WO2004089616A1 - Laminatglas mit polysiloxan-harnstoff-copolymer - Google Patents

Laminatglas mit polysiloxan-harnstoff-copolymer Download PDF

Info

Publication number
WO2004089616A1
WO2004089616A1 PCT/EP2004/003451 EP2004003451W WO2004089616A1 WO 2004089616 A1 WO2004089616 A1 WO 2004089616A1 EP 2004003451 W EP2004003451 W EP 2004003451W WO 2004089616 A1 WO2004089616 A1 WO 2004089616A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysiloxane
urea copolymer
glass
carbon atoms
urea
Prior art date
Application number
PCT/EP2004/003451
Other languages
English (en)
French (fr)
Inventor
Uwe Scheim
Oliver SCHÄFER
Ernst Selbertinger
Original Assignee
Wacker-Chemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker-Chemie Gmbh filed Critical Wacker-Chemie Gmbh
Priority to EP04725012A priority Critical patent/EP1610947A1/de
Priority to US10/551,610 priority patent/US20060204765A1/en
Priority to JP2006500083A priority patent/JP2006522728A/ja
Publication of WO2004089616A1 publication Critical patent/WO2004089616A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10908Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10908Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in liquid form
    • B32B17/10917Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in liquid form between two pre-positioned glass layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10935Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin as a preformed layer, e.g. formed by extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane

Definitions

  • the invention relates to laminate glass with at least one layer of inorganic or organic glass and at least one layer of polysiloxane-urea copolymer and its production.
  • Laminate glass also called laminated glass, has been in use for a long time. It is constructed like a sandwich and consists of at least one glass sheet and a polymer layer on it. Laminate glass has several advantages over normal glass. In the event of breakage due to the action of force, the polymeric layer binds the splinters, so that the risk of injury is significantly lower than with normal glass. The advantage over single-pane safety glass is that the laminate glass pane remains transparent after a break. Laminate glass also makes it difficult to penetrate the pane structure due to the effects of force, such as break-in with tools, projectiles, or objects flying around in cyclones, e.g. larger pieces of wood.
  • the area of application of the laminated glass covers automotive and vehicle construction, aircraft construction and the construction industry.
  • the polymeric intermediate layers must have a combination of properties such as little or no haze, high strength, very good UV stability, very good adhesion to glass and low moisture absorption with very good moisture resistance.
  • Plasticized polyvinyl butyral (PVB) in film form is most often used as the polymer interlayer. This technology has been used successfully for over 70 years and has been continuously developed and refined, both in terms of polymer films and processing technologies.
  • the polyvinyl butyral consisting of the actual PVB resin itself with a relatively high content of free OH groups and a plasticizer, is usually used as a 0.76 mm thick film, which is connected to the glass panes by heating and pressing in a vacuum brought.
  • the PVB reacts very sensitively to changes in temperature and humidity. To prevent the PVB films from sticking together, the film rolls, for example, must be stored at low temperatures before use.
  • Interlayer has been identified and attempts have been made to remedy the problem through improved construction. Often, the problem is at least optically eliminated only by applying coatings to the edge zones. This avoids an aesthetic impairment, but does not eliminate the actual problem of delamination.
  • Another disadvantage of PVB films is their plasticizer content. This plasticizer can migrate out over time, which can lead to changes in the mechanical properties of the PVB film, ie the film becomes brittle and brittle. The laminate glass loses its safety effect at these points. In addition, the migration of plasticizers can also lead to delamination, starting at the edges of the laminate glasses. The edges of the laminate glasses made with PVB films are also sensitive to chemicals that can migrate from sealing compounds, for example. However, sealants are common needed to permanently connect the laminate glass to a frame construction. Delamination can again occur.
  • PVB which is around 16 ° C in the case of plasticized types. At temperatures well below or well above the glass transition temperature, the laminate glass can lose its good safety properties.
  • polyurethanes namely polyurethanes, polyureas, epoxies, polyesters, (meth) acrylates, silicones, silicone resin polymers, MS polymers (modified silicone polymers, hot melt adhesives, coatings and sealants, plastisols, polyethylene, and polyvinyl acetate) are examples described in WO 99/62707.
  • DE 1596960 describes safety laminated glass objects in which the intermediate layer consists of a silicon-containing polyurethane.
  • These silicon-containing polyurethanes contain reaction products of polyols with silicone compounds that contain silanol or alkoxysilane groups. In the process, compounds are formed which contain Si-OC linkages which, as is known, are not stable to hydrolysis. In the course of use, laminate glasses with such polymers would therefore lose their properties from the edges, since the polymers are gradually destroyed. The function of the laminate glass is therefore no longer available in these zones.
  • the polyurethanes of DE 1596960 can also contain silicon-containing compounds with Si-CH2-OH groups. However, such connections are very difficult to access and are therefore expensive to manufacture.
  • amino groups can be introduced via amino alcohols, which, however, leads to products which are likewise not stable to hydrolysis and which also tend to discolour.
  • US 6156417 describes polyurethanes which can also be modified by siloxanes. In addition to a mere admixture of siloxanes, it is described that the products can be obtained by reacting siloxanols with isocyanates, which results in silyl urethanes which are likewise not stable to hydrolysis.
  • the invention relates to a laminate glass which comprises
  • T is a divalent hydrocarbon residue with 1 to 20
  • R 1 is hydrogen or a monovalent hydrocarbon radical with 1 to .20 carbon atoms which is optionally substituted by fluorine, chlorine or -CN,
  • R ⁇ is a hydrogen atom or a monovalent, optionally substituted by fluorine or chlorine or -CN hydrocarbon radical having 1 to 6 carbon atoms
  • n is 0 or integer values from 1 to 1000 and a, b, c, d, e, f and g den Value 0 or integer values, with the proviso that the sum of b + c + f + g is at least 1, that the sum of a + b + c is at least 2 and for Q the ratio of the meanings NH-R ⁇ - : OH is chosen so that the ratio of the urea groups and urethane groups in the polysiloxane-urea copolymer (B) is at least 4: 1, with b) polyfunctional isocyanates.
  • polysiloxane-urea copolymers (B) which are obtainable by reacting mixtures of linear amino-functional polysiloxanes (a1) and branched amino-functional polysiloxanes (a2) with polyfunctional isocyanates (b) with at least two NCO groups, then achieve corresponding
  • T is preferably a divalent straight-chain or branched alkyl, aryl or aralkyl radical, which is preferably straight-chain. T preferably has a hydrocarbon residue
  • T means methylene or propylene.
  • the hydrocarbon radicals R, R 1 can be linear, branched or cyclic aliphatic, aromatic or mixed aliphatic-aromatic.
  • R and R ⁇ are preferably a monovalent alkyl radical having 1 to 6 carbon atoms and the phenyl radical, in particular they are not substituted.
  • Particularly preferred radicals R and R ⁇ are methyl, ethyl, vinyl and phenyl, especially methyl.
  • R ⁇ preferably denotes a hydrogen atom or a methyl
  • n means values from 10 to 200, values from 10 to 50 are particularly preferred.
  • the linear polysiloxane (al) of the general formula (1) is essentially linear. This means that T-units (RSi ⁇ 3 / 2 ) are not completely excluded, but should only be present in the context of the impurities caused by the technology. For every 1000 D units (SiR 0) there are preferably at most 5 T units, in particular at most 1 T unit.
  • the sum of a + b + c is preferably 3 to 40 in particular
  • the sum of a + b + c + d + e + f + g is preferably from 3 to 200, particularly preferably from 3 to 50.
  • the weight ratio of linear amino-functional polysiloxanes (a1) to branched amino-functional polysiloxanes (a2) is preferably 50:50 to 95: 5, in particular 65:35 to 90:10.
  • the ratio of the urea groups is preferably and
  • Urethane groups in the polysiloxane-urea copolymer (B) at least 10: 1, particularly preferably 50: 1, in particular only urea groups are present.
  • the polyfunctional isocyanates (b) have at least 2 and preferably at most 4 isocyanate groups.
  • A a divalent one, optionally by fluorine, chlorine or
  • X NR 1 or 0 and m represent the value 0 or 1 to 10, with the proviso that if m> 0, for X the ratio of
  • NR 1 : 0 is chosen so that the ratio of the urea groups and urethane groups in the polysiloxane-urea copolymer (B) is at least 4: 1.
  • M 0 is particularly preferred.
  • Preferred polyfunctional isocyanates are diisocyanates such as, for example, 4,4 "methylene bis (phenyl isocyanate) MDI, 2,4- and 2,6-toluenediisocyanate TDI, hexamethylene diisocyanate HMDI and
  • IPDI Isophorone diisocyanate IPDI.
  • Aliphatic isocyanates are particularly preferred.
  • the prepolymers are produced by reacting the above-mentioned isocyanates with a deficit of polyols.
  • Preferred polyether components for the prepolymers are polyethylene glycols, polypropylene glycols, polyethylene propylene glycols and polyester polyols.
  • adhesion-promoting silanes can be added to the polysiloxane-urea copolymer (B).
  • adhesion promoters are silanes with hydrolyzable groups and SiC-bonded vinyl, acryloxy, methacryloxy, isocyanato, epoxy, acid anhydride, acid, ester or ether groups and their partial and mixed hydrolyzates.
  • adhesion promoters are 3-
  • Silanes with vinyl groups and silanes with epoxy groups which contain ethoxy or acetoxy groups as hydrolyzable radicals are preferred.
  • Glycidoxypropyltriethoxysilane, vinyltriethoxysilane and vinyltriacetoxysilane, or their partial and mixed hydrolyzates are particularly preferred.
  • the adhesion promoters are added in amounts of 0.01% to 5%, preferably 0.1% to 2%, particularly preferably between 0.4% and 0.7%, in each case based on the total mass of copolymer (B).
  • adhesion-promoting silanes or their solutions and hydrolysis-condensation products, can also be applied to the surface of the films produced from the polysiloxane-urea copolymers (B).
  • the polysiloxane-urea copolymer (B) is prepared in a first step by reacting a mixture of linear polysiloxanes (a1) and branched polysiloxanes (a2) and polyisocyanates (b) and the polysiloxane-urea
  • copolymer (B) is applied to at least one layer of inorganic or organic glass (A).
  • the polysiloxane-urea copolymer (B) can be prepared either in a suitable solvent or without
  • Solvents are made. Adhesion-promoting silanes can be added in the first step before or during the reaction.
  • the polysiloxane copolymers (B) have thermoplastic and elastic properties, ie they are rubber-elastic below the melting or softening temperature and viscous liquids above this temperature.
  • the various components can be reacted either in a suitable solvent or in an extruder without solvent.
  • the reaction in an extruder is preferred, the individual components being added in succession in a suitable sequence, if appropriate after a residence time to be determined by the person skilled in the art.
  • the finished product can be removed, for example, as granules or as a film with the desired thickness. The latter is particularly preferred.
  • the laminated glass is constructed in a sandwich-like manner and consists of at least one glass layer (A) and a layer of polysiloxane copolymer (B) thereon, but as a rule from at least two glass layers (A) and an intermediate layer (B), which cover the glass layers (A ) connects with each other.
  • the laminated glass is constructed in a sandwich-like manner and consists of at least one glass layer (A) and a layer of polysiloxane copolymer (B) thereon, but as a rule from at least two glass layers (A) and an intermediate layer (B), which cover the glass layers (A ) connects with each other.
  • Glass layers (A) can either consist of inorganic glasses, such as float glass and / or organic glasses, such as polycarbonate (PC) or polymethyl methacrylate (PMMA) glass.
  • a layer of polysiloxane copolymer (B) always follows a layer of glass (A).
  • the layer made of polysiloxane copolymer (B) can consist of a uniform material, or can itself be constructed in several layers from different layers made of polysiloxane copolymer (B).
  • the bond between glass (A) and polysiloxane copolymer (B) can be obtained in various ways.
  • a simple type is, for example, the layer of polysiloxane copolymer (B) as a film.
  • This film is placed between the two glass plates (A) and the composite is produced by heating to at least a temperature at which this film begins to soften and pressing at the same time.
  • Another possibility for the production of the laminate glass is that liquefied on one of the glass panes (A) Polysiloxane copolymer (B) is applied by, for example, doctor blades, rollers or screen printing.
  • the laminate glass is then finally obtained by placing the second glass plate (A) on the layer of polysiloxane copolymer (B) and in turn obtaining the composite by increasing the temperature and pressing.
  • the glass panes (A) can be pretreated, as already described.
  • a third possibility is that the two glass sheets (A), which may in turn have been treated with adhesion promoter, are put together by suitable spacers in such a way that a gap of a defined width is obtained.
  • Liquefied polysiloxane copolymer (B) from a suitable heated storage vessel is then introduced into this gap by means of a metering device, the edges of the glass sheets being closed in such a way that the polymer melt does not escape at undesired points and only the air located between the glass sheets can escape.
  • the polysiloxane-urea copolymer (B) is preferably used as a film to produce the laminated glass.
  • adhesion promoting silanes of the first ⁇ step on the polysiloxane-urea copolymer (B) or the inorganic or organic glass (A) or on both the polysiloxane-urea copolymer (B) and the inorganic or organic glass (A) can be applied ,
  • adhesion-promoting silanes can be applied to the film and / or the glasses in a known manner before the composite is produced.
  • a solution of adhesion promoters in a suitable solvent can be used.
  • primers has become established for this process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Gegenstand der Erfindung ist ein Laminatglas, welches umfasst: A) mindestens eine Schicht aus anorganischem oder organischem Glas und B) mindestens eine Schicht aus einem Polysiloxan-Harnstoff-Copolymer, das erhältlich ist durch Umsetzung einer Mischung von: a1) linearen Polysiloxanen der allgemeinen Formel (I) Q-T-SiR2O-(SiR2O)n-SiR2-T-Q und a2) verzweigten Polysiloxanen der allgemeinen Formel (II) (Q-T-SiR2O1/2)a(Q-T-SiRO2/2)b(Q-T-SiO3/2)c (R3SiO1/2)d(R2SiO2/2)e(RSiO3/2)f(SiO4/2)g mit b) polyfunktionellen Isocyanaten, wobei und R, T, Q, a, b, c, d, e, f und g die in Anspruch (1) angegebenen Bedeutungen aufweisen.

Description

Laminatglas mit Polysiloxan-Harnstoff-Copolymer
Die Erfindung betrifft Laminatglas mit mindestens einer Schicht aus anorganischem oder organischem Glas und mindestens einer Schicht aus Polysiloxan-Harnstoff-Copolymer und dessen Herstellung.
Laminatglas, auch Verbundglas genannt, ist seit langer Zeit im Einsatz. Es ist sandwichartig aufgebaut und besteht aus mindestens einer Glastafel und einer darauf befindlichen polymeren Schicht . Das Laminatglas hat gegenüber normalem Glas verschiedene Vorteile. Bei einem Bruch durch Gewalteinwirkung bindet die poly ere Schicht die Splitter, so dass die Verletzungsgefahr wesentlich geringer ist als bei normalem Glas. Der Vorteil gegenüber Einscheibensicherheitsglas liegt darin, dass die Laminatglasscheibe nach einem Bruch auch weiterhin durchsichtig ist. Laminatglas erschwert auch das Durchdringen der Scheibenkonstruktion durch Gewalteinwirkung, wie Einbruch mit Werkzeugen, Projektile, oder bei Wirbelstürmen umherfliegende Gegenstände wie z.B. größere Holzsplitter.
Außerdem kann durch den schichtweisen Aufbau eine zusätzliche Schall- und Wärmedämmung erreicht werden. Der Einsatzbereich der Verbundgläser umfasst den Automobil- und Fahrzeugbau, den Flugzeugbau sowie die Bauindustrie .
Die polymeren Zwischenschichten müssen eine Kombination von Eigenschaften aufweisen wie zum Beispiel geringe oder keine Trübung, hohe Festigkeit, sehr gute UV-Stabilität, sehr gute Haftung auf Glas und geringe Feuchtigkeitsaufnahme bei sehr guter Feuchtigkeitsbeständigkeit.
Am häufigsten wird als polymere Zwischenschicht weichgemachtes Polyvinylbutyral (PVB) in Folienform verwendet. Diese Technologie wird seit über 70 Jahren erfolgreich eingesetzt und wurde ständig weiterentwickelt und verfeinert, sowohl hinsichtlich der Polymerfolien als auch hinsichtlich der Verarbeitungstechnologien . Das Polyvinylbutyral, bestehend aus dem eigentlichen PVB-Harz selbst mit einem relativ hohen Gehalt an freien OH-Gruppen und einem Weichmacher, wird in der Regel als 0,76 mm dicke Folie eingesetzt, die durch Erhitzen und Verpressen im Vakuum mit den Glasscheiben in Verbindung gebracht wird. Das PVB reagiert sehr sensibel auf Temperatur- und Luftfeuchtigkeitsveränderungen. Um das Verkleben der PVB-Folien untereinander zu verhindern, müssen z.B. die Folienrollen vor dem Gebrauch bei niedrigen Temperaturen gelagert werden. Diese Feuchtigkeitsempfindlichkeit kann zu einer verstärkten Trübung der Polymerfilme und schließlich auch zu Blasenbildung in den Laminatgläser führen. Insbesondere tritt dieser Effekt an den Rändern der Laminatgläser auf. Während der Herstellung der Laminatgläser lassen sich diese Effekte zwar durch entsprechende Klimatisierung und Konditionierung der PVB-Folien vermeiden, allerdings kann beim Einsatz der Laminatgläser im Laufe der Zeit dieser Effekt trotzdem z.B. durch an den Kanten eintretende Feuchtigkeit hervorgerufen werden. Dieses Phänomen der Delamination durch Eindringen von Feuchtigkeit und Chemikalien ist schon vor der Einführung von PVB als polymere
Zwischenschicht festgestellt worden, und es wurde versucht, das Problem durch eine verbesserte Konstruktion zu beseitigen. Oft wird auch nur durch das Aufbringen von Beschichtungen an den Randzonen das Problem zumindest optisch beseitigt. Damit wird zwar eine ästhetische Beeinträchtigung vermieden, das eigentliche Problem der Delamination aber nicht beseitigt. Ein weitere Nachteil der PVB-Folien ist deren Gehalt an Weichmacher. Dieser Weichmacher kann im Laufe der Zeit herauswandern, was zur Veränderung der mechanischen Eigenschaften der PVB-Folie führen kann, d.h. die Folie wird spröde und brüchig. Das Laminatglas verliert an diesen Stellen seine Sicherheitswirkung. Außerdem kann das Auswandern von Weichmacher ebenfalls zu Delaminationserscheinungen, beginnend an den Kanten der Laminatgläser, führen. Die Kanten der mit PVB-Folien hergestellten Laminatgläser sind außerdem empfindlich auf Chemikalien, die zum Beispiel aus Dichtmassen auswandern können. Dichtmassen werden aber häufig benötigt, um das Laminatglas mit einer Rahmenkonstruktion dauerhaft zu verbinden. Es kann wiederum zu Delamination kommen.
Ein sehr gravierender Nachteil der Laminatgläser aus PVB-Folien resultiert aus der relativ hohen Glasübergangstemperatur Tq des
PVB, die im Falle der weichmacherhaltigen Typen bei ca. 16 °C liegt. Bei Temperaturen deutlich unterhalb oder deutlich oberhalb der Glasübergangstemperatur kann das Laminatglas seine guten Sicherheitseigenschaften verlieren.
Alternative Vorschläge für die polymere Zwischenschicht, nämlich Polyurethane, Polyharnstoffe, Epoxide, Polyester, (Meth) - Acrylate, Silicone, Siliconharzpolymere, MS-Polymere (modified silicone polymeres, Hotmelt-Klebstoffe, Beschichtungen und Dichtungsmassen, Piastisole, Polyethylen, und Polyvinylacetat sind beispielsweise in WO 99/62707 beschrieben.
In DE 1596960 sind Sicherheitsverbundglasgegenstände beschrieben, bei denen die Zwischenschicht aus einem siliciumhaltigen Polyurethan besteht. Diese siliciumhaltigen Polyurethane enthalten Umsetzungsprodukte aus Polyolen mit Siliconverbindungen, die Silanol- oder Alkoxysilangruppen enthalten. Dabei bilden sich Verbindungen, die Si-O-C- Verknüpfungen enthalten, welche bekanntermaßen nicht hydrolysestabil sind. Im Laufe des Gebrauchs würden deshalb Laminatgläser mit solchen Polymeren von den Rändern her ihre Eigenschaften einbüßen, da eine allmähliche Zerstörung der Polymere eintritt. Die Funktion des Laminatglases ist damit in diesen Zonen nicht mehr gegeben. Die Polyurethane von DE 1596960 können auch siliciumhaltige Verbindungen mit Si-CH2-OH-Gruppen enthalten. Solche Verbindungen sind allerdings nur sehr schwer zugänglich und somit teuer in der Herstellung. Des weiteren wird ausgeführt, dass A inogruppen über Aminoalkohole eingeführt werden können, welche allerdings zu Produkten führt, die ebenfalls nicht hydrolysestabil sind und außerdem noch zum Verfärben neigen. In US 6156417 werden Polyurethane beschrieben, die auch durch Siloxane modifiziert werden können. Neben einer bloßen Zumischung von Siloxanen wird beschrieben, dass die Produkte durch Umsetzung von Siloxanolen mit Isocyanaten erhalten werden können, wodurch Silylurethane entstehen, die ebenfalls nicht hydrolysestabil sind.
Darüber hinaus sind die mechanischen Festigkeiten, die sich mit siloxanhaltigen Polyurethanen erreichen lassen, für den Einsatzzweck im Laminatglas nicht ausreichend. Daran ändert sich auch nichts, wenn man die funktionellen Gruppen über Si-C- Bindungen an das Silicongerüst bindet.
Gegenstand der Erfindung ist ein Laminatglas, welches umfasst
(A) mindestens eine Schicht aus anorganischem oder organischem Glas und
(B) mindestens eine Schicht aus einem Polysiloxan-Harnstoff- Copolymer, das erhältlich ist durch Umsetzung einer Mischung von al) linearen Polysiloxanen der allgemeinen Formel (1)
Q-T-SiR20- (SiR20)n-SiR2-T-Q (1),
und a2) verzweigten Polysiloxanen der allgemeinen Formel (2)
(Q-T-SiR201/2)a(Q-T-SiR02/2)b(Q-τ-si03/2)c (2)
(R3SiOl/2) d (R2Si02 2) e (RSi03/2) f (Si04/2) g
wobei
Q NH-R1 oder OH,
T einen zweiwertigen Kohlenwasserstoffrest mit 1 bis 20
Kohlenstoffatomen, in dem einander nicht benachbarte Methyleneinheiten durch Gruppen NR6 oder 0 ersetzt sein können und R einen einwertigen, gegebenenfalls durch Fluor, Chlor oder -CN substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen ,
R1 Wasserstoff oder einen einwertigen, gegebenenfalls durch Fluor, Chlor oder -CN substituierten Kohlenwasserstoffrest mit 1 bis .20 Kohlenstoffatomen,
R^ ein Wasserstoffatom oder einen einwertigen, gegebenenfalls durch Fluor oder Chlor oder -CN substituierten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen, n den Wert 0 oder ganzzahlige Werte von 1 bis 1000 und a, b, c, d, e, f und g den Wert 0 oder ganzzahlige Werte bedeuten, mit der Maßgabe, dass die Summe aus b+c+f+g mindestens 1 beträgt, dass die Summe aus a+b+c mindestens 2 beträgt und für Q das Verhältnis der Bedeutungen NH-R^- : OH so gewählt wird, dass das Verhältnis der Harnstoffgruppen und Urethangruppen im Polysiloxan-Harnstoff-Copolymer (B) mindestens 4 : 1 beträgt, mit b) polyfunktionellen Isocyanaten.
Die Polysiloxan-Harnstoff-Copolymeren (B) , die durch Umsetzung von Mischungen aus linearen aminofunktionellen Polysiloxanen (al) und verzweigten aminofunktionellen Polysiloxanen (a2) mit polyfunktionellen Isocyanaten (b) mit mindestens zwei NCO- Gruppen erhältlich sind, erreichen dann entsprechende
Festigkeiten, wie sie durch die PVB-Folien erreicht werden, wenn das Verhältnis von Harnstoffgruppen zu Urethangruppen mindesten 4 :1 beträgt .
Durch die Kombination der linearen aminofunktionellen Polysiloxane (al) und verzweigten aminofunktionellen Polysiloxane (a2) mit den polyfunktionellen Isocyanaten (b) lassen sich alle erwünschten Eigenschaften kombinieren wie hohe Festigkeit der Polymere (B) bei ausreichender Elastizität und niedriger Glasübergangstemperatur Tg, wobei sich die
Eigenschaften über eine weiten Temperaturbereich nur wenig ändern. Die so hergestellten Polymere (B) neigen außerdem nicht zu Verfärbungen.
Vorzugsweise bedeutet T einen zweiwertigen geradkettigen oder verzweigten Alkyl-, Aryl- oder Aralkyl-Rest , der vorzugsweise geradkettig ist. Vorzugsweise weist T Kohlenwasserstoffrest mit
1 bis 6 Kohlenstoffatome auf. Insbesondere bedeutet T Methylen oder Propylen.
Die Kohlenwasserstoffreste R, R1 können linear, verzweigt oder cyclisch aliphatisch, aromatisch oder gemischt aliphatisch- aromatisch sein. Vorzugsweise bedeuten R und R^ einen einwertigen Alkylrest mit 1 bis 6 Kohlenstoffatomen und den Phenylrest, insbesondere sind sie nicht substituiert. Besonders bevorzugte Reste R und R^ sind Methyl, Etϊϊyl, Vinyl und Phenyl, insbesondere Methyl .
Vorzugsweise bedeutet R^ ein Wasserstoffatom oder einen Methyl-,
Ethyl-, Propyl- oder Butylrest .
Vorzugsweise bedeutet n Werte von 10 bis 200, besonders bevorzugt sind Werte von 10 bis 50.
Das lineare Polysiloxan (al) der allgemeinen Formel (1) ist im wesentlichen linear. Das bedeutet, dass T-Einheiten (RSiθ3/2) nicht völlig ausgeschlossen sind, aber nur im Rahmen der durch die Technologie bedingten Verunreinigungen vorhanden sein sollen. Auf 1000 D- Einheiten (SiR 0) kommen vorzugsweise höchstens 5 T-Einheiten, insbesondere höchstens 1 T-Einheit .
Im verzweigten Polysiloxan (a2) der allgemeinen Formel (2) beträgt die Summe aus a+b+c vorzugsweise 3 bis 40 insbesondere
3 bis 10 und die Summe aus d+e+f+g vorzugsweise 0 bis 160, insbesondere 0 bis 40. Im verzweigten Polysiloxan (a2) beträgt die Summe aus a+b+c+d+e+f+g vorzugsweise Werte von 3 bis 200, besonders bevorzugt sind Werte von 3 bis 50.
Bevorzugt sind aminofunktionelle Polysiloxanen (a2) , bei denen b=c=e=f=0 (QMMA-Harz) oder a=c=f=g=0 (Aminöl mit seitenständigen Aminogruppen) .
Vorzugsweise beträgt das Gewichtsverhältnis von linearen aminofunktionellen Polysiloxanen (al) zu verzweigten aminofunktionellen Polysiloxanen (a2) 50 : 50 bis 95 : 5, insbesondere 65 : 35 bis 90 :10.
Vorzugsweise beträgt das Verhältnis der Harnstoffgruppen und
Urethangruppen im Polysiloxan-Harnstoff-Copolymer (B) mindestens 10 : 1, besonders bevorzugt 50 : 1 , insbesondere sind nur Harnstoffgruppen vorhanden.
Die polyfunktionellen Isocyanate (b) weisen mindestens 2 und vorzugsweise höchstens 4 Isocyanatgruppen auf. Bevorzugt sind organische Diisocyanate und Präpolymere, insbesondere lineare Präpolymere mit jeweils 2 Isocyanatgruppen und deren Mischungen.
Bevorzugt sind Diisocyanate bzw. Präpolymere der allgemeinen Formel (3)
OCN-B- [NH-C(O) -X-A-X-C(O) -NH-B-]mNCO ' (3),
in der
A einen zweiwertigen gegebenenfalls durch Fluor, Chlor oder -
CN substituierten Kohlenwasserstoffrest mit 1 bis 5000 Kohlenstoffatomen, der durch Gruppen unterbrochen sein kann, die ausgewählt werden aus -O- und -O-CO-O-, B einen zweiwertigen gegebenenfalls durch Fluor, Chlor oder CN substituierten Kohlenwasserstoffrest mit 1 bis 100 Kohlenstoffatomen,
X N-R1 oder 0 und m den Wert 0 oder 1 bis 10 bedeuten, mit der Maßgabe, dass wenn m>0, für X das Verhältnis der
Bedeutungen N-R1 : 0 so gewählt wird, dass das Verhältnis der Harnstoffgruppen und Urethangruppen im Polysiloxan-Harnstoff- Copolymer (B) mindestens 4:1 beträgt.
Besonders bevorzugt ist m = 0.
Bevorzugte polyfunktionelle Isocyanate sind Diisocyanate wie zum Beispiel 4 , 4 " -Methylenbis (phenylisocyanat) MDI, 2,4- und 2,6- Toluoldiisocyanat TDI, Hexamethylendiisocyanat HMDI und
Isophorondiisocyanat IPDI. Besonders bevorzugt sind aliphatische Isocyanate .
Die Präpolymere werden hergestellt, indem die oben erwähnten Isocyanate mit einem Unterschuß an Polyolen umgesetzt werden Bevorzugte Polyetherkomponenten für die Präpolymere sind Polyethylenglycole , Polypropylenglycole , Polyethylenpropylenglycole und Polyesterpolyole.
Zur Verbesserung der Haftung können dem Polysiloxan-Harnstoff- Copolymeren (B) haftvermittelnde Silane zugegeben werden. Beispiele für Haftvermittler sind Silane mit hydrolysierbaren Gruppen und SiC-gebundenen Vinyl-, Acryloxy- , Methacryloxy- , Isocyanato-, Epoxy- , Säureanhydrid-, Säure-, Ester- oder Ethergruppen sowie deren Teil- und Mischhydrolysate .
Beispiele für Haftvermittler sind 3-
Isocyanatopropyltrimethoxysilan, 3 -Isocyanatopropyltriethoxy- silan, 3 -Isocyanatopropyldimethoxymethylsilan, 3-Isocyanatopro- pyldiethoxymethylsilan, 3-Isocyanatopropylmethoxydimethylsilan, 3 - Isocyanatopropylethoxydimethylsilan, Isocyanatomethyltrimeth- oxysilan, Isocyanatomethyltriethoxysilan, Isocyanatomethyldi- methoxymethylsilan, Isocyanatomethyldiethoxymethylsilan, Isocya- natomethylmethoxydimethylsilan und Isocyanatomethylethoxydi- methylsilan3-Aminopropyltrimethoxysilan, 3 -Aminopropyltriethoxy- silan, 3- (2-Aminoethyl) aminopropyltrimethoxysilan, 3-(2-Ami- noethyl) aminopropyltriethoxysilan, 3 -Aminopropylmethyldimethoxy- silan, 3- (2-Aminoethyl) aminopropylmethyldimethoxysilan, Cyclohe- xylaminomethyltriethoxysilan, Glycidoxypropyltrimethoxysilan, Glycidoxypropyltriethoxysilan .
Silane mit Vinylgruppen und Silane mit Epoxygruppen, die als hydrolysierbare Reste Ethoxy- oder Acetoxygruppen enthalten, sind bevorzugt. Glycidoxypropyltriethoxysilan, Vinyltriethoxysilan und Vinyltriacetoxysilan, bzw. deren Teil- und Mischhydrolysate sind besonders bevorzugt.
Die Haftvermittler werden in Mengen von 0,01% bis 5%, bevorzugt 0,1% bis 2%, besonders bevorzugt zwischen 0,4% und 0,7%, jeweils bezogen auf die Gesamtmasse an Copolymer (B) zugegeben.
Die haftvermittelnden Silane, bzw. deren Lösungen und Hydrolyse- Kondensationsprodukte, können auch auf die Oberfläche der aus den Polysiloxan-Harnstoff-Copolymeren (B) hergestellten Folien aufgebracht werden .
In einem bevorzugten Verfahren zur Herstellung des Laminatglases wird das Polysiloxan-Harnstoff-Copolymer (B) in einem ersten Schritt durch Umsetzung einer Mischung von linearen Polysiloxanen (al) und verzweigten Polysiloxanen (a2) und Polyisocyanaten (b) hergestellt und das Polysiloxan-Harnstoff- Copolymer (B) in einem zweiten Schritt auf mindestens eine Schicht aus anorganischem oder organischem Glas (A) aufgebracht.
Die Herstellung des Polysiloxan-Harnstoff-Copolymeren (B) kann entweder in einem geeigneten Lösungsmittel oder auch ohne
Lösungsmittel erfolgen. Haftvermittelnde Silane können im ersten Schritt vor oder während der Umsetzung zugesetzt werden. Die Polysiloxan-Copolymere (B) haben thermoplastische und elastische Eigenschaften, d.h. unterhalb der Schmelz- bzw. Erweichungstemperatur sind sie gummielastisch, oberhalb dieser Temperatur viskose Flüssigkeiten.
Die Umsetzung der verschiedenen Komponenten kann entweder in einem geeigneten Lösungsmittel oder auch ohne Lösungsmittel in einem Extruder erfolgen. Bevorzugt ist die Umsetzung in einem Extruder, wobei die einzelnen Komponenten nacheinander in geeigneter Reihenfolge zugegeben werden, gegebenenfalls jeweils nach einer vom Fachmann zu bestimmenden Verweilzeit. Am Ende des Extruders kann das fertige Produkt zum Beispiel als Granulat abgenommen werden, oder auch gleich als Folie mit der gewünschten Dicke. Letzteres ist besonders bevorzugt.
Das Laminatglas ist sandwichartig aufgebaut und besteht aus mindestens einer Glasschicht (A) und einer darauf befindlichen Schicht aus Polysiloxan-Copolymer (B) , in der Regel aber aus mindestens zwei Glasschichten (A) und einer Zwischenschicht (B) , die die Glasschichten (A) miteinander verbindet. Die
Glasschichten (A) können entweder aus anorganischen Gläsern, wie zum Beispiel Floatglas und/oder aus organischen Gläsern, wie Polycarbonat- (PC) oder Polymethylmethacrylatglas (PMMA) bestehen. Auf eine Glasschicht (A) folgt stets eine Schicht aus Polysiloxan-Copplymer (B) . Die Schicht aus Polysiloxan-Copolymer (B) kann aus einem einheitlichen Material bestehen, oder auch selbst mehrschichtig aus verschiedenen Schichten aus Polysiloxan-Copolymer (B) aufgebaut sein.t
Der Verbund zwischen Glas (A) und Polysiloxan-Copolymer (B)kann in verschiedener Art und Weise erhalten werden.
Eine einfache Art ist zum Beispiel der Schicht aus Polysiloxan- Copolymer (B) als Folie. Diese Folie wird zwischen die beiden Glasplatten (A) gelegt und durch Erhitzen bis mindestens zu einer Temperatur, bei der diese Folie zu erweichen beginnt und bei gleichzeitigem Pressen der Verbund hergestellt. Eine weitere Möglichkeit zur Herstellung des Laminatglases besteht darin, dass auf eine der Glasscheiben (A) verflüssigtes Polysiloxan-Copolymer (B) durch beispielsweise Rakel, Walzen oder auch Siebdruck aufgebracht wird. Das Laminatglas wird dann schließlich erhalten, indem die zweite Glasplatte (A) auf die Schicht aus Polysiloxan-Copolymer (B) gelegt wird und wiederum durch Temperaturerhöhung und Pressen der Verbund erhalten wird. Auch hierbei kann eine Vorbehandlung der Glasscheiben (A) , wie bereits beschrieben, erfolgen.
Eine dritte Möglichkeit besteht darin, dass die beiden gegebenenfalls wiederum mit Haftvermittler behandelten Glastafeln (A) durch geeignete Abstandshalter so zusammengesetzt werden, dass ein Spalt von definierter Breite erhalten wird. In diesen Spalt wird nun verflüssigtes Polysiloxan-Copolymer (B) aus einem geeigneten beheizten Vorratsgefäß durch eine Dosiereinrichtung eingebracht, wobei die Kanten der Glastafeln so verschlossen sind, dass die Polymerschmelze nicht an unerwünschten Stellen austritt und nur die zwischen den Glastafeln befindliche Luft entweichen kann.
Zur Herstellung des Laminatglases wird das Polysiloxan- Harnstoff-Copolymer (B) bevorzugt als Folie eingesetzt.
Vorzugsweise werden haftvermittelnde Silane nach dem ersten Schritt auf das Polysiloxan-Harnstoff-Copolymer (B) oder das anorganische oder organische Glas (A) oder sowohl auf das Polysiloxan-Harnstoff-Copolymer (B) und das anorganische oder organische Glas (A) aufgebracht.
Das Aufbringen der haftvermittelnde Silane kann in bekannter Art und Weise vor dem Herstellen des Verbundes auf die Folie und/oder die Gläser erfolgen. Es kann eine Lösung von Haftvermittlern in einem geeigneten Lösungsmittel eingesetzt werden. Für dieses Verfahren hat sich der Begriff Primern eingebürgert .

Claims

Patentansprüche :
1. Laminatglas, welches umfasst
(A) mindestens eine Schicht aus anorganischem oder organischem Glas und
(B) mindestens eine Schicht aus einem Polysiloxan-Harnstoff- Copolymer, das erhältlich ist durch Umsetzung einer Mischung von al) linearen Polysiloxanen der allgemeinen Formel (1)
Q-T-SiR20- (SiR20)n-SiR2-T-Q - (1),
und a2) verzweigten Polysiloxanen der allgemeinen Formel (2)
(Q-T-SiR2Ol/2) a (Q-T-SiR02/2) b (Q-T-Si03/2) c (2) (R3SiOl 2) d(R2Si02/2) e (RSi03/2 ) f (Si04/2 ) g
wobei Q NH-R1 oder OH,
T einen zweiwertigen Kohlenwasserstoffrest mit 1 bis 20
Kohlenstoffatomen, in dem einander nicht benachbarte
Methyleneinheiten durch Gruppen NR6 oder O ersetzt sein können und R einen einwertigen, gegebenenfalls durch Fluor, Chlor oder -CN substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen , R1 Wasserstoff oder einen einwertigen, gegebenenfalls durch
Fluor, Chlor oder -CN substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen,
R6 ein Wasserstoffatom oder einen einwertigen, gegebenenfalls durch Fluor oder Chlor oder -CN substituierten
Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen, n den Wert 0 oder ganzzahlige Werte von 1 bis 1000 und a, b, c, d, e, f und g den Wert 0 oder ganzzahlige Werte bedeuten, mit der Maßgabe, dass die Summe aus b+c+f+g mindestens 1 beträgt, dass die Summe aus a+b+c mindestens 2 beträgt und für Q das Verhältnis der Bedeutungen NH-R1 : OH so gewählt wird, dass das Verhältnis der Harnstoffgruppen und Urethangruppen im Polysiloxan-Harnstoff-Copolymer (B) mindestens 4 : 1 beträgt, mit b) polyfunktionellen Isocyanaten.
2. Laminatglas nach Anspruch 1, bei dem T Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen ist.
3. Laminatglas nach Anspruch 1 oder.2, bei dem R einen einwertigen Alkylrest mit 1 bis 6 Kohlenstoffatomen oder Phenylrest bedeutet.
4. Laminatglas nach Anspruch 1 bis 3, bei dem das Polysiloxan- Harnstoff-Copolymere (B) haftvermittelnde Silane enthält.
5. Verfahren zur Herstellung des Laminatglases gemäß Anspruch 1 bis 4, bei dem das Polysiloxan-Harnstoff-Copolymer (B) in einem ersten Schritt durch Umsetzung einer Mischung von linearen Polysiloxanen (al) und verzweigten Polysiloxanen (a2) und Polyisocyanaten (b) hergestellt wird und das
Polysiloxan-Harnstoff-Copolymer (B) in einem zweiten Schritt auf mindestens eine Schicht aus anorganischem oder organischem Glas (A) aufgebracht wird.
6. Verfahren nach Anspruch 5, bei dem haftvermittelnde Silane im ersten Schritt zu dem Polysiloxan-Harnstoff-Copolymer (B) gegeben werden.
7. Verfahren nach Anspruch 5, bei dem haftvermittelnde Silane nach dem ersten Schritt auf das Polysiloxan-Harnstoff-
Copolymer (B) oder das anorganische oder organische Glas (A) oder sowohl auf das Polysiloxan-Harnstoff-Copolymer (B) und das anorganische oder organische Glas (A) aufgebracht werden.
Verfahren nach Anspruch 5 oder 6, bei dem die Umsetzung im ersten Schritt in einem Extruder erfolgt und das gebildete Polysiloxan-Harnstoff-Copolymer (B) anschließend direkt als Folie extrudiert wird.
PCT/EP2004/003451 2003-04-10 2004-04-01 Laminatglas mit polysiloxan-harnstoff-copolymer WO2004089616A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04725012A EP1610947A1 (de) 2003-04-10 2004-04-01 Laminatglas mit polysiloxan-harnstoff-copolymer
US10/551,610 US20060204765A1 (en) 2003-04-10 2004-04-01 Laminated glass with polysiloxane-urea copolymer
JP2006500083A JP2006522728A (ja) 2003-04-10 2004-04-01 ポリシロキサン−尿素コポリマーを有する合わせガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003116521 DE10316521B3 (de) 2003-04-10 2003-04-10 Laminatglas mit Polysiloxan-Harnstoff-Copolymer und Verfahren zu seiner Herstellung
DE10316521.5 2003-04-10

Publications (1)

Publication Number Publication Date
WO2004089616A1 true WO2004089616A1 (de) 2004-10-21

Family

ID=32668140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003451 WO2004089616A1 (de) 2003-04-10 2004-04-01 Laminatglas mit polysiloxan-harnstoff-copolymer

Country Status (7)

Country Link
US (1) US20060204765A1 (de)
EP (1) EP1610947A1 (de)
JP (1) JP2006522728A (de)
KR (1) KR20050111792A (de)
CN (1) CN1771125A (de)
DE (1) DE10316521B3 (de)
WO (1) WO2004089616A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057382A1 (de) * 2004-11-26 2006-06-01 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Verfahren zur Herstellung dünner Schichten eines Silikons, dünnes Silikon und Verwendung
DE102005054413A1 (de) * 2005-11-15 2007-05-16 Wacker Chemie Ag Glaslaminate mit thermoplastischen Polysiloxan-Harnstoff-Copolymeren
KR100851350B1 (ko) * 2004-12-23 2008-08-08 와커 헤미 아게 열가소성 실록산 중합체로부터 과립을 제조하는 방법
US9593198B2 (en) 2013-12-27 2017-03-14 Chengdu Guibao Science & Technology Co., Ltd. Hybrid organosilicon thermoplastic elastomer and preparation method therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273011A1 (en) * 1996-12-20 2010-10-28 Bianxiao Zhong Silicone Composition, Silicone Adhesive, Coated and Laminated Substrates
CN101600664B (zh) * 2006-12-20 2013-02-06 陶氏康宁公司 用多层固化的有机硅树脂组合物涂覆或层合的玻璃基材
EP2125652A1 (de) * 2006-12-20 2009-12-02 Dow Corning Corporation Mit gehärteten silikonharzzusammensetzungen beschichtete oder laminierte glassubstrate
EP2250221A1 (de) * 2008-03-04 2010-11-17 Dow Corning Corporation Silikonzusammensetzung, silikonhaftmittel sowie beschichtete und laminierte substrate
KR20100137440A (ko) * 2008-03-04 2010-12-30 다우 코닝 코포레이션 보로실록산 조성물, 보로실록산 접착제, 코팅된 기판 및 적층 기판
US20110045277A1 (en) * 2008-05-27 2011-02-24 Nathan Greer Adhesive Tape and Laminated Glass
TW201004795A (en) * 2008-07-31 2010-02-01 Dow Corning Laminated glass
WO2012064534A1 (en) 2010-11-09 2012-05-18 Dow Corning Corporation Hydrosilylation cured silicone resins plasticized by organophosphorous compounds
CN102199346B (zh) * 2011-03-28 2012-08-08 刘春博 可钻滤砂管用聚硅氧烷改性聚氨酯及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1596960A1 (de) 1965-02-24 1971-05-06 Ppg Industries Inc Schichtglas und Verfahren zu seiner Herstellung
EP0078958A1 (de) * 1981-11-05 1983-05-18 Bayer Ag Verfahren zur Herstellung von dünnwandigen Gegenständen aus thermoplastischen Polyurethanen oder Polyurethanharnstoffen durch Extrusion
US4506058A (en) * 1984-03-14 1985-03-19 General Electric Company Self-bonding room temperature vulcanizable silicone compositions
EP0250248A2 (de) * 1986-06-20 1987-12-23 Minnesota Mining And Manufacturing Company Blockcopolymer, Verfahren zu seiner Herstellung, Diaminvorprodukte für dieses Verfahren bzw. Verfahren zu deren Herstellung sowie das Blockcopolymer enthaltende Endprodukte
US4735979A (en) * 1985-04-04 1988-04-05 Loctite Corporation Auto-adhering one-component RTV silicone sealant composition utilizing an adhesion promoter
EP0405494A2 (de) * 1989-06-28 1991-01-02 Union Carbide Chemicals And Plastics Company, Inc. Silikonurethancopolymere
EP0507727A2 (de) * 1991-03-06 1992-10-07 Ciba-Geigy Ag Glasbeschichtung mit verbesserten Haftung und Witterungsbeständigkeit
WO1999062707A1 (de) 1998-06-04 1999-12-09 Chemetall Gmbh Verbundglasscheibe mit starkwandiger kunststoffbeschichtung
WO1999065966A1 (en) * 1998-06-12 1999-12-23 Schlegel Limited Polyurethane compositions ii
US6156417A (en) 1998-02-05 2000-12-05 The Dow Chemical Company Laminated glazings

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906626D0 (en) * 1989-03-22 1989-05-04 Dow Corning Method of making organosiloxane resins
US6592999B1 (en) * 2001-07-31 2003-07-15 Ppg Industries Ohio, Inc. Multi-layer composites formed from compositions having improved adhesion, coating compositions, and methods related thereto

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1596960A1 (de) 1965-02-24 1971-05-06 Ppg Industries Inc Schichtglas und Verfahren zu seiner Herstellung
EP0078958A1 (de) * 1981-11-05 1983-05-18 Bayer Ag Verfahren zur Herstellung von dünnwandigen Gegenständen aus thermoplastischen Polyurethanen oder Polyurethanharnstoffen durch Extrusion
US4506058A (en) * 1984-03-14 1985-03-19 General Electric Company Self-bonding room temperature vulcanizable silicone compositions
US4735979A (en) * 1985-04-04 1988-04-05 Loctite Corporation Auto-adhering one-component RTV silicone sealant composition utilizing an adhesion promoter
EP0250248A2 (de) * 1986-06-20 1987-12-23 Minnesota Mining And Manufacturing Company Blockcopolymer, Verfahren zu seiner Herstellung, Diaminvorprodukte für dieses Verfahren bzw. Verfahren zu deren Herstellung sowie das Blockcopolymer enthaltende Endprodukte
EP0405494A2 (de) * 1989-06-28 1991-01-02 Union Carbide Chemicals And Plastics Company, Inc. Silikonurethancopolymere
EP0507727A2 (de) * 1991-03-06 1992-10-07 Ciba-Geigy Ag Glasbeschichtung mit verbesserten Haftung und Witterungsbeständigkeit
US6156417A (en) 1998-02-05 2000-12-05 The Dow Chemical Company Laminated glazings
WO1999062707A1 (de) 1998-06-04 1999-12-09 Chemetall Gmbh Verbundglasscheibe mit starkwandiger kunststoffbeschichtung
WO1999065966A1 (en) * 1998-06-12 1999-12-23 Schlegel Limited Polyurethane compositions ii

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057382A1 (de) * 2004-11-26 2006-06-01 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Verfahren zur Herstellung dünner Schichten eines Silikons, dünnes Silikon und Verwendung
US8603378B2 (en) 2004-11-26 2013-12-10 Huhtamaki Forchheim Zweigniederlassung der Huhtamaki Deutschlang GmbH & Co. KG Process for the production of thin layers of silicone, thin silicone and use
KR100851350B1 (ko) * 2004-12-23 2008-08-08 와커 헤미 아게 열가소성 실록산 중합체로부터 과립을 제조하는 방법
DE102005054413A1 (de) * 2005-11-15 2007-05-16 Wacker Chemie Ag Glaslaminate mit thermoplastischen Polysiloxan-Harnstoff-Copolymeren
US9593198B2 (en) 2013-12-27 2017-03-14 Chengdu Guibao Science & Technology Co., Ltd. Hybrid organosilicon thermoplastic elastomer and preparation method therefor

Also Published As

Publication number Publication date
US20060204765A1 (en) 2006-09-14
JP2006522728A (ja) 2006-10-05
CN1771125A (zh) 2006-05-10
DE10316521B3 (de) 2004-08-05
KR20050111792A (ko) 2005-11-28
EP1610947A1 (de) 2006-01-04

Similar Documents

Publication Publication Date Title
EP2104611B1 (de) Laminate mit thermoplastischen polysiloxan-harnstoff-copolymeren
EP0285859B1 (de) Reaktionsfähige härtbare Zusammensetzung sowie die gehärteten Produkte dieser Zusammensetzung enthaltenden Produkte
KR920005473B1 (ko) 적층 창유리
DE10316521B3 (de) Laminatglas mit Polysiloxan-Harnstoff-Copolymer und Verfahren zu seiner Herstellung
DE3323684C2 (de)
EP1927466B1 (de) Verbundgebilde mit einer Polyurethanschicht, Verfahren zu deren Herstellung und Verwendung
DE2714303A1 (de) Polycarbonatdiole zur verwendung in polycarbonaturethane
DE2629779B2 (de) Verfahren zur Herstellung einer zweischichtigen Folie mit Selbstheileigenschaften unter Verwendung von Polyurethanen als Splitterschutzschicht eines Sicherheitsglases
DE1596959B2 (de) Sicherheitsverbundglas mit einer polyurethan schicht und verfahren zu seiner herstellung
DE1596960B2 (de) Sicherheitsverbundglasgegenstaende und verfahren zu deren herstellung
DE112019003296T5 (de) Laminierte verglasung mit einer umschaltbaren flüssigkristallschicht
US5529655A (en) Laminated panes and process for the production of same
DE3781423T2 (de) Verfahren zur herstellung eines sicherheitsglases fuer kraftfahrzeuge und gebaeude und so erhaltener gegenstand.
KR930006329B1 (ko) 안전 창유리의 제조방법 및 장치
KR920002355B1 (ko) 투명소성재료판
KR100191877B1 (ko) 에너지-흡수성 폴리우레탄층 및 이를 포함하는 적층 안전창 유리
DE3205055A1 (de) Spiegel, insbesondere fuer fahrzeuge
DE3201687A1 (de) Zwischenschicht aus kunststoff fuer eine mehrschichtige glasscheibe, verfahren zu ihrer herstellung und ihre verwendung
JPS62242534A (ja) 合せ窓ガラスの製造方法
EP0451030B1 (de) Verfahren zur Herstellung einer Polycarbonatschicht oder eines Polycarbonatfilmes mit einer strahlungsbeständigen biegsamen Beschichtung
JP2707579B2 (ja) 反応硬化性組成物およびその反応硬化物を有する製品
WO2007057342A1 (de) Glaslaminate mit thermoplastischen polysiloxan-harnstoff-copolymeren
DE2720945C2 (de) Verfahren zum Verkleben von Polyvinylidenfluorid mit einer festen Unterlage
JPH09235343A (ja) 架橋されたポリウレタン系樹脂シートおよびそれを用いた積層体
DE1596960C (de) Sicherheitsverbundglasgegenstande und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004725012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10551610

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057019260

Country of ref document: KR

Ref document number: 20048096526

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006500083

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057019260

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004725012

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10551610

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004725012

Country of ref document: EP