WO2004083465A1 - 磁気特性の優れた方向性電磁鋼板とその製造方法 - Google Patents
磁気特性の優れた方向性電磁鋼板とその製造方法 Download PDFInfo
- Publication number
- WO2004083465A1 WO2004083465A1 PCT/JP2004/002866 JP2004002866W WO2004083465A1 WO 2004083465 A1 WO2004083465 A1 WO 2004083465A1 JP 2004002866 W JP2004002866 W JP 2004002866W WO 2004083465 A1 WO2004083465 A1 WO 2004083465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- laser
- grain
- irradiation
- electrical steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 26
- 239000010959 steel Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims abstract description 34
- 238000005096 rolling process Methods 0.000 claims abstract description 33
- 239000000835 fiber Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000010355 oscillation Effects 0.000 claims abstract description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 76
- 230000005381 magnetic domain Effects 0.000 claims description 51
- 229910052742 iron Inorganic materials 0.000 claims description 37
- 238000009826 distribution Methods 0.000 claims description 21
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000007373 indentation Methods 0.000 abstract 2
- 239000011295 pitch Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000011162 core material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000010992 reflux Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000013169 thromboelastometry Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0233—Manufacturing of magnetic circuits made from sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/02—Cores, Yokes, or armatures made from sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
Definitions
- the present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties and a method for producing the same.
- Oriented electrical steel sheets with easy magnetization axes in the rolling direction are used as transformer iron core materials.
- Japanese Patent Publication No. 6-19191 introduces YAG laser irradiation to introduce a linear strain that is almost perpendicular to the rolling direction and periodic in the rolling direction, thereby reducing iron loss.
- the method is disclosed.
- the principle of this method is that the 180 ° domain wall spacing is subdivided by the circulating magnetic domain formed due to the surface distortion caused by the laser beam scanning irradiation, and in particular the abnormal eddy current loss is reduced. Called control.
- Iron loss is mainly classical eddy current loss, abnormal eddy current loss, and hysteresis This is the total loss.
- the classical eddy current loss is a loss almost determined by the plate thickness, and the loss that changes by laser magnetic domain control is an abnormal eddy current loss and hysteresis loss.
- the return magnetic domain imparted by the laser magnetic domain control reduces the abnormal eddy current loss by subdividing the 180 ° domain wall spacing, but on the other hand increases the hysteresis loss. Therefore, the formation of the narrowest possible flow magnetic domain in the rolling direction results in less increase in hysteresis loss and lower total iron loss. However, if the circulating magnetic domain is too narrow, the magnetic domain fragmentation effect is reduced.
- An object of the present invention is to provide a grain-oriented electrical steel sheet in which iron loss is reduced as much as possible by scanning irradiation with a minimally focused laser beam, and a method for manufacturing the same, the gist of which is as follows. .
- a grain-oriented electrical steel sheet with improved iron loss characteristics by forming linear circulating magnetic domains that are approximately perpendicular to the rolling direction of the steel sheet and approximately at regular intervals by scanning irradiation of a continuous wave laser beam.
- a laser is a TEM in which the laser light intensity distribution in the cross section perpendicular to the beam propagation direction has the maximum intensity near the center of the optical axis. .
- C] is in the following range, a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
- Is defined by Ip P / (dXdc), and the range of Ip is 0 and Ip ⁇ 100kW / mm 2 , which is characterized by the magnetic properties described in any one of the items (1) to (4) An excellent method for producing grain-oriented electrical steel sheets.
- the rolling direction interval P1 of the laser beam linear irradiation trace and / or the linear circulating magnetic domain is 1.5 ⁇ Pl ⁇ 11.0mm. Any one of (8) to (10) A grain-oriented electrical steel sheet with excellent magnetic properties as described.
- the rolling direction interval P1 of the laser beam linear irradiation trace and / or the linear circulating magnetic domain is 3.0 ⁇ P1 ⁇ 7.0 mm, as described in any one of (8) to (10) Oriented electrical steel sheet with excellent magnetic properties.
- Figure 1 shows the dependence of the iron loss improvement rate on the ratio parameter and the running speed.
- FIG. 2 is an explanatory diagram of a laser irradiation method according to the present invention.
- Figure 3 is a schematic diagram of the TEM 00 mode.
- Figure 4 is a schematic diagram of multi-mode.
- FIG. 5 is a TEM within the scope of the present invention. . The figure which shows the temperature distribution calculation result of the steel plate surface vicinity by the mode beam condensing irradiation.
- Figure 6 (a) shows the TEM when the P / V is relatively high within the scope of the present invention. .
- Fig. 6 (b) is a cross-sectional view of the steel plate under the laser irradiation conditions of Fig. 6 (a).
- Figure 7 shows the temperature distribution calculation results near the steel sheet surface by multimode beam focusing irradiation.
- Fig. 8 is a diagram showing the results of comparing the temperature distribution calculation results of Figs. 5 and 7 with respect to the temperature change in the depth direction at the center of the beam.
- Fig. 9 (a) is a surface optical microscope photograph of a typical laser irradiation mark of the present invention
- Fig. 9 (b) is a SEM photograph of a magnetic domain structure.
- Figure 10 shows the relationship between the iron loss improvement rate and P / V.
- Figure 11 shows the relationship between W1 approximated by irradiation mark width and iron loss improvement rate.
- Figure 12 shows the relationship between the irradiation trace rolling pitch P1 and the iron loss improvement rate.
- Figure 13 shows the relationship between Ip and inter-layer current after coating.
- FIG. 2 is an explanatory diagram of a laser beam irradiation method according to the present invention.
- the laser beam 1 is output from a fiber laser device (not shown).
- a fiber laser is a laser device in which a fiber core itself emits light using a semiconductor laser as an excitation source, and the oscillation beam diameter is regulated by the fiber core diameter.
- the laser beam output from the laser resonator is a superposition of beam modes with various intensity distributions determined by the wavelength, the diameter of the medium, and the curvature of the resonator mirror. Each of these modes is expressed as a Gaussian mode with a different order. The larger the beam cross section that can oscillate in the resonator, the higher the mode.
- a general YAG laser is called a multimode beam because these modes can oscillate simultaneously.
- Figure 4 shows a typical multimode beam intensity distribution.
- the mode that can be oscillated is regulated by using a single mode fiber with a fiber core diameter of about 0 ⁇ 01 mm, and single mode oscillation at the lowest order is easily possible.
- This mode is roughly equivalent to the basic Gaussian distribution and is generally TEM. . It is called a mode. TEM. . As shown in Fig. 3, the mode is a Gaussian distribution with the maximum intensity at the center of the optical axis. When this beam is collected, it has the same intensity distribution at the focal point.
- Is an index indicating the mode of the beam generally have been used beam quality factor one M 2, TEM 0.
- the calculated value of the M 2 theory is 1.0, and M 2 increases as the higher order mode is reached.
- the M 2 of the beam obtained with the single-mode fiber laser described above is 1.1 or less, which is almost ideal TEM. . Mode.
- the M 2 value of a general multimode YAG laser is 20 or more. Therefore, the laser beam TEM used in the present invention.
- the 0 mode includes those whose intensity distribution is approximately Gaussian, and the M 2 value is equivalent to 2 or less.
- TE M 0 output from the fiber laser device.
- the mode laser beam 1 was scanned and irradiated in the X direction of the grain-oriented electrical steel sheet 4 using the scanning mirror 2 and the f ⁇ lens 3.
- the X direction is generally perpendicular to the rolling direction of the grain-oriented electrical steel sheet.
- the beam diameter d at the focal point is about 0.05 mm.
- the beam diameter is defined as the beam diameter that includes 86% of the laser beam.
- the scanning line speed V of the beam is 3000 to 16000 mm / s.
- the laser average power was fixed at 32 W.
- the irradiation pitch P 1 in the rolling direction is 5 mm.
- W 17/5 here. Is the iron loss value at a magnetic field strength of 1.7T and a frequency of 50Hz.
- the thickness of the grain-oriented electrical steel sheet sample used in this embodiment is 0.23 mm, before laser irradiation W 17/5. The range is from 0.85 to 0.90 W / kg.
- Figure 1 shows TEM. . Mode, condensing diameter d is 0.05mm, P / V is in the range of 0.0065J / mm or less, that is, iron loss improvement rate increases especially at high speed scanning condition where scanning line speed V exceeds 5000mm / s, 8% It was found that a high value exceeding that was obtained. On the other hand, at this condensing diameter, the iron loss improvement rate tends to decrease when the P / V value is 0.0065 J / mra or more and the scanning speed is 5000 mm / s or less.
- a detailed observation of the steel plate surface under these conditions revealed that the laser-irradiated part was melted and re-solidified. This is due to the excessive increase in hysteresis loss due to the excessive tensile stress generated in the resolidified zone.
- an excellent iron can be obtained even in a region of a minimal condensing beam diameter of about 0.05 mm, where the iron loss characteristic has deteriorated even if the laser average output and the scanning speed are adjusted conventionally. Loss characteristics are obtained. Furthermore, it is lower than the power range lower than the conditions disclosed in the conventional technology (Japanese Patent Publication No. 06-19112) using an extremely small focused beam diameter, or higher than the conventional speed range. Since the iron loss improvement rate can be obtained, not only the characteristics are excellent, but also a high-efficiency and high-speed process can be realized.
- the ideal for domain control is the increase of hysteresis loss in a circular magnetic domain narrow in the rolling direction.
- the purpose of this is to provide a strength that can sufficiently subdivide the 180 ° magnetic domain in the narrow circulating magnetic domain.
- the source of the circulating magnetic domain is strain caused by laser irradiation, but the inventors considered that the strain is caused by the temperature distribution near the surface of the steel sheet, and in particular depends on the temperature and temperature gradient to be reached.
- the spatial distribution of the laser irradiation temperature affects the spatial intensity distribution of the laser beam. Therefore, considering the beam mode, the temperature distribution of the laser irradiation part in the steady state when scanning with a continuous wave laser was estimated by thermal conduction simulation.
- the calculation parameters here are beam mode, laser average power p, and scanning line velocity V.
- Figure 5 shows the TEM corresponding to the conditions of the present invention. .
- This is the temperature distribution calculation result in mode, condensing diameter d0. 05mm, average output 32W, scanning line speed 8000mm / s.
- the coordinates x, y, and z correspond to the coordinates shown in Fig. 2.
- Fig. 6 (b) is a cross-sectional observation photograph of the steel plate sample obtained under these experimental conditions, and a molten part is seen on the surface.
- Figure 7 shows the calculation results for the multimode. The other conditions are the same as in Fig. 3, and a molten part is seen on the surface.
- Fig. 8 shows the results of comparison of the temperature changes in the depth direction at the center of the beam with the calculation results in Figs.
- the present inventors have formed a narrow recirculation magnetic domain by a very small beam condensing, and a condensing diameter, or a recirculation magnetic domain width, and power that can provide excellent iron loss characteristics.
- the range of scanning line speed was experimentally examined in detail.
- Figure 10 shows the results of investigating the relationship between the iron loss improvement rate and P / V with various changes in the rolling direction diameter d of the irradiation beam from 0.001 mm to 0.200 mm.
- the irradiation pitch P 1 in the rolling direction is 5 mm. From this result, TEM Q. In the mode, it can be seen that iron loss is improved over a wide range of d and P / V.
- a high improvement rate is 0. 001 ⁇ P / V ⁇ 0.012 J / mm in the range of 0 and d ⁇ 0. 20 mm.
- the upper limit of d is preferably 0.1, 0.08, 0.06, 0.04, 0.03, 0.02mm, and the lower limit is preferable.
- a higher iron loss improvement rate can be obtained. More preferably in combination with P / V Q. 010 ⁇ d ⁇ 0. 0 in the range of 10 mm 0. 001 ⁇ P / V ⁇ 0.
- the optimum range of P / V in each of the above d ranges is explained as follows.
- the lower limit is a value necessary for supplying sufficient power to form a circulating magnetic domain
- the upper limit is a value at which the power density becomes excessive and no significant surface melting occurs.
- the effect of improvement is enhanced because of a more localized heat distribution, but in order to avoid surface melting, it is preferable to suppress P / V to a smaller range.
- Fig. 9 shows a microscopic observation photograph of the irradiation trace when the irradiation beam diameter d is 0.015 mm, and a reflux magnetic domain observation photograph by magnetic domain SEM. Therefore, the beam diameter d and the reflux magnetic domain width W1 are almost the same.
- Figure 11 shows the maximum improvement rate for each W1, assuming that the irradiation trace width is the rolling direction width W1 of the circulating magnetic domain.
- a high improvement rate is obtained when the W1 range is less than 0.2 mm, particularly in the range of 0.01 to 0.1 mm.
- the lower limit value of W1 is preferably 0.005 mm, more preferably 0.010 mm, and the upper limit value is preferably 0.1 mm, more preferably 0.04 mm.
- the fiber laser used in the embodiment of the present invention is obtained by doping Yb (ytter'pium) at the end of a quartz fiber, and oscillates by excitation using a semiconductor laser. 1. 07 to 1. 10 ⁇ m. It is the first feature of fiber lasers is the wavelength between the YAG laser wavelength 1. 0 6 mu m and C0 2 laser wavelength 10. 6 mu m which has been used in the domain control of the conventional electromagnetic steel sheets.
- the oscillation mode of the fiber laser is approximated to the single mode, and the beam quality factor of 1 M 2 is close to the theoretical limit of 1. This is a very good performance compared to a typical YAG laser with an M 2 value of 20 or more.
- the laser beam shows higher condensing properties as the M 2 value is smaller or the wavelength is shorter.
- the minimum diameter dm that the laser beam can be focused on is the wavelength.
- ⁇ focal length of condenser lens, f, incident beam diameter to lens! ) Is expressed by the following equation.
- a fiber laser is capable of good Ri minimum condensing, which is the second feature of the fiber laser in the magnetic domain control.
- the present inventors have reached an invention characterized by using a fiber laser.
- the surface of a grain-oriented electrical steel sheet is covered with a ceramic coating, and the laser wavelength absorption characteristics of this coating increase in the absorption rate from the wavelength of 1 ⁇ m to the long wavelength side of 10 im band. did. Therefore, when a Yb-doped fiber laser with a longer wavelength than the YAG laser is used, the amount of absorption in the steel plate of the laser beam increases, and more efficient magnetic domain control is possible. Further, since the light condensing performance is high, it is suitable for the method of manufacturing a grain-oriented electrical steel sheet in which a minimal circulating magnetic domain of W 1 and 0.2 mm is a feature of the present invention.
- fiber lasers with a core doped with Er (Elibium) as the type of fiber laser have an oscillation wavelength of around 1.55 ⁇ m
- fiber lasers doped with Tm (Elybium) have an oscillation wavelength of 1 70-2.10 / m 2
- any method using a fiber laser belongs to the method of the present invention for the reasons described above.
- the method of the present invention can easily produce high output TEM Q.
- Mode laser beam A fiber-laser that can provide a beam is most suitable, but other TEMs. Any laser device that can obtain a mode close to 0 and has high wavelength absorption characteristics on the surface of the steel sheet may be used in the present invention.
- the beam condensing shape is a circular shape having a diameter d.
- the necessary condition for ideal magnetic domain control is the rolling direction of the circulating magnetic domain. Since the width is narrow, if the beam diameter d in the rolling direction is within the range of the present invention, the beam scanning direction diameter may be different from d. For example, an elliptical beam having a beam diameter in the beam scanning direction longer than d may be used, and as a result, a method in which no laser irradiation trace is generated on the surface of the steel sheet is included in the present invention.
- the laser irradiation method of the present invention has a higher beam intensity near the center than usual, in some cases, unevenness may occur on the surface after laser irradiation. Therefore, it is necessary to devise the shape of the irradiation beam so that unevenness does not occur in the laser irradiation part. This is because when steel sheets are stacked and used in a stacking transformer, unevenness in the steel sheets affects the electrical insulation between the layers. Usually, in order to make the electrical insulation more reliable, an insulation coating is performed on the surface in the process after laser irradiation. However, if the surface is uneven, this coating is sufficient. It will not be possible to ensure a good insulation.
- the present inventors have studied a laser irradiation method that makes the surface after laser irradiation substantially flat and obtains high interlayer insulation.
- Ip the instantaneous power density determined by the average output P and the irradiation beam cross-sectional area, although it depends to some extent on the laser average output P and the beam scan velocity V. It was.
- Ip is given by the following equation, where P is the average laser output, d is the beam diameter in the rolling direction, and dc is the beam diameter orthogonal to d.
- Ip P / (d X dc) [kW / mm 2 ] Insulation is evaluated by measuring the interlayer current after coating.
- Figure 13 shows the relationship between Ip and the inter-layer current after coating. It is the result of examining the inter-layer current while changing the scanning speed V at the same Ip. If the inter-layer current value after coating is 200 mA or less, it can be used as a stacking transformer. From this result, although Ip is less than 130 kW / mm 2 , preferably 100 kW / mm 2 or less, more preferably 70 kW / mm 2 or less, the interlayer current is 200 mA or less, although it is affected by the difference in V. To be suppressed.
- the laser average output P will be described.
- the P / V range is defined as described above. Therefore, when the laser average output p is reduced, the beam scanning speed V in the plate width direction must be reduced proportionally.
- the practical method of the magnetic domain control process of the electrical steel sheet according to the present invention is to irradiate the steel sheet periodically by dividing the laser beam into time as disclosed in, for example, Japanese Patent Publication No. 6-19112. In this case, when the sheet passing speed is increased, the irradiation period t (sec) is shortened in order to keep the irradiation pitch P 1 in the rolling direction constant.
- the range Wc that can be scanned during that period is the product of the scanning speed and the period t.
- the laser average output is small, V is also small, and as a result, Wc is also narrowed.
- the processable width per laser becomes narrow.
- a laser with an average output of 10 W or less is a laser.
- the processable width per unit is extremely narrow, about 10 mm, and the required number of lasers exceeds 100 units. Therefore, the laser output is preferably 10W or more.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/549,723 US7442260B2 (en) | 2003-03-19 | 2004-03-05 | Grain-oriented electrical steel sheet superior in electrical characteristics and method of production of same |
JP2005503646A JP4510757B2 (ja) | 2003-03-19 | 2004-03-05 | 磁気特性の優れた方向性電磁鋼板とその製造方法 |
EP04717811.6A EP1607487B1 (en) | 2003-03-19 | 2004-03-05 | Manufacturing method of a grain-oriented magnetic steel sheet excellent in magnetic characteristics |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-075930 | 2003-03-19 | ||
JP2003075930 | 2003-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004083465A1 true WO2004083465A1 (ja) | 2004-09-30 |
Family
ID=33027875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/002866 WO2004083465A1 (ja) | 2003-03-19 | 2004-03-05 | 磁気特性の優れた方向性電磁鋼板とその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7442260B2 (ja) |
EP (1) | EP1607487B1 (ja) |
JP (1) | JP4510757B2 (ja) |
KR (1) | KR100676936B1 (ja) |
CN (1) | CN100402673C (ja) |
RU (1) | RU2301839C2 (ja) |
WO (1) | WO2004083465A1 (ja) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006144058A (ja) * | 2004-11-18 | 2006-06-08 | Nippon Steel Corp | 磁気特性の優れた方向性電磁鋼板およびその製造方法 |
JP2006233299A (ja) * | 2005-02-25 | 2006-09-07 | Nippon Steel Corp | 磁気特性の優れた一方向性電磁鋼板およびその製造方法 |
WO2006120985A1 (en) * | 2005-05-09 | 2006-11-16 | Nippon Steel Corporation | Low core loss grain-oriented electrical steel sheet and method for producing the same |
JP2007002334A (ja) * | 2005-05-09 | 2007-01-11 | Nippon Steel Corp | 低鉄損方向性電磁鋼板およびその製造方法 |
WO2007052406A1 (ja) * | 2005-11-01 | 2007-05-10 | Nippon Steel Corporation | 磁気特性の優れた方向性電磁鋼板の製造方法および製造装置 |
JP2007119821A (ja) * | 2005-10-26 | 2007-05-17 | Nippon Steel Corp | 磁気特性の優れた一方向性電磁鋼板およびその製造方法 |
WO2007116893A1 (ja) | 2006-04-07 | 2007-10-18 | Nippon Steel Corporation | 方向性電磁鋼板の製造方法 |
WO2008050700A1 (fr) * | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Tôle magnétique unidirectionnelle en acier présentant d'excellentes caractéristiques de pertes dans le fer |
JP2008546535A (ja) * | 2005-06-20 | 2008-12-25 | コミサリア ア レネルジィ アトミーク | 原子力プラントの塗膜など、壁の表面の被膜をレーザで除去するための方法および装置 |
WO2009075328A1 (ja) | 2007-12-12 | 2009-06-18 | Nippon Steel Corporation | レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法 |
WO2011125672A1 (ja) * | 2010-04-01 | 2011-10-13 | 新日本製鐵株式会社 | 方向性電磁鋼板及びその製造方法 |
WO2012017675A1 (ja) * | 2010-08-06 | 2012-02-09 | Jfeスチール株式会社 | 方向性電磁鋼板 |
WO2013094218A1 (ja) * | 2011-12-22 | 2013-06-27 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
WO2013099272A1 (ja) * | 2011-12-28 | 2013-07-04 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
JP2013541643A (ja) * | 2010-11-26 | 2013-11-14 | 宝山鋼鉄股▲ふん▼有限公司 | 高速レーザー切れ目付方法 |
RU2509814C1 (ru) * | 2010-07-28 | 2014-03-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Электротехническая листовая сталь с ориентированными зернами и способ ее производства |
WO2014073599A1 (ja) | 2012-11-08 | 2014-05-15 | 新日鐵住金株式会社 | レーザ加工装置及びレーザ照射方法 |
WO2016002043A1 (ja) * | 2014-07-03 | 2016-01-07 | 新日鐵住金株式会社 | レーザ加工装置 |
KR20170015455A (ko) | 2014-07-03 | 2017-02-08 | 신닛테츠스미킨 카부시키카이샤 | 레이저 가공 장치 |
JP2018508647A (ja) * | 2014-12-24 | 2018-03-29 | ポスコPosco | 方向性電磁鋼板およびその製造方法 |
JP2018508645A (ja) * | 2014-12-24 | 2018-03-29 | ポスコPosco | 方向性電磁鋼板およびその製造方法 |
JP2020504783A (ja) * | 2016-12-22 | 2020-02-13 | ポスコPosco | 方向性電磁鋼板の磁区の微細化方法 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2897007B1 (fr) * | 2006-02-03 | 2008-04-11 | Air Liquide | Procede de coupage avec un laser a fibre avec controle des parametres du faisceau |
US8497449B1 (en) * | 2006-05-26 | 2013-07-30 | Synchron Laser Service Inc. | Micro-machining of ceramics using an ytterbium fiber-laser |
JP4673937B2 (ja) * | 2009-04-06 | 2011-04-20 | 新日本製鐵株式会社 | 方向性電磁鋼板用鋼の処理方法及び方向性電磁鋼板の製造方法 |
RU2405841C1 (ru) * | 2009-08-03 | 2010-12-10 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Способ производства листовой анизотропной электротехнической стали |
KR101141283B1 (ko) * | 2009-12-04 | 2012-05-04 | 주식회사 포스코 | 저철손 고자속밀도 방향성 전기강판 |
EP3778930A1 (en) * | 2010-08-06 | 2021-02-17 | Jfe Steel Corporation | Method for manufacturing the grain oriented electrical steel sheet |
CN104099458B (zh) | 2010-09-09 | 2016-05-11 | 新日铁住金株式会社 | 方向性电磁钢板的制造方法 |
CN101979676B (zh) * | 2010-11-26 | 2012-02-08 | 武汉钢铁(集团)公司 | 通过激光刻痕改善取向硅钢磁性能的方法 |
DE102011000712A1 (de) | 2011-02-14 | 2012-08-16 | Thyssenkrupp Electrical Steel Gmbh | Verfahren zum Erzeugen eines kornorientierten Stahlflachprodukts |
WO2012110085A1 (de) * | 2011-02-16 | 2012-08-23 | Siemens Aktiengesellschaft | Magnetischer kern gebildet aus blechlamellen mit unterschiedlicher kornorientierung |
JP5594437B2 (ja) * | 2011-09-28 | 2014-09-24 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
US10745773B2 (en) * | 2011-12-27 | 2020-08-18 | Jfe Steel Corporation | Device to improve iron loss properties of grain-oriented electrical steel sheet |
JP6010907B2 (ja) * | 2011-12-28 | 2016-10-19 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
EP2799566B1 (en) * | 2011-12-28 | 2019-04-17 | JFE Steel Corporation | Grain-oriented electrical steel sheet and method for improving iron loss properties thereof |
KR101673828B1 (ko) * | 2012-10-30 | 2016-11-07 | 제이에프이 스틸 가부시키가이샤 | 저철손 방향성 전기 강판의 제조 방법 |
CA2887985C (en) * | 2012-10-31 | 2017-09-12 | Jfe Steel Corporation | Grain-oriented electrical steel sheet with reduced iron loss, and method for manufacturing the same |
RU2514559C1 (ru) * | 2013-03-05 | 2014-04-27 | Общество с ограниченной ответственностью "ВИЗ-Сталь" | Способ производства листовой электротехнической анизотропной стали и листовая электротехническая анизотропная сталь |
JP5668795B2 (ja) * | 2013-06-19 | 2015-02-12 | Jfeスチール株式会社 | 方向性電磁鋼板およびそれを用いた変圧器鉄心 |
RU2529260C1 (ru) * | 2013-09-10 | 2014-09-27 | Олег Иванович Квасенков | Способ производства фруктового соуса |
EP3205738B1 (en) | 2014-10-06 | 2019-02-27 | JFE Steel Corporation | Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same |
JP6169695B2 (ja) * | 2014-10-23 | 2017-07-26 | Jfeスチール株式会社 | 方向性電磁鋼板 |
US10662491B2 (en) * | 2016-03-31 | 2020-05-26 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
EP3591080B1 (en) * | 2017-02-28 | 2021-01-13 | JFE Steel Corporation | Grain-oriented electrical steel sheet and production method therefor |
CN108660303B (zh) | 2017-03-27 | 2020-03-27 | 宝山钢铁股份有限公司 | 一种耐消除应力退火的激光刻痕取向硅钢及其制造方法 |
KR102471550B1 (ko) * | 2018-02-09 | 2022-11-29 | 닛폰세이테츠 가부시키가이샤 | 방향성 전자 강판 및 그 제조 방법 |
KR102477847B1 (ko) * | 2018-03-22 | 2022-12-16 | 닛폰세이테츠 가부시키가이샤 | 방향성 전자 강판 및 방향성 전자 강판의 제조 방법 |
EP3913088B1 (en) * | 2019-01-16 | 2024-05-22 | Nippon Steel Corporation | Method for manufacturing grain-oriented electrical steel sheet |
HRP20240500T1 (hr) * | 2019-04-25 | 2024-07-05 | Nippon Steel Corporation | Postupak proizvodnje željezne jezgre namota |
JPWO2022203087A1 (ja) | 2021-03-26 | 2022-09-29 | ||
BR112023019187A2 (pt) | 2021-03-26 | 2023-10-31 | Nippon Steel Corp | Chapa de aço elétrico de grão orientado, e, método para fabricar a chapa de aço elétrico de grão orientado |
EP4317469A4 (en) | 2021-03-26 | 2024-08-07 | Nippon Steel Corp | GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET AND MANUFACTURING METHOD THEREOF |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619112B2 (ja) * | 1986-09-26 | 1994-03-16 | 新日本製鐵株式会社 | 電磁鋼板の鉄損値改善方法 |
JPH07220913A (ja) * | 1994-02-04 | 1995-08-18 | Nippon Steel Corp | 磁気特性の優れた電磁鋼板 |
JPH10204533A (ja) * | 1997-01-24 | 1998-08-04 | Nippon Steel Corp | 磁気特性の優れた方向性電磁鋼板の製造方法 |
JP3069968B2 (ja) * | 1991-03-28 | 2000-07-24 | 横浜ゴム株式会社 | ホースの製造方法およびその装置 |
JP2001015834A (ja) * | 1999-06-29 | 2001-01-19 | Hoya Corp | レーザ光発生装置の製造方法、及び光アンプの製造方法 |
JP2002012918A (ja) * | 2000-04-24 | 2002-01-15 | Nippon Steel Corp | 磁気特性の優れた方向性電磁鋼板 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1070792A (en) * | 1976-07-26 | 1980-01-29 | Earl A. Cooper | Electrical connector and frequency shielding means therefor and method of making same |
US4456812A (en) * | 1982-07-30 | 1984-06-26 | Armco Inc. | Laser treatment of electrical steel |
US4645547A (en) * | 1982-10-20 | 1987-02-24 | Westinghouse Electric Corp. | Loss ferromagnetic materials and methods of improvement |
JPS59197520A (ja) * | 1983-04-20 | 1984-11-09 | Kawasaki Steel Corp | 鉄損の低い一方向性電磁鋼板の製造方法 |
BE903619A (fr) * | 1984-11-10 | 1986-03-03 | Nippon Steel Corp | Toles d'acier electrique a grains orientes ayant des proprietes magnetiques stables, leur procede de production et appareil pour les obtenir |
JPH0619112A (ja) | 1992-07-03 | 1994-01-28 | Oki Electric Ind Co Ltd | 位相シフトマスクの製造方法 |
KR100259990B1 (ko) * | 1993-12-28 | 2000-06-15 | 에모또 간지 | 철손이 적은 일방향성 전자강판 및 제조방법 |
EP0870843A1 (en) * | 1995-12-27 | 1998-10-14 | Nippon Steel Corporation | Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same |
EP0897016B8 (en) * | 1997-01-24 | 2007-04-25 | Nippon Steel Corporation | Grain-oriented electrical steel sheet having excellent magnetic characteristics, its manufacturing method and its manufacturing device |
CN1128892C (zh) * | 1998-08-07 | 2003-11-26 | 东北大学 | 激光处理取向硅钢表面的方法 |
IT1306157B1 (it) * | 1999-05-26 | 2001-05-30 | Acciai Speciali Terni Spa | Procedimento per il miglioramento di caratteristiche magnetiche inlamierini di acciaio al silicio a grano orientato mediante trattamento |
JP4398666B2 (ja) * | 2002-05-31 | 2010-01-13 | 新日本製鐵株式会社 | 磁気特性の優れた一方向性電磁鋼板およびその製造方法 |
-
2004
- 2004-03-05 JP JP2005503646A patent/JP4510757B2/ja not_active Expired - Lifetime
- 2004-03-05 KR KR1020057017248A patent/KR100676936B1/ko active IP Right Review Request
- 2004-03-05 RU RU2005132223/02A patent/RU2301839C2/ru active
- 2004-03-05 EP EP04717811.6A patent/EP1607487B1/en not_active Expired - Lifetime
- 2004-03-05 US US10/549,723 patent/US7442260B2/en active Active
- 2004-03-05 CN CNB2004800071919A patent/CN100402673C/zh not_active Expired - Lifetime
- 2004-03-05 WO PCT/JP2004/002866 patent/WO2004083465A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619112B2 (ja) * | 1986-09-26 | 1994-03-16 | 新日本製鐵株式会社 | 電磁鋼板の鉄損値改善方法 |
JP3069968B2 (ja) * | 1991-03-28 | 2000-07-24 | 横浜ゴム株式会社 | ホースの製造方法およびその装置 |
JPH07220913A (ja) * | 1994-02-04 | 1995-08-18 | Nippon Steel Corp | 磁気特性の優れた電磁鋼板 |
JPH10204533A (ja) * | 1997-01-24 | 1998-08-04 | Nippon Steel Corp | 磁気特性の優れた方向性電磁鋼板の製造方法 |
JP2001015834A (ja) * | 1999-06-29 | 2001-01-19 | Hoya Corp | レーザ光発生装置の製造方法、及び光アンプの製造方法 |
JP2002012918A (ja) * | 2000-04-24 | 2002-01-15 | Nippon Steel Corp | 磁気特性の優れた方向性電磁鋼板 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1607487A4 * |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006144058A (ja) * | 2004-11-18 | 2006-06-08 | Nippon Steel Corp | 磁気特性の優れた方向性電磁鋼板およびその製造方法 |
JP4616623B2 (ja) * | 2004-11-18 | 2011-01-19 | 新日本製鐵株式会社 | 方向性電磁鋼板の製造方法 |
JP2006233299A (ja) * | 2005-02-25 | 2006-09-07 | Nippon Steel Corp | 磁気特性の優れた一方向性電磁鋼板およびその製造方法 |
JP4705382B2 (ja) * | 2005-02-25 | 2011-06-22 | 新日本製鐵株式会社 | 一方向性電磁鋼板およびその製造方法 |
KR100973391B1 (ko) | 2005-05-09 | 2010-07-30 | 신닛뽄세이테쯔 카부시키카이샤 | 저철손 방향성 전기강판 및 그 제조 방법 |
WO2006120985A1 (en) * | 2005-05-09 | 2006-11-16 | Nippon Steel Corporation | Low core loss grain-oriented electrical steel sheet and method for producing the same |
JP2007002334A (ja) * | 2005-05-09 | 2007-01-11 | Nippon Steel Corp | 低鉄損方向性電磁鋼板およびその製造方法 |
US8016951B2 (en) | 2005-05-09 | 2011-09-13 | Nippon Steel Corporation | Low core loss grain-oriented electrical steel sheet and method for producing the same |
JP2008546535A (ja) * | 2005-06-20 | 2008-12-25 | コミサリア ア レネルジィ アトミーク | 原子力プラントの塗膜など、壁の表面の被膜をレーザで除去するための方法および装置 |
JP2007119821A (ja) * | 2005-10-26 | 2007-05-17 | Nippon Steel Corp | 磁気特性の優れた一方向性電磁鋼板およびその製造方法 |
WO2007052406A1 (ja) * | 2005-11-01 | 2007-05-10 | Nippon Steel Corporation | 磁気特性の優れた方向性電磁鋼板の製造方法および製造装置 |
JP5135542B2 (ja) * | 2005-11-01 | 2013-02-06 | 新日鐵住金株式会社 | 磁気特性の優れた方向性電磁鋼板の製造方法および製造装置 |
JP2007277644A (ja) * | 2006-04-07 | 2007-10-25 | Nippon Steel Corp | 磁気特性の優れた方向性電磁鋼板の製造方法 |
KR101060746B1 (ko) | 2006-04-07 | 2011-08-31 | 신닛뽄세이테쯔 카부시키카이샤 | 방향성 전자 강판의 자기 특성 개선 방법 |
WO2007116893A1 (ja) | 2006-04-07 | 2007-10-18 | Nippon Steel Corporation | 方向性電磁鋼板の製造方法 |
US7763120B2 (en) | 2006-04-07 | 2010-07-27 | Nippon Steel Corporation | Method of production of grain-oriented electrical steel sheet |
JP2008106288A (ja) * | 2006-10-23 | 2008-05-08 | Nippon Steel Corp | 鉄損特性の優れた一方向性電磁鋼板 |
WO2008050700A1 (fr) * | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Tôle magnétique unidirectionnelle en acier présentant d'excellentes caractéristiques de pertes dans le fer |
US8277574B2 (en) | 2007-12-12 | 2012-10-02 | Nippon Steel Corporation | Method for manufacturing grain-oriented electromagnetic steel sheet whose magnetic domains are controlled by laser beam irradiation |
WO2009075328A1 (ja) | 2007-12-12 | 2009-06-18 | Nippon Steel Corporation | レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法 |
US9139886B2 (en) | 2010-04-01 | 2015-09-22 | Nippon Steel & Sumitomo Metal Corporation | Grain-oriented electrical steel sheet and method for producing same |
CN102834529A (zh) * | 2010-04-01 | 2012-12-19 | 新日本制铁株式会社 | 方向性电磁钢板及其制造方法 |
WO2011125672A1 (ja) * | 2010-04-01 | 2011-10-13 | 新日本製鐵株式会社 | 方向性電磁鋼板及びその製造方法 |
JP5234222B2 (ja) * | 2010-04-01 | 2013-07-10 | 新日鐵住金株式会社 | 方向性電磁鋼板及びその製造方法 |
RU2509814C1 (ru) * | 2010-07-28 | 2014-03-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Электротехническая листовая сталь с ориентированными зернами и способ ее производства |
WO2012017675A1 (ja) * | 2010-08-06 | 2012-02-09 | Jfeスチール株式会社 | 方向性電磁鋼板 |
US9799432B2 (en) | 2010-08-06 | 2017-10-24 | Jfe Steel Corporation | Grain oriented electrical steel sheet |
JP2013541643A (ja) * | 2010-11-26 | 2013-11-14 | 宝山鋼鉄股▲ふん▼有限公司 | 高速レーザー切れ目付方法 |
WO2013094218A1 (ja) * | 2011-12-22 | 2013-06-27 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
US10020101B2 (en) | 2011-12-22 | 2018-07-10 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for producing same |
JPWO2013094218A1 (ja) * | 2011-12-22 | 2015-04-27 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
WO2013099272A1 (ja) * | 2011-12-28 | 2013-07-04 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
US10395806B2 (en) | 2011-12-28 | 2019-08-27 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method of manufacturing the same |
KR20150065860A (ko) | 2012-11-08 | 2015-06-15 | 신닛테츠스미킨 카부시키카이샤 | 레이저 가공 장치 및 레이저 조사 방법 |
WO2014073599A1 (ja) | 2012-11-08 | 2014-05-15 | 新日鐵住金株式会社 | レーザ加工装置及びレーザ照射方法 |
JPWO2014073599A1 (ja) * | 2012-11-08 | 2016-09-08 | 新日鐵住金株式会社 | レーザ加工装置及びレーザ照射方法 |
US9607744B2 (en) | 2012-11-08 | 2017-03-28 | Nippon Steel & Sumitomo Metal Corporation | Laser processing apparatus and laser irradiation method |
WO2016002043A1 (ja) * | 2014-07-03 | 2016-01-07 | 新日鐵住金株式会社 | レーザ加工装置 |
JPWO2016002043A1 (ja) * | 2014-07-03 | 2017-06-22 | 新日鐵住金株式会社 | レーザ加工装置 |
KR20170015455A (ko) | 2014-07-03 | 2017-02-08 | 신닛테츠스미킨 카부시키카이샤 | 레이저 가공 장치 |
US11498156B2 (en) | 2014-07-03 | 2022-11-15 | Nippon Steel Corporation | Laser processing apparatus |
KR20170013391A (ko) | 2014-07-03 | 2017-02-06 | 신닛테츠스미킨 카부시키카이샤 | 레이저 가공 장치 |
RU2661977C1 (ru) * | 2014-07-03 | 2018-07-23 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Устройство лазерной обработки |
US10773338B2 (en) | 2014-07-03 | 2020-09-15 | Nippon Steel Corporation | Laser processing apparatus |
JP2018508647A (ja) * | 2014-12-24 | 2018-03-29 | ポスコPosco | 方向性電磁鋼板およびその製造方法 |
US10815545B2 (en) | 2014-12-24 | 2020-10-27 | Posco | Grain-oriented electrical steel plate and manufacturing method thereof |
US11180819B2 (en) | 2014-12-24 | 2021-11-23 | Posco | Grain-oriented electrical steel plate and production method therefor |
JP2018508645A (ja) * | 2014-12-24 | 2018-03-29 | ポスコPosco | 方向性電磁鋼板およびその製造方法 |
JP2020504783A (ja) * | 2016-12-22 | 2020-02-13 | ポスコPosco | 方向性電磁鋼板の磁区の微細化方法 |
US11313011B2 (en) | 2016-12-22 | 2022-04-26 | Posco | Method for refining magnetic domains of grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
CN100402673C (zh) | 2008-07-16 |
JP4510757B2 (ja) | 2010-07-28 |
CN1761764A (zh) | 2006-04-19 |
EP1607487A4 (en) | 2006-11-15 |
EP1607487B1 (en) | 2016-12-21 |
RU2301839C2 (ru) | 2007-06-27 |
JPWO2004083465A1 (ja) | 2006-06-22 |
EP1607487A1 (en) | 2005-12-21 |
KR100676936B1 (ko) | 2007-02-02 |
US20060169362A1 (en) | 2006-08-03 |
US7442260B2 (en) | 2008-10-28 |
RU2005132223A (ru) | 2006-02-27 |
KR20050115285A (ko) | 2005-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4510757B2 (ja) | 磁気特性の優れた方向性電磁鋼板とその製造方法 | |
US9139886B2 (en) | Grain-oriented electrical steel sheet and method for producing same | |
JP4189143B2 (ja) | 低鉄損一方向性電磁鋼板の製造方法 | |
JP5000182B2 (ja) | 磁気特性の優れた方向性電磁鋼板の製造方法 | |
JP4846429B2 (ja) | 低鉄損方向性電磁鋼板およびその製造方法 | |
JP4669565B2 (ja) | レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法 | |
RU2749826C1 (ru) | Лист электротехнической анизотропной стали | |
RU2548544C2 (ru) | Способ быстрого нанесения насечек с помощью лазера | |
JP4398666B2 (ja) | 磁気特性の優れた一方向性電磁鋼板およびその製造方法 | |
JPH11279645A (ja) | 低鉄損かつ低磁気歪み一方向性電磁鋼板およびその製造方法 | |
JPH0657335A (ja) | パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法および装置 | |
KR100479213B1 (ko) | 자기 특성이 우수한 방향성 전기 강판 | |
JP6838321B2 (ja) | 方向性電磁鋼板の製造方法、及び方向性電磁鋼板 | |
CN114854967A (zh) | 一种激光刻痕高磁感取向硅钢及其制造方法 | |
JP2006117964A (ja) | 磁気特性の優れた方向性電磁鋼板とその製造方法 | |
JPH0790385A (ja) | 磁気特性の優れた方向性電磁鋼板 | |
JP2563730B2 (ja) | パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005503646 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057017248 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2006169362 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10549723 Country of ref document: US Ref document number: 20048071919 Country of ref document: CN |
|
REEP | Request for entry into the european phase |
Ref document number: 2004717811 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004717811 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005132223 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057017248 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004717811 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10549723 Country of ref document: US |