し て、 構成単位 (i) を構成するエチレンォキシドの割合は 10〜95重量%、 好まし くは 20〜90重量%、 構成単位 (ii) を構成するォキシラン化合物の量は 90〜5 重量%、 好ましくは 80〜10重量%、 架橋可能な構成単位 (iii)を構成するォキシ ラン化合物は 0〜30重量%、 好ましくは 0〜20重量 °/0、 特に 0 . 1〜 2 0重量 °/0 である。
架橋可能な構成単位 (iii)を構成するォキシラン化合物の量が 30重量%以下で ある場合に、 架橋されたポリマーは、 イオン伝導度が良好である。
構成単位 (i) を構成するエチレンォキシドの量が 10重量%以上である場合に、 低温でもリチウム塩化合物が溶けやすいために、 イオン伝導度が高い。
一般にガラス転移温度を下げることによりイオン伝導性が向上することは知ら れているが、 本発明のポリマー電解質組成物の場合はィオン伝導性の向上効果は 格段に大きいことがわかった。
ポリマー電解質組成物に使われるポリマーの分子量は、 良好な加工性、 成形性、 機械的強度、 柔軟性を得るために、 重量平均分子量 104〜108の範囲内、 好まし くは 105~107の範囲内のものが適する。
反応性官能基が反応性ケィ素基 (a ) であるポリマー (1 ) の架橋方法として は、 反応性ケィ素基と水との反応によって架橋できる。 反応性を高めるには、 ジ プチルスズジラゥレート、 ジブチルスズマレート等のスズ化合物、 テトラブチル チタネート、 テトラプロピルチタネート等のチタンィ匕合物、 アルミニウムトリス ァセチルァセトナート、 アルミニウムトリスェチルァセトァセテート等のアルミ ニゥム等のアルミニウム化合物などの有機金属化合物、 あるいは、 ブチルァミン、 ォクチルァミン等のァミン系化合物などを触媒として用いても良い。
反応性官能基がメチルエポキシ基 (b ) であるポリマー (1 ) の架橋方法にお いてはポリアミン類、 酸無水物類などが用いられる。
ポリアミン類としては、 ジエチレントリアミン、 ジプロピレントリアミンなど の脂肪族ポリアミン、 4, 4' -ジアミノジフエ二ルエーテル、 ジアミノジフエ二ノレ スノレホン、 m-フエ二レンジァミン、 キシリレンジァミンなどの芳香族ポリアミン 等が挙げられる。 ポリアミンの添加量はポリアミンの種類により異なるが、 通常、 可塑剤 (即ち、 添加剤 (2 ) ) を除いたポリマー電解質組成物 100重量部に対し て 0. 1〜10重量部の範囲である。
酸無水物類としては、 無水マレイン酸、 無水フタル酸、 メチルへキサヒドロ無 水フタル酸、 テトラメチレン無水マレイン酸、 テトラヒドロ無水フタル酸等が挙 げられる。 酸無水物類の添加量は酸無水物の種類により異なるが、 通常、 可塑剤 を除いたポリマー電解質組成物 100重量部に対して 0. 1〜10重量部の範囲である。 これらの架橋には促進剤を用いても良く、 ポリアミン類の架橋反応にはフエノー ノレ、 クレゾール、 レゾルシンなどがあり、 酸無水物類の架橋反応にはベンジルジ メチルァミン、 2- (ジメチルアミノエチル)フエノール、 ジメチルァニリンなどが ある。 促進剤の添加量は促進剤により異なるが、 通常、 架橋剤 100重量部に対し て 0. 1〜10重量部の範囲である。
反応性官能基がエチレン性不飽和基 ( c ) であるポリマー ( 1 ) の架橘方法と しては、 有機過酸化物、 了ゾ化合物等から選ばれるラジカル開始剤、 紫外線、 電 子線等の活性エネルギー線が用いられる。 更には、 水素化ケィ素を有する架橋剤 を用いる事もできる。
有機過酸化物としては、 ケトンパーォキサイド、 パ一ォキシケタール、 ハイド 口パーォキサイド、 ジアルキルパーォキサイド、 ジァシルバーォキサイド、 パー ォキシエステル等、 通常架橋用途に使用されているものが用いられ、 1, 1 -ビス (ΐ -ブチルパーォキシ) - 3, 3, 5-トリメチルシク口へキサン、 ジ -t-ブチルパーォキ サイド、 t -ブチルタミルパーオキサイド、 ジクミルパーオキサイド、 2, 5-ジメチ ル -2, 5-ジ(t -ブチルパーォキシ)へキサン、 ベンゾィルパーオキサイド、 等が挙 げられる。 有機過酸化物の添加量は有機過酸ィヒ物の種類により異なるが、 通常、 可塑剤を除いたポリマー電解質組成物 100重量部に対して 0. 1〜10重量部の範囲 内である。
ァゾ化合物としてはァゾニトリル化合物、 ァゾァミド化合物、 ァゾァミジン化 合物等、 通常架橋用途に使用されているものが用いられ、 2, 2,-ァゾビスイソブ チロニトリル、 2, 2' -ァゾビス(2-メチルブチロニトリル)、 2, 2' -ァゾビス(4 -メ トキシ- 2, 4 -ジメチルバレロニトリノレ)、 2, 2-ァゾビス(2-メチノレ- N-フエニルプ 口ピオンァミジン)二塩酸塩、 2, 2' -ァゾビス [2- (2-ィミダゾリン- 2 -ィノレ)プロパ ン]、 2, 2, -了ゾビス [2-メチル- N - (2-ヒドロキシェチル)プロピオンァミド]、
2, 2' -ァゾビス(2-メチルプ口パン)、 2, 2' -ァゾビス [2- (ヒドロキシメチル)プロ ピオ二トリル]等が挙げられる。 ァゾ化合物の添加量はァゾ化合物の種類により 異なるが、 通常、 可塑剤を除いたポリマー電解質組成物 100重量部に対して 0. 1 〜10重量部の範囲内である。 紫外線等の活性エネルギー線照射による架橋においては、 アタリル酸グリシジ ルエーテル、 メタタリル酸グリシジルエーテル、 ケィ皮酸グリシジルエーテルが 特に好ましい。 また、 増感助剤としてジェトキシァセトフエノン、 2 -ヒドロキ シ- 2-メチノレ- 1 -フエニルプロパン- 1-オン、 フエ二ルケトン等のァセトフエノン 類、 ベンゾイン、 ベンゾインメチノレエーテノレ等のベンゾインエーテノレ類、 ベンゾ フエノン、 4 -フエ-ノレベンゾフエノン等のベンゾフエノン類、 2-ィソプロピルチ 才キサントン、 2, 4-ジメチルチオキサントン等のチォキサントン類、 3 -スルホ二 ルアジド安息香酸、 4 -スルホニルアジド安息香酸等のアジド類等を任意に用いる ことができる。
架橋助剤としてエチレングリコールジアタリレート、 エチレングリコールジメ タクリ レート、 オリゴエチレングリコールジアタリレート、 オリゴエチレングリ コールジメタクリレート、 ァリルメタリクレート、 ァリルァクリレート、 ジァリ ズレマレート、 トリァリノレイソシァヌレート、 ビスフエ二ノレマレイミ ド、 無水マレ ィン酸等を任意に用いることができる。
エチレン性不飽和基 (c ) を架橋する水素化ケィ素を有する化合物としては、 少なくとも 2個の水素化ケィ素を有する化合物が用いられる。 特にポリシロキサ ン化合物またはポリシラン化合物が良い。
ヒ ドロシリル化反応の触媒の例としては、 パラジウム、 白金などの遷移金属あ るいはそれらの化合物、 錯体が挙げられる。 また、 過酸化物、 ァミン、 ホスフィ ンも用いられる。 最も一般的な触媒はジクロ口ビス(ァセトニトリル)パラジウム (II) 、 クロロ トリス(トリフエニルホスフィン)ロジウム(I) 、 塩化白金酸が挙 げられる。
反応性官能基がハロゲン原子 (d ) であるエーテル結合を有するポリマー ( 1 ) の架橋方法としては、 ポリアミン類、 メルカプトイミダゾリン類、 メルカ プトピリミジン類、 チォゥレア類、 ポリメルカブタン類等の架橋剤が用いられる。 ポリアミン類としては、 トリエチレンテトラミン、 へキサメチレンジァミン等が 挙げられる。 メルカプトイミダゾリン類としては 2 -メルカプトイミダゾリン、 4 - メチル- 2 -メルカプトイミダゾ Vン等が挙げられる。 メルカプトピリミジン類と しては 2 -メルカプトピリミジン、 4, 6-ジメチル- 2-メルカプトピリミジン、 等が 挙げられる。 チォゥレア類としてはエチレンチォゥレア、 ジブチルチオゥレアな どが挙げられる。 ポリメルカプタン類としては 2-ジブチルァミノ- 4, 6-ジメチル カプト- s -トリアジン、 2_フエニルァミノ- 4, 6 -ジメルカプトトリアジン、 等が 挙げられる。 架橋剤の添加量は架橋剤の種類により異なるが、 通常、 可塑剤を除 いたポリマー電解質組成物 100重量部に対して 0. 1〜30重量部の範囲である。 また、 高分子固体電解質に更に受酸剤となる金属化合物を添加することは、 ノヽ 口ゲン.含有ポリマーの熱安定性の見地力-、ら有効である。 このような受酸剤となる 金属酸化物としては、 周期律表第 II族金属の酸化物、 水酸化物、 炭酸塩、 力ルポ ン酸塩、 ケィ酸塩、 ホウ酸塩、 亜リン酸塩、 周期律表 V I a族金属の酸化物、 塩 基性炭酸塩、 塩基性カルボン酸塩、 塩基性亜リン酸塩、 塩基性亜硫酸塩、 三塩基 性硫酸塩等がある。 具体的な例としては、 マグネシア、 水酸化マグネシウム、 炭 酸マグネシウム、 ケィ酸カルシウム、 ステアリン酸カルシウム、 鉛丹、 ステアリ ン酸錫、 等を挙げることができる。 上記酸受酸剤となる金属化合物の配合量は種 類により異なるが、 通常、 可塑剤を除いたポリマー電解質組成物 100重量部に対 して 0. 1〜30重量部の範囲である。
エチレンォキシド単位を有するエーテル化合物を含む添加剤 (2 ) は、 可塑剤 として機能する。 ポリマー電解質組成物にエチレンォキシド単位を有するエーテ ル化合物を含む添加剤 (2 ) を入れると、 ポリマーの結晶化が抑制されガラス転 移温度が低下し、 低温でも無定形相が多く形成されるためにィオン伝導度が高く なる。 .
エチレンォキシド単位を有するエーテル化合物を含む添加剤 (2 ) の例は下 記式 (iv) ~ (vii)のいずれかで表される添加剤が好ましい。
CH -O- (-CH2-CH2-0-) C-R 4
RD - (-0-CH2-CH2-) e-0-CH (iv)
CHゥ "0" (-CH2-CH2-0-) d-R5 R9- (-0-CH2-CH2-) h" ~CH2
CH-O- (-CHg-CHg- -) ( )
R10- (-o-cH2-c¾ -) i-o-m2
Figure imgf000011_0001
i13- (-O-CHg-CHg-) m-0-€H-CH2-CH
R14- (-0-CH2-CHo-) ft-0-CH2 0¾-0- (-CH2-CH9-0-) j-R12
CH -0- (-CH2-CH2-0-) 0 - R15 18- (-0-CH2-CHo-) r-0-CH2-C-CH2-0- (-CHg-CHg-0-) p-r16 (vii)
CH -0- (-CH2-CH2-0-) -R17
[式中、 〜 R18は、 炭素数 1〜6のアルキル基、 c〜r は 0〜12の数である。 ] 添加剤 (2) の配合割合は任意であるが、 ポリマー (1) および添加剤 (2) の合計が 100重量部である。 i 本発明において用いられるリチウム塩化合物 (3) は、 ポリマー (1) 、 添加 剤 (2) カ^なる混合物および環状カーボネート (4) に可溶であることが好ま しい。 本発明においては、 以下に挙げるリチウム塩化合物が好ましく用いられる。 陽イオンのリチウムイオンと、 塩素イオン、 臭素イオン、 ヨウ素イオン、 過塩 素酸イオン、 チォシアン酸イオン、 テトラフルォロホウ素酸イオン、 硝酸イオン、 AsF6—、 PF6-、 ステアリルスルホン酸イオン、 ォクチルスルホン酸イオン、 ドデシ ルベンゼンスノレホン酸イオン、 ナフタレンスルホン酸イオン、 ドデシノレナフタレ ンスルホン酸イオン、 7, 7, 8, 8 -テトラシァノ -p-キノジメタンイオン、 X1S03\
[(xxso2) (X2SO2)N] [( so2) ( so2) (¾so2)c]一、 及び [o^sc (X2SO2)YC]-から選 ばれた陰イオンとからなる化合物が挙げられる。 伹し、 、 X2、 ¾及び Yは電子 吸引性基である。 好ましくは 、 X2、 及び ¾は各々独立して炭素数が 1から 6迄 のパ一フルォロアルキノレ基又はパーフルォロ了リール基であり、 Yは二トロ基、 ニトロソ基、 カルボ-ル基、 力ルポキシル基又はシァノ基である。 ¾、 x2及び x3 は各々同一であっても、 異なっていてもよい。
本 明において、 リチウム塩化合物 ( 3 ) の使用量は、 ポリマー (1 ) および 添加剤 (2 ) の合計 100重量部に対して、 0 . 1〜1 0 0 0重量部、 好ましくは
1〜5 0 0重部の範囲であってよい。 この^ f直が 1 0 0 0重量部以下にあると、 力口 ェ性、 成形性及び得られた固体電解質の機械的強度や柔軟性が高く、 さらにィ才 ン伝導性も高い。
電解質組成物を使用する際に難燃性が必要な場合には、 難燃剤を使用できる。 難燃剤として、 臭素化エポキシ化合物、 テトラブロムビスフエノ一ル 、 塩素化 パラフィン等のハロゲン化物、 三酸化アンチモン、 五酸化アンチモン、 水酸化ァ ルミ二ゥム、 水酸化マグネシウム、 リン酸エステル、 ポリリン酸塩、 及びホウ酸 亜鉛から選択して有効量 (例えば、 ポリマー (1 ) および添加剤 ( 2 ) の合計 1 0 0重量部に対して 1 0重量部以下) を添加する。
不飽和基を有する環状カーボネート (4 ) において、 不飽和基は、 一般に、 炭 素-炭素二重結合である。
リチウム金属電池の場合、 環状カーボネート (4 ) は負極の金属リチウムと反 応して安定な皮膜を形成し、 電解質と金属リチウムの反応およびデンドライドの 成長を抑制する。
環状カーボネート (4 ) は、 ビエレンカーボネートまたはその誘導体、 あるい は不飽和基を有するエチレンカーボネートであることが好ましい。
本発明において、 ビエレンカーボネートまたはその誘導体の例は下記式 (viii- 1)で表される化合物であることが好まし!/、。 R 19 R 20
Figure imgf000013_0001
[式中、 9ぉょび!?2°は、 水素または炭素数が 1〜6のアルキル基である。 ] 本発明において、 不飽和基を有するエチレンカーボネートの例は下記式 (viii- 2)で表される化合物であることが好ましい。
π2上 τ2·
Figure imgf000013_0002
(viii-2)
0 cノ=o
[式中、 R21は、 Hまたは炭素数が 1〜6のアルキル基、 R22は炭素数が 1~6のァ ルケニル基または - C¾0R22'であり、 R22'は炭素数が 1〜6のアルケニル基であ る。 ]
環状カーボネート (4) の使用量は、 成分 (1) 及び (2) の合計 100重量部 に対して、 1〜100重量部、 好ましくは 5〜80重量部の範囲がよい。 最適量は金属 リチウムの表面が環状カーボネートと反応して、 安定な被膜を形成できる量でよ い。 過剰の環状カーボネートがポリマー電解質組成物中に存在すると、 電気化学 的性質が低下する。
環状カーボネート (4) の含有方法は、 成分 (1) 、 (2) 及び (3) 力、らな る電解質化合物を架橋しない場合は、 特に制約されない。
し力 し、 成分 (1) 、 (2) 及び (3) 力 らなる電解質化合物を架橋して用い る場合は、 環状カーボネート (4) は、 成分 (1) 、 (2) 及び (3) からなる 電解質化合物を架橋した後に、 含浸する必要がある。 成分 (1) 、 (2) 及び (3) からなる電解質化合物の架橋前に、 環状カーボネート (4) を含有後、 架 橋した場合、 電気化学的特性が改善されない。 これは、 架橋によって、 環状カー ポネート (4) のエチレン性不飽和基が消失していることが考えられる。 成分 (1 ) 、 (2 ) 及び (3 ) 力 らなる電解質化合物を架橋して用いる場合は 環状カーボネート (4 ) を含浸する方法は特に制約されないが、 成分 (1 ) 、
( 2 ) 及び ( 3 ) からなる電解質化合物の架橋体に環状カーボネート ( 4 ) を直 接含浸する方法、 添加剤 (2 ) と混合したものを含浸する方法、 有機溶媒と混合 したものを含浸する方法、 あるいはこれらの中に成分 ( 1 ) 、 ( 2 ) 及び ( 3 ) からなる電解質化合物を混合したものを含浸する方法などがある。
本発明のポリマーポリマー電解質組成物の製造方法は特に制約はないが、 通常 夫々の成分を機械的に混合すればよい。 架橋を必要とするポリマー (1 ) の場合 には、 それぞれの成分を機械的に混合後、 架橋させるなどの方法によつて製造さ れる力 架橋後に添加剤に長時間浸漬して含浸させても良い。 機械的に混合する 手段としては、 各種エーダー類、 オープンロール、 押出機などを任意に使用でき る。
反応性官能基が反応性ケィ素基である場合に、 架橋反応に用いられる水の量は、 雰囲気中の湿気によっても容易に起こるので特に制限されない。 短時間冷水又は 温水浴に通すか、 又はスチーム雰囲気にさらす事で架橋する事もできる。
反応性官能基がエチレン性不飽和基である場合に、 ラジカル開始剤を利用する と、 10°C〜200°Cの温度条件下 1分〜 20時間で架橋反応が終了する。 また、 紫外 線等のエネルギー線を利用する場合、 一般には増感剤が用いられる。 通常、 10°C 〜150°Cの温度条件下 0. 1秒〜 1時間で架橋反応が終了する。 水素化ケィ素を有 する架橋剤では 10°C〜180°Cの温度条件下 10分〜 10時間で架橋反応が終了する。 リチウム塩ィ匕合物 (3 ) および添加剤 (2 ) をポリマー (1 ) (即ち、 ポリエ 一テル多元共重合体) に混合する方法は特に制約されないが、 必要に応じて有機 溶媒を使うことができる。 有機溶媒を使用して製造する場合は、 各種の極性溶媒、 例えばテトラヒドロフラン、 アセトン、 ァセトニトリル、 ジメチルホルムァミ ド、 ジメチルスルホキシド、 ジォキサン、 メチルェチルケトン、 メチルイソブチルケ トン等が単独、 或いは混合して用いられる。
本発明で示されたポリマー電解質組成物は機械的強度と柔軟性に優れており、 その性質を利用して大面積薄膜形状の固体電解質とすることが容易に得られる。 例えば本発明のポリマー電解質組成物を用いた電池の作製が可能である。 この場 合、 正極材料としてはリチウム〜マンガン複合酸化物、 コバルト酸リチウム、 五 酸化バナジウム、 オリビン型リン酸鉄、 ポリアセチレン、 ポリピレン、 ポリア二 リン、 ポリフエ二レン、 ポリフエ二レンサルフアイド、 ポリフエエレンォキサイ ド、 ポリピロール、 ポリフラン、 ポリァズレン等がある。 負極材料としてはリチ ゥムがグラフアイトあるいはカーボンの層間に吸蔵された層間化合物、 リチウム 金属、 リチウム-鉛合金等がある。 また高いイオン伝導性を利用してアル力リ金 属イオン、 Cuイオン、 Caイオン、 及び Mgィオン等の陽ィオンのィオン電極の隔 膜としての利用も考えられる。 本発明のポリマー電解質組成物は特に電池、 キヤ パシター、 センサー等の電気化学デバイス用材料として好適である。 実施例
以下、 実施例を示し、 本発明を具体的に説明する。
ポリエーテル共重合体のモノマー換算組成は ¾雇 Rスぺクトルにより求めた。 ポリエーテル共重合体の分子量測定にはゲルパーミエーシヨンクロマトグラフィ 一測定を行い、 標準ポリスチレン換算により分子量を算出した。 ゲノレパーミエ一 ションクロマトグラフィ一測定は (株)島津製作所の測定装置 RID-6A、 昭和電工 (株)製カラムのショウデックス KD- 807、 KD - 806、 KD-806M及び KD- 803、 及び溶 媒ジメチルホルムアミド (DMF)を用いて 60°Cで行った。 ガラス転移温度はセィコ 一電子工業 (株)製 DSC 220 を用い、 融解熱量はパーキンエルマ一社製示差走查 熱量計 DSC 7 を用い、 窒素雰囲気中、 温度範囲 - 100〜80°C、 昇温速度 10°C /minで測定した。 導電率 σを測定するためにサンプルフィルムを事前に 30°C、 12時間真空乾燥を行った。 導電率の測定は 10°Cで行い、 フィルムを SUS製の電 極ではさみ、 電圧 30mV、 周波数範囲 10Hz〜10MHzの交流法を用い、 複素インピ 一ダンス法により算出した。
電池系でのリチウム金属との安定性評価には、 リチウム析出溶解効率試験によ り求めた。 リチウム析出溶解効率試験には (株)ナガノ製充放電試験器 BTS-2004W を用いた。 銅箔と対極に金属リチウムを用い、 両極間にポリマー電解質組成物を 挟んで試験セルを作製した。 室温下で電流密度 0. IraA/cm2で 10時間 Li を析出 後、 電流密度 0. 1mAん m2で終止電圧 2. 0Vまで Liの溶解を行った。 リチウム析出 溶角军効率は以下の式より求めた。
リチウム析出溶解効率 (%) = ( nサイクノレ目の溶解に要した時間/ nサイクル目の析 出に要した時間) X100 合成例 (触媒の製造)
撹拌機、 温度計及び蒸留装置を備えた 3つ口フラスコにトリプチル錫ク口ライ ド 10 g及びトリプチルホスフエート 35gを入れ、 窒素気流下に撹拌しながら 250°Cで 20分間加熱して留出物を留去させ残留物として固体状の縮合物質を得た。 以後これを重合用触媒として使用した。 重合例 1 (ポリマーの製造)
内容量 3 Lのガラス製 4つ口フラスコの内部を窒素置換し、 これに触媒として 触媒の製造例で示した縮合物質 2 gと水分 lOpptn以下に調整したメチルダリシジ ルエーテル l00g、 及び溶媒として n—へキサン l,000g を仕込み、 エチレンォキ シド 200g はメチルダリシジノレエーテルの重合率をガスクロマトグラフィ一で追 跡、しながら、 逐次添加した。 重合反応はメタノールで停止した。 デカンテーショ ンによりポリマーを取り出した後、 常圧下 40°Cで 24時間、 更に減圧下 45°Cで 10時間乾燥してポリマー 275gを得た。 この共重合体のガラス転移温度は - 65°C、 重量平均分子量は 110万、 融解熱量は 7J/gであった。 ¾ NMRスぺクトルによる この共重合体のモノマー換算組成分析結果はェチレンォキシド 67wt%、 メチルダ リシジルエーテル 33 %であった。 重合例 2 (ポリマーの製造)
内容量 3 Lのガラス製 4つ口フラスコの内部を窒素置換し、 これに触媒として 触媒の製造例で示した縮合物質 2 gと水分 lOppm以下に調整したプロピレンォキ シド 100g、 メタタリル酸グリシジル 10g及び溶媒として n一へキサン 1, 000g を仕込み、 エチレンォキシド 200g はプロピレンォキシドの重合率をガスクロマ トグラフィ一で追跡しながら、 逐次添加した。 重合反応はメタノールで停止した。 デカンテーシヨンによりポリマーを取り出した後、 常圧下 40°Cで 24時間、 更に 減圧下 45°Cで 10時間乾燥してポリマー 283 gを得た。 この共重合体のガラス転 移温度は - 68°C、 重量平均分子量は 170万、 融解熱量は 7J/gであった。 ¾丽 R スぺクトルによるこの共重合体のモノマー換算組成分析結果はェチレンォキシド 67wt%、 プロピレンォキシド' 30vrt%、 メタクリル酸グリシジル 3wt%であった。 重合例 3 (ポリマーの製造)
内容量 3 Lのガラス製 4つ口フラスコの内部を窒素置換し、 これに触媒として 触媒の製造例で示した縮合物質 2 gと水分 lOppm以下に調整した下記式 (ix) の ォキシラン化合物 (EM) 180g、 ァリルグリシジルエーテル 20g及び溶媒として n 一へキサン l,000g を仕込み、 エチレンォキシド 120g は EM の重合率をガスク 口マトグラフィ一で追跡しながら、 逐次添加した。 重合反応はメタノールで停止 した。 デカンテーションによりポリマーを取り出した後、 常圧下 40°Cで 24時間、 更に減圧下 45°Cで 10時間乾燥してポリマー 298 gを得た。 この共重合体のガラ ス転移温度は _72°C、 重量平均分子量は 130万、 融解熱量は 3J/gであった。 ¾ 匪 Rスぺクトルによるこの共重合体のモノマー換算組成分析結果はエチレンォキ シド 37wt%、 EM 57wt%, ァリルグリシジルエーテル 6wt%であった。
CH2-CH-CH2-0-CH2-0-(-CH2-CH2-0-)2-CH3 (ix)
0
EM 重合例 4 (ポリマーの製造)
内容量 3Lのガラス製 4つ口フラスコの内部を窒素置換し、 これに触媒として 触媒の製造例で示した縮合物質 2gと水分 lOppm以下に調整した下記式 (X) のォ キシラン化合物 (GM) 100g、 ァリルグリシジルエーテル 10 g及び溶媒として n _ へキサン 1, 000g を仕込み、 エチレンォキシド 120g は GMの重合率をガスクロ マトグラフィ一で追跡しながら、 逐次添加した。 重合反応はメタノールで停止し た。 デカンテ一ションによりポリマーを取り出した後、 常圧下 40°Cで 24時間、 更 減圧下 45°Cで 10時間乾燥してポリマー 205g を得た。 この共重合体のガラ ス転移温度は - 74°C、 重量平均分子量は 115万、 i解熱量は 3J/g であった。 ¾ 丽 Rスぺク トルによるこの共重合体のモノマー換算組成分析結果はエチレンォキ シド 53wt%、 GM 43wt%、 ァリルグリシジルエーテル 4wt°/。であった。
Figure imgf000018_0001
GM
実施例 1
重合例 1で得られた重量平均分子量が 110万であるエチレンォキシド /メチルダ リシジルエーテル 2元共重合体 l g、 下記式 (iv- 1) のエチレンォキシド単位を 有するエーテルィヒ合物を含む添加剤 2 g、 リチウム塩化合物としてリチウムビス (トリフルォロメチルスルフォニル)ィミド(LiTFSI) O. 7 gをァセトニトリル 50g中 で均一になるまで混合させ、 厚さ 20 /z mの多孔質膜に両面塗工した後、 30°Cで 12 時間減圧乾燥し、 多孔質膜を含む 60 mの電解質フィルムを得た。
CHo-0- (-CH2-CH2-0-) -CH3
CH3-0-CH2-CH2 -O-CH (iv-1)
CHn-O- (-CH2-CH2-0--) n-CH3
実施例 2
重合例 2で得られた重量平均分子量が 170万であるエチレンォキシド /プロピ レンォキシド /メタクリル酸グリシジル 3元共重合体 1 g、 上記式 (iv-1) のェチ レンォキシド単位を有するエーテル化合物を含む添加剤 2g、 リチウム塩化合物と してリチウムビス(トリフルォロメチルスルフォニル)ィミド (LiTFSI) 0. 7g、 開始 剤として過酸ィヒベンゾィル 0. 015g、 架橋助剤としてエチレングリコールジァクリ レート 0. 3 gをァセトニトリル 50g中で均一になるまで混合させた後、 PETフィル ムに均一に塗布した。 その後、 30°Cで 12時間減圧乾燥し、 更に、 100°C、 3時間、 窒素雰囲気下で加熱を行レ、、 50 μ raの電解質架橋フィルムを得た。 実施例 3
重合例 3で得られた重量平均分子量が 130万であるエチレンォキシ K/EM/Tリ ノレグリシジルエーテル 3元共重合体 1 g、 下記式 (vii- 1) のエチレンォキシド単 位を有するエーテル化合物を含む添加剤 2g、 リチウム塩化合物としてリチウム ビス(パーフルォロェチルスルフォニル)イミド(LiBETI) O. 8g、 開始剤として過酸 化ベンゾィル 0. 015g、 架橋助剤としてエチレングリコールジァクリレート 0. 3 g をァセトニトリル 50g中で均一になるまで混合させた後、 PETフィルムに均一に塗 布した。 その後、 30°Cで 12時間減圧乾燥し、 更に、 100°C、 3時間、 窒素雰囲気下 で加熱を行い、 50 μ mの電解質架橋フィルムを得た。
Figure imgf000019_0001
実施例 4
重合例 4で得られた重量平均分子量が 130万であるエチレンォキシド /GM/ァリ ルグリシジルエーテル 3元共重合体 lg、 上記式 (vii- 1) のエチレンォキシド単 位を有するエーテル化合物を含む添加剤 2g、 リチウム塩化合物としてリチウムビ ス(パーフルォロェチルスルフォ二ノレ)イミド(LiBETI) 0. 8g、 開始剤として過酸化 ベンゾィル 0. 015g、 架橋助剤としてエチレングリコールジァクリレート 0. 3gをァ セトニトリノレ 50g中で均一になるまで混合させた後、 PETフィルムに均一に塗布し た。 その後、 30°Cで 12時間減圧乾燥し、 更に、 100° ( 、 3時間、 窒素雰囲気下で加 熱を行い、 50 μ ιηの電解質架橋: 実施例 5
実施例 1の電解質フィルム 0. Olgに対して 5wt°/。のビニレンカーボネートを含む 上記式(iv-1)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸した 電解質組成物のリチウム析出溶解効率の平均値は 83%であった。 その結果を表 1 に示す。 実施例 6
実施例 2の電解質架橋フィルム 0. Olgに対して 10wt%のビエレンカーボネートと 1Mのリチウムビス(トリフルォロメチルスルフォニル)ィミド (LiTFSI)を含む上記 式 (vii-l)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸した電解 質組成物のリチウム析出溶解効率の平均値は 84%であった。 その結果を表 1に示 す。 実施例 7
実施例 3の電解質架橋フィルム 0. Olgに対して 20wt。/。のビニレンカーボネートを 含む上記式 (vii- 1)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸 した電解質組成物のリチウム析出溶解効率の平均値は 92%であつた。 その結果を 表 1に示す。 実施例 8
実施例 3の電解質架橋フィルム 0. Olgに対して 40wt。/。のビニレンカーボネートを 含む上記式 (vii- 1)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸 した電解質組成物のリチウム析出溶解効率の平均値は 91%であった。 その結果を 表 1に示す。 実施例 9
実施例 4の電解質架橋フィルム 0. Olgに対して 60wt%のビニレンカーボネートを 含む上記式 (vii- 1)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸 した電解質組成物のリチウム析出溶解効率の平均値は 91%であつた。 その結果を 表 1に示す。 比較例 1
実施例 2の電解質フィルム 0. Olgに対してビニレンカーボネートを含まない上 記式 (vii- 1)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸した 電解質組成物のリチウム析出溶解効率の平均値は 62%であった。 その結果を表 1 に示す。 比較例 2
重合例 3で得られた重量平均分子量力 S130万であるエチレンォキシド /EM/ァリ ルグリシジルエーテル 3元共重合体 l g、 上記式 (iv-1) のエチレンォキシド単 位を有するエーテル化合物を含む添加剤 2 g、 リチウム塩化合物としてリチウム ビス(トリフルォロメチルスルフォニル)イミド(LiTFSI) 0. 7 g、 開始剤として過 酸ィ匕ベンゾィル 0. 015g、 架橋助剤としてエチレングリコールジァクリレート 0. 3 gおよび電解質に対して 20wt%のビニレンカーボネートをァセトニトリル 50g中で 均一になるまで混合させた後、 PETフィルムに均一に塗布した。 その後、 30°Cで 12時間減圧乾燥し、 更に、 100°C、 3時間、 窒素雰囲気下で加熱を行い、 50 /i mの 電解質架橋組成物を得た。 この電解質架橋組成物のリチウム析出効率の平均値は 60%であった。 その結果を表 1に示す。 比較例 3
重合例 4で得られた重量平均分子量が 130万であるエチレンォキシド /GM/ァリ ルグリシジルエーテル 3元共重合体 lg、 上記式 (vii- 1) のエチレンォキシド単 位を有するエーテル化合物を含む添加剤 2 g、 リチウム塩化合物としてリチウム ビス(パーフルォロェチルスルフォ二ノレ)イミド(LiBETI) 0. 8 g、 開始剤として過 酸化ベンゾィル 0. 015g、 架橋助剤としてエチレングリコールジァクリレート 0. 3 gおよび電解質に対して 50wt%のビニレンカーボネートをァセトニトリル 50g中で 均一になるまで混合させた後、 PETフィルムに均一に塗布した。 その後、 30°Cで 12時間減圧乾燥し、 更に、 100°C、 3時間、 窒素雰囲気下で加熱を行い、 55 Ai mの 電解質架橋フィルムを得た。 この電解質架橋組成物のリチウム析出効率の平均値 は 67%であった。 その結果を表 1に示す。 比較例 4
実施例 2の電解質架橋フィルム 0. Olgに対して 120wt%のビニレンカーボネート を含む上記式 (vii- 1)のエチレンォキシド単位を有するエーテノレ化合物 0. 02gを含 浸した電解質組成物のリチウム析出効率の平均値は 71%であつた。 その結果を表 1に示す。
ビニレンカーポネ、 リチウム析出溶解効率 添加量 (wt%) 初回値 (%) 最高値 (%) 平均値 実施例 5 5 8 0 8 5 8 3 実施例 6 1 0 8 3 8 6 8 4 実施例 7 2 0 9 1 9 3 9 2 実施例 8 4 0 9 0 9 3 9 1 実施例 9 6 0 9 0 9 2 9 1 比較例 1 0 4 6 6 5 6 2 比較例 2 2 0 4 9 6 3 6 0 比較例 3 5 0 5 0 7 1 6 7 比較例 4 1 2 0 3 6 7 9 7 1 平均値は 20サイクル目までのリチウム析出溶解効率の値を平均して求めた 実施例 1 0
実施例 6で得られた電解質組成物、 負極としてリチウム金属箔、 及び正極活物 質としてコバルト酸リチウム(LiCo02)を用いて二次電池を構成した。
コパルト酸リチウムは所定量の炭酸リチウム及び炭酸コバルト粉体を混合した 後 900°Cで 5時間焼成することにより調製した。 次にこれを粉碎し、 得られたコパ ルト酸リチウム 85重量部に対してァセチレンブラック 5重量部と重合例 2で得ら れたポリマー 10重量部、 リチウムビス(トリフルォロメチルスルフォニル)イミ ド (LiTFSI) 5重量部を加えロールで混合した後、 30 MPaの圧力でプレス成形して電 池の正極とした。
実施例 6で得られた電解質組成物をリチウム金属箔と正極板ではさみ、 界面が 密着するように 1 MPaの圧力をかけながら室温で電池の充放電特性を調べた。 充 電は 4. 2 Vまでの定電流定電圧で行い、 放電は定電流で行った。 放電電流は 0. 1 mAん m2であり、 0. 1 mA/cm2で充電を行った。 100サイクルの充放電後の放電容量 は初期容量の 90%を示した。 実施例 1 1
実施例 7で得られた電解質組成物、 負極としてリチウム金属箔、 及び実施例 1 0で作成した正極を用いて二次電池作成し、 同様に充放電特性を調べた。 100サ イタルの充放電後の放電容量は初期容量の 91%を示した。 比較例 5
比較例 1で得られた電解質組成物、 負極としてリチウム金属箔、 及び実施例 1 0で作成した正極を用いて二次電池作成し、 同様に充放電特性を調べた。 100サ ィクルの充放電後の放電容量は初期容量の 80%を示した。 比較例 6
比較例 3で得られた電解質組成物、 負極としてリチウム金属箔、 及び実施例 1 0で作成した正極を用いて二次電池作成し、 同様に充放電特性を調べた。 100サ イタルの充放電後の放電容量は初期容量の 78%を示した。 実施例 1 2
ビニレンカーボネート 0. 004g (3wt%)と下記式 (iv-1)のェチレンォキシド単位を 有するエーテル化合物 0. 116g (97wt )と、 リチウムビス (パーフルォロェチルスノレ フォ -ル)イミ ド (LiBETI) 0. 08gを含む電解質のリチウム析出溶解効率の平均値は 86%であった。 その結果を表 2に示す。 CH2-0- (-CH2-CH2-0-) 2-CH3
Figure imgf000024_0001
実施例 1 3
ビニレンカーボネート 0. 006g (5wt%)と上記式(iv-1)のエチレンォキシド単位を 有するエーテル化合物 0. 114g (95wt%)を使用し、 それ以外は実施例 1 2と同様の 電解質のリチウム析出溶解効率の平均値は 91%であった。 その結果を表 2に示す。 実施例 1 4
ビニレンカーボネート 0. 012g (10wt%)と上記式(iv-1)のエチレンォキシド単位 を有するエーテル化合物 0. 108g (90wt%)を使用し、 それ以外は実施例 1 2と同様 の電解質のリチウム析出溶解効率の平均値は 92%であつた。 その結果を表 2に示 す。 実施例 1 5
ビニレンカーボネート 0. 014g (10wt%)と下記式 (vii_l)のエチレンォキシド単位 を有するエーテル化合物 0. 126g (90wt%)と、 リチウムビス(トリフルォロメチルス ルフォニル)ィミ ド (LiTFSI) O. 06gを含む電解質のリチウム析出溶解効率の平均値 は 92%であった。 その結果を表 2に示す。
Hrj"*0~CH2 Hrj 0~CH
CH3-0-CHo-CH2-0-CHo-C-CH«-0-CH2-CH9-0 -CH
実施例 1 6
ビニレンカーボネート 0. 024g (20wt%)と上記式 (vii- 1)のエチレンォキシド単位 を有するエーテル化合物 0. 096g (80wt%)を使用し、 それ以外は実施例 1 2と同様 の電解質のリチウム析出溶解効率の平均値は 91%であつた。 その結果を表 2に示 す。 実施例 1 7
ビニレンカーボネート 0. 060g (50wt%)と上記式 (vii-1)のエチレンォキシド単位 を有するエーテル化合物 0. 060g (50wt%)を使用し、 それ以外は実施例 1 2と同様 の電解質のリチウム析出溶解効率の平均値は 91%であった。 その結果を表 2に示 す 実施例 1 8
ビニレンカーボネート 0. 096g (80wt%)と上記式 (vii - 1)のエチレンォキシド単位 を有するエーテル化合物 0. 024g (20wt%)を使用し、 それ以外は実施例 1 2と同様 の電解質のリチウム析出溶解効率の平均値は 88%であった。 その結果を表 2に示 す。 比較例 7
上記式(iv-1)のエチレンォキシド単位を有するエーテル化合物 0. 12gと、 LiBETIO. 08gを含む電解質のリチウム析出溶解効率の平均値は 71%であった。 そ の結果を表 2に示す。 比較例 8
上記式 (vii - 1)のエチレンォキシド単位を有するエーテル化合物 0. 1½と、 LiTFSIO. 06gを含む電解質のリチウム析出溶解効率の平均値は 54%であった。 そ の結果を表 2に示す。 表 2
Figure imgf000026_0001
平均値は 20サイクル目までのリチウム析出溶解効率の値を平均して求めた 実施例 1 9
実施例 1 3の電解質を含浸させた多孔質セパレータ(東燃タピルス (株)製 E25MMS厚み 25 μ ηι、 気孔率 38%)、 負極としてリチウム金属箔、 及び正極活物質と してコバルト酸リチウムを用いて二次電池を構成した。
コノルト酸リチウムは所定量の炭酸リチウム及び炭酸コバルト粉体を混合した 後 900°Cで 5時間焼成することにより調製した。 7火にこれを粉碎し、 得られたコバ ルト酸リチウム 90重量部に対してアセチレンブラック 4重量部とポリフッ化ビニ リデン 6重量部を加えロールで混合した後、 30MPaの圧力でプレス成形して電池の 正極とした。
実施例 1 3の電解質を含浸させた多孔質セパレータをリチウム金属箔と正極板 ではさみ、 界面が密着するように IMPaの圧力をかけながら 25°Cで電池の充放電特 性を調べた。 充電は電流密度 0. 1mAん m2、 上限電圧 4. 2Vまでの定電流定電圧で行 レ、、 放電は電流密度 0. 1mAん m2の定電流で行った。 100サイクルの充放電後の放電 容量は初期容量の 86%を示した。 実施例 2 0
実施例 1 5の電解質を含浸させた多孔質セパレータ、 負極としてリチウム金属 箔、 及び実施例 1 9で作成した正極を用いて二次電池を作成し、 実施例 1 9と同 様に充放電特性を調べた。 100サイクルの充放電後の放電容量は初期容量の 88%を 示した。 比較例 9
比較例 7の電解質を含浸させた多孔質セパレータ、 負極としてリチウム金属箔、 及び実施例 1 9で作成した正極を用いて二次電池を作成し、 実施例 1 9と同様に 充放電特性を調べた。 100サイクルの充放電後の放電容量は初期容量の 64%を示し た。 比較例 1 0
比較例 8の電解質を含浸させた多孔質セパレータ、 負極としてリチウム金属箔、 及び実施例 1 9で作成した正極を用いて二次電池を作成し、 実施例 1 9と同様に 充放電特性を調べた。 100サイクルの充放電後の放電容量は初期容量の 43%を示し
7 実施例 2 1
重合例 1で得られた重量平均分子量が 110万であるエチレンォキシド /メチル グリシジルエーテル 2元共重合体 l g、 下記式 (iv- 1) のエチレンォキシド単位 を有するエーテル化合物を含む添加剤 2 g、 リチウム塩化合物としてリチウムビ ス(トリフルォロメチルスルフォニル)ィミド(LiTFSI) 0. 7 gをァセトニトリル 50g 中で均一になるまで混合させ、 厚さ 20μπιの多孔質膜に両面塗工した後、 30°Cで 12時間減圧乾燥し、 多孔質膜を含む 6¾miの電解質フィルムを得た。
CH2-0- (-CH2-CH2-0-) 2-CH3
CH3-0-CH2-CH2 -O-CH (iv-i)
実施例 2 2 重合例 2で得られた重量平均分子量が 170万であるエチレンォキシド /プロピ レンォキシド /メタクリル酸グリシジル 3元共重合体 1 g、 上記式 (iv-1) のェ チレンォキシド単位を有するエーテル化合物を含む添加剤 2g、 リチウム塩化合 物として LiTFSI 0. 7g、 開始剤として過酸化ベンゾィル 0. 015g、 架橋助剤として エチレングリコールジァクリレート 0. 3 gをァセトニトリル 50g 中で均一にな るまで混合させた後、 ポリエチレンテレフタレート樹脂 (PET)フィルムに均一に 塗布した。 その後、 30°Cで 12時間減圧乾燥し、 更に、 100°C、 3時間、 窒素雰囲気 下で加熱を行い、 50μΓηの電解質架橋フィルムを得た。 実施例 2 3
重合例 3で得られた重量平均分子量が 130万であるエチレンォキシド /ΕΜ/ァリ ルグリシジルエーテル 3元共重合体 l g、 下記式 (vii- 1) のエチレンォキシド 単位を有するエーテル化合物を含む添加剤 2g、 リチウム塩化合物としてリチウ ムビス(パーフルォロェチルスルフォニル)イミド(LiBETI) 0. 8g、 開始剤として 過酸化ベンゾィル 0. 015g、 架橋助剤としてエチレングリコールジァクリレート
0. 3 gをァセトニトリル 50g 中で均一になるまで混合させた後、 PETフィルムに 均一に塗布した。 その後、 30°Cで 12時間減圧乾燥し、 更に、 100°C、 3時間、 窒素 雰囲気下で加熱を行い、 50μηιの電解質架橋フィルムを得た。 し h "*ν>^ H ~CH2~ - h
^-O-CHg-CHg-O-CHg-C-CHg-O-CHg-CH -O -CH3 (vii- 1)
CHg-O-CHg-CHg-O-CHg
実施例 2 4
重合例 4で得られた重量平均分子量が 130万であるェチレンォキシド /GM/ァリ ルグリシジルエーテル 3元共重合体 lg、 上記式 (vii- 1) のエチレンォキシド単 位を有するエーテルィヒ合物を含む添加剤 2g、 リチウム塩化合物として LiBETI 0. 8g、 ホウフッ化リチウム(LiBF4) 0. 05g、 開始剤として過酸化べンゾィル
0. 015g、 架橋助剤としてエチレングリコールジアタリレート 0. 3gをァセトニト リル 50g 中で均一になるまで混合させた後、 PETフィルムに均一に塗布した。 そ の後、 30°Cで 12時間減圧乾燥し、 更に、 100°C、 3時間、 窒素雰囲気下で加熱を行 い、 5Qpmの電解質架橋フィルムを得た。 実施例 2 5
実施例 2 1の電解質フィルム O. Olg に対して 6wt。/。のビニルエチレンカーボネ 一トを含む上記式(iv - 1)のエチレンォキシド単位を有するエーテル化合物 0. 02g を含浸したポリマー電解質組成物のリチウム析出溶解効率の平均値は 75%であつ た。 その結果を表 3に示す。 実施例 2 6
実施例 2 2の PETフィルムを除いた電解質架橋フィルム 0. Olgに対して 12wt% のビニルエチレンカーボネートと lmol/kgの LiTFSIを含む上記式 (vii- 1)のェチレ ンォキシド単位を有するエーテル化合物 0. 02gを含浸したポリマー電解質組成物 のリチウム析出溶解効率の平均値は 82%であつた。 その結果を表 3に示す。 実施例 2 7
実施例 2 3の電解質架橋フィルム 0. Olg に対して 18wt°/。のビュルエチレン力 ーボネートを含む上記式 (vii- 1)のエチレンォキシド単位を有するエーテル化合 物 0. 02gを含浸したポリマー電解質組成物のリチウム析出溶解効率の平均値は 91%であった。 その結果を表 3に示す。 実施例 2 8
実施例 2 4の電解質架橋フィルム 0. Olg に対して 20wt°/。のビエルエチレン力 ーボネートを含む上記式 (vii - 1)のエチレンォキシド単位を有するエーテル化合 物 0. 02gを含浸したポリマー電解質組成物のリチウム析出溶解効率の平均値は 93%であつた。 その結果を表 3に示す。 実施例 2 4の電解質架橋フィルム O. Olg に対して 50wt°/。のビュルエチレン力 ーボネートを含む上記式 (vii- 1)のエチレンォキシド単位を有するエーテノレ化合 物 0. 02gを含浸したポリマー電解質組成物のリチウム析出溶解効率の平均値は 90%であつた。 その結果を表 3に示す。 比較例 1 1
実施例 2 2の電解質架橋フィルム O. Olg に対してビ-ルエチレンカーボネー トを含まない上記式 (vii - 1)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸したポリマー電解質組成物のリチウム析出溶解効率の平均値は 62% であった。 その結果を表 3に示す。 比較例 1 2
実施例 2 3の電角军質架橋フィルム O. Olg に対して 20wt%のエチレンカーボネ 一トを含む上記式 (vii- 1)のエチレンォキシド単位を有するエーテル化合物 0. 02gを含浸したポリマー電解質組成物のリチウム析出溶解効率の平均値は 58% であった。 その結果を表 3に示す。 比較例 1 3
実施例 2 3の電解質架橋フィルム O. Olg に対して 20wt%のプロピレンカーボ ネートを含む上記式 (vii-1)のエチレンォキシド単位を有するエーテル化合物
0. 02gを含浸したポリマー電解質組成物のリチウム析出溶解効率の平均値は 38% であった。 その結果を表 3に示す。 比較例 1 4
実施例 2 2の電解質架橋フィルム 0. 01g に対して 120wt%のビュルエチレン力 一ボネ一トを含む上記式 (vii-1)のエチレンォキシド単位を有するエーテル化合 物 0. 02gを含浸したポリマー電解質組成物のリチウム析出効率の平均値は 65%で あった。 その結果を表 3に示す。 表 3
ビニノレエチレンカーボネート リチウム析出溶解効率
添加量 (wt%) 初回値 (%) 最高値 (%) 平均値 (%) 実施例 2 5 6 6 8 8 0 7 5 実施例 2 6 1 2 8 0 8 4 8 2 実施例 2 7 1 8 8 9 9 3 9 1 実施例 2 8 2 0 9 1 9 4 9 3 実施例 2 9 5 0 8 8 9 2 9 0 比較例 1 1 0 4 6 6 5 6 2 比較例 1 2 0 4 6 6 1 5 8 比較例 1 3 0 2 6 5 8 3 8 比較例 1 4 1 2 0 5 5 7 1 6 5 平均値は 20サイクル目までのリチウム析出溶解効率の値を平均して求めた 実施例 3 0
実施例 2 6で得られたポリマー電解質組成物、 負極としてリチウム金属箔、 及 び正極活物質としてコバルト酸リチウム(LiCo02)を用いて二次電池を構成した。 コノ レト酸リチウムは所定量の炭酸リチウム及び炭酸コバルト粉体を混合した 後 900°Cで 5時間焼成することにより調製した。 火にこれを粉砕し、 得られたコ バルト酸リチウム 85重量部に対してアセチレンブラック 5重量部と重合例 2で 得られたポリマー 10重量部、 LiTFSI 5重量部を加えロールで混合した後、 30 MPaの圧力でプレス成形して電池の正極とした。
実施例 2 6で得られたポリマー電解質組成物をリチウム金属箔と正極板ではさ み、 界面が密着するように 1 MPaの圧力をかけながら 室温で電池の充放電特性を 調べた。 充電は 4. 2 Vまでの定電流定電圧で行い、 放電は定電流で行った。 放電 電流は 0. 1 mA/cm2であり、 0. 1 mAん m2で充電を行った。 100サイクルの充放電後 の放電容量は初期容量の 90%を示した。 実施例 3 1
実施例 2 8で得られたポリマー電解質組成物、 負極としてリチウム金属箔、 及 び実施例 3 0で作成した正極を用いて二次電池作成し、 同様に充放電特性を調べ た。 100サイクルの充放電後の放電容量は初期容量の 91%を示した。 比較例 1 5
比較例 1 1で得られたポリマー電解質組成物、 負極としてリチウム金属箔、 及 ぴ実施例 3 0で作成した正極を用いて二次電池作成し、 同様に充放電特性を調べ た。 100サイクルの充放電後の放電容量は初期容量の 80%を示した。 実施例 3 2
ビニルエチレンカーボネート 0. 004g (3wt%)と下記式(iv-2)のエチレンォキシド 単位を有するエーテノレ化合物 0. 116g (97»'t%)と、 リチウムビス(パーフノレオロェチ ルスルフォ -ル)イミド (LiBETI) 0. 08gを含む電解質のリチウム析出溶解効率の平 均値は 82%であった。 その結果を表 4に示す。
Figure imgf000032_0001
実施例 3 3
ビニノレエチレンカーボネート 006g (5wt%)と上記式(iv- 2)のエチレンォキシド 単位を有するエーテル化合物 0. 114g (95wt%)を使用し、 それ以外は実施例 3 2と 同様の電解質のリチウム析出溶解効率の平均値は 88%であつた。 その結果を表 4 に示す。 実施例 3 4
ビエノレエチレンカーボネート 0. 012g (l0wt%)と上記式(iv - 2)のエチレンォキシ ド単位を有するエーテル化合物 0. 108g (90wt%)を使用し、 それ以外は実施例 3 2 と同様の電解質のリチウム析出溶解効率の平均値は 93%であつた。 その結果を表 4に示す。 実施例 3 5
ビエルエチレンカーボネート 0. 014g (10wt%)と下記式 (vii- 1)のエチレンォキシ ド単位を有するエーテノレイ匕合物 0. 126g (90wt%)と、 リチウムビス(トリフルォロメ チルスルフォニル)ィミ ド(LiTFSI) 0.054gとホウフッ化リチウム(LiBF O. OOlgを 含む電解質のリチウム析出溶解効率の平均値は 90%であった。 その結果を表 4に 示す。
I (¥Ϊί-1)
CH ι2-0-CH ιo2-CH" 2-O-CH
実施例 3 6
ビュルエチレンカーボネート 0. 024g (20wt%)と上記式 (vii_l)のエチレンォキシ ド単位を有するエーテル化合物 0. 096g (80wt%)を使用し、 それ以外は実施例 3 5 と同様の電解質のリチウム析出溶解効率の平均値は 89%であった。 その結果を表 4に示す。 実施例 3 7
ビ二/レエチレンカーボネート 0. 060g (50wt%)と上記式(vii- 1)のエチレンォキシ ド単位を有するエーテル化合物 0. 060g (50wt%)を使用し、 それ以外は実施例 3 2 と 同様の電解質のリチウム析出溶解効率の平均値は 92%であった。 その結果を 表 4に示す。
表 4
Figure imgf000034_0001
平均値は 20サイクル目までのリチウム析出溶解効率の値を平均して求めた

Claims

請 求 の 範 囲
1. (1) 必要により存在する、 エーテル結合を有するポリマーと、
( 2 ) 必要により存在する、 ェチレンォキシド単位を有するエーテル化合物か らなる添加剤と、
(3) リチウム塩化合物と、
(4) 不飽和基を有する環状カーボネート
からなり、 成分 (1) および (2) の少なくとも一方が存在することを特徴とす る電解質組成物。
2. エーテル結合を有するポリマー (1) 力 下記式 (i) で表される構成単 位と、 下記式 (ii) で表される構成単位とを有してなる共重合体、 および Zまた は構成単位 (i) 、 構成単位 (ii) 、 および下記式 (iii) で表される架橋可能な 構成単位を有してなる共重合体である請求項 1に記載の電解質組成物。
— (-CH -CH2-0^ ~ (i)
Figure imgf000035_0001
[式中、 R1は炭素数 1〜6 のアルキル基、 フエニル基または - CH20-R2を表し、 R2 は炭素数 1〜6 のアルキル基またはフエニル基または- (- C¾- C¾- 0-)a- R2'または _CH[CH2- 0- (- C -C¾- 0- )b- R2']2を表し、 R2'は炭素数 1〜6 のアルキル基、 aおよ び b は 0〜12の整数である。 ]
Figure imgf000035_0002
[式中、 R3 は (a) 反応性ケィ素基、 (b) メチルエポキシ基、 (c) ェチレ ン性不飽和基または U)ハロゲン原子を有する反応性基を表す]
3 . エチレンォキシド単位を有するエーテル化合物からなる添加剤 ( 2 ) は (iv) 〜 (vii) のいずれかで表される添加剤である請求項 1に記載の電解質組 成物。
Figure imgf000036_0001
R9- (-0-CH2-CH2-)h-0-CH2 †H2-0- (-{¾2-€¾-0-) f-R7
CH-O- (-CH -CH2-0-) j-CH (v)
R10- (-0-CH2-CH2-) j-O-CHg CH2-&- (-CH2-CH¾-0-) g-R8
Figure imgf000036_0002
CH2-0- (-CH2-CH2-0-) 0-R ,1J 5 R18- (-0-CHo-CH2-) r-0-CH2-C-CH2-O- ("€¾~€¾~0") p-R16 (vii)
CH2-0- (-CH2-CH -0-) q-R17
[式中、 R48は、 炭素数 1〜6のアルキル基、 c〜r は 0〜12の数である。 ]
4 . 不飽和基を有する環状カーボネート (4 ) 力 ビニレンカーボネートもし くはその誘導体、 または不飽和基を有するエチレンカーボネートである請求項 1 に記載の電解質組成物。
5 · ビニレンカーボネ一トまたはその誘導体は下記式 (viii- 1)で表される化合 物である請求項 4に記載の電解質。
19 R 20
0 0 (vi-1)
00
[式中、 R1 9および R2。は、 水素または炭素数が 1〜6のアルキル基である。 ]
6 . 不飽和基を有するエチレンカーボネートは下記式 (viii- 2)で表される化合 物である請求項 4に記載の電解質組成物。
Figure imgf000037_0001
[式中、 R21は、 Hまたは炭素数が 1〜6のアルキル基、 R22は炭素数が 1〜6のァ ルケエル基または - CH20R22'であり、 R22'は炭素数が 1〜6のァルケ-ル基であ る。 ]
7 . 環状カーボネート (4 ) の含有量は、 (1 ) エーテノレ結合を有するポリマ 一と、 (2 ) エチレンォキシド単位を有するエーテルィ匕合物からなる添加剤と、
( 3 ) リチウム塩化合物の合計 100重量部に対して、 1〜100重量部であることを 特徴とする請求項 1に記載の電解質組成物。
8 . エーテル結合を有するポリマー (1 ) は重量平均分子量が 104〜108であ る請求項 1に記載の電解質組成物。
9. 電解質糸且成物が、 ポリマー (1) を含み、 成分 (1) 〜 (3) からなる架 橋体に、 環状カーボネート (4) を含浸させることによって製造されている請求 項 1に記載の電解質組成物。
10. 添加剤 (2) および/またはリチウム塩化合物 ( 3 ) を含んだ状態でポ リマー (1) が架橋されているか、 あるいは添加剤 (2) および/またはリチウ ム塩化合物 (3) が架橋体に含浸される請求項 9に記載の電解質組成物。
11. 請求項 1〜 10のレ、ずれかに記載の電解質組成物、 正極および負極から なる電池。
12. 負極がリチウム金属である請求項 1 1に記載の電池。
PCT/JP2004/005370 2003-04-15 2004-04-15 電解質組成物および電池 WO2004092269A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005505441A JP4640172B2 (ja) 2003-04-15 2004-04-15 電解質組成物および電池
CA002522234A CA2522234A1 (en) 2003-04-15 2004-04-15 Electrolyte composition and cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003110011 2003-04-15
JP2003-110011 2003-04-15
JP2003-177688 2003-06-23
JP2003177688 2003-06-23
JP2004-082155 2004-03-22
JP2004082155 2004-03-22

Publications (1)

Publication Number Publication Date
WO2004092269A1 true WO2004092269A1 (ja) 2004-10-28

Family

ID=33303690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005370 WO2004092269A1 (ja) 2003-04-15 2004-04-15 電解質組成物および電池

Country Status (4)

Country Link
JP (1) JP4640172B2 (ja)
KR (1) KR20060002984A (ja)
CA (1) CA2522234A1 (ja)
WO (1) WO2004092269A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147279A (ja) * 2004-11-18 2006-06-08 Daiso Co Ltd 電解質組成物および電池
JP2010165498A (ja) * 2009-01-14 2010-07-29 Panasonic Corp リチウム一次電池
JP2018505538A (ja) * 2015-02-09 2018-02-22 ソリッドエナジー システムズ 充電式リチウム電池の高塩濃度電解質
CN112713306A (zh) * 2020-12-24 2021-04-27 清华大学深圳国际研究生院 一种遇空气或湿气可固化的电解液及制备方法和应用
CN113136159A (zh) * 2021-04-27 2021-07-20 西南科技大学 一种通电可按需剥离的环氧结构胶黏剂的制备及使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005448B1 (ko) 2012-09-13 2019-07-31 삼성전자주식회사 리튬전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525353A (ja) * 1991-07-18 1993-02-02 Matsushita Electric Ind Co Ltd 高分子固体電解質
WO1998007772A1 (en) * 1996-08-20 1998-02-26 Daiso Co., Ltd. Solid polyelectrolyte
WO1998025990A1 (fr) * 1996-12-09 1998-06-18 Daiso Co., Ltd. Electrolyte polymere solide comprenant du copolyether
JPH10176105A (ja) * 1996-12-17 1998-06-30 Daiso Co Ltd 高分子固体電解質
JP2000306425A (ja) * 1999-04-19 2000-11-02 Daiso Co Ltd 架橋高分子固体電解質及びその用途
JP2000323170A (ja) * 1999-05-07 2000-11-24 Lion Corp 電気化学的安定性に優れた非プロトン性溶媒
JP2003016835A (ja) * 2001-07-04 2003-01-17 Ube Ind Ltd 高分子電解質及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146786A1 (en) * 2001-05-10 2004-07-29 Takaya Sato Nonaqueous electolytic solution, composition for polymer gel electrolyte, polymer gel electrolyte, secondary cell, and electric double-layer capacitor
JP5239106B2 (ja) * 2001-05-23 2013-07-17 三菱化学株式会社 非水系電解液二次電池
JP2003031259A (ja) * 2001-07-12 2003-01-31 Japan Storage Battery Co Ltd 非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525353A (ja) * 1991-07-18 1993-02-02 Matsushita Electric Ind Co Ltd 高分子固体電解質
WO1998007772A1 (en) * 1996-08-20 1998-02-26 Daiso Co., Ltd. Solid polyelectrolyte
WO1998025990A1 (fr) * 1996-12-09 1998-06-18 Daiso Co., Ltd. Electrolyte polymere solide comprenant du copolyether
JPH10176105A (ja) * 1996-12-17 1998-06-30 Daiso Co Ltd 高分子固体電解質
JP2000306425A (ja) * 1999-04-19 2000-11-02 Daiso Co Ltd 架橋高分子固体電解質及びその用途
JP2000323170A (ja) * 1999-05-07 2000-11-24 Lion Corp 電気化学的安定性に優れた非プロトン性溶媒
JP2003016835A (ja) * 2001-07-04 2003-01-17 Ube Ind Ltd 高分子電解質及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147279A (ja) * 2004-11-18 2006-06-08 Daiso Co Ltd 電解質組成物および電池
JP4560721B2 (ja) * 2004-11-18 2010-10-13 ダイソー株式会社 電解質組成物および電池
JP2010165498A (ja) * 2009-01-14 2010-07-29 Panasonic Corp リチウム一次電池
JP2018505538A (ja) * 2015-02-09 2018-02-22 ソリッドエナジー システムズ 充電式リチウム電池の高塩濃度電解質
CN112713306A (zh) * 2020-12-24 2021-04-27 清华大学深圳国际研究生院 一种遇空气或湿气可固化的电解液及制备方法和应用
CN113136159A (zh) * 2021-04-27 2021-07-20 西南科技大学 一种通电可按需剥离的环氧结构胶黏剂的制备及使用方法
CN113136159B (zh) * 2021-04-27 2022-07-19 西南科技大学 一种通电可按需剥离的环氧结构胶黏剂的制备及使用方法

Also Published As

Publication number Publication date
JP4640172B2 (ja) 2011-03-02
KR20060002984A (ko) 2006-01-09
CA2522234A1 (en) 2004-10-28
JPWO2004092269A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP3215440B2 (ja) 高分子固体電解質
JP3223978B2 (ja) ポリエーテル共重合体および高分子固体電解質
JP3215436B2 (ja) 架橋高分子固体電解質及びその用途
JP3301378B2 (ja) ポリエーテル共重合体および架橋高分子固体電解質
EP0994143B1 (en) Solid polymer electrolyte and use thereof
JP4089221B2 (ja) 高分子固体電解質および電池
US6858351B2 (en) Polyethylene oxide-based electrolyte containing silicon compound
JP4164131B2 (ja) ポリエーテル共重合体、高分子固体電解質および電池
WO2004113443A1 (ja) 架橋高分子電解質及びその用途
Mindemark et al. Hydroxyl-functionalized poly (trimethylene carbonate) electrolytes for 3D-electrode configurations
JP3484974B2 (ja) 新規なリチウムポリマー電池
WO2000063292A1 (en) Solid crosslinked-polymer electrolyte and use thereof
JP3282565B2 (ja) 架橋高分子固体電解質及びその用途
WO2004092269A1 (ja) 電解質組成物および電池
JP3427730B2 (ja) リチウムポリマー電池
JP4269648B2 (ja) 電解質組成物および電池
JP4089246B2 (ja) 架橋高分子固体電解質および電池
JP2006134817A (ja) 電解質組成物および電池
JP2000150308A (ja) 電気二重層キャパシタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505441

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2522234

Country of ref document: CA

Ref document number: 1020057019410

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057019410

Country of ref document: KR

122 Ep: pct application non-entry in european phase