WO2007116893A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2007116893A1
WO2007116893A1 PCT/JP2007/057498 JP2007057498W WO2007116893A1 WO 2007116893 A1 WO2007116893 A1 WO 2007116893A1 JP 2007057498 W JP2007057498 W JP 2007057498W WO 2007116893 A1 WO2007116893 A1 WO 2007116893A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
grain
steel sheet
power
electrical steel
Prior art date
Application number
PCT/JP2007/057498
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Sakai
Hideyuki Hamamura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US12/225,963 priority Critical patent/US7763120B2/en
Priority to CN2007800123156A priority patent/CN101415847B/zh
Priority to EP07740934A priority patent/EP2006397B1/en
Priority to KR1020087023489A priority patent/KR101060746B1/ko
Publication of WO2007116893A1 publication Critical patent/WO2007116893A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/16Bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a method for producing a grain-oriented electrical steel sheet having small iron loss and excellent magnetostriction characteristics.
  • a magnetic steel sheet with high crystal orientation in which the easy axis of crystal is aligned in almost the same direction throughout the steel sheet is called a grain-oriented electrical steel sheet, and its direction matches the rolling direction of the steel sheet.
  • Such a steel plate is very good as a material for transformer cores.
  • Iron loss when magnetizing a grain-oriented electrical steel sheet with alternating current is separated into eddy current loss and hysteresis loss, and eddy current loss is further divided into classical eddy current loss and abnormal eddy current loss. Since classical eddy current loss is proportional to the thickness of the steel sheet, it has been reduced by making the material thinner. Abnormal eddy current loss is a loss due to eddy current locally generated by the domain wall movement, and decreases in proportion to the domain wall spacing of the 180 ° domain that is elongated in the rolling direction. Therefore, various techniques for subdividing magnetic domains have been devised to reduce iron loss.
  • the hysteresis loss is the magnetization curve, that is, the hysteresis curve. This is an iron loss component that is sensitive to the distortion of the steel sheet. Therefore, excessive strain imparted by laser irradiation has a problem of increasing hysteresis loss.
  • Magnetostriction is another important characteristic of electrical steel sheets along with iron loss. This is due to the expansion and contraction of the steel sheet in the alternating magnetic field, and is the main cause of noise in transformer products.
  • the amount of expansion and contraction of the steel sheet has a positive correlation with the applied strain, and from the viewpoint of magnetostriction, excessive strain must be suppressed. Therefore, it is desired to reduce the abnormal eddy current loss with as little strain as possible and to suppress the increase of hysteresis loss and magnetostriction as much as possible.
  • the rolling direction of the condensing spot of the laser beam as disclosed in, for example, WO 2 0 4/0 8 3 4 6 5
  • the diameter is set to less than 0.2mni
  • distortion is imparted to a very narrow region and excellent characteristics are obtained.
  • this method does not generate excessive strain width compared to the peak-pulse laser, further improvement in magnetostriction characteristics has been desired.
  • the condensing width is further reduced, the power density on the surface of the electrical steel sheet increases. Therefore, even continuous wave lasers with relatively low instantaneous power are subject to excessive distortion, and in the case of continuous wave lasers, there is a problem that the steel sheet melts and screens due to the continuous heat input process.
  • the present invention provides a method for producing a grain-oriented electrical steel sheet capable of reducing magnetostriction as much as possible while reducing the iron loss of the grain-oriented electrical steel sheet as much as possible.
  • Means of the present invention for achieving this object are as follows.
  • the laser beam is a periodically power-modulated beam from a continuous wave laser.
  • FIG. 1 is an explanatory diagram of laser power modulation in the method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the present invention.
  • FIG. 2 is a schematic explanatory diagram of an embodiment of a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the present invention.
  • FIG. 3 is a diagram for explaining the relationship between the modulation duty and the iron loss in the embodiment.
  • FIG. 4 is a diagram for explaining the relationship between the modulation duty and the magnetostriction in the embodiment.
  • Fig. 5 is a schematic diagram of the focused diameter and strain width in high peak pulse laser irradiation.
  • Fig. 6 is a schematic diagram of the focused diameter and strain width in continuous wave laser irradiation.
  • a circulating magnetic domain is formed in a strain imparted region by laser irradiation. Since the expansion and contraction of the reflux magnetic domain leads to magnetostriction, the amount of strain introduced has a positive correlation with magnetostriction. Therefore, to minimize the increase in magnetostriction, reduce eddy current loss. Ideally, it should be given sufficient distortion and no unnecessary distortion beyond that. That is, it is important to optimize the introduced strain volume.
  • Q switch C0 2 laser or with a YAG laser in pulsed oscillation laser typified is, to retrieve a record one laser light in an instant the energy stored in the laser medium, pulse width high Parusueneru formic one less number s
  • the peak power easily exceeds several kW.
  • the width d 2 extends over a wide range of the focused beam diameter dl due to a very strong impact force. There is a tendency for extra distortion to occur. Therefore, it is difficult to reduce and control the strain introduction volume. As disclosed in Patent Document 1, such a phenomenon is considered to occur at a high peak power density exceeding 1 ⁇ 10 4 W / M 2 . .
  • the instantaneous power density is small, and as shown in Fig. 6, the generated distortion width d2 is almost equal to the beam condensing diameter dl. Therefore, the strain width d 2 in the rolling direction can be controlled to some extent by controlling the condensing diameter. However, since a uniform strain distribution is provided continuously in the sheet width direction, the degree of freedom of control other than the width in the rolling direction is limited.
  • the present inventors have conceived that even when the strain width in the rolling direction is minimized by the continuous wave laser, the iron loss can be sufficiently improved without introducing strain continuously over the entire width in the sheet width direction. In other words, we thought that there was an extra strain in the plate width direction that unnecessarily increased magnetostriction. Therefore, for the purpose of controlling the strain distribution in the plate width direction and controlling and optimizing the strain volume, the power density is suppressed, and the time modulation of the power is performed based on the narrow-wave continuous wave laser. Thus, the present invention has been achieved in which the strain-introduced portion and the non-distorted portion are periodically formed in the plate width direction.
  • FIG. 1 is an example of the power modulation waveform of the continuous wave laser of the present invention.
  • the maximum power is the maximum output P p of the continuous wave laser, and it has a low power time period that periodically has a minimum value Pb by power modulation.
  • the modulation period is Tm
  • the time width when the power is 10% or less is Tf
  • Tm-Tf is Tn
  • FIG. 2 is a schematic diagram of an irradiation experiment in the example of the present invention.
  • the laser device 1 is a semiconductor laser pumping favoriter, and the semiconductor laser as the pumping light source can be modulated at high speed, so that the fiber laser output is also modulated at high speed.
  • the fiber core diameter of the fiber laser is 10 mm, and it is possible to condense up to the core diameter using a condensing optical system appropriately.
  • the laser wavelength is 1.07 / ifli.
  • Laser output passes through transmission fiber 2 and is output from output head 3.
  • Laser beam LB is focused by a combination of cylindrical lens 4 and f ⁇ lens 5.
  • the sample size is 60mm wide and 300mm in the rolling direction.
  • B8 is the magnetic flux density of the steel plate generated at a magnetizing force of 800 ⁇ / ⁇ 1.
  • W1 7/50 is the iron loss at AC excitation frequency 50Hz and maximum magnetic flux density 1.7T.
  • Figure 4 shows the relationship between magnetostriction ⁇ p-p and pulse modulation duty Dp.
  • ⁇ ⁇ -p is the ratio (%) of the total steel sheet expansion / contraction width in the rolling direction to the steel sheet length at an AC excitation frequency of 50 Hz and a maximum magnetic flux density of 1.7 T.
  • the Q switch C0 2 laser method is a short pulse, tendency by Riyugami region to the high peak power becomes wider, the further reduction of about 10 times and long for condensing diameter of the wavelength fiber laser is limited. Therefore, the strain width is wider than that of the fiber laser of the present invention, and therefore, as shown by the dotted line in FIG. 4, the magnetostriction ⁇ PP (P) in the pulse laser method is larger than that of the present invention.
  • the method of irradiating a power-modulated laser that is focused thinly and suppresses the power density according to the present invention provides excellent characteristics in both iron loss and magnetostriction compared to the conventional high peak pulse laser method.
  • comparable iron loss and low magnetostriction can be obtained compared to the continuous wave laser method in which the maximum power density is also suppressed, and lower magnetostriction and low iron loss are obtained especially when the pulse modulation duty Dp is 70% or more and less than 100. can get.
  • the power density Ppd exceeds 1 X 10 4 W / mm 2 , as described above, excessive distortion greater than the condensing diameter is introduced, which is not preferable.
  • the value of the minimum power density Ppd that can generate a strain with sufficient iron loss reduction effect depends on the laser beam scanning speed on the surface of the electrical steel sheet.
  • the value of the minimum power density Ppd can be obtained by 100% pulse modulation duty Dp, that is, completely continuous laser irradiation.
  • the power density Pp d is 1 X 10 2 W / mm 2 at the lower limit. is there. If it is smaller than this, almost no distortion occurs, so the effect of reducing iron loss is greatly reduced. Accordingly, the power density Ppd is preferably in the range of 1 ⁇ 10 2 to 1 ⁇ 10 4 W / nini 2 .
  • wavelength located between the (0 2 laser of a YAG laser and a wavelength 10.6 111 06 m 1. 07 ⁇ 2. 10 m of off ⁇ Ibareza is desirable.
  • the present invention it is possible to control the amount of strain introduced by laser irradiation in both the rolling direction and the plate width direction, minimizing iron loss and optimizing the amount of strain that suppresses the increase in magnetostriction as much as possible.
  • High-efficiency, low-noise As a transformer material, it is possible to manufacture grain-oriented electrical steel sheets with as little iron loss as possible and excellent magnetostriction characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Laser Beam Processing (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本発明は、方向性電磁鋼板の鉄損を極力低減しつつ、磁歪を可及的に小さくすることができる方向性電磁鋼板の製造方法を提供するもので、細く集光されたレーザビームの照射により磁気特性を改善する方向性電磁鋼板の製造方法において、最大パワー密度を1×102~1×104W/mm2に制御したパワー変調レーザを用いて、板幅方向、圧延方向の双方でレーザ照射による歪み量を最適化し、特に変調デューティを70%以上、100%未満にすることで磁歪が小さい電磁鋼板の製造方法である。

Description

方向性電磁鋼板の製造方法
技術分野
本発明は鉄損が小さく、 かつ磁歪特性に優れる方向性電磁鋼板の 製造方法に関する。
明 背景技術
結晶の磁化容易軸が鋼板全体でほぼ書同一の方向にそろつた結晶方 位性の高い電磁鋼板は方向性電磁鋼板とよばれ、 その方向は鋼板の 圧延方向に一致している。 この様な鋼板はトランス鉄芯の材料とし て非常に優れている。
方向性電磁鋼板を交流で磁化したときの鉄損は渦電流損とヒステ リシス損に分離され、 更に渦電流損は古典的渦電流損と異常渦電流 損に分けられる。 古典的渦電流損は鋼板の板厚に比例するため、 材 料の薄手化で低減されてきている。 異常渦電流損は、 磁壁の移動に より局所的に発生する渦電流による損失で、 圧延方向に細長い磁区 である 180 ° 磁区の磁壁間隔に比例して小さくなる。 そこで低鉄損 化のため、 磁区の細分化技術が種々考案されてきた。
圧延方向に対してほぼ垂直な直線状で、 且つ周期的な歪みを鋼板 表面に与えてやることで、 その近傍に細かい環流磁区が形成され、 そこを起点に 180 ° 磁壁間隔は狭くなり、 異常渦電流損が低減され ることが知られている。 そこで、 レーザビームを集光して、 板幅方 向に走査照射して歪みを付与する方法が考案され、 現在実用に供さ れている。
一方、 ヒステリシス損は、 磁化曲線すなわちヒステリシス曲線に よる損失で、 鋼板の歪みに敏感な鉄損成分である。 従ってレーザ照 射による過剰な歪み付与はヒステリシス損の増加につながる問題が あった。
また、 鉄損と並び電磁鋼板の重要な特性に磁歪がある。 これは交 流磁界中での鋼板の伸縮に起因するもので、 トランス製品の騒音の 主な原因である。 特に結晶方位性の高い電磁鋼板においては、 鋼板 伸縮量は与えた歪み量と正の相関があることが知られており、 磁歪 の観点では過剰な歪みは抑制しなければならい。 よって、 できるだ け少ない歪み量で異常渦電流損を低減し、 ヒステリシス損と磁歪の 増加を極力抑制することが望まれている。
従来のレーザ照射で残留応力を付与する鉄損改善技術において、 例えば特開平 6 — 5 7 3 3 3号公報に開示されているように、 1 〜 2 s程度の短パルスで、 且つ電磁鋼板面上でのピークパワー密度が I X 1 04 W/mm2を越えるような高ピ一クパルスレ一ザの照射方法は効 果的に歪みを導入することが可能で、 ピークパワーの高い Qスイツ チレーザが用いられている。 しかし、 この方法では局所的に非常に 強い衝撃力が鋼板に与えられるため、 ビームの集光径よりも広い範 囲にわたり比較的強い歪み.が付与される結果、 渦電流損は十分低減 されるものの、 過剰な歪みによりヒステリシス損と磁歪が増加する という問題が発生する。
そこで、 より狭い領域に効果的な歪みを導入するために、 例えば W O 2 0 0 4 / 0 8 3 4 6 5号公報に開示されているように、 レ一 ザビームの集光スポッ 卜の圧延方向径を 0. 2mni以下にすることで、 非常に狭い領域に歪みを付与して優れた特性を得ている。 この方法 では髙ピークパルスレーザに比べ過剩な歪幅の発生は少ないものの 、 磁歪特性に関してはさらなる改善が望まれていた。 しかし、 更に 集光幅を狭く した場合、 電磁鋼板面上でのパワー密度が増加するた め、 比較的瞬時パワーの低い連続波レーザでさえも過剰な歪みが入 り、 更に連続波レーザの場合は連続的な入熱過程により鋼板が溶融 しゃすいという問題がある。 その場合、 溶融部の再凝固時に過大な 張力が発生し、 むしろ歪み領域は増加するという問題があった。 つ まり連続波レーザ法に於いては集光径の縮小だけでは磁歪特性の改 善に限界があった。
近年、 省エネルギー、 環境問題の観点で高効率トランスの材料で ある高級電磁鋼板のニーズは益々増大しており、 中でも設置環境の 制約から トランス騒音低減への要求度は高い。 そこで鉄損を低減し た上で磁歪の更なる改善技術が望まれている。
発明の開示
本発明は、 方向性電磁鋼板の鉄損を極力低減しつつ、 磁歪を可及 的に小さくすることができる方向性電磁鋼板の製造方法を提供する ものである。 この課題を達成するための本発明の手段は次の通りで ある。
( 1 ) レーザビームを方向性電磁鋼板面に集光して、 該方向性電 磁鋼板面の板幅方向に走査照射して残留応力を周期的に付与して磁 気特性を改善する方向性電磁鋼板の製造方法であって、
レーザビームは連続波レーザを周期的にパワー変調したビームで
、 前記パワー変調したビームの時間波形において、 変調周期 Tmと 、 パワーが最大値 P pの 1 0 %以下の時間幅 T f と、 これら変調周 期 Tmと時間幅 T f の差 (T n = Tm— T f ) とで、 パワー変調デ ユーティ D pを D p = T n /TmX 1 0 0 ( % ) と定義したとき、 パワー変調デューティ D pが 7 0 %以上、 1 0 0 %未満であり、 か っ該レーザビームのパワーの最小値 P bが最大値 P Pの 1 0 %以下 であることを特徴とする方向性電磁鋼板の製造方法。 ( 2 ) 前記レ一ザビームの鋼板面上のピークパヮ一密度 P p dを 、 レーザビームの集光面積 Sと前記最大値 P p とで P p d = P p / Sと定義したとき、 ピークパワー密度 P p dが、 1 X 1 02以上、 且つ 1 X 1 04 (W/mm2) 以下であることを特徴とする ( 1 ) 記 載の方向性電磁鋼板の製造方法。
( 3 ) 前記レーザビームは、 半導体レーザ励起ファイバレーザ装 置から出射されるビームであることを特徴とする ( 1 ) または ( 2 ) に記載の方向性電磁鋼板の製造方法。 図面の簡単な説明
図 1は、 本発明の磁気特性の優れた方向性電磁鋼板の製造方法に 於けるレーザパワー変調の説明図である。
図 2は、 本発明の磁気特性の優れた方向性電磁鋼板の製造方法の 実施の形態の概略の説明図である。
図 3は、 実施例の変調デューティ と鉄損の関係を説明する図であ る。
図 4は、 実施例の変調デューティ と磁歪の関係を説明する図であ る。
図 5は、 高ピークパルスレーザ照射における集光径、 および歪み 幅の模式図である。
図 6は、 連続波レーザ照射における集光径、 および歪み幅の模式 図である。 発明を実施するための最良の形態
レーザ照射による歪付与領域に環流磁区が形成される。 環流磁区 の伸縮が磁歪につながるため、 歪の導入量が磁歪とほぼ正の相関が ある。 よって磁歪増加を最小限に抑えるには、 渦電流損を低減する に十分な歪みを与え、 それ以上は極力不要な歪みは与えないことが 理想である。 すなわち導入歪体積を最適化することが重要である。
Qスィッチ C02レーザ、 あるいは YAGレーザに代表されるパルス発 振レーザでは、 レーザ媒質に蓄積されたエネルギーを一瞬にしてレ 一ザ光として取り出すため、 パルス幅が数 s以下でパルスェネル ギ一が高く、 ピークパワーは容易に数 kWを越える。 この様な短パル ス高ピークのパルスレーザ照射では歪は効果的に導入されるものの 、 図 5に示すように非常に強い衝撃力により集光ビーム径 d lの周 囲の広い範囲に幅 d 2の歪が発生し、 余分な歪みが入る傾向にある。 そのため歪み導入体積の削減、 および制御は困難である。 特許文献 1 に開示されるように 1 X 104 W/M2を越えるような高ピークパワー 密度ではこの様な現象が起こると考えられる。 .
一方、 連続波レーザでは瞬時的なパワー密度は小さく、 図 6 に示 すように発生する歪み幅 d 2はビーム集光径 d lとほぼ同等となる。 従って集光径を制御することで圧延方向の歪幅 d 2をある程度制御す ることができる。 しかし板幅方向は連続に均一の歪み分布となるた め、 圧延方向幅以外の制御の自由度は限られている。
本発明者らは、 連続波レーザによって圧延方向の歪み幅を最小限 に抑制した場合でも、 板幅方向全幅にわたり連続的に歪みを導入し なく とも鉄損は十分改善可能ではないかと想到した。 すなわち板幅 方向には磁歪を不必要に増加させる余分な歪みが存在していると考 えた。 そこで、 板幅方向の歪分布も制御し、 歪み体積を制御、 最適 化することを目的に、 パワー密度を抑制し、 細く集光した連続波レ 一ザをベースにパワーの時間変調を行う ことで、 板幅方向に歪みの 導入された部分とそうでない部分を周期的に形成する本発明に至つ た。
以下実施例を用いて本発明を実施するための形態を説明する。 図 1 は本発明の連続波レーザのパワー変調波形の一例である。 最 大パワーは連続波レーザの最大出力 P pであり、 パワー変調により 周期的に最小値 Pbを有する低パワー時間域を持つ。 変調周期を Tmと し、 パワーが最大値 10%以下の時間幅を Tf、 Tm - Tfを Tnとし、 パワー 変調デューティ Dpを Dp = Tn/TmXlOO (%) と定義した。 尚変調周 波数は Fm= 1 /Tmである。
図 2は本発明の実施例における照射実験の模式図である。 本実施 例では、 レーザ装置 1は半導体レーザ励起ファィバレ一ザであり、 励起光源である半導体レーザは高速変調が可能であるため、 フアイ バレーザ出力も同じく高速で変調される。 ファイバレーザのフアイ バコア径は 10M mであり、 集光光学系を適切に用いてコア径と同等 まで集光可能である。 レーザ波長は 1.07/ifliである。 レーザ出力は 伝送ファイバ 2を通り、 出力ヘッ ド 3より出力される。 レーザビー ム LBは円柱レンズ 4、 f Θ レンズ 5 の組み合わせにて集光される。 本実施例では、 最大パワー Ppは 100Wであり、 集光ビームの圧延方 向径 dl= 100 m、 板幅方向径 dc= 300 mの楕円である。 従って最大 パヮ一密度 Ppdは 0.4X 104W/mm2である。 レーザビームはポリゴンミ ラ一 6にて板幅方向に速度 Vsにて走査される。 本実施例では、 Vs = 15ni/sである。 また、 鋼板 7の圧延方向移動により、 圧延方向の照 射ピッチ P1は 6mmとした。 この条件にて、 変調周波数 Fm=2kHzに固定 し、 パルス変調デューティ Dpを種々変更して鉄損と磁歪特性を調べ た。
図 3は試料として板厚 0.23mni、 磁束密度 B8 = 1.935T、 レーザ照射 前鉄損 W17/50== 084W/kgの素材を用いた場合のパルス変調デューテ ィ Dpとレーザ照射後の鉄損 W17/50の関係を示すものである。 試料サ ィズは幅 60mm、 圧延方向長 300匪である。
B8は 800Α/Π1の磁化力において発生する鋼板の磁束密度である。 W1 7/50は交流励磁の周波数 50Hz、 最大磁束密度 1. 7Tにおける鉄損であ る。
また、 図 4は磁歪 λ p-pとパルス変調デューティ Dpの関係を示す ものである。 ここで λ ρ-pは交流励磁の周波数 50Hz、 最大磁束密度 1 . 7Tにおいて、 圧延方向の鋼板伸縮全幅の鋼板長に対する割合 (% ) である。
なお、 比較として同じ試料に波長 10. 6 ^ mの Qスィッチパルス C02 レーザを照射した場合の鉄損と磁歪を調べた。 照射条件は圧延方向 集光ビーム径 0. 3mm、 板幅方向集光径 0. 5mm、 パルス時間幅 2 /i s、 パ ルス周波数 20kHz、 パルスエネルギー 6DI J、 平均パワーは 120Wである 。 ビーム走査速度 Vs = 10m/s、 照射ピッチ P l = 6匪である。 Qスィッチ C 02レーザパルスはパルス初期に急峻なピークを持ち、 ピークパワー は Pp= 2kWであり、 最大パワー密度 Ppd = 1. 7 x l 04 W/mm2である。
図 3より、 完全連続波レーザ照射に相当するパルス変調デューテ ィ Dp= 100%から Dp = 70%までは鉄損は W 17/50 = 0. 70W/kg程度の低いレべ ルを示しており、 図 3中に点線で示されるように Qスィッチ C02パル スレーザ法の鉄損 W 17/50 (P) =0. 750W/kgに比べ低い鉄損が得られた 。 Qスィッチパルスレーザで十分鉄損が低減できないのは、 渦電流 損は低減されているものの、 歪み体積が過剰でヒステリシス損の増 加が顕著になっているためであると考えられる。
一方、 図 4において、 磁歪はパルス変調デューティ Dpの減少とと もにほぼ単調に減少する傾向が見られた。 すなわち連続波レーザを パワー変調して最大パワーの 10%以下の時間域をつくることで、 こ の時間域ではほとんど鋼板に歪みが導入されていないと考えられる 。 その結果、 Dpの減少とともに導入歪み量が減少している。
図 3の結果より、 パルス変調デューティ Dp = 70%で鉄損低減効果 はほぼ飽和しており、 これ以上 Dpを増加させても鉄損はそれ以上低 下しない。 一方、 図 4の結果から、 Dpを 70%以上に増加させて、 更 に歪みを導入しても磁歪を不必要に増加させるものであると考えら れる。
なお、 Qスィッチ C02レーザ法では短パルス、 高ピークパワーによ り歪み領域が広くなる傾向がある、 更に波長がファイバレーザの約 10倍と長いため集光径の縮小には限界がある。 よって歪み幅は本発 明のファイバレーザの場合に比べ広く、 そのため図 4中に点線で示 されるように、 パルスレーザ法での磁歪 λ P-P (P)は本発明の場合に 比べ大きい。
従って、 本発明による細く集光され、 且つパワー密度を抑制した パワー変調レーザを照射する方法では従来の高ピークパルスレーザ 法に比べ鉄損、 磁歪ともに優れた特性が得られ。 また同じく最大パ ヮー密度を抑制した連続波レーザ法に比べても同等鉄損と低磁歪が 得られ、 特にパルス変調デューティ Dpが 70%以上、 100 未満の範囲 においてより低い磁歪と低い鉄損が得られる。
本発明においては歪み領域を制御することが重要である。 パワー 密度 Ppdが 1 X 1 04 W/mm2を越える場合、 前述のごとく集光径以上の 過大な歪みが導入されるため好ましくない。 一方、 鉄損低減効果が 十分になる歪みを発生させることが出来る最小のパワー密度 Ppdの 値は、 電磁鋼板面上のレーザビーム走査速度に依存する。 当該最小 のパワー密度 Ppdの値は、 パルス変調デュ一ティ Dpを 1 00%、 すなわ ち完全連続にレーザ照射して求めることができる。 上記の実施例の ような、 製造工程において生産性の観点から無理なく実施できる走 査光学系でのレーザビーム走査速度範囲においては、 パワー密度 Pp dは 1 X 102 W/mm2が下限である。 これより小さい場合は歪みがほと んど発生しないため鉄損低減効果も大きく減少する。 従ってパワー 密度 Ppdの範囲は 1 X 102から 1 X 104 W/nini2の範囲が好ましい。 本発明の目的を達成するには所定のパワー変調を高精度で行う必 要がある。 半導体レーザは電流制御によって高速の変調が可能ある ため、 それを励起源にするファイバレーザは同じく高速で変調制御 が可能である。 またファイバレーザはコア径と同等レベルの集光が 容易であることから、 過剰な歪み幅を与えないために集光径を細く することが可能である。 従って、 本発明を実施するには半導体レー ザ励起のファイバレーザが好適である。
また波長の観点で、 波長が短い方が細い集光が可能であること、 また一方で波長が長い方が電磁鋼板へのレーザエネルギー吸収率が 高いことを鑑み、 実用的なレーザの中で波長 1. 06 mの YAGレーザと 波長 10. 6 111の(02レーザの間に位置する波長 1. 07〜2. 10 mのフ ァ ィバレーザが望ましい。 産業上の利用可能性
本発明により、 レーザ照射によって導入される歪み量の制御が圧 延方向、 板幅方向の双方で可能となり、 鉄損を最小化し、 磁歪増加 を極力抑制する歪み量の最適化を可能としたので、 高効率 , 低騒音 トランスの素材として、 鉄損が極力小さく、 かつ磁歪特性も優れた 方向性電磁鋼板が製造できる。

Claims

請 求 の 範 囲
1. レーザビームを方向性電磁鋼板面に集光して、 該方向性電磁 鋼板面の板幅方向に走査照射して残留応力を周期的に付与して磁気 特性を改善する方向性電磁鋼板の製造方法であって、
レーザビームは連続波レーザを周期的にパワー変調したビームで
、 前記パワー変調したビームの時間波形において、 変調周期 Tmと 、 パワーが最大値 P Pの 1 0 %以下の時間幅 T f と、 これら変調周 期 T mと時間幅 T f の差 ( T n = T m— T f ) とで、 パワー変調デ ュ一ティ D pを D p = T n /TmX 1 0 0 (%) と定義したとき、 パワー変調デューティ D pが 7 0 %以上、 1 0 0 %未満であり、 か っ該レーザビームのパワーの最小値 P bが最大値 P pの 1 0 %以下 であることを特徴とする方向性電磁鋼板の製造方法。
2. 前記レーザビームの鋼板面上のピークパワー密度 P p dを、 レーザビームの集光面積 S と前記最大値 P p とで P p d = P p / S と定義したとき、 ピークパワー密度 P p dが、 1 X 1 02以上、 且 つ 1 X 1 04 (W/mm2) 以下であることを特徴とする請求項 1記 載の方向性電磁鋼板の製造方法。
3. 前記レーザビームは、 半導体レーザ励起ファイバレーザ装置 から出射されるビームであることを特徴とする請求項 1 または 2に 記載の方向性電磁鋼板の製造方法。
PCT/JP2007/057498 2006-04-07 2007-03-28 方向性電磁鋼板の製造方法 WO2007116893A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/225,963 US7763120B2 (en) 2006-04-07 2007-03-28 Method of production of grain-oriented electrical steel sheet
CN2007800123156A CN101415847B (zh) 2006-04-07 2007-03-28 取向电磁钢板的制造方法
EP07740934A EP2006397B1 (en) 2006-04-07 2007-03-28 Method for producing grain-oriented magnetic steel sheet
KR1020087023489A KR101060746B1 (ko) 2006-04-07 2007-03-28 방향성 전자 강판의 자기 특성 개선 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006106282A JP5000182B2 (ja) 2006-04-07 2006-04-07 磁気特性の優れた方向性電磁鋼板の製造方法
JP2006-106282 2006-04-07

Publications (1)

Publication Number Publication Date
WO2007116893A1 true WO2007116893A1 (ja) 2007-10-18

Family

ID=38581183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057498 WO2007116893A1 (ja) 2006-04-07 2007-03-28 方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US7763120B2 (ja)
EP (1) EP2006397B1 (ja)
JP (1) JP5000182B2 (ja)
KR (1) KR101060746B1 (ja)
CN (1) CN101415847B (ja)
RU (1) RU2374334C1 (ja)
TW (1) TW200745347A (ja)
WO (1) WO2007116893A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013849A1 (en) * 2012-02-08 2015-01-15 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2020158732A1 (ja) * 2019-01-28 2020-08-06 日本製鉄株式会社 方向性電磁鋼板及びその製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234222B2 (ja) * 2010-04-01 2013-07-10 新日鐵住金株式会社 方向性電磁鋼板及びその製造方法
EP2602342A4 (en) * 2010-08-06 2013-12-25 Jfe Steel Corp CORNORATED MAGNETIC STEEL PLATE AND METHOD OF MANUFACTURING THEREOF
DE102011000712A1 (de) * 2011-02-14 2012-08-16 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Erzeugen eines kornorientierten Stahlflachprodukts
CN103827326B (zh) * 2011-09-28 2016-05-11 杰富意钢铁株式会社 取向性电磁钢板及其制造方法
KR101638890B1 (ko) * 2011-12-27 2016-07-12 제이에프이 스틸 가부시키가이샤 방향성 전자 강판의 철손 개선 장치
CN107012303B (zh) * 2011-12-28 2020-01-24 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
KR101370634B1 (ko) * 2011-12-29 2014-03-07 주식회사 포스코 전기강판 및 그 제조방법
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same
JP5919859B2 (ja) * 2012-02-08 2016-05-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
US10026533B2 (en) * 2012-08-30 2018-07-17 Jfe Steel Corporation Grain-oriented electrical steel sheet for iron core and method of manufacturing the same
KR101641032B1 (ko) 2012-11-08 2016-07-19 신닛테츠스미킨 카부시키카이샤 레이저 가공 장치 및 레이저 조사 방법
RU2514559C1 (ru) * 2013-03-05 2014-04-27 Общество с ограниченной ответственностью "ВИЗ-Сталь" Способ производства листовой электротехнической анизотропной стали и листовая электротехническая анизотропная сталь
RU2673271C2 (ru) * 2014-07-03 2018-11-23 Ниппон Стил Энд Сумитомо Метал Корпорейшн Установка лазерной обработки
EP3165615B1 (en) * 2014-07-03 2022-12-21 Nippon Steel Corporation Use of a laser processing apparatus for refining magnetic domains of a grain-oriented electromagnetic steel sheet
KR102177038B1 (ko) 2014-11-14 2020-11-10 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
JP6620566B2 (ja) * 2016-01-20 2019-12-18 日本製鉄株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、変圧器またはリアクトル用の鉄心、および、騒音評価方法
KR101944899B1 (ko) * 2016-12-22 2019-02-01 주식회사 포스코 방향성 전기강판의 자구미세화 방법
EP3591080B1 (en) 2017-02-28 2021-01-13 JFE Steel Corporation Grain-oriented electrical steel sheet and production method therefor
CN108660295A (zh) * 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
CN107414323A (zh) * 2017-06-09 2017-12-01 西安交通大学 评估正弦调制影响高反射率材料激光焊能量耦合行为的方法
JP7291618B2 (ja) * 2019-12-24 2023-06-15 株式会社日立製作所 画像取得システム及び画像取得方法
KR102415741B1 (ko) * 2020-12-21 2022-06-30 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
CN117415448A (zh) * 2022-07-11 2024-01-19 宝山钢铁股份有限公司 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657333A (ja) 1992-08-07 1994-03-01 Nippon Steel Corp パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法
JP2003129135A (ja) * 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
WO2004083465A1 (ja) 2003-03-19 2004-09-30 Nippon Steel Corporation 磁気特性の優れた方向性電磁鋼板とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2016094C1 (ru) * 1992-09-02 1994-07-15 Новолипецкий металлургический комбинат им.Ю.В.Андропова Способ лазерной обработки крупнозернистой электротехнической анизотропной стали толщиной 0,15 - 0,30 мм
CN1083895C (zh) * 1997-01-24 2002-05-01 新日本制铁株式会社 具有优良磁性能的晶粒取向性电工钢薄板及其生产工艺和设备
IT1306157B1 (it) * 1999-05-26 2001-05-30 Acciai Speciali Terni Spa Procedimento per il miglioramento di caratteristiche magnetiche inlamierini di acciaio al silicio a grano orientato mediante trattamento
JP4398666B2 (ja) * 2002-05-31 2010-01-13 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板およびその製造方法
JP4384451B2 (ja) * 2003-08-14 2009-12-16 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657333A (ja) 1992-08-07 1994-03-01 Nippon Steel Corp パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法
JP2003129135A (ja) * 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
WO2004083465A1 (ja) 2003-03-19 2004-09-30 Nippon Steel Corporation 磁気特性の優れた方向性電磁鋼板とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006397A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013849A1 (en) * 2012-02-08 2015-01-15 Jfe Steel Corporation Grain-oriented electrical steel sheet
US9761361B2 (en) * 2012-02-08 2017-09-12 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2020158732A1 (ja) * 2019-01-28 2020-08-06 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
JPWO2020158732A1 (ja) * 2019-01-28 2021-11-25 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
JP7230933B2 (ja) 2019-01-28 2023-03-01 日本製鉄株式会社 方向性電磁鋼板及びその製造方法

Also Published As

Publication number Publication date
JP5000182B2 (ja) 2012-08-15
RU2374334C1 (ru) 2009-11-27
TWI334445B (ja) 2010-12-11
US20090114316A1 (en) 2009-05-07
US7763120B2 (en) 2010-07-27
EP2006397A4 (en) 2010-08-04
JP2007277644A (ja) 2007-10-25
CN101415847B (zh) 2011-01-19
KR20080106305A (ko) 2008-12-04
CN101415847A (zh) 2009-04-22
KR101060746B1 (ko) 2011-08-31
EP2006397B1 (en) 2012-06-27
TW200745347A (en) 2007-12-16
EP2006397A1 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
WO2007116893A1 (ja) 方向性電磁鋼板の製造方法
JP4189143B2 (ja) 低鉄損一方向性電磁鋼板の製造方法
JP4510757B2 (ja) 磁気特性の優れた方向性電磁鋼板とその製造方法
JP5234222B2 (ja) 方向性電磁鋼板及びその製造方法
JP3361709B2 (ja) 磁気特性の優れた方向性電磁鋼板の製造方法
RU2440426C1 (ru) Способ получения листа электромагнитной стали с ориентированными зернами, у которого магнитные домены контролируются посредством приложения лазерного луча
WO1998032884A1 (fr) Tole d'acier a grains orientes presentant d'excellentes caracteristiques magnetiques, procede et dispositif de fabrication
JP4398666B2 (ja) 磁気特性の優れた一方向性電磁鋼板およびその製造方法
RU2548544C2 (ru) Способ быстрого нанесения насечек с помощью лазера
JP2007002334A (ja) 低鉄損方向性電磁鋼板およびその製造方法
JPH11279645A (ja) 低鉄損かつ低磁気歪み一方向性電磁鋼板およびその製造方法
JP2002012918A (ja) 磁気特性の優れた方向性電磁鋼板
JPWO2016002043A1 (ja) レーザ加工装置
JP4598321B2 (ja) 磁気特性の優れた方向性電磁鋼板
KR101051746B1 (ko) 전기강판의 자구미세화방법 및 자구미세화 처리된 전기강판
JP2006117964A (ja) 磁気特性の優れた方向性電磁鋼板とその製造方法
JP2000328139A (ja) 板厚の厚い低鉄損一方向性電磁鋼板の製造方法
JP2563730B2 (ja) パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法
JP2004124226A (ja) 磁気特性の優れた方向性電磁鋼板の製造装置および方法
JP5929808B2 (ja) 高速電子ビーム照射による方向性電磁鋼板の製造方法
KR101626598B1 (ko) 방향성 전기 강판의 자구 미세화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8066/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12225963

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780012315.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007740934

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008144118

Country of ref document: RU