JPWO2016002043A1 - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
JPWO2016002043A1
JPWO2016002043A1 JP2016530760A JP2016530760A JPWO2016002043A1 JP WO2016002043 A1 JPWO2016002043 A1 JP WO2016002043A1 JP 2016530760 A JP2016530760 A JP 2016530760A JP 2016530760 A JP2016530760 A JP 2016530760A JP WO2016002043 A1 JPWO2016002043 A1 JP WO2016002043A1
Authority
JP
Japan
Prior art keywords
laser
laser beam
steel sheet
polarized light
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016530760A
Other languages
English (en)
Other versions
JP6341280B2 (ja
Inventor
弘二 平野
弘二 平野
今井 浩文
浩文 今井
濱村 秀行
秀行 濱村
坂井 辰彦
辰彦 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2016002043A1 publication Critical patent/JPWO2016002043A1/ja
Application granted granted Critical
Publication of JP6341280B2 publication Critical patent/JP6341280B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Laser Beam Processing (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

方向性電磁鋼板にレーザビームを集光して走査方向に走査して、前記方向性電磁鋼板の磁区を細分化するためのレーザ加工装置であって、前記方向性電磁鋼板に集光されるレーザビームが、直線偏光であり、前記直線偏光の向きと、前記走査方向との成す角度が、0°以上45°未満である。

Description


本発明は、トランスの鉄芯等に用いられる方向性電磁鋼板に対してレーザビームを照射して磁区を細分化するレーザ加工装置に関する。
方向性電磁鋼板は、鋼板製造時の圧延方向に対して磁化されやすいという特徴を有している。そのため、方向性電磁鋼板は、一方向性電磁鋼板とも呼ばれている。方向性電磁鋼板は、トランス、回転機等の電気機器の鉄芯を構成する素材として用いられる。
方向性電磁鋼板が磁化されるとき、鉄損等のエネルギー損失が発生する。近年では、地球温暖化の進行に伴い、電気機器の省エネルギー化が世界的に求められている。従って、方向性電磁鋼板の鉄損をより低減可能な技術が必要である。
鉄損は、渦電流損とヒステリシス損とに分類される。渦電流損は、古典的渦電流損と異常渦電流損とに分類される。古典的渦電流損を低減するために、表面に絶縁皮膜が形成され且つ薄い板厚を有する方向性電磁鋼板が知られている。例えば、下記特許文献1には、鋼板地鉄の表面に形成されたグラス皮膜と、グラス皮膜の表面に形成された絶縁皮膜とを有する方向性電磁鋼板が開示されている。
例えば、下記特許文献2及び3には、異常渦電流損を抑制することが可能なレーザ磁区制御法が開示されている。このレーザ磁区制御法では、絶縁皮膜が形成された方向性電磁鋼板の表面にレーザビームが照射され、方向性電磁鋼板の略幅方向(すなわち、方向性電磁鋼板の圧延方向に対して略直交する方向)に沿ってレーザビームが走査される。その結果、方向性電磁鋼板の表面(つまり、地鉄の表面)に、圧延方向に沿って複数の残留歪が周期的に形成されて、方向性電磁鋼板の磁区が細分化される。
このレーザ磁区制御法によれば、レーザビームの走査により、方向性電磁鋼板の最表層に、板厚方向に対して強い温度勾配を有する温度履歴が与えられる。このような温度履歴が与えられることにより、方向性電磁鋼板の地鉄の表面に残留歪みが発生し、その残留歪みが原因で環流磁区が形成される。この還流磁区により、180°磁壁間隔が細分化され、その結果、方向性電磁鋼板の異常渦電流損が低減される。
上記のように、地鉄表面に形成された環流磁区によって、180°磁壁間隔が細分化され、その結果、異常渦電流損が低減される。しかしながら、地鉄表面に形成された環流磁区は、ヒステリシス損を増加させる要因となる。従って、渦電流損及びヒステリシス損を含む鉄損を最小化するためには、環流磁区の幅を狭くすることが有効である。例えば、特許文献3には、優れた微小集光特性を有するTEM00モードのレーザビームを使用して、狭い領域に強い歪みを形成することにより、狭く且つ十分な強度を持った環流磁区を得る方法が開示されている。

日本国特開2007−119821号公報 日本国特開昭59−33802号公報 国際公開2004/083465号 日本国特開昭58−29592号公報 日本国特開平2−52192号公報
従来のレーザ磁区制御法においては、レーザビームの走査を高速且つ効率的に実施するために、方向性電磁鋼板の表面から一定高さの位置から、1本のレーザビームを方向性電磁鋼板の幅方向に沿って直線的に走査する光学系が用いられる。
このような光学系が用いられる場合、レーザ走査幅の中央部においては、レーザビームは方向性電磁鋼板の表面に対して垂直に入射する。つまり、レーザビームの入射位置がレーザ走査幅の中央部と一致する場合、方向性電磁鋼板の表面に対して直交する方向(法線方向)とレーザビームの伝播方向とのなす角度(レーザビームの入射角φ)は、0°になる。一方、レーザビームの入射位置がレーザ走査幅の端部に近づくほど、レーザビームの入射角φは大きくなる。
このような光学系では、レーザビームの入射位置がレーザ走査幅の中央部から端部に近づくほど(レーザビームの入射角φが大きくなるほど)、レーザビームのビーム径が拡大し、レーザビームのパワー密度が小さくなる。
その結果、レーザ走査幅の中央部で板厚方向に与えられる温度勾配よりも、レーザ走査幅の端部で板厚方向に与えられる温度勾配の方が小さくなるので、レーザ走査幅の端部において適切に磁区を細分化することが困難となる。
このように、従来のレーザ磁区制御法では、レーザ走査幅の全体にわたって十分な磁区制御効果(鉄損低減効果)が得られないという問題がある。
上記の問題を解決するには、レーザ走査幅の端部において、レーザビームの吸収率を上げるという案が考えられる。例えば、上記特許文献4及び5には、レーザビーム(直線偏光)の入射角をブリュースタ角に近い角度(例えば45°以上:特許文献4の請求項3及び特許文献5の請求項1参照)に固定し、常にレーザビームの吸収率を最大化した状態でレーザビームを処理対象物の表面に照射する技術が開示されている。
しかしながら、上記特許文献4及び5に開示された技術は、レーザビームの入射角を固定可能なシステムに有効であるが、上述した従来のレーザ磁区制御法に用いられるシステムのように、レーザビームが所定のレーザ走査幅で走査されるシステム(言い換えれば、レーザビームの入射角が変化するシステム)に適用することは困難である。
本発明は、上記の事情に鑑みてなされたものであり、レーザビームのレーザ走査幅の全体にわたり方向性電磁鋼板の鉄損を低減可能なレーザ加工装置を提供することを目的とする。
本発明は、上記課題を解決して係る目的を達成するために、以下の手段を採用する。
(1)本発明の一態様に係るレーザ加工装置は、方向性電磁鋼板にレーザビームを集光して走査方向に走査して、前記方向性電磁鋼板の磁区を細分化するためのレーザ加工装置であって、前記方向性電磁鋼板に集光されるレーザビームは、直線偏光であり、前記直線偏光の向きと、前記走査方向との成す角度が、0°以上45°未満である。
(2)上記(1)に記載のレーザ加工装置において、前記方向性電磁鋼板に対する前記レーザビームの最大入射角φMAXが、下記条件式(1)を満たしていてもよい。
1/cosφMAX≦1.24 …(1)
(3)上記(1)又は(2)に記載のレーザ加工装置において、前記方向性電磁鋼板に集光されるレーザビームの波長が、0.15μm以上7μm以下であってもよい。
(4)上記(1)〜(3)のいずれか一つに記載のレーザ加工装置が、レーザビームを出射するレーザ発振器と、前記レーザ発振器が出射したレーザビームを直線偏光にする偏光子とを更に備えていてもよい。
(5)上記(4)に記載のレーザ加工装置において、前記レーザ発振器が、ファイバレーザ又はディスクレーザであってもよい。
(6)上記(1)〜(5)のいずれか一項に記載のレーザ加工装置において、前記方向性電磁鋼板に集光されたレーザビームの集光形状が、楕円であり、前記楕円の短軸方向が前記走査方向に対して直交していてもよい。

上記態様によれば、レーザビームのレーザ走査幅の全体にわたり方向性電磁鋼板の鉄損を低減することが可能となる。

本発明の一実施形態に係る方向性電磁鋼板10の断面図である。 本発明の一実施形態に係る方向性電磁鋼板10の製造工程の一例を示すフローチャートである。 本発明の一実施形態に係るレーザ加工装置100の構成例を示す模式図である。 本発明の一実施形態に係るレーザ照射装置106の構成例を示す模式図である。 方向性電磁鋼板10上のレーザビームの集光形状を示す図である。 レーザビームの方向性電磁鋼板10への入射状態を示す模式図である。 方向性電磁鋼板10上におけるレーザビームのビーム径を示す模式図である。 直線偏光の向きと、レーザビームの走査方向との関係を示す模式図である。 直線偏光LBが、入射角φで方向性電磁鋼板10の表面に入射する場合におけるP偏光の電場振動方向を示す図である。 直線偏光LBが、入射角φで方向性電磁鋼板10の表面に入射する場合におけるS偏光の電場振動方向を示す図である。 レーザビームのP偏光とS偏光の地鉄12の上表面に対する吸収率を示すグラフである。 レーザ照射装置106の変形例を示す図である。
以下に添付図面を参照しながら、本発明の一実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<方向性電磁鋼板の概要>
方向性電磁鋼板は、鋼板の結晶粒の磁化容易軸(体心立方晶の<001>方向)が製造工程における圧延方向に略揃っている電磁鋼板である。上記のような方向性電磁鋼板において、圧延方向と磁化方向とが一致する複数の磁区が、磁壁に仕切られた状態で配列している。このような方向性電磁鋼板は圧延方向に磁化しやすいため、磁力線の方向がほぼ一定であるトランスの鉄芯材料として適している。
トランス用のコア(鉄芯)は、巻きコアと積層コアとに大別される。巻きコアの製造工程では、鋼板に巻き変形を加えながらコアの形状に組み上げた後に、その機械的な変形で導入された歪みを除去するために焼鈍が行われる。しかしながら、この焼鈍過程においては、上述のようにレーザ照射により導入された歪みも除去されるので、磁区の細分化効果が消失してしまう。一方、積層コアの製造工程では、上記のような歪除去用の焼鈍工程は不要である。従って、本実施形態に係る方向性電磁鋼板は、特に積層コアの材料として適している。
図1は、本実施形態に係る方向性電磁鋼板10の断面図である。図1に示すように、方向性電磁鋼板10は、鋼板本体(地鉄)12と、鋼板本体12の両面に形成されたグラス皮膜14と、グラス皮膜14上に形成された絶縁皮膜16と、を有する。
鋼板本体12は、Siを含有する鉄合金で構成されている。鋼板本体12の組成は、一例として、Si;2.5質量%以上4.0質量%以下、C;0.02質量%以上0.10質量%以下、Mn;0.05質量%以上0.20質量%以下、酸可溶性Al;0.020質量%以上0.040質量%以下、N;0.002質量%以上0.012質量%以下、S;0.001質量%以上0.010質量%以下、P;0.01質量%以上0.04質量%以下、残部がFe及び不可避不純物である。鋼板本体12の厚さは、例えば0.1mm以上0.4mm以下である。
グラス皮膜14は、例えば、フォルステライト(MgSiO)、スピネル(MgAl)及びコージライト(MgAlSi16)、といった複合酸化物によって構成されている。グラス皮膜14の厚さは、例えば1μmである。
絶縁皮膜16は、例えば、コロイド状シリカとリン酸塩(リン酸マグネシウム、リン酸アルミニウムなど)を主体とするコーティング液やアルミナゾルとホウ酸を混合したコーティング液によって構成されている。絶縁皮膜16の厚さは、例えば2μm以上3μm以下である。
上述した構成の方向性電磁鋼板10においては、絶縁皮膜16の上からレーザビームが照射されることによって、圧延方向にほぼ直交する線状の領域に残留歪が付与される。残留歪が付与された線状領域は、圧延方向に所定の周期で形成され、二つの線状領域に挟まれて圧延方向に磁化が向いた領域において、圧延方向と略直交する方向の磁区幅を細分化する。
<方向性電磁鋼板の製造方法>
図2を参照しながら、本実施形態に係る方向性電磁鋼板10の製造方法について説明する。図2は、本実施形態に係る方向性電磁鋼板10の製造工程の一例を示すフローチャートである。
方向性電磁鋼板10の製造工程は、図2に示すように、鋳造工程S2と、熱間圧延工程S4と、焼鈍工程S6と、冷間圧延工程S8と、脱炭焼鈍工程S10と、焼鈍分離剤塗布工程S12と、最終仕上げ焼鈍工程S14と、絶縁皮膜形成工程S16と、レーザ照射工程S18と、を含む。
鋳造工程S2では、所定の組成に調整された溶鋼を連続鋳造機に供給して、鋳塊を連続的に形成する。熱間圧延工程S4では、鋳塊を所定温度(例えば1150〜1400℃)に加熱して熱間圧延を行う。これにより、所定厚さ(例えば1.8〜3.5mm)の熱間圧延材が形成される。
焼鈍工程S6では、熱間圧延材に対して、例えば、加熱温度750〜1200℃、加熱時間30秒〜10分の条件で熱処理を行う。冷間圧延工程S8では、熱間圧延材の表面を酸洗した後に、冷間圧延を行う。これにより、所定厚さ(例えば、0.1〜0.4mm)の冷間圧延材が形成される。
脱炭焼鈍工程S10では、冷間圧延材に対して、例えば、加熱温度700〜900℃、加熱時間1〜3分の条件で熱処理を行い、鋼板本体12を形成する。鋼板本体12の表面には、シリカ(SiO)を主体とする酸化物層が形成される。焼鈍分離剤塗布工程S12では、鋼板本体12の酸化物層の上に、マグネシア(MgO)を主体とする焼鈍分離剤を塗布する。
最終仕上げ焼鈍工程S14では、焼鈍分離剤が塗布された鋼板本体12をコイル状に巻き取った状態で、バッチ式炉内に挿入して熱処理を行う。熱処理条件は、例えば、加熱温度1100〜1300℃、加熱時間20〜24時間である。この際、鋼板本体12の搬送方向(圧延方向)と磁化容易軸とが一致した、いわゆるゴス粒が優先的に結晶成長する。この結果、仕上げ焼鈍の後に結晶方位性(結晶配向性)が高い方向性電磁鋼板が得られる。また、最終仕上げ焼鈍工程S14により、酸化物層と焼鈍分離剤が反応し、鋼板本体12の表面にフォルステライト(MgSiO)からなるグラス皮膜14が形成される。
絶縁皮膜形成工程S16では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして搬送する。そして、鋼板本体12の両面に形成されたグラス皮膜14の上に絶縁剤を塗布、焼付けを行い、絶縁皮膜16を形成する。絶縁皮膜16が形成された鋼板本体12は、コイル状に巻き取られる。
レーザ照射工程S18では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして搬送する。そして、後述するレーザ照射装置によって、鋼板本体12の片面に向けてレーザビームを集光・照射し、圧延方向(搬送方向)に搬送される電磁鋼板の略幅方向に走査する。これにより、鋼板本体12の表面に、圧延方向にほぼ直交する線状の歪が、圧延方向において所定間隔で形成される。なお、このレーザビームの集光、走査は、鋼板本体12の表面及び裏面の両方から行ってもよい。また、上記のように、絶縁皮膜16が形成された鋼板本体12をコイル状に巻き取ってからレーザ照射工程S18に送ると説明したが、絶縁皮膜形成直後にレーザ照射を行い、その後コイル状に巻き取ることも可能である。
以上のような製造工程により、鋼板本体12の表面にグラス皮膜14及び絶縁皮膜16が形成され、レーザ照射によって磁区制御された方向性電磁鋼板10が製造される。
<レーザ加工装置の構成>
図3及び図4を参照しながら、方向性電磁鋼板10にレーザビームを照射して残留歪を付与するレーザ加工装置100の構成例について説明する。図3は、本実施形態に係るレーザ加工装置100の構成例を示す模式図である。図4は、一つのレーザ照射装置106の構成例を示す模式図である。
レーザ加工装置100は、圧延方向に一定速度で搬送される方向性電磁鋼板10の絶縁皮膜16の上からレーザビームを照射して、圧延方向にほぼ直交する線状の歪を付与する。レーザ加工装置100は、図3に示すように、レーザ発振器102と、伝送ファイバ104と、レーザ照射装置106とを、それぞれ複数有する。図3では、3つのレーザ発振器102、伝送ファイバ104、及びレーザ照射装置106が示されているが、それぞれの構成は同様である。
レーザ発振器102は、例えば100W以上の高出力のレーザビームを出射する。レーザ発振器102は、例えば波長が0.15μm以上7μm以下であるレーザビームを出射する。伝送ファイバ104は、レーザ発振器102から出射されたレーザビームをレーザ照射装置106まで伝送する光ファイバである。
レーザ発振器102の種類としては、微小集光特性に優れ、狭い環流磁区を形成できる観点等から、ファイバレーザ又はディスクレーザが好ましい。ファイバレーザ又はディスクレーザは、波長が近紫外域から近赤外域(例えば1μm帯)にあるためレーザビームを光ファイバによる伝送が可能であり、レーザビームを光ファイバで伝送することで比較的コンパクトなレーザ加工装置100を実現できる。レーザ発振器102は、連続波レーザでもパルスレーザでも良い。
レーザ照射装置106は、レーザ発振器102から伝送ファイバ104により伝送されたレーザビームを方向性電磁鋼板10に集光し、圧延方向にほぼ直交する方向に走査させる。一つのレーザ照射装置106がレーザビームを走査できる幅は、方向性電磁鋼板10の板幅よりも小さいこともあるが、図3に示すようにレーザ照射装置106を板幅方向に複数配列させることにより、方向性電磁鋼板10の板幅全域に亘ってレーザビームを走査できる。
レーザ照射装置106は、図4に示すように、コリメータレンズ122と、偏光子の一例である偏光ビームスプリッタ124と、λ/2板125と、金属ミラー126と、ポリゴンミラー128と、放物面ミラー130と、を有する。
コリメータレンズ122は、伝送ファイバ104から伝送されたレーザビームを平行光とする。平行光であるレーザビームは、ここでは無偏光のビームであり、偏光ビームスプリッタ124に入射する。
偏光ビームスプリッタ124は、入射した無偏光のレーザビームを直線偏光にする。偏光ビームスプリッタ124の後に、λ/2板125を設置すれば、λ/2板125の回転角度を変更することにより、直線偏光の向きを調整することが可能である。なお、偏光ビームスプリッタ124をレーザビームの中心軸周りに回転可能に配置することにより、λ/2板125を設置せずとも、直線偏光の向きを調整することができる。また、偏光の向きを変化させる素子としては、λ/2板125の代わりにファラデーローテータ等も用いることができる。なお、レーザビームを直線偏光にする理由については、後述する。また、もともと直線偏光のレーザビームを発振するレーザ発振器102(例えばディスクレーザ、偏光保存型ファイバーレーザ、スラブ型COレーザ、その他共振器内に偏光規制素子を設けたレーザ)を用いる場合は、例えば図4に示す偏光ビームスプリッタ124のような、偏光を直線偏光に変換する光学素子を省略できる。さらに、鋼板面上での直線偏光の向きが、後述する所定の方向を向いている場合は、λ/2板125を省略することができる。
尚、本発明における直線偏光レーザとして、一方向にのみ振動する電界成分(直線偏光成分)を有するレーザ光を使用することが理想的であるが、厳密には、その直線偏光成分に対して直交する電界成分(直交成分)も極わずかに存在する。直線偏光成分のパワーと直交成分のパワーとの比は、上述の偏光ビームスプリッタ124の性能やレーザ発振器102の性能に依存する。直線偏光成分のパワーをPW1とし、その直交成分のパワーをPW2とした時、(PW1/(PW1+PW2))を偏光度として定義した場合、本発明における直線偏光は、0.9以上1.0未満の偏光度を有する。すなわち、0.9以上1.0未満(90%以上100%未満)の偏光度を有する直線偏光レーザを用いた場合に、後述の実施例の結果が得られた。なお、直交プリズムなどを用いて直線偏光を分離することにより、直線偏光成分の割合を解析することができる。
金属ミラー126は、入射したレーザビームの方向性電磁鋼板10の板幅方向(図5参照)のビーム径を絞り、調整するためのミラーである。金属ミラー126としては、例えば1軸方向に曲率を持った円柱ミラーや放物面ミラーを用いることができる。金属ミラー126で反射したレーザビームは、所定の回転速度で回転するポリゴンミラー128に入射する。
ポリゴンミラー128は、回転可能な多面体であり、回転することによりレーザビームを方向性電磁鋼板10の板幅方向に走査する。レーザビームがポリゴンミラー128の多面体のある一面に入射する間、その面の回転に伴って、レーザビームが方向性電磁鋼板10上の板幅方向に沿った1本の線状の領域に走査されて、その線状の領域に残留歪が付与される。ポリゴンミラーの回転に伴い、このレーザビームの走査が繰り返されると同時に、方向性電磁鋼板10は圧延方向に搬送される結果、方向性電磁鋼板10上に線状の残留歪を持った領域が、圧延方向に周期的に形成される。なお、線状の領域の圧延方向の周期は、方向性電磁鋼板10の搬送速度と、ポリゴンミラー128の回転速度とによって調整される。
放物面ミラー130は、ポリゴンミラー128で反射したレーザビームの圧延方向のビーム径を絞り、調整するためのミラーである。放物面ミラー130により反射されたレーザビームは、方向性電磁鋼板10の表面に集光される。
図5は、方向性電磁鋼板10上のレーザビームの集光形状を示す図である。本実施形態において、レーザビームの集光形状は、図5に示すように楕円である。この楕円の長軸方向は、レーザビームの走査方向と平行であり、楕円の短軸方向は、走査方向に対して直交する。言い換えれば、楕円の短軸方向は、圧延方向と平行である。このようにレーザビームの集光形状を楕円とすることにより、方向性電磁鋼板10のある一点に対してレーザビームの照射時間が長くなる。その結果、方向性電磁鋼板10の内部の深い位置まで温度を上昇させることができるので、鉄損の低減に有効である。なお、金属ミラー126によって板幅方向(走査方向)のビーム径が絞られると共に、放物面ミラー130によって圧延方向のビーム径が絞られることにより、レーザビームの集光形状が楕円となる。また、レーザビームの集光形状を楕円とすると、集光形状が真円である場合に比べて、レーザビームの集光面積が拡大することによりパワー密度が低下する。その結果、方向性電磁鋼板10の表面近傍の板厚方向に対する温度勾配が急峻になることを防止できるので、グラス皮膜14における疵の発生の抑制に有効である。
なお、上記の説明では、方向性電磁鋼板10上のレーザビームの集光形状が楕円である場合を例示したが、本発明はこれに限定されない。例えば、レーザビームの集光形状が、真円であっても良い。
また、本実施形態においては、圧延方向のビーム径(86%の積分強度が含まれる幅)が200μm以下となるように、レーザビームの強度分布を設定することが望ましい。これにより、圧延方向への熱伝導の広がりをより抑制しながら狭い環流磁区を形成することで、鉄損を大きく低減することができる。さらに、鉄損を確実に低減するには、上記ビーム径を120μm以下とすることがより望ましい。
<レーザビームのレーザ走査幅における入射状態について>
レーザ照射装置106が方向性電磁鋼板10の表面に所定のレーザ走査幅に亘ってレーザビームを走査する際に、レーザ走査幅の中央部と端部において方向性電磁鋼板10の表面に対するレーザビームの入射状態が異なる。
図6は、レーザビームの方向性電磁鋼板10への入射状態を示す模式図である。一つのレーザ照射装置106が走査方向において所定のレーザ走査幅Lにレーザビームを走査した際に、図6に示すように、レーザ走査幅Lの中央部P1におけるレーザビームの入射状態と、レーザ走査幅Lの端部P2、P3におけるレーザビームの入射状態とが、異なる。具体的には、レーザ走査幅Lの中央部P1においては、レーザ照射装置106の放物面ミラー130で反射したレーザビームが、方向性電磁鋼板10の表面(絶縁皮膜16)に垂直に入射する。一方、レーザ走査幅Lの両端部P2、P3においては、レーザビームが、方向性電磁鋼板10の表面に斜めに入射(表面の法線方向に対して入射角φで入射)する。
すなわち、レーザビームの入射位置がレーザ走査幅Lの中央部P1と一致する場合、方向性電磁鋼板10の表面に対して直交する方向(法線方向)とレーザビームの伝播方向とのなす角度(レーザビームの入射角φ)は、0°になる。一方、レーザビームの入射位置がレーザ走査幅Lの端部P2またはP3に近づくほど、レーザビームの入射角φは大きくなる。
図7は、方向性電磁鋼板10上におけるレーザビームのビーム径を示す模式図である。図7において、符号LB1は、レーザ走査幅Lの中央部P1で集光されたレーザビームを示す。符号LB2は、レーザ走査幅Lの一方の端部P2で集光されたレーザビームを示す。符号LB3は、レーザ走査幅Lの他方の端部P3で集光されたレーザビームを示す。レーザ走査幅Lの端部P2、P3ではレーザビームが斜めに入射するので、レーザビームLB2、LB3の走査方向のビーム径(走査方向における楕円形状のビームの長軸の長さ)が、中央部P1のレーザビームLB1のビーム径よりも大きくなる。なお、レーザ走査幅Lの端部P2、P3ではレーザビームが斜めに入射するので、放物面ミラー130から鋼板上の照射点までの距離が長くなる。その結果、レーザビームLB2、LB3の圧延方向のビーム径(圧延方向に沿った楕円形状のビームの短軸の長さ)も、中央部P1のレーザビームLB1のビーム径より大きくなる。
上記のように、ビーム径が大きくなると、レーザビームの照射面積が広くなるため、レーザビームのパワー密度が低下する。この結果、レーザ走査幅Lの端部P2、P3における板厚方向に対する温度勾配が、中央部P1における温度勾配よりも小さくなり、端部P2、P3において磁区を適切に細分化することができない。
本実施形態では、上記問題を解決するために、方向性電磁鋼板10の表面(絶縁皮膜16)に集光されるレーザビームを直線偏光とすると共に、図8に示すように、直線偏光の向きと、レーザビームの走査方向との成す角度θを0°以上45°未満に設定している。なお、図8は、レーザビームの入射角φが0°の場合における、直線偏光の向きと、レーザビームの走査方向との関係を示す模式図である。なお、レーザビームの走査方向と直線偏光の向きとの成す角度θが0°以上45°未満であれば、直線偏光の向きと、レーザビームの走査方向との関係が図8に対して線対称的な関係であってもよい。
本実施形態のように角度θを0°以上45°未満に設定する場合には、後述するように、レーザ走査幅Lの端部P2、P3におけるレーザビームの吸収率を上げることができるため、端部P2、P3でのビーム径が大きくなっても、鋼板に吸収されるパワー密度が低下することを抑制できる。これにより、レーザ走査幅Lの端部P2、P3における板厚方向に対する温度勾配の低下を抑制でき、中央部P1における温度勾配との差異を小さくすることができる。その結果、レーザ走査幅Lの全体にわたって均一に鉄損を低減することが可能となる。
<直線偏光と吸収率の関係について>
ここで、直線偏光の向きと、レーザビームの走査方向との成す角度θによって、レーザビームの吸収率が上がる原理について説明する。
方向性電磁鋼板10に入射するレーザビームは、絶縁皮膜16で一部が反射され、残りが絶縁皮膜16へ入射する。絶縁皮膜16へ入射したレーザビームは、絶縁皮膜16内部で一部が吸収され、グラス皮膜14の上表面に到達し、ここで一部が反射され、残りがグラス皮膜14へ入射する。グラス皮膜14へ入射したレーザビームは、グラス皮膜14内部で一部が吸収され、鋼板本体(以下、地鉄とも呼ぶ)12の上表面に到達し、その一部が鋼板本体12の表面で吸収される。そして、方向性電磁鋼板10に伝達されるレーザビームのパワーは、上述したように絶縁皮膜16等において吸収されるレーザビームの吸収率に左右される。絶縁皮膜16等におけるレーザビームの吸収率が大きければ、方向性電磁鋼板10に伝達されるレーザビームのパワーも大きくなる。
ところで、直線偏光は、通常、P偏光(P波とも呼ぶ)とS偏光(S波とも呼ぶ)を含む。P偏光の吸収率とS偏光の吸収率が異なることが、知られている。このため、P偏光とS偏光の絶縁皮膜16等に吸収される割合に応じて、方向性電磁鋼板10に伝達されるレーザビームのパワーも変化する。
図9Aは、直線偏光LBが、入射角φで方向性電磁鋼板10の表面に入射する場合におけるP偏光の電場振動方向を示している。図9Bは、直線偏光LBが、入射角φで方向性電磁鋼板10の表面に入射する場合におけるS偏光の電場振動方向を示している。図9A及び図9Bに示すように、直線偏光LBが、入射角φで方向性電磁鋼板10の表面に入射する場合、P偏光の電場振動方向とS偏光の電場振動方向とは、異なる。具体的には、直線偏光が走査される際に、P偏光の電場は、図9Aに示す二重線矢印方向に振動し、S偏光の電場は、図9Bに示すように紙面に直交する方向に振動する。
図10は、レーザビームのP偏光とS偏光の地鉄12の上表面に対する吸収率を示すグラフである。図10に示すように、P偏光の吸収率は、S偏光の吸収率よりも大きい。そして、レーザビーム(直線偏光)の入射角φが大きくなるにつれて、P偏光の吸収率が増加し、S偏光の吸収率が減少する。図10は、方向性電磁鋼板10から絶縁皮膜16とグラス皮膜14が除去されて残る地鉄12の上表面に対する吸収率を示しているが、絶縁皮膜16上表面での吸収率と、グラス皮膜14の上表面での吸収率も、図10と同様の傾向を示す。
直線偏光の向きと走査方向との成す角度θが0°の場合には、入射面(方向性電磁鋼板10の表面)に対してP偏光のみが入射する。角度θが45°の場合には、入射面に対してP偏光とS偏光が半分ずつ入射する。角度θが90°の場合には、入射面に対してS偏光のみが入射する。従って、角度θが0°以上45°未満である場合には、P偏光とS偏光のうちP偏光の影響が支配的となり、入射角φの増加とともにレーザビームの吸収率が大きくなる。一方で、角度θが45°超90°以下である場合には、S偏光の影響が支配的となり、入射角φの増加とともにレーザビームの吸収率が小さくなる。
本実施形態では、レーザ照射装置106のレーザ走査幅Lの端部P2、P3におけるレーザビームの吸収率を上げるために、直線偏光の向きとレーザビームの走査方向との成す角度θを0°以上45°未満に設定している。これにより、レーザ走査幅Lの端部P2、P3において絶縁皮膜16等に伝達されるレーザビームのパワーを増大させることができる。そのため、レーザ走査幅Lの端部P2、P3においてビーム径が大きくなったとしても、端部P2、P3におけるレーザビームのパワー密度の低下を抑制できる。この結果、レーザ走査幅Lの端部P2、P3における板厚方向に対する温度勾配の低下を抑制でき、中央部P1における温度勾配との差異を小さくすることができる。
特に、直線偏光の向きとレーザビームの走査方向との成す角度θを0°以上20°以下に設定した場合には、レーザ走査幅Lの端部P2、P3におけるレーザビームのパワー密度の低下をより抑制できるので、レーザ走査幅Lの全体に亘って板厚方向に対する温度勾配を均一にすることが可能となる。
また、本実施形態では、レーザビームの波長が、0.15μm以上7μm以下である場合に特に効果的である。レーザビームの波長が0.15μm以上7μm以下の場合には、絶縁皮膜16とグラス皮膜14がレーザビームに対して透明であり、レーザビームは絶縁皮膜16及びグラス皮膜14の内部で吸収され難い。この場合、方向性電磁鋼板10に伝達されるレーザビームのパワーは、絶縁皮膜16の上表面でのレーザビームの吸収率と、グラス皮膜14の上表面でのレーザビームの吸収率と、地鉄12の上表面でのレーザビームの吸収率とに依存して決まる。すなわち、レーザビームの絶縁皮膜16上表面での吸収率と、グラス皮膜14の上表面での吸収率と、地鉄12の上表面での吸収率との積が重要である。これら3つの吸収率のいずれについても、図10に示すように、角度θの増加に伴いP偏光の吸収率が増加する。この乗算的効果のおかげで、角度θを0°以上45°未満に設定することにより、レーザ走査幅Lの端部P2、P3においてレーザビームの絶縁皮膜16への吸収をより一層促進させることができる。その結果、レーザ走査幅Lの端部P2、P3における温度勾配の低下を抑制でき、本実施形態の有効性がより一層発揮される。
また、本願発明者は、レーザビームの入射角φが0°の場合におけるビーム径(以下、基準ビーム径と呼称する)に対するビーム径の拡大率が24%を超えると、上記のように、直線偏光の向きと走査方向とのなす角θを0°以上45°未満に設定したとしても、レーザ走査幅Lの端部P2、P3におけるレーザビームのパワー密度の低下を十分に抑制できない(言い換えれば、レーザ走査幅Lの端部P2、P3における鉄損改善率が低下する)ことを発見した。
これは、基準ビーム径に対するビーム径の拡大率が24%を超えると、ビーム径の拡大に起因するパワー密度の低下量を、レーザビーム(直線偏光)の吸収率の上昇量で補えなくなることが原因と考えられる。
そこで、レーザ走査幅Lの全体にわたって均一且つ確実に鉄損を低減するために、レーザビームの最大入射角φMAXを以下の条件式(1)に基づいて設定することが好ましい。
1/cosφMAX ≦ 1.24 …(1)
上記条件式(1)において、左辺は、基準ビーム径に対するビーム径(最大入射角φMAXの時のビーム径)の拡大率を示す。従って、上記条件式(1)により、基準ビーム径に対する拡大率が24%を越えない最大入射角φMAXを得ることができる。上記条件式(1)より、最大入射角φMAXは36°以下であることが好ましいことがわかる。例えば、図4に示すポリゴンミラー128を使用するレーザ照射装置106においては、ポリゴンミラー128の面数をNとすると、レーザビームの最大入射角φMAXは、360°/Nで表すことができる。したがって、図4に示すレーザ照射装置106においては、Nは10以上であることが好ましい。
既に述べたように、上記特許文献4及び5には、レーザビーム(直線偏光)の入射角をブリュースタ角に近い角度(例えば45°以上)に固定し、常にレーザビームの吸収率を最大化した状態でレーザビームを処理対象物の表面に照射する技術が開示されている。これに対して、本発明の実施形態では、レーザビームの最大入射角φMAXを45°未満(詳細には36°以下)に設定し、その最大入射角φMAXを越えない範囲(つまりレーザ走査幅L)でレーザビームを方向性電磁鋼板10上で走査する点で、特許文献4及び5に開示された技術と明らかに異なっている。
また、図11に示すように、ポリゴンミラー128の代わりに、ガルバノミラー140を使用してもよい。このガルバノミラー140は、駆動モータ141によって図中の矢印方向に回転駆動される。ガルバノミラー140が回転することにより、レーザビームが方向性電磁鋼板10の板幅方向(走査方向)に沿って走査される。このような構成によると、ガルバノミラー140の回転角度を制御することによって、レーザビームの入射角φを制御することが可能である。従って、ガルバノミラー140を使用することにより、レーザビームの最大入射角φMAXを適切な値に設定することも容易である。
なお、上述したように、直線偏光の向きと走査方向との成す角度θは、λ/2板125等、レーザビームの直線偏光の向きを回転させる素子を挿入することで調整可能である(図4参照)。また、上記では、レーザ発振器102から出射された無偏光のレーザビームを直線偏光にする偏光ビームスプリッタ124(図4参照)を設けているが、本発明はこれに限定されない。例えば、レーザ発振器102に直線偏光を出射するレーザを用いれば、偏光ビームスプリッタ124を設けなくても良い。この場合にも、レーザ走査幅Lの端部P2、P3における板厚方向に対する温度勾配の低下を抑制できる。なお、λ/2板125を挿入せずとも、直線偏光の向きと走査方向との成す角度θを所望の範囲に設定することができる場合、λ/2板125を省略することが可能である。例えば、直線偏光を出射するレーザ発振器102を用いて鋼板面上までレーザビームを伝送することにより、角度θを0°以上45°未満に設定することができる場合には、λ/2板125を省略することが可能である。
<磁区の細分化とグラス皮膜の疵について>
ところで、圧延方向に磁界をかけられた方向性電磁鋼板10は、前述したように、圧延方向と磁化方向とがほぼ一致する磁区を複数配列した構造を有する。ここで、方向性電磁鋼板10の鉄損の更なる低減を図るためには、レーザビームの照射により磁区を細分化する(磁区を狭くする)ことが有効である。特に、方向性電磁鋼板10の最表層近傍の圧延方向に沿って存在するごく狭い幅の領域の板厚方向に対して大きな温度勾配を与えることにより、狭く且つ十分な強度を持った環流磁区を得ることが有効である。
一方で、板厚方向に対する温度勾配を大きくすると、方向性電磁鋼板10の表面の温度が上昇する。そして、温度上昇に起因して、絶縁皮膜16やグラス皮膜14に疵が生じる場合がある。ここで、疵とは、絶縁皮膜16およびグラス皮膜14の欠損剥離、浮き上がり、変質、変色等の皮膜損傷である。グラス皮膜14に疵が発生した場合には、鋼板本体12が外部に露出し、錆が発生する恐れがある。このため、グラス皮膜14に疵が生じた場合には、再度、絶縁皮膜16を塗布する必要があり、工程の追加による製造コストアップの原因となってしまう。
また、方向性電磁鋼板10の製造工程においては、多くの熱処理が実施されるため、鋼板本体12の圧延方向及び幅方向において、グラス皮膜14や絶縁皮膜16の界面構造や厚みにばらつきが生じることがある。よって、レーザ条件を調整しても、鋼板本体12全体でグラス皮膜14における疵の発生を確実に抑制することが困難なことがあった。このため、方向性電磁鋼板10の鉄損を低減しつつ、グラス皮膜14における疵の発生を防止することが求められている。
本実施形態によれば、レーザ走査幅Lの全体にわたり鉄損を低減できるのみならず、疵の発生を抑制する効果も得られる。すなわち、無偏光のレーザビームを用いる従来のレーザ磁区制御法においては、上述したように、レーザ走査幅Lの端部P2、P3においてビーム径が拡大することにより、板厚方向に対する温度勾配が小さくなり、十分な鉄損低減が得られなくなる。これを補償するためには、レーザビームのパワーを増加させれば良いが、そうすると端部P2、P3での鉄損低減を大きくできる反面、レーザ走査幅Lの中央部P1においてレーザビームの吸収パワーが過大となり、疵が発生しやすくなるという問題があった。一方、本実施形態によれば、上述したようにレーザ走査幅Lの端部P2、P3におけるレーザビームの吸収率を上げるために、入射角φの増加とともに吸収率が大きくなるP偏光を含む直線偏光を方向性電磁鋼板10上に走査している。ここで、レーザ走査幅Lの中央部P1においては、直線偏光が方向性電磁鋼板10の表面に垂直に入射する(図6、図9A及び図9Bに示す入射角φが小さい)ため、中央部P1においては、P偏光とS偏光の吸収率はほぼ同じである(図10参照)。無偏光状態を構成するP偏光とS偏光の吸収率に差がないわけであるから、P偏光とすることによる吸収率の増加はほとんどない。このため、本実施形態のレーザ加工装置100によれば、レーザ走査幅Lの中央部P1において方向性電磁鋼板10に伝達されるレーザビームのパワーが過大になることなく、端部P2、P3において吸収されるレーザビームのパワーを増加させることができる。従って、レーザ走査幅Lの全体にわたり鉄損の低減と疵発生の抑制が実現される。
以上の実施形態では、図1に示すように、地鉄12、グラス皮膜14、絶縁皮膜16の3層構造から成る方向性電磁鋼板10にレーザビームの照射を行う例について説明したが、グラス皮膜14が無く、地鉄12と絶縁皮膜16の2層を基本構造とする鋼板に対しても、本実施形態のレーザ加工装置100はレーザ走査幅Lの全体にわたり鉄損を低減できる効果を発揮する。これは、グラス皮膜14が無くても、レーザビームを直線偏光とし且つ角度θを上述の範囲に設定することで、レーザ走査幅Lの端部P2、P3における絶縁皮膜16と地鉄12のそれぞれの上表面でのレーザビームの吸収率を高めることができるからである。グラス皮膜14が無い方向性電磁鋼板としては、地鉄表面の凹凸が小さく鏡面に近いために超低鉄損特性を有する方向性電磁鋼板が知られている。このような超低鉄損特性を有する方向性電磁鋼板において、地鉄12の露出に起因する錆の発生を防止するためには、レーザビームの照射中に絶縁皮膜16に疵を発生させないことがポイントとなる。本実施形態のレーザ加工装置100によると、上述のメカニズムによって、レーザ走査幅Lの全体にわたり鉄損の低減と絶縁皮膜16での疵発生の低減が実現される。
<実施例>
上述した本実施形態に係る実施例の有効性を確認するために、本実施例及び比較例に係る確認試験例について説明する。
まず、Si;3.0質量%、C;0.05質量%、Mn;0.1質量%、酸可溶性Al;0.02質量%、N;0.01質量%、S;0.01質量%、P;0.02質量%、残部がFe及び不可避不純物、といった組成のスラブを準備した。このスラブに対して、1280℃で熱間圧延を実施し、厚さ2.3mmの熱間圧延材を製出した。次に、熱間圧延材に対して、1000℃×1分の条件で熱処理を行った。熱処理後に酸洗処理を施した上で冷間圧延を実施し、厚さ0.23mmの冷間圧延材を製出した。この冷間圧延材に対して、800℃×2分の条件で脱炭焼鈍を実施した。次に、脱炭焼鈍後の冷間圧延材の両面に、マグネシアを主成分とする焼鈍分離材を塗布した。そして、焼鈍分離材を塗布した冷間圧延材をコイル状に巻き取った状態で、バッチ式炉に装入し、1200℃×20時間の条件で仕上げ焼鈍を実施した。これにより、表面にグラス皮膜が形成された鋼板地鉄(鋼板本体)を製出した。次に、グラス皮膜の上に、リン酸アルミニウムからなる絶縁材を塗布、焼き付け(850℃×1分)し、絶縁皮膜を形成した。
そして、絶縁皮膜及びグラス皮膜が形成された鋼板地鉄に対して、レーザビームを照射し、鋼板地鉄の表面に歪を付与した。
レーザ照射装置としては、図4に示すレーザ照射装置106を用いた。レーザ発振器102としては、ファイバレーザを用いた。本実施例では、コリメータレンズ122から出射された無偏光ビームを偏光ビームスプリッタ124に通し、直線偏光とした。その後、直線偏光をλ/2板125に通し、その回転角度を変更することで、直線偏光の向きと走査方向との成す角度θを変更しながら、直線偏光のレーザビームを方向性電磁鋼板10上に集光・走査した。比較例では、偏光ビームスプリッタ124、λ/2板125を通さずに、無偏光のレーザビームを方向性電磁鋼板10上の集光・走査した。なお、本実施例及び比較例とも、レーザビームの照射条件として、方向性電磁鋼板10上に到達するレーザビームのパワーを2kW、走査方向のビーム径を4mm、圧延方向のビーム径を0.12mm、レーザ走査幅を500mmとした。最大入射角φMAXは24°であった。
レーザ処理した鋼板の一部と同一コイルの鋼板の中でレーザ処理しなかった部分をそれぞれ、SST(Single sheet tester)試験にかけ、W17/50(W/kg)の鉄損を評価した。W17/50は、周波数50Hz、最大磁束密度1.7Tのときの鉄損である。SST測定の試験片としては、鋼板幅方向長さ100mm、鋼板圧延方向長さ500mmのサイズで切り出した四角片を用いた。幅方向の切り出し位置は、レーザ走査幅500mmに対して中央部と端部それぞれ100mmずつとした。レーザ処理した鋼板に対する鉄損改善率(%)は、同一コイルの鋼板の中でレーザ処理が施されていない部分の鉄損を基準として定義した。
試験結果を下記の表1に示す。無偏光のレーザビームを用いる比較例1においては、中央部に比べて端部の鉄損が劣化している。一方で、本実施例1〜4においては、直線偏光のレーザビームを用いると共に、角度θを45°未満に設定することにより、端部の鉄損改善効果が得られている(改善しろは、通常0.5%程度である鉄損改善率評価の誤差を有意に超えている)。特に、角度θを20°以下とした場合には、鉄損の劣化しろは0.5%未満であり、事実上劣化をなくすことができている。一方、角度θが45°の比較例2では、無偏光の比較例1と鉄損改善率に実質的な差が無くなっている。これは、角度θが45°の場合、入射面に対してP偏光とS偏光が半分ずつ入射することになるため、レーザ走査幅の端部のレーザビームの吸収率を高くする効果が得られないためである。また、角度θが60°の比較例3では、無偏光の比較例1より鉄損改善率が低い。これは、レーザ走査幅の端部におけるレーザビームの吸収率が逆に低くなってしまうためである。
Figure 2016002043
以上の試験結果より、P偏光とS偏光のうちP偏光の影響を支配的にできる角度範囲、すなわち、角度θを0°以上45°未満に設定することで、無偏光の場合と比較して、レーザ走査幅の端部におけるレーザビームの吸収率を増加させることができ、その結果、レーザ走査幅の端部における鉄損改善率が向上することが判る。
また、直線偏光の向きと走査方向とのなす角θを0°に固定して、レーザビームの最大入射角φMAXを24°から45°の範囲で振った場合に、レーザ走査幅Lの端部における鉄損改善率がどのように変化するかを確認した。その結果を表2に示す。
Figure 2016002043
表2に示すように、レーザビームの最大入射角φMAXが36°を超えると、レーザ走査幅Lの端部における鉄損改善率が急激に悪化することがわかった。最大入射角φMAXが40°以上の場合は、レーザ走査幅Lの端部における鉄損改善率は、表1に示す比較例1(無偏光の場合)と同等かそれ以下となる。これは、レーザビームの最大入射角φMAXが36°を超えると、基準ビーム径に対するビーム径の拡大率が24%を超えることが原因と考えられる。すなわち、レーザ走査幅Lの全体にわたって均一且つ確実に鉄損を低減するためには、レーザビームの最大入射角φMAXを上記条件式(1)に基づいて設定することが好ましいことが、実験により確認された。
<まとめ>
上述したように、本実施形態に係るレーザ加工装置100において、方向性電磁鋼板10に走査される直線偏光の向きと走査方向との成す角度θが、0°以上45°未満に設定される。
これにより、レーザ照射装置106のレーザ走査幅Lの端部P2、P3において鋼板本体12やグラス皮膜14に伝達されるレーザビームのパワーを大きくすることができるため、端部P2、P3においてビーム径が拡大しても、端部P2、P3におけるレーザビームのパワー密度の低下を抑制できる。この結果、レーザ走査幅Lの端部P2、P3における板厚方向に対する温度勾配の低下を抑制でき、レーザ走査幅Lの中央部P1と端部P2、P3での温度勾配の差異を小さくすることが可能となる。また、上述したように、中央部P1におけるレーザビームの吸収パワーは増加しないため、中央部P1において疵の発生を抑制することができる。すなわち、レーザ走査幅Lの全体にわたって、鉄損を低減する点と、グラス皮膜14における疵の発生を防止する点を共に実現することができる。
本実施形態に係るレーザ加工装置100によれば、上記の鉄損低減とグラス皮膜14の疵抑制によって、方向性電磁鋼板10の幅方向に沿って全体で見たときに従来よりも鉄損が低い方向性電磁鋼板10を製造することが可能となる。その結果、極低鉄損の方向性電磁鋼板10をより安価に供給することが可能となるだけでなく、極低鉄損の方向性電磁鋼板10を世の中に広く普及させることでエネルギー消費量の削減を実現できるという観点からも、多大なる経済的効果が奏される。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

10 方向性電磁鋼板
12 鋼板本体
14 グラス皮膜
16 絶縁皮膜
100 レーザ加工装置
102 レーザ発振器
104 伝送ファイバ
106 レーザ照射装置
122 コリメータレンズ
124 偏光ビームスプリッタ
125 λ/2板
126 金属ミラー
128 ポリゴンミラー
130 放物面ミラー

Claims (6)

  1. 方向性電磁鋼板にレーザビームを集光して走査方向に走査して、前記方向性電磁鋼板の磁区を細分化するためのレーザ加工装置であって、
    前記方向性電磁鋼板に集光されるレーザビームは、直線偏光であり、
    前記直線偏光の向きと、前記走査方向との成す角度が、0°以上45°未満であることを特徴とする、レーザ加工装置。
  2. 請求項1に記載のレーザ加工装置であって、
    前記方向性電磁鋼板に対する前記レーザビームの最大入射角φMAXが、下記条件式(1)を満たすことを特徴とするレーザ加工装置。
    1/cosφMAX≦1.24 …(1)
  3. 請求項1または2に記載のレーザ加工装置であって、
    前記方向性電磁鋼板に集光されるレーザビームの波長は、0.15μm以上7μm以下であることを特徴とする、レーザ加工装置。
  4. 請求項1〜3のいずれか1項に記載のレーザ加工装置であって、
    レーザビームを出射するレーザ発振器と、
    前記レーザ発振器が出射したレーザビームを直線偏光にする偏光子と、
    を更に備えることを特徴とする、レーザ加工装置。
  5. 請求項4に記載のレーザ加工装置であって、
    前記レーザ発振器は、ファイバレーザ又はディスクレーザであることを特徴とする、レーザ加工装置。
  6. 請求項1〜5のいずれか1項に記載のレーザ加工装置であって、
    前記方向性電磁鋼板に集光されたレーザビームの集光形状が、楕円であり、
    前記楕円の短軸方向が前記走査方向に対して直交することを特徴とする、レーザ加工装置。
JP2016530760A 2014-07-03 2014-07-03 レーザ加工装置 Active JP6341280B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067780 WO2016002043A1 (ja) 2014-07-03 2014-07-03 レーザ加工装置

Publications (2)

Publication Number Publication Date
JPWO2016002043A1 true JPWO2016002043A1 (ja) 2017-06-22
JP6341280B2 JP6341280B2 (ja) 2018-06-13

Family

ID=55018642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016530760A Active JP6341280B2 (ja) 2014-07-03 2014-07-03 レーザ加工装置

Country Status (9)

Country Link
US (1) US10773338B2 (ja)
EP (1) EP3165614B1 (ja)
JP (1) JP6341280B2 (ja)
KR (1) KR101962046B1 (ja)
CN (1) CN106471141B (ja)
BR (1) BR112016030575B1 (ja)
PL (1) PL3165614T3 (ja)
RU (1) RU2673271C2 (ja)
WO (1) WO2016002043A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471140B (zh) * 2014-07-03 2019-02-05 新日铁住金株式会社 激光加工装置
KR20210013434A (ko) * 2019-07-25 2021-02-04 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
DE102020000518B3 (de) * 2020-01-25 2021-04-22 MOEWE Optical Solutions GmbH Einrichtung zur großflächigen Laserbearbeitung zur Kornorientierung von Elektroblechen
KR102642403B1 (ko) * 2021-04-16 2024-02-29 한국기계연구원 레이저 클리닝 장치 및 속도 가변 틸팅 레이저 광학계

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083465A1 (ja) * 2003-03-19 2004-09-30 Nippon Steel Corporation 磁気特性の優れた方向性電磁鋼板とその製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126953C2 (de) 1981-07-08 1983-07-21 Arnold, Peter, Dr., 8000 München Verfahren zur thermischen Behandlung der Oberfläche von Werkstücken mittels eines linear polarisierten Laserstrahls
US4468551A (en) * 1982-07-30 1984-08-28 Armco Inc. Laser treatment of electrical steel and optical scanning assembly therefor
US4456812A (en) 1982-07-30 1984-06-26 Armco Inc. Laser treatment of electrical steel
US4500771A (en) * 1982-10-20 1985-02-19 Westinghouse Electric Corp. Apparatus and process for laser treating sheet material
JPH0619111B2 (ja) * 1985-03-06 1994-03-16 新日本製鐵株式会社 レ−ザスキヤニング装置
JPH0215112A (ja) 1988-07-04 1990-01-18 Mitsubishi Electric Corp 高エネルギー密度ビーム加熱装置
JPH0252192A (ja) 1988-08-11 1990-02-21 Toshiba Corp レーザ熱加工方法及びレーザ熱加工装置
JPH02138414A (ja) 1988-11-16 1990-05-28 Toshiba Corp レーザ加工装置及びレーザ加工方法
SU1798090A1 (en) 1989-07-26 1993-02-28 Le Elektrotekh Inst Method of and device for laser treatment of dielectric materials
US5057664A (en) * 1989-10-20 1991-10-15 Electro Scientific Industries, Inc. Method and apparatus for laser processing a target material to provide a uniformly smooth, continuous trim profile
EP0483385B1 (en) * 1990-05-23 1997-12-10 Shin Meiwa Industry Co., Ltd. Laser robot and its control method, optical beam deflection apparatus and apparatus for generating its control signal
JP2815240B2 (ja) 1991-01-29 1998-10-27 大阪府 金属表面のレーザー加工方法
US5736709A (en) * 1996-08-12 1998-04-07 Armco Inc. Descaling metal with a laser having a very short pulse width and high average power
RU2104137C1 (ru) 1996-10-29 1998-02-10 Акционерное общество закрытого типа "Технолазер" Способ лазерной сварки стыковых соединений
JPH10298654A (ja) 1997-04-24 1998-11-10 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造装置
IT1306157B1 (it) * 1999-05-26 2001-05-30 Acciai Speciali Terni Spa Procedimento per il miglioramento di caratteristiche magnetiche inlamierini di acciaio al silicio a grano orientato mediante trattamento
US7157038B2 (en) 2000-09-20 2007-01-02 Electro Scientific Industries, Inc. Ultraviolet laser ablative patterning of microstructures in semiconductors
US6676878B2 (en) * 2001-01-31 2004-01-13 Electro Scientific Industries, Inc. Laser segmented cutting
WO2003002289A1 (en) * 2001-06-28 2003-01-09 Electro Scientific Industries, Inc. Multistep laser processing of wafers supporting surface device layers
US20040104208A1 (en) 2002-03-28 2004-06-03 Kenichi Ijima Laser machining apparatus
US7259082B2 (en) * 2002-10-03 2007-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP4413569B2 (ja) * 2003-09-25 2010-02-10 株式会社 日立ディスプレイズ 表示パネルの製造方法及び表示パネル
JP5008855B2 (ja) 2005-10-26 2012-08-22 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
EP1953249B1 (en) 2005-11-01 2018-06-13 Nippon Steel & Sumitomo Metal Corporation Production method and production system of directional electromagnetic steel plate having excellent magnetic characteristics
CN101346800B (zh) * 2005-12-20 2011-09-14 株式会社半导体能源研究所 用于制造半导体装置的激光辐射设备和方法
JP5000182B2 (ja) 2006-04-07 2012-08-15 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
IT1394891B1 (it) 2008-07-25 2012-07-20 Matteo Baistrocchi Impianto di scribing laser per il trattamento superficiale di lamierini magnetici con spot a sezione ellittica
EP2554685B1 (en) 2010-04-01 2016-07-27 Nippon Steel & Sumitomo Metal Corporation Grain oriented electrical steel sheet and method for manufacturing same
US10072971B2 (en) 2010-04-16 2018-09-11 Metal Improvement Company, Llc Flexible beam delivery system for high power laser systems
KR101940333B1 (ko) 2010-07-26 2019-01-18 하마마츠 포토닉스 가부시키가이샤 기판 가공 방법
KR101940332B1 (ko) * 2010-07-26 2019-01-18 하마마츠 포토닉스 가부시키가이샤 기판 가공 방법
RU2509814C1 (ru) 2010-07-28 2014-03-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Электротехническая листовая сталь с ориентированными зернами и способ ее производства
CN104099458B (zh) 2010-09-09 2016-05-11 新日铁住金株式会社 方向性电磁钢板的制造方法
JP5819149B2 (ja) 2011-09-27 2015-11-18 キヤノンマシナリー株式会社 周期構造の作成方法および周期構造の作成装置
CN104011231A (zh) 2011-12-27 2014-08-27 杰富意钢铁株式会社 取向性电磁钢板的铁损改善装置
JP5987610B2 (ja) 2012-09-28 2016-09-07 Jfeスチール株式会社 鋼板検査装置、鋼板検査方法、および鋼板製造方法
KR101641032B1 (ko) 2012-11-08 2016-07-19 신닛테츠스미킨 카부시키카이샤 레이저 가공 장치 및 레이저 조사 방법
CN103433618B (zh) * 2013-07-25 2017-07-04 长春理工大学 一种控制金属表面微纳米结构尺寸和分布的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083465A1 (ja) * 2003-03-19 2004-09-30 Nippon Steel Corporation 磁気特性の優れた方向性電磁鋼板とその製造方法

Also Published As

Publication number Publication date
JP6341280B2 (ja) 2018-06-13
EP3165614A4 (en) 2018-01-24
EP3165614A1 (en) 2017-05-10
WO2016002043A1 (ja) 2016-01-07
KR101962046B1 (ko) 2019-03-25
RU2016152244A (ru) 2018-08-03
EP3165614B1 (en) 2023-05-10
RU2016152244A3 (ja) 2018-08-03
US10773338B2 (en) 2020-09-15
US20170157706A1 (en) 2017-06-08
RU2673271C2 (ru) 2018-11-23
BR112016030575B1 (pt) 2020-02-11
CN106471141A (zh) 2017-03-01
CN106471141B (zh) 2019-02-01
KR20170013391A (ko) 2017-02-06
PL3165614T3 (pl) 2023-07-24

Similar Documents

Publication Publication Date Title
JP4782248B1 (ja) 方向性電磁鋼板及びその製造方法
JP6044642B2 (ja) レーザ加工装置及びレーザ照射方法
JP6341280B2 (ja) レーザ加工装置
ITRM990334A1 (it) Procedimento per il miglioramento di caratteristiche magnetiche in lamierini di acciaio al silicio a grano orientato mediante trattamento co
JP6638599B2 (ja) 巻鉄芯、及び巻鉄芯の製造方法
JP6838321B2 (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
JP6341279B2 (ja) レーザ加工装置
JP7031364B2 (ja) 方向性電磁鋼板の製造方法
JP2019135323A (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法
JP7277755B2 (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法
JP7406064B2 (ja) 方向性電磁鋼板の製造方法及び巻鉄芯の製造方法
JP7372520B2 (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R151 Written notification of patent or utility model registration

Ref document number: 6341280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350