WO2004079615A1 - 保守情報提供システム - Google Patents

保守情報提供システム Download PDF

Info

Publication number
WO2004079615A1
WO2004079615A1 PCT/JP2004/002580 JP2004002580W WO2004079615A1 WO 2004079615 A1 WO2004079615 A1 WO 2004079615A1 JP 2004002580 W JP2004002580 W JP 2004002580W WO 2004079615 A1 WO2004079615 A1 WO 2004079615A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal
data
abnormality
code
maintenance
Prior art date
Application number
PCT/JP2004/002580
Other languages
English (en)
French (fr)
Inventor
Gen Kumamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2004217110A priority Critical patent/AU2004217110B2/en
Priority to EP04716359A priority patent/EP1600870A4/en
Priority to US10/547,380 priority patent/US7599816B2/en
Publication of WO2004079615A1 publication Critical patent/WO2004079615A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/08Registering or indicating the production of the machine either with or without registering working or idle time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Definitions

  • the present invention relates to a maintenance information providing system, and more particularly to a maintenance information providing system that provides information for performing maintenance of equipment.
  • a service engineer who performs on-site repair of equipment and equipment can use the experience based on the error code reported by the equipment. Inferring abnormal spots by using
  • maintenance information is provided by estimating the abnormality location of newly generated equipment and equipment based on the similarity to past abnormal cases.
  • the system disclosed in Japanese Unexamined Patent Publication No. Hei 6—2946468 can be used. (Disclosure of the Invention)
  • An object of the present invention is to provide a system that provides information that enables more appropriate maintenance of facility equipment.
  • the maintenance information providing system of the first invention is a maintenance information providing system for providing maintenance information of equipment based on abnormality data or abnormality prediction data of the equipment, comprising: a storage unit, a corresponding data storage unit, and an abnormality storage unit.
  • a location extraction unit is provided.
  • the storage unit stores storage data based on the abnormality data and the abnormality prediction data.
  • the correspondence data storage unit stores abnormality data corresponding to the abnormality prediction data.
  • the abnormal location extraction unit extracts the abnormal location of the equipment corresponding to the abnormality prediction data based on the data stored in the storage unit, extracts the abnormal data corresponding to the abnormality prediction data from the corresponding data storage unit, and extracts the abnormal data.
  • the abnormal location of the equipment corresponding to is extracted.
  • Abnormality refers to defects that occur in equipment and equipment, including failures and malfunctions. If an abnormality occurs in the equipment, a service engineer or the like must go on a business trip to repair the equipment. Abnormal data indicates that there is an abnormality in the equipment. Abnormality prediction data also indicates that abnormalities will occur if equipment is left unmaintained without maintenance. The abnormal data and the abnormal prediction data may use predetermined symbols (codes) so that a service engineer or the like can understand. If abnormality prediction data occurs, a service engineer or the like should go on a business trip to maintain the equipment before an abnormality occurs in the equipment.
  • the storage unit stores storage data based on the abnormality data and the abnormality prediction data.
  • This stored data may include the abnormal data and the abnormal prediction data stored as they are, the abnormal tendency of the equipment derived from the abnormal data and the abnormal prediction data, or the abnormal data and the abnormal prediction data. To derive abnormal points Or an approximate expression derived in advance.
  • the abnormal location extracting unit extracts abnormal data related to abnormal prediction data from the equipment by using the corresponding data storage unit.
  • the abnormal location extraction unit outputs, using the storage unit, the abnormality prediction data and the abnormal location of the equipment corresponding to the extracted abnormal data as the abnormal location.
  • Abnormal locations of equipment and equipment found during maintenance or locations where abnormalities may occur in the future are collectively referred to as abnormal locations.
  • the abnormal location extracting unit extracts the abnormal location from the abnormality prediction data by using the storage unit and the corresponding data storage unit. This makes it possible to extract an abnormal location corresponding to the abnormal prediction data based on the stored data, and also to extract an abnormal location related to the abnormal data associated with the abnormal prediction data in the corresponding data storage unit. Therefore, in this maintenance information providing system, it is possible to extract the abnormal location from the abnormality prediction data of the equipment and use it as information for carrying out on-site maintenance on the equipment, making the maintenance of the equipment more appropriate Can be done.
  • a maintenance information providing system is the maintenance information providing system according to the first invention, wherein the storage unit includes an abnormal data actual storage unit and an abnormal prediction data actual storage unit.
  • the abnormal data record storage unit stores associations between abnormal data in the past and abnormal locations of equipment and devices.
  • the abnormality prediction data result storage unit stores correspondence between the abnormality prediction data in the past and the abnormal location of the equipment.
  • the storage unit includes an abnormal data result storage unit and an abnormality prediction data result storage unit.
  • the abnormal data record storage unit when abnormal data on equipment is reported and a service engineer or the like repairs the equipment on a business trip, it becomes the starting point for repairing the abnormal part of the equipment identified by the repair and the repair.
  • the abnormality prediction data result storage unit stores the abnormality prediction data of the equipment in the past, and the service engineer etc. before the abnormality data of the equipment is notified.
  • the abnormality location and the abnormality prediction data that triggered the maintenance are stored in association with each other.
  • the correspondence stored in the correspondence data storage unit is such that the abnormality prediction data is notified.
  • this data records the abnormal data output when the equipment is not maintained, and the corresponding relationship between the abnormal prediction data.
  • the data stored in the abnormality prediction data result storage unit is limited to the data found by performing maintenance at the time of abnormality prediction.
  • the data stored in the abnormal data record storage unit includes a case where abnormal data is reported by being left as it is when the abnormal prediction data is reported.
  • the maintenance information providing system according to the third invention is the maintenance information providing system according to the first invention or the second invention, wherein the abnormal location extracting unit extracts an abnormal location of the equipment corresponding to the abnormal data from the abnormal data actual storage unit. It is possible.
  • the abnormal part extraction unit extracts abnormal parts of the equipment based on the abnormality data of the equipment. As a result, it is possible to provide information for appropriately performing maintenance and repair for abnormalities currently occurring in the equipment.
  • the maintenance information providing system is the maintenance information providing system according to any one of the first invention to the third invention, and can further output an abnormal location extracted by the abnormal location extracting unit as a maintenance location.
  • the extracted abnormal location can be output as a maintenance location for maintenance. Therefore, by using the extracted abnormal location as a maintenance location, detailed information can be obtained when performing on-site maintenance, so that equipment can be maintained more appropriately.
  • a maintenance information providing system is the maintenance information providing system according to any one of the first to fourth aspects, wherein the abnormal location extraction unit can output an article required for maintenance of the equipment.
  • Items required for maintenance include confirmation members necessary for checking the abnormal location of the equipment and maintenance parts for the abnormal location of the equipment.
  • the items required for on-site maintenance and on-site repair are also output. Since it is possible to output an abnormal location corresponding to the abnormality and an article required for maintenance and repair, it is possible to easily and reliably perform appropriate response to the equipment.
  • items necessary for maintenance and repair can be brought on a business trip, it is possible to carry out on-site maintenance and on-site repair at the same time as checking for abnormalities. Therefore, maintenance and repair of the equipment can be performed quickly.
  • a maintenance information providing system is the maintenance information providing system according to any one of the first invention to the fifth invention, wherein a plurality of abnormal locations are extracted by the abnormal location extracting unit.
  • the apparatus further includes an abnormality prediction data result storage unit and a certainty calculation unit that calculates, as a certainty factor, the frequency of each abnormal location extracted from the abnormal data result storage unit. Further, the abnormal part extraction unit outputs the abnormal part and the certainty factor according to the magnitude of the certainty factor.
  • the certainty of the abnormal data or the certainty of the abnormal prediction data is the frequency of the abnormal part (maintenance part) of the equipment with respect to the abnormal data or the abnormal prediction data stored in the storage unit. That is, the certainty factor indicates the quantity of abnormal data or abnormal prediction data stored in the storage unit, or the ratio of the quantity of each abnormal location (maintenance location) to the quantity data.
  • the abnormal part and the certainty are arranged and output in order of the certainty.
  • maintenance and repair of the equipment can be performed based on the certainty factor. Therefore, maintenance and repair of the equipment can be performed more efficiently.
  • the maintenance information providing system is the maintenance information providing system according to any one of the first invention to the sixth invention, and includes an input for receiving input of abnormality data, abnormality prediction data, and characteristic information which is a characteristic of the equipment.
  • a reception unit is further provided.
  • the characteristic information includes the model number of the equipment or similar information.
  • the abnormal location extraction unit extracts the abnormal location of the equipment from the storage unit, limited to the equipment that matches the characteristic information.
  • the abnormal location extraction unit uses the feature information (model name of the equipment, Product An error location is output only for data limited to This allows the abnormal location extraction unit to extract abnormal locations taking into account the tendency of abnormal locations specific to equipment with specific characteristics, making it more suitable for maintenance of equipment. Information can be provided.
  • the maintenance information providing system according to an eighth invention is the maintenance information providing system according to the seventh invention, wherein the characteristic information includes the years of installation of the equipment or information similar thereto.
  • the abnormal location extraction unit outputs the abnormal location by limiting due to aging such as the years of installation of the equipment. This makes it possible to take into account the tendency of abnormal spots caused by aging.
  • the maintenance information providing system according to the ninth invention is the maintenance information providing system according to the seventh invention or the eighth invention, wherein the characteristic information includes the type of business, the area of the installation location of the equipment, or information similar thereto.
  • the abnormal location extraction unit outputs the abnormal location. This makes it possible to consider trends according to the usage status of the equipment.
  • Figure 1 is a schematic diagram of the air conditioning system management system.
  • FIG. 2 is a block diagram of a management device of the air conditioning device management system.
  • Fig. 3 (A) is a flowchart (first half) showing a procedure for diagnosing an abnormality of the air conditioner.
  • Fig. 3 is a flowchart showing the procedure for diagnosing an air conditioner abnormality (the latter part).
  • Fig. 4 (A) is a diagram showing the relationship between the abnormal location of the air conditioner and the abnormal certainty factor.
  • Fig. 4 (B) is a diagram showing the relationship between the abnormal location of the air conditioner and the predictive certainty factor.
  • Fig. 4 (C) is a diagram showing the relationship between the abnormality location of the air conditioner and the abnormality certainty factor.
  • Fig. 4 (D) is a diagram showing the relationship between the abnormal location of the air conditioner and the abnormality certainty.
  • Fig. 4 (E) is a diagram showing the relationship between the abnormal location of the air conditioner and the abnormal certainty.
  • FIG. 4 (F) is a diagram showing the relationship between the abnormality location of the air conditioner and the certainty factor.
  • FIG. 4 (G) is a diagram showing the relationship between the abnormal location of the air conditioner and the degree of certainty.
  • Fig. 5 (A) shows an example (upper half) of the maintenance information displayed and output on the terminal.
  • FIG. 5B shows an example (lower half) of the maintenance information displayed and output on the terminal.
  • FIG. 1 shows an air conditioner management system 1 according to the maintenance information providing system of the present invention.
  • the management system 1 is a system that controls an air conditioner 3 that air-conditions the inside of a property 2 with a control device 4 and remotely manages the air conditioner 3 with a management device 6 installed in a remote monitoring center 5.
  • the object of management by the management system 1 is not limited to the air conditioner 3 provided in the property 2, but may include other equipment such as a hot water supply device and lighting.
  • the management system 1 mainly includes an air conditioner 3, a control device 4, and a management device 6.
  • a plurality of air conditioners 3 are arranged in a property 2 such as a building or a factory, and perform indoor air conditioning. Further, the air conditioner 3 is provided with a plurality of sensors 11 for detecting an operation state and an environmental state. Each of the air conditioners 3 has a self-check function, and can check whether or not there is an abnormality in its own operation status based on the detection result of the sensor 11. When it is confirmed that the air conditioner 3 is abnormal (in an abnormal state), the air conditioner 3 transmits an abnormality code to the control device 4.
  • the error code indicates that there is an error in the equipment, and indicates the type of error by the type of code.
  • the control device 4 is connected to the plurality of air conditioners 3 via communication lines, and performs centralized control on each of the air conditioners 3.
  • the control device 4 is located in a management room of the property 2 where the air conditioner 3 is located. Further, control device 4 receives the abnormality code from air conditioner 3. The control device 4 is connected to the management device 6 via the communication network 7 and transmits the operation data and the abnormality code of each air conditioner 3 to the management device 6.
  • the operation data includes the state detection value detected by the sensor 11 included in the air conditioner 3, the control content executed by the air conditioner 3, the power consumption of the air conditioner 3, and the like. These operation data are detected every predetermined time, for example, every minute, and are stored in the control device 4.
  • the control device 4 collectively transmits the accumulated operation data and the abnormal code received from the air conditioner 3 to the management device 6 every hour, for example. Further, the control device 4 checks whether or not the air conditioner 3 is in an abnormal state or not, and outputs an abnormality prediction code, based on the operation data of the air conditioner 3, whether or not the air conditioner 3 is in an abnormal precursory state. The control device 4 transmits the output abnormality prediction code to the management device 6 in the same manner as the operation data and the abnormality code.
  • the management device 6 is a device that manages a plurality of air conditioners 3 kneaded with the control device 4 installed in as many properties 2 as possible. It is located in the remote monitoring center 5 at a distance. In addition, the management device 6 stores characteristic information that specifies the air conditioner 3 (for example, the model name and the product name of the air conditioner 3, the installation age, the type of the installation location, the installation area, and the like). The characteristic information is transmitted from the control device 4 when the air conditioner 3 is installed, or is input by an operator of the management device 6 and stored in the management device 6.
  • characteristic information specifies the air conditioner 3 (for example, the model name and the product name of the air conditioner 3, the installation age, the type of the installation location, the installation area, and the like). The characteristic information is transmitted from the control device 4 when the air conditioner 3 is installed, or is input by an operator of the management device 6 and stored in the management device 6.
  • the contents of management performed by the management device 6 include abnormality diagnosis, automatic energy saving control, automatic report creation, and the like.
  • Abnormality diagnosis is managed as follows.
  • the operation data, the abnormality code, and the abnormality prediction code of the air conditioner 3 sent from the control device 4 are referred to, and each air conditioner 3 installed in the property 2 is referred to.
  • the controller 4 Even when the knowledge code is not output, the management device 6 checks based on the operation data of the air conditioner 3 whether or not the air conditioner 3 is in an abnormal precursor state. As a result, when the management device 6 determines that the air conditioner 3 is in a state of an indication of abnormality, it outputs an abnormality prediction code.
  • the management device 6 When it is determined that the state is an abnormal state or an abnormal precursor state, the management device 6 notifies the administrator of the property 2 or the like. Further, the management device 6 contacts the terminal 31 of the service center 8 after extracting a part to be maintained and repaired (maintenance part) based on the abnormality code and the abnormality prediction code. The contents of the contact to the terminal 31 include the maintenance points. Thereafter, a service engineer belonging to the service center 8 is dispatched to the property 2 to perform on-site maintenance and on-site repair (inspection, repair, etc.) of the air conditioner 3 based on the contents of the communication.
  • the energy-saving automatic control is a management content in which energy-saving control is automatically performed in a predetermined period so that a certain amount of power consumption is reduced in a predetermined period.
  • Automatic report creation is a management content in which a report summarizing the operational effects of energy saving control is automatically created and periodically sent to the property 2 owner or manager.
  • the configuration of the management device that mainly describes the abnormality diagnosis described above>
  • FIG. 2 shows a part related to abnormality diagnosis among constituent parts of the management device 6.
  • the management device 6 mainly includes a communication unit 21, a processing unit 22, and a storage unit 23. (Communication department)
  • the communication unit 21 receives the operation data, the abnormality code, and the abnormality prediction code of the air conditioner 3 transmitted from the control device 4 via the communication network 7. Further, the communication unit 21 transmits to the control device 4 the procedure of the automatic energy saving control for the air conditioner 3 of the property 2 and the contents of the automatically created report. Further, the communication unit 21 dispatches a service engineer to the property 2 for on-site maintenance and outgoing repair of the air conditioner 3 when the air conditioner 3 is in an abnormal state or a precursory state. In addition to transmitting dispatch information to the terminal 31, information indicating that an abnormality has occurred may be transmitted to the control device 4. As a result, when the control device 4 has a notification function, the user of the property 2 is notified of the air conditioner 3 by using the notification function. You can be notified that there is always. Note that the information transmission in the abnormal state and the precursor state of the air conditioner 3 is not limited to the means via the communication network 7, and the information may be transmitted by, for example, FAX.
  • the processing unit 22 stores the operation data of the air conditioner 3 received by the communication unit 21 in the storage unit 23, and performs an abnormality diagnosis of the air conditioner 3 based on the operation data.
  • the processing unit 22 also creates procedures for automatic energy-saving control and automatically creates reports.
  • the processing section 22 has a maintenance point information output section 24.
  • the maintenance point information output unit 24 is a performance data storage unit 25 (storage unit 2) that stores, in the past, actual maintenance data of the air conditioner 3 based on the abnormality code and the abnormality prediction code for the air conditioner 3. (Included in 3), extract multiple abnormal locations of air conditioner 3 and output them as maintenance locations. Also, for each maintenance location, the certainty factor is calculated based on the frequency of the abnormal location corresponding to the abnormal code extracted from the actual data storage unit 25 and the abnormal prediction code.
  • the output maintenance points are transmitted to the terminal 31 of the service center 8 via the communication unit 21 together with their respective degrees of certainty.
  • the maintenance point information output unit 24 doubles based on the operation data of the air conditioner 3 to determine whether or not the air conditioner 3 is in a state of a precursor. To check. As a result, when it is determined that the air conditioner 3 is in the state of a sign of abnormality, the maintenance point information output unit 24 outputs an abnormality prediction code, and thereafter performs the same processing as described above.
  • the storage unit 23 stores the characteristic information of the air conditioner 3, the operation data of the air conditioner 3 received via the communication unit 21, the abnormality code, and the abnormality prediction code.
  • the storage unit 23 stores management information and the like necessary for the management system 1.
  • the storage unit 23 includes a performance data storage unit 25 that stores performance data of past maintenance of the air conditioner 3.
  • the actual data is data that records the actual abnormal location of the air conditioner 3 when the error code and the abnormality prediction code of the air conditioner 3 are output in the past. Actual data is based on the target air conditioner.
  • Terminal 3 of service center 8 based on information on on-site repairs performed by the service engineer for 3 (abnormal code or abnormal prediction code, abnormal location of air conditioner 3, characteristic information of air conditioner 3, etc.) Is entered as
  • the actual data storage unit 25 stores the actual data when the abnormal code is output.
  • the abnormal code actual data storage unit 26 stores the actual data when the abnormal prediction code is output.
  • Storage unit 27, and code correspondence data that stores the correspondence between the error prediction code and the error code when the error prediction code is output but the error code is further output due to abandonment without maintenance. It is composed of a storage unit 28.
  • the abnormal code actual data storage unit 26 stores actual data that records the actual abnormal location when an abnormal code of the air conditioner 3 was output in the past.
  • the abnormality prediction code actual data storage unit 27 stores actual data that records actual abnormal locations (including locations where abnormalities may occur) in the past when the abnormality prediction code of the air conditioner 3 was output. I do.
  • the code-corresponding data storage unit 28 records the error codes output when the error prediction code of the air conditioner 3 was output in the past but maintenance was not performed, and the correspondence between the error prediction codes.
  • the stored data is stored. Of the continuous data, an error prediction code was output, but an error code was output because the system was left unmaintained and maintenance was performed. It is not recorded in the section 27 but is recorded in the abnormal code result data storage section 26.
  • the procedure of the abnormality diagnosis of the air conditioner 3 by the management device 6 will be described according to the flow performed by the maintenance point information output unit 24 of the processing unit 22 shown in FIGS. 3 (A) and 3 (B). .
  • the quantity of the actual data amount that can be said to have been sufficiently accumulated differs depending on the error code Z and the abnormality prediction code, the following quantities are examples.
  • the processing unit 22 uses the empirical rules conventionally used. Diagnosis of abnormalities is also used together. Also, The method of abnormality diagnosis may be selectable.
  • step S1 the communication unit 21 receives an abnormal code or an abnormal prediction code.
  • the case where the maintenance point information output unit 24 outputs the abnormality prediction code based on the operation data of the air conditioner 3 is also included in step S1.
  • step S2 it is determined whether the received code is an abnormal code or an abnormal prediction code. If it is an abnormal code, the process proceeds to step S3. If it is an abnormal prediction code, the process proceeds to step S5.
  • step S3 data corresponding to the abnormal code received in step S1 is extracted from the abnormal code result data storage unit 26.
  • the extracted data is limited to the actual data related to the characteristic information of the air conditioner 3 from which the abnormal code received in step S1 was output, among the actual data stored in the abnormal code actual data storage unit 26. And extract. After completing the extraction, the process proceeds to step S4.
  • step S4 abnormal points of the data extracted in step S3 are derived, and the certainty factor of each abnormal point is calculated.
  • the certainty factor here indicates the frequency of occurrence of each abnormal location corresponding to the abnormal code.
  • the certainty factor of the abnormal location is calculated by dividing the number of abnormalities at each abnormal location in the extracted data by the total number of extracted data. After the calculation of the degree of competition, the process proceeds to step S16.
  • step S5 the data corresponding to the abnormality prediction code received in step S1 is extracted from the abnormality prediction code actual data storage unit 27, and the abnormality part of the data is extracted, and the prediction confidence of each abnormality part is extracted. Is calculated.
  • the predictive certainty here indicates the frequency of occurrence of each abnormal location corresponding to the abnormal prediction code.
  • the target of the extracted data is the characteristic data of the air conditioner 3 to which the abnormality code received in step S1 was output from the actual data stored in the abnormality prediction code actual data storage unit 27. Limit to relevant performance data.
  • step S6 the predictive certainty of the abnormal location is calculated by dividing the number of abnormalities at each abnormal location in the extracted data by the total number of extracted data. Fig.
  • FIG. 4 (B) shows the extracted data for the abnormality prediction code A.
  • I means that the amount of extracted data is small
  • means that the data is moderate
  • IE means that the data is sufficient.
  • step S6 it is determined whether the quantity of data extracted in step S5 is sufficient. As described above, the amount of data that can be said to be sufficient depends on the abnormality prediction code. IE in Fig. 4 (B) states that the case where the number of extracted data is 100 is sufficient. If the quantity is sufficient, proceed to step S7. If not, proceed to step S8.
  • step S7 the predictive certainty of the abnormal part calculated in step S5 is set as the certainty.
  • Fig. 4 (B) where the quantity of extracted data is sufficient!
  • step S8 an abnormal code corresponding to the abnormality prediction code is extracted from the code corresponding data storage unit 28. It should be noted that there may be a case where a plurality of abnormality codes exist for one abnormality prediction code.
  • FIG. 4 (C) shows an example in which the abnormal code 1 and the abnormal code 2 correspond to the abnormal prediction code A.
  • step S9 it is determined whether or not there are a plurality of abnormal codes extracted as corresponding to the abnormal prediction code, and if there is more than one, whether or not each abnormal code is weighted. If there is a weight, the process proceeds to step S10. If there is no weight, the process proceeds to step S11. If there is only one error code corresponding to the error prediction code (the error prediction code and the error code correspond one-to-one), the process proceeds to step S12.
  • step S10 data corresponding to the abnormal code extracted as corresponding to the abnormal prediction code is extracted from the abnormal code result data storage unit 26. And different The normal locations are extracted, and the anomaly certainty of each abnormal location is calculated. Thereafter, the process proceeds to step S13.
  • the abnormality certainty degree calculated in step S10 represents the frequency of occurrence of each abnormal part.
  • the actual data related to the characteristic information of the air conditioner 3 to which the abnormal prediction code was output is limited to: Extract data.
  • the abnormality certainty degree of the abnormal part is calculated by weighting and averaging the frequency of each abnormal part in the extracted data.
  • error code 1 and error code 2 correspond, and the weight of error code 1 and error code 2 is 1: 2.
  • Figure 4 (D) For example, the abnormality certainty factor of the motor-operated valve is calculated.
  • step SI1 data corresponding to the abnormal code extracted as corresponding to the abnormal prediction code is extracted from the abnormal code actual data storage unit 26. Then, an abnormal location is extracted, and an abnormality certainty factor of each abnormal location is calculated. Thereafter, the process proceeds to step S13.
  • step S11 of the actual data stored in the abnormal code actual data storage unit 26, the actual data related to the characteristic information of the air conditioner 3 to which the abnormality prediction code was output is limited to: Perform data extraction.
  • step S11 the abnormality certainty of the abnormal part is calculated by dividing the total value of the number of abnormalities at each abnormal part of the extracted data by the total number of data extracted from the abnormal code. It is done by doing.
  • Error code corresponding to error prediction code A Fig. 4 (E) shows an example where abnormal code 1 and abnormal code 2 correspond to each other, and there is no weighting of abnormal code 1 ⁇ code 2.
  • the abnormality certainty factor of the motor-operated valve is calculated.
  • step S12 data corresponding to the abnormal code corresponding to the abnormal prediction code on a one-to-one basis is extracted from the abnormal code actual data storage unit 26. Then, the abnormal points are extracted, and the degree of abnormality certainty of each abnormal point is calculated. Thereafter, the process proceeds to step S13.
  • step S12 of the actual data stored in the abnormal code actual data storage unit 26, the special information of the air conditioner 3 in which the abnormal code corresponding to the abnormal prediction code is output one-to-one is obtained. Extract data only for different continuous data.
  • step S12 the abnormality certainty of the abnormal part is calculated by dividing the number of abnormalities at each abnormal part in the extracted data by the total number of the extracted data.
  • abnormality code 1 corresponds to abnormality prediction code A on a one-to-one basis is indicated by I in FIG. 4 (C).
  • Anomaly certainty factors such as solenoid valves and heat exchange (abbreviation for heat exchanger) are calculated in the same way.
  • step S13 it is determined whether the quantity of data (extracted in step S5) corresponding to the abnormality prediction code is small or moderate.
  • the criteria for determining the quantity of data differ depending on the abnormality prediction code.
  • the process proceeds to step S14. If the amount of data is small, the process proceeds to step S15.
  • step S 14 the abnormality certainty calculated from step S 5 and the abnormality certainty calculated in any of steps S 10 to S 12 are used to determine the abnormality. Calculate the certainty factor at the location. After calculating the certainty factor, the process proceeds to step S16.
  • step S14 the certainty of the abnormal part is calculated by weighting and averaging the predictive certainty of the abnormal part and the abnormal certainty based on the abnormality prediction code and the contribution of the abnormal code. .
  • the reliability of the motor-operated valve will be described with reference to FIG. 4 (F) as an example.
  • Figure 4 (F) shows the case where the contribution between the error prediction code and the error code is 2: 1.
  • the predictive certainty factor of the motor-operated valve in the abnormality prediction code is 20/50 (see ⁇ in Fig. 4 (B)), and the error valve certainty factor in the abnormal code calculated in step S10 is 40/1 50 ( (See Fig. 4 (D).) Therefore, the confidence of the motor-operated valve is calculated as
  • step S15 the predictive certainty of the abnormal part calculated in step S5 and the abnormal certainty of the abnormal part calculated in any of steps S10 to S12 are respectively determined. Is calculated at the abnormal part. After calculating the certainty factor, the process proceeds to step S16.
  • step S15 the calculation of the certainty factor of the abnormal part is performed by dividing the total value of the number of abnormalities that occurred in the abnormal part by the total number of data in the predictive certainty factor and the abnormal certainty factor of the abnormal part. .
  • the reliability of the motor-operated valve will be described with reference to Fig. 4 (G) as an example.
  • step S16 the abnormal location extracted in step S3 or steps S5 and S8, and the confidence calculated in step S4, S7, S14 or S15 corresponding to the abnormal location are calculated. Then, the confidence level is output in descending order, and transmitted from the communication unit 21 to the terminal 31 of the service center 8. At this time, treat the abnormal location as a maintenance location.
  • the maintenance location and the certainty factor transmitted by the above procedure are displayed on the terminal 31 of the service center 8 as shown in, for example, FIG. 5 (A) and FIG. 5 (B).
  • Fig. 5 (A) is an enlarged view of the upper half of the screen
  • Fig. 5 (B) is an enlarged view of the lower half of the screen. In the screens shown in Fig. 5 (A) and Fig.
  • the air conditioner 3 (model name: convenience store ZEAS—AG, operation time: 18765 hours, business type: other stores) (Restaurants) are output to the output information, arranged in descending order of confidence.
  • the product information is "Building Multi J” and the operation time is around 18765 hours based on the actual data of the past year.
  • the service engineer belonging to the service center 8 is dispatched to the property 2 to perform the on-site repair of the air conditioner 3.
  • the maintenance location information output unit of the processing unit 22 of the management device 6 24 extracts an abnormal location corresponding to the abnormal code from the abnormal code actual data storage unit 26 of the actual data storage unit 25 and outputs it as a maintenance location of the air conditioner 3.
  • the maintenance location information output unit 24 can derive a maintenance location from the abnormal code based on the actual data stored in the abnormal code actual data storage unit 26. Achievements In the data, the actual abnormal location of the air conditioner 3 when the abnormal code was output in the past is recorded. Thus, based on the results of the output of the abnormal code in the past, the abnormal point of the air conditioner 3 that caused the output of the abnormal code this time can be estimated and output as the maintenance point. Therefore, by maintaining the output maintenance point, it becomes possible to perform maintenance of the air conditioner 3 quickly and accurately.
  • the maintenance point information output unit 24 outputs the actual data.
  • An abnormality location corresponding to the abnormality prediction code is extracted from the abnormality prediction code result data storage section 27 of the storage section 25 and output as a maintenance location of the air conditioner 3.
  • the maintenance location information output unit 24 can derive a maintenance location from the abnormality prediction code based on the actual data stored in the abnormality prediction code actual data storage unit 27.
  • the actual data storage unit 25 records the actual abnormal location of the air conditioner 3 (including the location where an abnormality may occur) at the time when the abnormality prediction code was output in the past, similarly to the abnormal code. I have. As a result, it is possible to estimate the abnormality location of the air conditioner 3 that caused the output of the abnormality prediction code this time, based on the results obtained when the abnormality prediction code was output in the past, and output it as a maintenance location. it can.
  • the maintenance point information output unit 24 outputs the actual data. Based on the code-corresponding data storage unit 28 of the storage unit 25, an abnormality code that is assumed to be output if left unattended without being repaired when the abnormality prediction code is output is extracted. Then, the maintenance location information output section 24 extracts the abnormality location corresponding to the extracted abnormality code from the abnormality code performance data storage section 26 of the performance data storage section 25 and outputs the maintenance location of the air conditioner 3. Is output as
  • the abnormality prediction code actual data storage unit 27 stores only data relating to an abnormal location found when maintenance is performed when an abnormality is predicted. Therefore, the maintenance location information output section 24 extracts the abnormal location corresponding to the abnormality prediction code from the abnormality prediction code actual data storage section 27 and outputs it as a maintenance location of the air conditioner 3, and outputs the code corresponding data.
  • An abnormality code corresponding to the abnormality prediction code is extracted based on the storage unit 28, and an abnormality location corresponding to the extracted abnormality code is extracted from the abnormality code result data storage unit 26 and output as a maintenance location. This makes it possible to output the maintenance location based on a larger amount of actual data. By maintaining the output maintenance point, the air-conditioning apparatus 3 can be quickly and accurately maintained.
  • the maintenance location information output unit 24 outputs the maintenance locations and the reliability in the order of the degree of certainty.
  • the certainty factor is calculated based on the frequency of the abnormal part with respect to the abnormality code and abnormality prediction code extracted from the actual data storage unit 25.
  • This maintenance location with a high degree of certainty is a location where maintenance and repair should be performed (confirmed) with priority on the abnormal code and abnormal prediction code output this time from the air conditioner 3 based on past results. it is conceivable that. Therefore, efficient maintenance can be achieved by performing maintenance and repair according to the confidence.
  • the maintenance point information output unit 24 is used to extract the actual data storage unit 25 based on the characteristic information of the air conditioner 3.
  • the characteristic information includes, for example, information such as the model name and the product name of the air conditioner 3, the years of installation, the type of the installation location, and the installation area.
  • the air conditioner 3 outputs the current abnormal code and the abnormal prediction code from the past actual data by limiting the characteristic data based on the actual data contained in the actual data storage unit 25. Maintenance points can be extracted from similar performance data.
  • the maintenance location information output unit 24 takes into account the information of the air conditioner 3 in consideration of information such as the model of the air conditioner 3, the trend change due to aging, and the change trend according to the usage status depending on the installation area and industry. It is possible to extract maintenance points suitable for (3). Therefore, by restricting by the feature information, Maintenance and repair can be performed.
  • the maintenance point information output unit 24 of the processing unit 22 of the management device 6 is based on the actual data of the actual data storage unit 25. From the error code or the error prediction code, the maintenance points and the reliability are output in the order of the reliability, and the terminal 31 of the service center 8 displays, for example, as shown in FIGS. 5 (A) and 5 (B).
  • the service engineer at the service center 8 can perform the on-site maintenance and on-site repair more appropriately and easily. It becomes.
  • the service engineer of the service center 8 will bring necessary items in advance and go to the maintenance and repair of the property 2, it is possible to perform maintenance and repair while checking the abnormal location. Become.
  • the number of business trips of the service engineer to the property 2 can be reduced, and the maintenance and repair of the air conditioner 3 can be performed quickly.
  • the maintenance location information of the processing unit 22 of the management device 6 is output.
  • the unit 24 limits the actual data in the actual data storage unit 25 based on the characteristic information, extracts the abnormal location corresponding to the abnormal code and the abnormal prediction code based on the limited actual data, and uses it as a maintenance location. Output to terminal 31 of service center 8, etc.
  • the management device 6 does not store the characteristic information (for example, the number of years of installation) and the service center 8 grasps the characteristic information of the air conditioner 3, the performance data based on the characteristic information is obtained. It is possible to limit. Further, when it is better to change the characteristic information to more appropriate information, it becomes possible to correct the characteristic information at the terminal 31. As a result, it is possible to output the maintenance location and the certainty factor more appropriately.
  • the characteristic information for example, the number of years of installation
  • the limited range corresponding to the input characteristic information may be relaxed to secure the amount of actual data.
  • the operation time of the air conditioner 3 is 18765 hours. Normally, a result based on the actual data of the air conditioner 3 having the characteristic information in which the operation time is in the vicinity of 187,665 hours is output to the output information. However, when there is little actual data that conforms to this, it is conceivable to extend the operation time to, for example, 1500 to 2000 hours.
  • the air conditioner 3 whose location is Aomori Prefecture when the air conditioner 3 whose location is Aomori Prefecture is targeted, there may be a case where there is little actual data in which the location is Aomori Prefecture. In such a case, the range is expanded to the actual data of the air conditioner 3 whose location is, for example, in the Tohoku region. It is also conceivable to extend the range to the actual data of air conditioners 3 in regions that are climatically similar to Aomori Prefecture (for example, southern Hokkaido, Aomori Prefecture, Akita Prefecture, and Iwate Prefecture).
  • the number of years of installation is included as the characteristic information of the air conditioner 3. I do.
  • the air conditioner 3 can include the operation time in the operation data, even if the operation data is used as the characteristic information instead of the years of installation, the target of extraction of the actual data storage unit 25 is limited. Good. No operation after installation of air conditioner 3 Time cannot be taken into account, but when operating time is used, the period during which aging occurs can be considered more appropriately. This makes it possible to further limit the actual data.
  • an abnormal location is extracted from the abnormality prediction data of the equipment, so that the information can be used as information for carrying out on-site maintenance on the equipment, and the maintenance of the equipment can be performed. Can be performed more appropriately

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Automation & Control Theory (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Air Conditioning Control Device (AREA)
  • Computer And Data Communications (AREA)
  • Alarm Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本発明の保守情報提供システムは、設備機器の保守をより適切に行うことを可能とする情報を提供するものであり、異常コードに基づくデータを記憶する異常コード実績データ記憶部(26)、異常予知コードに基づくデータを記憶する異常予知コード実績データ記憶部(27)、異常予知コードに対応する異常コードを記憶するコード対応データ記憶部(28)、及び保守箇所情報出力部(24)を備える。保守箇所情報出力部(24)は、異常コード実績データ記憶部(26)及び異常予知コード実績データ記憶部(27)のデータに基づいて異常予知コードに対応する空気調和装置の異常箇所を抽出すると共に、コード対応データ記憶部(28)から異常予知コードに対応する異常コードを抽出して異常コードに対応する空気調和装置の異常箇所を抽出する。

Description

明 細 書 保守情報提供システム (技術分野)
本発明は、 保守情報提供システム、 特に設備機器の保守を行うための情報を提 供する保守情報提供システムに関する。
(背景技術)
空気調和装置などの設備機器に異常が生じた際に出張修理サービスを行うため には、 設備機器の設置場所にサービスエンジニア (サービスパーソン) が出張し て、 異常箇所の確認及び異常箇所の修理を行う必要がある。 しかし、 同様の異常 が見られる場合にも、 異常箇所が異なる場合がある。 このため、 出張修理サービ スを行う際に設備機器の異常に関する情報を全く持たない場合には、 異常箇所の 確認の遅れが生じたり、 異常箇所の修理部品を所持していないために部品を取り に帰って再度出張したりすることにより、 無駄な時間が経過するおそれがある。 設備機器に異常が生じた場合に設備機器の異常に関する保守情報を取得する方 法として、 例えば、 設備機器の出張修理を行うサービスエンジニアが、 その経験 から、 設備機器により報知される異常コードに基づいて異常箇所の推察を行うこ とが挙げられる。 また、 設備機器に生じた過去の異常事例のデータベースが構築 されている場合に、 新規に生じた設備機器の異常箇所を過去の異常事例に対する 類似度により推定することによって保守情報を提供する、 特開平 6— 2 9 4 6 6 8号公報に開示されているシステムを用いることが挙げられる。 (発明の開示)
しかし、 設備機器の出張修理サービスを行うサービスエンジニアの経験だけで 異常箇所の推察を行う場合には、 出張修理を行うサービスエンジニアが類似の設 備機器の異常箇所の修理経験がなければ推察ができないという問題が生じる。 ま た、 設備機器に対して一人のサービスエンジニアが行うことができる保守対象機 器数は限定されるため、 異常箇所の推測を行えるほどの経験が蓄積されないこと もある。 さらに、 サービスエンジニアの経験に基づくと、 異常箇所の特定が大雑 把になる傾向にあるため、 詳細な異常箇所特定が難しい場合が多い。 加えて、 サ 一ビスエンジニアの経験だけに依存すると、 過去の経験と先入観とが混在するこ とにより、 定量的な評価が難しくなリ、 異常箇所に関する偏った見方で異常箇所 の判断が行われてしまうため、 その結果として設備機器の異常箇所の確認が遅れ るおそれがある。
本発明の課題は、 設備機器の保守をより適切に行うことを可能とする情報を提 供するシステムを提供することにある。
第 1発明の保守情報提供システムは、 設備機器の異常データ又は異常予知デー タに基づいて設備機器の保守情報を提供する保守情報提供システムであって、 記 憶部、 対応データ記憶部、 及び異常箇所抽出部を備える。 記憶部は、 異常データ 及び異常予知データに基づく記憶データを記憶する。 対応データ記憶部は、 異常 予知データに対応する異常データを記憶する。 異常箇所抽出部は、 記憶部の記憶 データに基づいて異常予知データに対応する設備機器の異常箇所を抽出すると共 に、 対応データ記憶部から異常予知データに対応する異常データを抽出して異常 データに対応する設備機器の異常箇所を抽出する。
異常とは、 設備機器に生じる不具合を指し、 故障や不調などを含むものである。 設備機器に異常が生じた場合には、 サービスエンジニアなどが出張して設備機器 の修理を行う必要がある。 異常データは、 設備機器に異常があることを示す。 ま た、 異常予知データは、 設備機器が保守されずに放置された場合に異常が生じる ことを示す。 なお、 異常データ及び異常予知データは、 サービスエンジニアなど が理解可能なように予め定められた記号 (コード) などを用いてもよい。 異常予 知データが生じる場合には、 設備機器に異常が生じる前に、 サービスエンジニア などが出張して設備機器の保守を行うべきである。
記憶部には、 異常データと異常予知データとに基づいた記憶データが記憶され ている。 この記憶データは、 異常データ及び異常予知データがそのまま記憶され たリ、 異常データと異常予知データとから導出される設備機器の異常の傾向が記 憶されたり、 或いは異常データと異常予知データとから異常箇所を導出するため に予め導出された近似式などが記憶されていたりする。
異常箇所抽出部は、 対応データ記憶部を用いることにより、 設備機器からの異 常予知データに関連する異常データを抽出する。 また、 異常箇所抽出部は、 記憶 部を用いて、 異常予知データおよび抽出された異常データに対応する設備機器の 異常箇所を、 異常箇所として出力する。 なお、 保守時に判明した設備機器の異常 箇所又は将来に異常が生じるおそれがある箇所を総称して、 ここでは異常箇所と している。
ここでは、 異常箇所抽出部が、 記憶部と対応データ記憶部とを用いることによ リ、 異常予知データから異常箇所を抽出する。 これにより、 記憶データに基づい て異常予知データに対応する異常箇所を抽出可能であると共に、 対応データ記憶 部において異常予知データに対応づけられている異常データに関連する異常箇所 も抽出可能となる。 よって、 この保守情報提供システムでは、 設備機器の異常予 知データから異常箇所を抽出して、 設備機器に対して出張保守を行う際の情報と することが可能となり、 設備機器の維持をさらに適切に行うことができる。
第 2発明の保守情報提供システムは、 第 1発明の保守情報提供システムであつ て、 記憶部が異常データ実績記憶部と異常予知データ実績記憶部とを有する。 異 常データ実績記憶部は、 過去における異常データと設備機器の異常箇所との対応 付けを記憶する。 異常予知データ実績記憶部は、 過去における異常予知データと 設備機器の異常箇所との対応付けを記憶する。
ここでは、 記憶部が、 異常データ実績記憶部と異常予知データ実績記憶部とを 有している。
異常データ実績記憶部には、 設備機器の異常データが報知されてサービスェン ジニァなどが設備機器を出張修理した際に、 修理によって判明した設備機器の異 常箇所と修理を行う端緒 (発端) となった異常データとが対応づけて記憶される また、 異常予知データ実績記憶部には、 過去において設備機器の異常予知データ が報知され且つ設備機器の異常データが報知される前にサービスエンジニアなど が設備機器を出張保守した際に、 異常箇所と保守を行う端緒となった異常予知デ ータとが対応づけて記憶される。
さらに、 対応データ記憶部に記憶される対応付けは、 異常予知データが報知さ れたが設備機器の保守を行わなかったときに出力される異常データと、 その異常 予知データとの対応関係、 を記録したデータである。 異常予知データ実績記憶部 に蓄積されるデータは、 異常予知の際に保守を行って判明したデータに限定され る。 一方、 異常データ実績記憶部に蓄積されるデータは、 異常予知データが報知 された際にそのまま放置されて異常データが報知された場合を含む。
これらにより、 異常予知データから、 異常予知データ実績記憶部に記憶される 異常箇所だけではなく、 対応データ記憶部においてその異常予知データに対応づ けられている異常データに関連する異常箇所についても、 異常データ実績記憶部 に基づくことにより併せて異常箇所として出力することが可能となる。 よって、 設備機器の異常予知データから、 異常予知データ実績記憶部及び異常データ実績 記憶部に基づいて抽出された異常箇所を提供することができる。
第 3発明の保守情報提供システムは、 第 1発明または第 2発明の保守情報提供 システムであって、 異常箇所抽出部は、 異常データ実績記憶部から異常データに 対応する設備機器の異常箇所を抽出可能である。
ここでは、 設備機器の異常データに基づいて、 異常箇所抽出部が設備機器の異 常箇所を抽出する。 これにより、 設備機器に現在生じている異常に対する保守及 ぴ修理を適切に行うための情報を提供することが可能となる。
第 4発明の保守情報提供システムは、 第 1発明から第 3発明のいずれかの保守 情報提供システムであって、 異常箇所抽出部が抽出した異常箇所を保守箇所とし てさらに出力可能である。
ここでは、 抽出された異常箇所を保守のための保守箇所として出力可能となつ ている。 よって、 抽出された異常箇所を保守箇所とすることにより出張保守を行 う際の詳細な情報とできるため、 設備機器の維持をさらに適切に行うことができ る。
第 5発明の保守情報提供システムは、 第 1発明から第 4発明のいずれかの保守 情報提供システムであって、 異常箇所抽出部は、 設備機器の保守に要する物品に ついて出力可能である。
保守に要する物品としては、 設備機器の異常箇所の確認に必要な確認部材や、 設備機器の異常箇所に対する保守部品などが挙げられる。 ここでは、 異常箇所を出力する際に、 併せて出張保守及び出張修理の際に必要 となる物品を出力する。 異常に対応する異常箇所と保守及び修理対応の際に必要 となる物品とを出力することができるので、 設備機器に対する適切な対応を容易 且つ確実に行うことが可能となる。 また、 保守及び修理に必要な物品を出張時に 持参できるので、 異常箇所の確認と同時に出張保守及び出張修理を行うことが可 能となる。 よって、 設備機器の保守及び修理を迅速に行うことができる。
例えば、 設備機器が故障した際に、 出力された保守部品を持参することにより、 故障箇所の確認と同時に修理を併せて行うことができる。 よって、 設備機器の修 理のための出張回数を減らして、 保守及び修理を迅速に行うことができる。
第 6発明の保守情報提供システムは、 第 1発明から第 5発明のいずれかの保守 情報提供システムであって、 異常箇所が異常箇所抽出部において複数抽出される。 また、 異常予知データ実績記憶部及び異常データ実績記憶部から抽出されたそれ ぞれの異常箇所の頻度を確信度として算出する確信度算出部をさらに備える。 さ らに、 異常箇所抽出部は、 異常箇所及び確信度を、 確信度の大小に従って出力す る。
異常データの確信度又は異常予知データの確信度は、 記憶部に記憶されている 異常データ又は異常予知データに対する設備機器の異常箇所 (保守箇所) の頻度 である。 すなわち、 確信度は、 記憶部に記憶される異常データ又は異常予知デー タの数量、 又は、 それらの数量データに対する各異常箇所 (保守箇所) の数量の 比を表す。
ここでは、 異常箇所及び確信度を、 確信度の大小順に並べて出力する。 これに より、 確信度に基づいて設備機器の保守及び修理を行うことができる。 よって、 設備機器の保守及び修理をよリ効率的に行うことが可能となる。
第 7発明の保守情報提供システムは、 第 1発明から第 6発明のいずれかの保守 情報提供システムであって、 異常データ、 異常予知データ、 及び設備機器の特徴 である特徴情報の入力を受け付ける入力受付部をさらに備える。 また、 特徴情報 は、 設備機器の機種番号又はこれに類する情報を含む。 異常箇所抽出部は、 特徴 情報に適合する設備機器に限定して、 記憶部から設備機器の異常箇所を抽出する ここでは、 異常箇所抽出部が、 記憶部から特徴情報 (設備機器の機種名、 商品 名等) に限定されるデータのみを対象として異常箇所を出力する。 これにより、 異常箇所抽出部が特定の特徴を有する設備機器に特有の異常箇所の傾向などを考 慮した異常箇所の抽出を行えるようになるので、 設備機器の保守対応のためにさ らに適切な情報を提供することが可能となる。
第 8発明の保守情報提供システムは、 第 7発明の保守情報提供システムであつ て、 特徴情報は、 設備機器の設置年数又はこれらに類する情報を含む。
ここでは、 設備機器の設置年数など経年変化による限定を行って、 異常箇所抽 出部が異常箇所を出力する。 これにより、 経年変化によって生じる異常箇所の傾 向を考慮することが可能となる。
第 9発明の保守情報提供システムは、 第 7発明又は第 8発明の保守情報提供シ ステムであって、 特徴情報は、 設備機器の設置場所の業種、 地域又はこれらに類 する情報を含む。
ここでは、 設備機器の設置場所や職種業種に関連した情報による限定を行って、 異常箇所抽出部が異常箇所を出力する。 これにより、 設備機器の使用状況に応じ た傾向を考慮することが可能となる。
(図面の簡単な説明)
図 1は、 空気調和装置の管理システムの概要図である。
図 2は、 空気調和装置の管理システムの管理装置のブロック図である。
図 3 (A ) は、 空気調和装置の異常診断手順を示すフローチャート (前半部分 ) である。
図 3 (巳) は、 空気調和装置の異常診断手順を示すフローチヤ一卜 (後半部分
) である。
図 4 ( A) は、 空気調和装置の異常箇所と異常確信度との関係を示す図である 図 4 ( B ) は、 空気調和装置の異常箇所と予知確信度との関係を示す図である 図 4 ( C ) は、 空気調和装置の異常箇所と異常確信度との関係を示す図である 図 4 ( D ) は、 空気調和装置の異常箇所と異常確信度との関係を示す図である 図 4 ( E) は、 空気調和装置の異常箇所と異常確信度との関係を示す図である 図 4 ( F ) は、 空気調和装置の異常箇所と確信度との関係を示す図である。 図 4 (G) は、 空気調和装置の異常箇所と確信度との関係を示す図である。 図 5 (A) は、 端末に表示出力される保守情報の一例 (上半分) を示す図であ る。
図 5 ( B) は、 端末に表示出力される保守情報の一例 (下半分) を示す図であ る。
(発明を実施するための最良の形態)
本発明の保守情報提供システムに係る空気調和装置の管理システム 1 を、 図 1 に示す。 管理システム 1は、 物件 2の内部を空気調和する空気調和装置 3を制御 装置 4で制御すると共に、 空気調和装置 3を遠隔監視センタ 5に設置される管理 装置 6で遠隔管理するシステムである。
なお、 管理システム 1による管理の対象は、 物件 2に設けられる空気調和装置 3に限られず、 給湯装置や照明など他の設備機器を含んでいてもよい。
<全体の構成 >
管理システム 1は、 主として空気調和装置 3、 制御装置 4、 及び管理装置 6か ら構成される。
空気調和装置 3は、 ビルや工場などの物件 2に複数配置され、 室内の空気調和 を行う。 また、 空気調和装置 3は、 作動状態や環境状態を検知するセンサ 1 1が 複数設けられている。 それぞれの空気調和装置 3は、 自己チェック機能を有して おり、 センサ 1 1の検知結果に基づいて自己の作動状況に異常があるか否かをチ エックすることができる。 空気調和装置 3に異常があると確認された (異常状態 である) 場合、 空気調和装置 3は、 制御装置 4に異常コードを送信する。 異常コ ードは、 設備機器に異常があることを知らせるものであり、 コードの種類によつ て異常の種類を示している。 制御装置 4は、 複数の空気調和装置 3と通信線により接続されており、 それぞ れの空気調和装置 3に対して集中制御を行う。 制御装置 4は、 空気調和装置 3が 配置される物件 2の管理室などに配置される。 また、 制御装置 4は、 空気調和装 置 3からの異常コードを受信する。 制御装置 4は、 通信網 7を介して管理装置 6 に接続されており、 それぞれの空気調和装置 3の運転データ及び異常コードを管 理装置 6へと送信する。
この運転データには、 空気調和装置 3が有するセンサ 1 1で検出された状態検 出値、 空気調和装置 3で実行された制御内容、 空気調和装置 3の消費電力などが 含まれる。 これらの運転データは、 所定時間毎、 例えば 1分ごとに検出され、 制 御装置 4に蓄積される。
制御装置 4は、 蓄積された運転データ、 空気調和装置 3から随時受信する異常 コードを、 例えば 1時間毎に纏めて管理装置 6へと送信する。 また、 制御装置 4 は 空気調和装置 3の運転データに基づいて、 空気調和装置 3が異常状態か否か、 また異常前兆状態か否かをチェックし、 異常予知コードを出力する。 制御装置 4 は、 運転データ及び異常コードと同様に、 出力した異常予知コードを管理装置 6 へと送信する。
管理装置 6は、 襪数の物件 2に設置されている制御装置 4に接練された複数の 空気調和装置 3の管理を行う装置であリ、 空気調和装置 3が配置された物件 2か ら離れた遠隔監視センタ 5内に配置される。 また、 管理装置 6は、 空気調和装置 3を特定する特徴情報 (例えば、 空気調和装置 3の機種名、 商品名等や、 設置年 数、 設置場所の業種、 設置地域など) を記憶する。 特徴情報は、 空気調和装置 3 が設置された当初に制御装置 4から送信され、 又は管理装置 6のオペレータなど により入力され、 管理装置 6に記憶される。
管理装置 6が行う管理の内容としては、 異常診断、 省エネ自動制御、 報告書自 動作成等がある。
異常診断は、 以下のような管理内容である。 管理装置 6が異常診断を行う場合 には、 制御装置 4から送られる空気調和装置 3の運転データ、 異常コード、 及び 異常予知コードを参照して、 物件 2に設置されるそれぞれの空気調和装置 3が異 常状態や異常前兆状態になっていないか確認する。 なお、 制御装置 4から異常予 知コードが出力されない場合にも、 管理装置 6は、 空気調和装置 3の運転データ に基づいて、 空気調和装置 3が異常前兆状態か否かをチヱックする。 その結果、 管理装置 6は、 空気調和装置 3が異常前兆状態であると判断すると、 異常予知コ ードを出力する。 異常状態や異常前兆状態であると判断した場合、 管理装置 6は、 物件 2の管理者等に通知する。 さらに、 管理装置 6は、 異常コード及び異常予知 コードに基づいて保守及び修理を行うべき箇所 (保守箇所) を抽出した後に、 サ 一ビスセンタ 8の端末 3 1に連絡する。 端末 3 1への連絡内容には、 保守箇所が 含まれている。 この後に、 サービスセンタ 8に所属するサービスエンジニアを、 連絡内容に基づいて空気調和装置 3の出張保守及び出張修理 (点検、 修理など) を行わせるために、 物件 2へと出動させる。
省エネ自動制御は、 所定期間で一定量の消費電力が削減されるように所定期間 に省エネルギー制御を自動的に行うという管理内容である。
報告書自動作成とは、 省エネルギー制御の運用効果などをまとめた報告書を自 動的に作成し定期的に物件 2の所有者や管理者等に送るという管理内容である。 以下では、 管理装置 6の機能のうち、 上記した異常診断に関する説明を主に行 く管理装置の構成 >
図 2に、 管理装置 6が有する構成部分のうちの異常診断に係る部分を示す。
管理装置 6は、 主として、 通信部 2 1、 処理部 2 2、 及び記憶部 2 3を有する。 (通信部)
通信部 2 1は、 通信網 7を介して制御装置 4から送られてくる空気調和装置 3 の運転データ、 異常コード、 及び異常予知コードを受信する。 また、 通信部 2 1 は、 物件 2の空気調和装置 3に対する省エネ自動制御の手順や自動作成された報 告書の内容などを、 制御装置 4へ送信する。 さらに、 通信部 2 1は、 空気調和装 置 3が異常状態や異常前兆状態である場合に、 空気調和装置 3の出張保守及び出 張修理を行うサービスエンジニアを物件 2へ派遣するようサービスセンタ 8の端 末 3 1へ派遣情報を送信すると共に、 異常が発生している 生じるおそれがある との情報を制御装置 4へ送信する。 これにより、 制御装置 4が報知機能を有して いる場合に、 この報知機能を用いて物件 2の利用者に対して空気調和装置 3に異 常がある旨を報知することができるようになる。 なお、 空気調和装置 3の異常状 態及び異常前兆状態における情報送信は、 通信網 7を介する手段に限られず、 例 えば F A Xなどによつて情報伝達を行つてもよい。
(処理部)
処理部 2 2は、 通信部 2 1で受信された空気調和装置 3の運転データを記憶部 2 3に記憶させると共に、 運転データに基づいて空気調和装置 3の異常診断を行 う。 また、 処理部 2 2は、 省エネ自動制御の手順作成や報告書の自動作成等を行 ラ。
処理部 2 2は、 保守箇所情報出力部 2 4を有する。 保守箇所情報出力部 2 4は、 空気調和装置 3に対する異常コード及び異常予知コードを元に、 過去における空 気調和装置 3の保守対応の実績データを記憶する実績データ記憶部 2 5 (記憶部 2 3に含まれる) から空気調和装置 3の異常箇所を複数抽出し、 保守箇所として 出力する。 また、 それぞれの保守箇所に対して、 実績データ記憶部 2 5から抽出 された異常コード及び異常予知コードに対する異常箇所の頻度に基づいて、 確信 度が算出される。 出力された保守箇所は、 それぞれの確信度と併せて、 通信部 2 1を介してサービスセンタ 8の端末 3 1へ送信される。
なお 制御装置 4から異常予知コードが出力されない場合にも、 保守箇所情報 出力部 2 4は、 空気調和装置 3の運転データに基づいて、 空気調和装置 3が異常 前兆状態であるか否かをダブルチェックする。 その結果、 空気調和装置 3が異常 前兆状態であると判断すると、 保守箇所情報出力部 2 4は、 異常予知コードを出 力し、 その後に上記と同様の処理を行う。
(記憶部)
記憶部 2 3は、 空気調和装置 3の特徴情報、 通信部 2 1を介して受信した空気 調和装置 3の運転データ、 異常コード、 及び異常予知コードを記憶する。 また、 記憶部 2 3は、 管理システム 1に必要な管理情報などを記憶する。
さらに記憶部 2 3は、 過去における空気調和装置 3の保守対応の実績データを 記憶する実績データ記憶部 2 5を含む。 実績データは、 過去において空気調和装 置 3の異常コード及ぴ異常予知コ一ドが出力された際に、 空気調和装置 3の実際 の異常箇所が記録されるデータである。 実績データは、 対象となる空気調和装置 3に対してサービスエンジニアの行った出張修理に関する情報 (異常コード又は 異常予知コード、 空気調和装置 3の異常箇所、 空気調和装置 3の特徴情報など) を元にして、 サービスセンタ 8の端末 3 1などで入力される。
実績データ記憶部 2 5は、 異常コードが出力された場合における実績データを 記憶する異常コード実績データ記憶部 2 6、 異常予知コードが出力された場合に おける実績データを記憶する異常予知コード実績データ記憶部 2 7、 及び、 異常 予知コードが出力されたが保守が行われずに放置されたために異常コードがさら に出力された場合における異常予知コードと異常コードとの対応関係を記憶する コード対応データ記憶部 2 8から構成される。
異常コード実績データ記憶部 2 6は、 過去において空気調和装置 3の異常コー ドが出力された場合における実際の異常箇所を記録した実績データを記憶する。 異常予知コード実績データ記憶部 2 7は、 過去において空気調和装置 3の異常 予知コードが出力された場合における実際の異常箇所 (異常が生じるおそれがあ る箇所を含む) を記録した実績データを記憶する。
コード対応データ記憶部 2 8は、 過去において空気調和装置 3の異常予知コー ドが出力されたが保守を行わなかったときに出力される異常コードと、 その異常 予知コードとの対応関係、 を記録したデータを記憶する。 なお 宾續データのう ち、 異常予知コードが出力されたが保守されずに放置されたために異常コードが 出力され、 その際に修理を行った場合における実績データは、 異常予知コード実 績データ記憶部 2 7には記録されず、 異常コ—ド実績データ記憶部 2 6に記録さ れる。
<異常診断手順 >
以下では、 管理装置 6による空気調和装置 3の異常診断の手順について、 図 3 (A) および図 3 ( B ) に示される処理部 2 2の保守箇所情報出力部 2 4の行う フローに従って説明する。 なお、 それぞれの異常コード Z異常予知コードによつ て、 実績データ量が十分に蓄積されたと言える数量が異なるため、 以下での数量 は一例とする。 さらに、 異常コード実績データ記憶部 2 6及び異常予知コード実 績データ記憶部 2 7に記憶され抽出される実績データ量が不十分な場合、 処理部 2 2は、 従来から用いられている経験則による異常診断をさらに併用する。 また、 異常診断の手法が選択可能であってもよい。
まず、 ステップ S 1では、 異常コード又は異常予知コードを通信部 2 1が受信 する。 なお、 保守箇所情報出力部 2 4が空気調和装置 3の運転データに基づいて 異常予知コードを出力する場合も、 ステップ S 1に含む。
続いて、 ステップ S 2では、 受信したコードが異常コードであるか異常予知コ ードであるか判別する。 異常コードである場合にはステップ S 3へ移行し、 異常 予知コードである場合にはステップ S 5へ移行する。
ステップ S 3では、 ステップ S 1で受信した異常コードに対応するデータを異 常コード実績データ記憶部 2 6から抽出する。 なお、 抽出データは、 異常コード 実績データ記憶部 2 6に記憶される実績データのうち、 ステップ S 1で受信され た異常コードが出力された空気調和装置 3の特徴情報に関連する実績データに限 定して抽出を行う。 抽出を終えた後に、 ステップ S 4へ移行する。
ステップ S 4では、 ステップ S 3で抽出されたデータの異常箇所を導出すると 共に、 それぞれの異常箇所の確信度を算出する。 ここにおける確信度は、 異常コ ードに対応する各異常箇所の発生頻度を表す。 異常箇所の確信度は、 抽出したデ ータのうちそれぞれの異常箇所での異常回数を抽出したデータの全数で除算する ことにより算出する。 磋信度の算出を終えると、 ステップ S 1 6へ移行する。
図 4 ( A) では、 異常コード 1において抽出した異常箇所、 及び各異常箇所に おける確信度を示す。 異常コード 1において抽出したデータの全数が 5 0であり、 電動弁での異常回数が 2 0であるため、 ステップ S 4では、 異常コード 1におい て電動弁が異常箇所である確信度として、 2 0 / 5 0 = 0. 4が算出される。
ステップ S 5では、 ステップ S 1で受信した異常予知コードに対応するデータ を異常予知コード実績データ記憶部 2 7から抽出し、 データの異常箇所を抽出す ると共に、 それぞれの異常箇所の予知確信度を算出する。 ここにおける予知確信 度は、 異常予知コードに対応する各異常箇所の発生頻度を表す。 なお、 抽出され るデータの対象は、 異常予知コード実績データ記憶部 2 7に記憶される実績デー タのうち、 ステップ S 1で受信された異常コードが出力された空気調和装置 3の 特徴情報に関連する実績データに限定する。 抽出を終えた後に、 ステップ S 6へ 移行する。 ステップ S 5において、 異常箇所の予知確信度は、 抽出データのうちそれぞれ の異常箇所での異常回数を抽出データの全数で除算することにより算出する。 図 4 ( B ) に、 異常予知コード Aにおける抽出したデータを示す。 抽出したデータ 数の数量が異なる 3種類の例を示す。 図 4 ( B ) の Iは抽出したデータが少ない 場合、 Πはデータが程々にある場合、 IEはデータが十分ある場合である。
ステップ S 6では、 ステップ S 5で抽出したデータの数量が十分であるか否か を判断する。 なお、 上記したように、 異常予知コードによって、 データの数量が 十分であると言える数量は異なっている。 図 4 ( B ) の IEでは、 抽出したデータ の数量が 1 0 0である場合を十分であるとしている。 数量が十分である場合には、 ステップ S 7へ移行する。 不十分な場合には、 ステップ S 8へ移行する。
ステップ S 7では、 ステップ S 5で算出した異常箇所の予知確信度を、 確信度 とする。 抽出したデータの数量が十分である図 4 ( B ) の! [の例を示す。 ここで は、 異常予知コード Aにおける抽出したデータの全数が 1 0 0であり、 圧縮機で の異常回数が 6 0であることから、 異常予知コード Aにおける圧縮機の確信度と して、 6 0 / 1 0 0 = 0 . 6が算出される。 ステップ S 7の後に、 ステップ S 1 6へ移行する。
ステップ S 8では、 コード対応データ記憶部 2 8から異常予知コ一ドに対応す る異常コードを抽出する。 なお、 1個の異常予知コードに対して複数の異常コー ドが存在する場合もある。 図 4 ( C ) では、 異常予知コード Aに対して異常コー ド 1 と異常コード 2とが対応する例を示す。 ステップ S 8での抽出を終えた後に、 ステップ S 9へ移行する。
ステップ S 9では、 異常予知コードに対応するとして抽出した異常コードが複 数あるか否か、 複数ある場合にはそれぞれの異常コードに対する重み付けがある か否かを判断する。 重み付けがある場合には、 ステップ S 1 0へ移行する。 重み 付けがない場合には、 ステップ S 1 1へ移行する。 また、 異常予知コードに対応 する異常コードが 1個である (異常予知コードと異常コードとが 1対 1対応して いる) 場合には、 ステップ S 1 2へ移行する。
ステップ S 1 0では、 異常予知コードに対応するとして抽出した異常コードに 対応するデータを、 異常コード実績データ記憶部 2 6から抽出する。 そして、 異 常箇所を抽出すると共に、 それぞれの異常箇所の異常確信度を算出する。 この後 に、 ステップ S 1 3へ移行する。
ステップ S 1 0で算出する異常確信度は、 各異常箇所の発生頻度を表す。 ステ ップ S 1 0では、 異常コード実績データ記憶部 26に記憶される実績データのう ち、 異常予知コードが出力された空気調和装置 3の特徴情報に関連する実績デー タに限定して、 データの抽出を行う。
ステップ S 1 0では、 異常箇所の異常確信度を、 抽出したデータのそれぞれの 異常箇所の頻度を重み付け平均することにより算出する。 異常予知コード Aに対 応ずる異常コードとして異常コ一ド 1と異常コード 2とが対応しており、 異常コ ード 1 と異常コード 2との重み付けが 1 : 2となっている場合の例を、 図 4 (D) に示す。 例えば、 電動弁の異常確信度を算出する。 異常コード 1における 電動弁の異常発生頻度は 20/50 (=0. 4) であり、 異常コード 2における 電動弁の異常発生頻度は 2/1 0 (=0. 2) である。 重み付け平均することに より、 電動弁の異常確信度は、
異常確信度 =1 / (1 +2) X [1 X (20/50) + 2 x (2/1 0) ]
=1 /3x40/50
=40/1 50
=0. 267
と算出される。 電磁弁や圧縮機などにおける異常確信度も、 同様に算出される。 ステップ S I 1では、 異常予知コードに対応するとして抽出した異常コードに 対応するデータを、 異常コード実績データ記憶部 26から抽出する。 そして、 異 常箇所を抽出すると共に、 それぞれの異常箇所の異常確信度を算出する。 この後 に、 ステップ S 1 3へ移行する。
このステップ S 1 1において、 異常コード実績データ記憶部 26に記憶される 実績データのうち、 異常予知コ一ドが出力された空気調和装置 3の特徴情報に関 連する実績データに限定して、 データの抽出を行う。
また、 ステップ S 1 1において、 異常箇所の異常確信度の算出は、 抽出したデ ータの異常箇所のそれぞれにおける異常の回数の総計値を、 異常コ一ドの抽出し たデータの全数で除算することにより行う。 異常予知コード Aに対応する異常コ ードとして異常コード 1と異常コード 2とが対応しており、 異常コード 1 < コード 2との重み付けが無い場合の例を、 図 4 ( E ) に示す。 例えば、 電動弁の 異常確信度を算出する。 異常コード 1において電動弁に生じた異常の回数は 2 0 であり、 異常コード 2において電動弁に生じた異常の回数は 2であることから、 異常予知コード Aにおいて電動弁に生じた異常の回数の総計値は、 2 0 + 2 = 2 2となる。 また、 異常コードの抽出データの全数は、 5 0 + 1 0 = 6 0となる。 これから、 電動弁の異常確信度は
異常確信度 = 2 2 6 0
= 0. 3 6 7
と算出される。 電磁弁や圧縮機などにおける異常確信度も、 同様に算出される。 ステップ S 1 2では、 異常予知コードに 1対 1対応する異常コードに対応する データを異常コード実績データ記憶部 2 6から抽出する。 そして、 異常箇所を抽 出すると共に、 それぞれの異常箇所の異常確信度を算出する。 この後に、 ステツ プ S 1 3へ移行する。
ステップ S 1 2において、 異常コード実績データ記憶部 2 6に記憶される実績 データのうち、 異常予知コードに 1対 1対応する異常コ一ドが出力された空気調 和装置 3の特徵情報に鬨違する宾續データに限定して、 データの抽出を行う。
また、 ステップ S 1 2において、 異常箇所の異常確信度は、 抽出したデータの うちそれぞれの異常箇所での異常回数を抽出したデータの全数で除算することに より算出する。 異常予知コード Aに異常コード 1が 1対 1対応する場合を、 図 4 ( C ) の Iに示す。 ここでは、 電動弁の異常確信度が、 2 0 / 5 0 (= 0 . 4 ) となる。 電磁弁や熱交 (熱交換器の略称) などの異常確信度も、 同様に算出され る。
ステップ S 1 3では、 異常予知コードに対応するデータ (ステップ S 5で抽 出) の数量が少ないか程々であるかを判断する。 なお、 異常予知コードによって、 データの数量の判断基準は異なっている。 図 4 ( B ) では、 抽出したデータの数 量が 5 0である場合を程々であると判断し、 抽出したデータの数量が 2 0である 場合を少ないと判断している。 データの数量が程々である場合には、 ステップ S 1 4へ移行する。 データの数量が少ない場合には、 ステップ S 1 5に移行する。 ステップ S 1 4では、 ステップ S 5で算出された異常箇所の予知確信度と、 ス テツプ S 1 0~1 2のいずれかで算出された異常箇所の異常確信度とから、 それ ぞれの異常箇所における確信度を算出する。 確信度を算出した後に、 ステップ S 1 6へ移行する。
ステップ S 1 4において、 異常箇所の確信度の算出は、 異常箇所の予知確信度 と異常確信度とを、 異常予知コード及び異常コードによる貢献度に基づいて、 重 み付け平均することにより行われる。 電動弁に対する確信度について、 図 4 (F) を例として説明する。 図 4 (F) では、 異常予知コードと異常コードとの 貢献度が 2 : 1 となる場合を示す。 異常予知コードにおける電動弁の予知確信度 が 20/50 (図 4 (B) の Π参照) であり、 ステップ S 1 0で算出された異常 コードにおける電動弁の異常確信度が 40/1 50 (図 4 (D) 参照) であるた め、 電動弁の確信度は、 重み付け平均により、
確信度 =1 / (2 + 1 ) X [2X (20/50) +1 X (40/1 50) ] = 1 /3 X (1 20 + 40) /1 50
=1 60/450
=0. 356
と算出される。 圧縮機や熱交などの確信度も、 同様に算出される。
ステップ S 1 5では、 ステップ S 5で算出された異常箇所の予知確信度と、 ス テツプ S 1 0〜S 1 2のいずれかで算出された異常箇所の異常確信度とから、 そ れぞれの異常箇所における確信度を算出する。 確信度を算出した後に、 ステップ S 1 6へ移行する。
ステップ S 1 5において、 異常箇所の確信度の算出は、 異常箇所において生じ た異常の回数の総計値を、 異常箇所の予知確信度と異常確信度とにおけるデータ の全数で除算することにより行われる。 電動弁に対する確信度について、 図 4 (G) を例として説明する。 異常予知コードにおける電動弁の予知確信度が 6Z 20 (図 4 (B) の I参照) であり、 ステップ S 1 0で算出された異常コードに おける電動弁の異常確信度が 40 1 50 (図 4 (D) 参照) であることから、 電動弁に生じた異常の回数は 6 + 40 = 46であり、 異常予知コード及び異常コ ードのデータの全数は 20 + 1 50=1 70となる。 これから、 電動弁の確信度 は、
確信度 =46/1 70
=0. 271
と算出される。 圧縮機や熱交などの確信度も、 同様に算出される。
ステップ S 1 6では、 ステップ S 3或いはステップ S 5及び S 8で抽出された 異常箇所、 並びに異常箇所に対応してステップ S 4、 S7、 S 1 4又は S 1 5で 算出された確信度を、 確信度が大きい順番に出力して、 通信部 21からサービス センタ 8の端末 31へ送信する。 この際に、 異常箇所を保守箇所として取り扱う。 以上の手順により送信された保守箇所及び確信度は、 サービスセンタ 8の端末 31において、 例えば図 5 (A) および図 5 (B) に示されるように表示される。 図 5 (A) は画面の上半分を拡大した図であり、 図 5 (B) は画面の下半分を拡 大した図である。 図 5 (A) および図 5 (B) に示す画面では、 異常コード EO が出力された空気調和装置 3 (機種名:コンビニパック ZEAS— AG、 運転時 間: 1 8765時間、 業種:他店舗■飲食店) の保守箇所が、 確信度の大きい順 に並べて出力情報に出力される。 この際に 「絞込情報」 の運転時間にチェックが 付けられていることにより、 過去 1年の実績データから、 商品情報が 「ビル用マ ルチ J であり且つ運転時間が 1 8765時間近傍である実績データに絞り込んだ 上で、 出力がなされる。 この出力情報などに基づいて、 サービスセンタ 8に所属 するサービスエンジニアが、 空気調和装置 3の出張修理を行うために物件 2へと 出動する。
<特徴 >
(1 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 空 気調和装置 3の異常状態において異常コードが出力された際に、 管理装置 6の処 理部 22の保守箇所情報出力部 24が、 実績データ記憶部 25の異常コード実績 データ記憶部 26から異常コードに対応する異常箇所を抽出して空気調和装置 3 の保守箇所として出力する。
保守箇所情報出力部 24は、 異常コード実績データ記憶部 26に記憶される実 績データに基づいて、 異常コードから保守箇所を導き出すことができる。 実績デ ータには、 過去において異常コードが出力された際における空気調和装置 3の実 際の異常箇所が記録されている。 これにより、 過去において異常コードが出力さ れた際の実績に基づいて、 今回異常コードが出力された原因となる空気調和装置 3の異常箇所を推測して保守箇所として出力することができる。 よって、 出力さ れた保守箇所を保守することにより、 空気調和装置 3の保守を迅速且つ的確に行 うことが可能となる。
( 2 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 空 気調和装置 3の異常前兆状態において異常予知コードが出力された際に、 保守箇 所情報出力部 2 4が、 実績データ記憶部 2 5の異常予知コード実績データ記憶部 2 7から異常予知コードに対応する異常箇所を抽出して空気調和装置 3の保守箇 所として出力する。
保守箇所情報出力部 2 4は、 異常予知コード実績データ記憶部 2 7に記憶され る実績データに基づいて、 異常予知コードから保守箇所を導き出すことができる。 実績データ記憶部 2 5には、 異常コードと同様に、 過去において異常予知コード が出力された際における空気調和装置 3の実際の異常箇所 (異常が生じるおそれ がある箇所を含む) が記録されている。 これにより、 過去において異常予知コー ドが出力された際の実績に基づいて、 今回異常予知コードが出力された原因とな る空気調和装置 3の異常箇所を推測して保守箇所として出力することができる。
( 3 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 空 気調和装置 3の異常前兆状態において異常予知コードが出力された際に、 保守箇 所情報出力部 2 4が、 実績データ記憶部 2 5のコード対応データ記憶部 2 8に基 づいて、 異常予知コードが出力された際に修理されずに放置されると出力される と推測される異常コードを抽出する。 そして、 保守箇所情報出力部 2 4は、 抽出 された異常コードに対応する異常箇所を、 実績データ記憶部 2 5の異常コード実 績データ記憶部 2 6から抽出して空気調和装置 3の保守箇所として出力する。
異常予知コード実績データ記憶部 2 7には、 異常予知された際に保守が行われ た場合に判明した異常箇所に関するデータのみが記憶されている。 そこで、 保守箇所情報出力部 2 4は、 異常予知コード実績データ記憶部 2 7か ら異常予知コードに対応する異常箇所を抽出して空気調和装置 3の保守箇所とし て出力すると共に、 コード対応データ記憶部 2 8に基づいて、 異常予知コードに 対応する異常コードを抽出し、 抽出された異常コードに対応する異常箇所を異常 コード実績データ記憶部 2 6から抽出し、 保守箇所として出力する。 これにより、 さらに多量の実績データに基づいて保守箇所を出力することが可能となる。 この 出力された保守箇所を保守することにより、 空気調和装置 3の保守を迅速且つ的 確に行うことが可能となる。
( 4 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 保 守箇所情報出力部 2 4は、 確信度の大小順に並べて保守箇所及び確信度を出力す る。 確信度は、 実績データ記憶部 2 5から抽出された異常コード及び異常予知コ 一ドに対する異常箇所の頻度に基づいて算出される。 この確信度が大きい保守箇 所は、 過去の実績から、 空気調和装置 3から今回出力された異常コード及び異常 予知コードに対して優先的に保守及び修理を行うべき (確認すべき) 箇所である と考えられる。 よって、 確信度に従って保守及び修理を行うことにより、 効率的 に保守することが可能となる。
( 5 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 保 守箇所情報出力部 2 4は、 空気調和装置 3の特徴情報に基づいて、 実績データ記 憶部 2 5の抽出の対象を限定する。 特徴情報には、 例えば空気調和装置 3の機種 名、 商品名等や、 設置年数、 設置場所の業種、 設置地域などの情報が含まれる。 実績データ記憶部 2 5に含まれる実績データから、 特徴情報により限定を行うこ とにより、 過去の実績データから今回の異常コ一ド及び異常予知コ一ドが出力さ れた空気調和装置 3により類似した実績データを対象として保守箇所を抽出する ことが可能となる。 すなわち、 保守箇所情報出力部 2 4は、 空気調和装置 3の機 種、 経年変化による傾向変化、 設置地域や業種による使用状況に応じた変化傾向 などの情報を考慮して、 それぞれの空気調和装置 3に適した保守箇所を抽出する ことが可能となる。 よって、 特徴情報による限定を行うことにより、 さらに適切 な保守及び修理を行うことが可能となる。
<他の実施例 >
( 1 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 管 理装置 6の処理部 2 2の保守箇所情報出力部 2 4が、 実績データ記憶部 2 5の実 績データを元にして異常コード又は異常予知コードから保守箇所及び確信度を確 信度の大小順に出力し、 サービスセンタ 8の端末 3 1が例えば図 5 ( A ) , ( B ) のように表示する。
ここで、 保守箇所情報出力部 2 4がさらに保守箇所の対応に必要な物品を出力 するようにすれば、 サービスセンタ 8のサービスエンジニアが出張保守及び出張 修理をより適切且つ容易に行うことが可能となる。 また、 サービスセンタ 8のサ 一ビスエンジニアが必要な物品を予め持参して物件 2の保守及び修理に向かうこ とになるため、 異常箇所の確認を行うと同時に保守及び修理を行うことが可能と なる。 これにより、 物件 2へのサービスエンジニアの出張回数を少なくすること ができるため、 空気調和装置 3の保守及び修理を迅速に行うことが可能となリ、 空気調和装置 3の異常状態及び異常前兆状態の期間を短くすることが可能となる c ( 2 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 空 気調和装置 3の異常コード又は異常予知コードが出力されると、 管理装置 6の処 理部 2 2の保守箇所情報出力部 2 4が、 特徴情報によリ実績データ記憶部 2 5の 実績データの限定を行い、 限定された実績データに基づいて異常コード及び異常 予知コードに対応する異常箇所を抽出して保守箇所としてサービスセンタ 8の端 末 3 1などへ出力する。
ここで、 さらに次のようにしてもよい。 サービスセンタ 8の端末 3 1で保守箇 所及び確信度が表示 (出力) されている際に、 機種や業種などの特徴情報が選択 入力されて、 通信網 7を介して管理装置 6の通信部 2 1に入力されることにより、 保守箇所情報出力部 2 4が実績データ記憶部 2 5の実績データの限定を再度行う c そして、 保守箇所情報出力部 2 4が、 限定された実績データに基づいて異常コー ド及ぴ異常予知コードに対応する異常箇所を抽出して、 保守箇所としてサービス センタ 8の端末 3 1などへ出力する。
このようにすれば、 例えば管理装置 6が特徴情報 (例えば設置年数) を記憶し ておらず、 サービスセンタ 8で空気調和装置 3の特徴情報を把握している場合に、 特徴情報による実績データの限定を行うことが可能となる。 また、 特徴情報をよ リ適切な情報に変更する方がよい場合に、 端末 3 1にて修正することが可能とな る。 これらにより、 保守箇所及び確信度をより適切に出力させることが可能とな る。
なお、 入力された特徴情報を満足する実績データが少ない場合には、 入力され た特徴情報に対応する限定範囲を緩めて実績データの数量を確保するようにして もよい。 例えば、 図 5 ( A ) , ( B ) に示された場合では、 空気調和装置 3の運 転時間が 1 8 7 6 5時間となっている。 通常であれば、 運転時間が 1 8 7 6 5時 間近傍である特徴情報を有する空気調和装置 3の実績データに基づく結果を、 出 力情報に出力する。 しかし、 これに適合する実績データが少ない場合には、 運転 時間を、 例えば 1 5 0 0 0〜2 0 0 0 0時間に広げることが考えられる。
また、 他の例として、 所在地が青森県である空気調和装置 3を対象とするとき に、 青森県が所在地である実績データが少ない場合がありうる。 このような場合 には、 所在地が例えば東北地方である空気調和装置 3の実績データに範囲を広げ る。 また、 青森県と気候的に類似する地域 (例えば、 北海道南部、 青森県、 秋田 県、 及び岩手県) の空気調和装置 3の実績データに範囲を広げることも考えられ る。
このように限定範囲の変更を行うことにより、 実績データを十分な数量に確保 することができる。
( 3 )
本発明の保守情報提供システムに係る空気調和装置の管理システム 1では、 空 気調和装置 3の特徴情報として設置年数が含まれており、 この設置年数によリ経 年変化による傾向変化などを把握する。
ここで、 空気調和装置 3が運転データに運転時間を含めることができる場合に は、 特徴情報として設置年数の代わりに運転時間を用いて実績データ記憶部 2 5 の抽出の対象を限定してもよい。 設置年数では空気調和装置 3の設置後の非運転 時間を考慮できないが、 運転時間に基づく場合には経年変化が生じる期間をより 適切に考慮することができる。 これにより、 さらに実績データの限定をより適切 にすることができる。
(産業上の利用可能性)
本発明に係る保守情報提供システムを利用すれば、 設備機器の異常予知データ から異常箇所を抽出するため、 設備機器に対して出張保守を行う際の情報とする ことが可能となり、 設備機器の維持をさらに適切に行うことができるようになる

Claims

請 求 の 範 囲
1.
設備機器 (3) の異常データ又は異常予知データに基づいて前記設備機器 (3) の保守情報を提供する保守情報提供システム (1 ) であって、
前記異常データ及び異常予知データに基づく記憶データを記憶する記憶部 (2 6、 27) と、
前記異常予知データに対応する前記異常データを記憶する対応データ記憶部 (28) と、
前記記憶部 (26、 27) の前記記憶データに基づいて前記異常予知データに 対応する前記設備機器 (3) の異常箇所を抽出すると共に、 前記対応データ記憶 部 (28) から前記異常予知データに対応する前記異常データを抽出して前記異 常データに対応する前記設備機器 (3) の異常箇所を抽出する異常箇所抽出部 (24) と、
を備える保守情報提供システム (1 ) 。
2.
前記記憶部は、 過去における前記異常データと前記設備機器 (3) の異常箇所 との対応付けを記憶する異常データ実績記憶部 (26) と、 過去における前記異 常予知データと前記設備機器 (3) の異常箇所との対応付けを記憶する異常予知 データ実績記憶部 (27) とを有する、
請求項 1に記載の保守情報提供システム (1 ) 。
3.
前記異常箇所抽出部 (24) は、 前記異常データ実績記憶部 (26) から前記 異常データに対応する前記設備機器 (3) の異常箇所を抽出可能である、 請求項 1または 2に記載の保守情報提供システム (1 ) 。
4.
前記異常箇所抽出部は、 抽出した前記異常箇所を保守箇所としてさらに出力可 能である、
請求項 1から 3のいずれかに記載の保守情報提供システム (1 ) 。
5.
前記異常箇所抽出部 (24) は、 前記設備機器 (3) の保守に要する物品につ いて出力可能である、
請求項 1から 4のいずれかに記載の保守情報提供システム (1 )。
6.
前記異常箇所は、 前記異常箇所抽出部 (24) において複数抽出され、 前記異常予知データ実績記憶部 (27) 及び前記異常データ実績記憶部 (2
6) から抽出されたそれぞれの前記異常箇所の頻度を確信度として算出する確信 度算出部 (24) をさらに備え、
前記異常箇所抽出部 (24) は、 前記異常箇所及び前記確信度を、 前記確信度 の大小に従って出力する、
請求項 1から 5のいずれかに記載の保守情報提供システム (1) 。 前記異常データ、 前記異常予知データ、 及び前記設備機器 (3) の特徴である 特徴情報の入力を受け付ける入力受付部 (21) をさらに備え、
前記特徴情報は、 前記設備機器 (3) の機種番号又はこれに類する情報を含み、 前記異常箇所抽出部 (24) は 前記特徴情報に適合する前記設備機器 (3) に限定して、 前記記憶部 (26、 27) から前記設備機器 (3) の異常箇所を抽 出 、
請求項 1から 6のいずれかに記載の保守情報提供システム (1) 。
8.
前記特徴情報は、 前記設備機器 (3) の設置年数又はこれらに類する情報を含 む、
請求項 7に記載の保守情報提供システム (1)。
9.
前記特徴情報は、 前記設備機器 (3) の設置場所の業種、 地域又はこれらに類 する情報を含む、
請求項 7または 8に記載の保守情報提供システム (1) 。
PCT/JP2004/002580 2003-03-03 2004-03-02 保守情報提供システム WO2004079615A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2004217110A AU2004217110B2 (en) 2003-03-03 2004-03-02 Maintenance-information providing system
EP04716359A EP1600870A4 (en) 2003-03-03 2004-03-02 SYSTEM PRODUCING MAINTENANCE INFORMATION
US10/547,380 US7599816B2 (en) 2003-03-03 2004-03-02 Maintenance-information providing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-055097 2003-03-03
JP2003055097A JP3731125B2 (ja) 2003-03-03 2003-03-03 保守情報提供システム

Publications (1)

Publication Number Publication Date
WO2004079615A1 true WO2004079615A1 (ja) 2004-09-16

Family

ID=32958652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002580 WO2004079615A1 (ja) 2003-03-03 2004-03-02 保守情報提供システム

Country Status (7)

Country Link
US (1) US7599816B2 (ja)
EP (1) EP1600870A4 (ja)
JP (1) JP3731125B2 (ja)
KR (1) KR100697521B1 (ja)
CN (1) CN100451896C (ja)
AU (1) AU2004217110B2 (ja)
WO (1) WO2004079615A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445300B2 (ja) * 2004-03-18 2010-04-07 富士通株式会社 ネットワーク障害推定方法及びネットワーク障害推定装置
US8422377B2 (en) * 2004-12-17 2013-04-16 General Electric Company Remote monitoring and diagnostics system with automated problem notification
US20060149837A1 (en) * 2004-12-17 2006-07-06 General Electric Company Remote monitoring and diagnostics service prioritization method and system
US7734764B2 (en) * 2004-12-17 2010-06-08 General Electric Company Automated remote monitoring and diagnostics service method and system
JP4697179B2 (ja) * 2006-05-25 2011-06-08 ダイキン工業株式会社 空調監視支援装置および空調監視支援システム
JP5233470B2 (ja) * 2008-07-23 2013-07-10 ダイキン工業株式会社 群管理装置および群管理システム
US8140914B2 (en) * 2009-06-15 2012-03-20 Microsoft Corporation Failure-model-driven repair and backup
US10078865B2 (en) * 2014-09-08 2018-09-18 Leeo, Inc. Sensor-data sub-contracting during environmental monitoring
US10805775B2 (en) 2015-11-06 2020-10-13 Jon Castor Electronic-device detection and activity association
JP2018181051A (ja) * 2017-04-17 2018-11-15 株式会社スタディスト ユーザに作業指示を与えることに関連するサービスを提供するためのサーバ装置、そのサーバ装置において実行される方法およびプログラム
JP6897701B2 (ja) 2019-03-19 2021-07-07 ダイキン工業株式会社 保守作業支援装置、保守作業支援方法及び保守作業支援プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282944A (ja) * 2000-03-31 2001-10-12 Fujitsu General Ltd インターネット利用のサービス支援システム
JP2001331350A (ja) * 2000-05-19 2001-11-30 Mitsubishi Electric Corp 保守管理装置
JP2002283190A (ja) * 2001-03-21 2002-10-03 Mori Seiki Co Ltd 工作機械の保守管理システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910017313A (ko) * 1990-03-19 1991-11-05 미다 가쓰시게 통합품질관리방법 및 시스템
US5210704A (en) * 1990-10-02 1993-05-11 Technology International Incorporated System for prognosis and diagnostics of failure and wearout monitoring and for prediction of life expectancy of helicopter gearboxes and other rotating equipment
FR2684472A1 (fr) 1991-11-29 1993-06-04 Cit Alcatel Systeme expert supportant les contraintes du temps reel.
JPH06294668A (ja) 1993-04-12 1994-10-21 Mitsubishi Electric Corp 故障診断装置
US5808903A (en) * 1995-09-12 1998-09-15 Entek Scientific Corporation Portable, self-contained data collection systems and methods
US5566092A (en) * 1993-12-30 1996-10-15 Caterpillar Inc. Machine fault diagnostics system and method
US5596507A (en) * 1994-08-15 1997-01-21 Jones; Jeffrey K. Method and apparatus for predictive maintenance of HVACR systems
JP3343243B2 (ja) * 1995-07-31 2002-11-11 有限会社三輪サイエンス研究所 還流式又は吸引式掃除機
EP0894304B2 (de) 1996-04-19 2008-03-26 Daimler AG Verfahren zur automatischen diagnose technischer systeme unter berücksichtigung eines effizienten wissenserwerbs und einer effizienten bearbeitung zur laufzeit
CN1169032C (zh) * 1996-11-29 2004-09-29 松下电工株式会社 建筑物自动监控系统
DE69921169T2 (de) * 1998-10-20 2006-03-02 Dugan, Andrew, Colorado Springs Intelligentes netz
US6336065B1 (en) * 1999-10-28 2002-01-01 General Electric Company Method and system for analyzing fault and snapshot operational parameter data for diagnostics of machine malfunctions
JP3521843B2 (ja) * 2000-04-20 2004-04-26 ダイキン工業株式会社 空気調和装置の監視システム
US7065570B2 (en) * 2000-07-11 2006-06-20 Komatsu Ltd. System, method, computer program, and recording medium for machine-management
JP2002092208A (ja) * 2000-09-13 2002-03-29 Miura Co Ltd 熱供給設備の保守管理システム
US6907416B2 (en) * 2001-06-04 2005-06-14 Honeywell International Inc. Adaptive knowledge management system for vehicle trend monitoring, health management and preventive maintenance
JP2003108219A (ja) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp 保全情報管理サーバ、これを用いた保全情報管理システム及び保全情報管理方法
US7516025B1 (en) * 2004-06-29 2009-04-07 Sun Microsystems, Inc. System and method for providing a data structure representative of a fault tree

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282944A (ja) * 2000-03-31 2001-10-12 Fujitsu General Ltd インターネット利用のサービス支援システム
JP2001331350A (ja) * 2000-05-19 2001-11-30 Mitsubishi Electric Corp 保守管理装置
JP2002283190A (ja) * 2001-03-21 2002-10-03 Mori Seiki Co Ltd 工作機械の保守管理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1600870A4 *

Also Published As

Publication number Publication date
KR20050107589A (ko) 2005-11-14
AU2004217110A1 (en) 2004-09-16
JP2004265159A (ja) 2004-09-24
JP3731125B2 (ja) 2006-01-05
KR100697521B1 (ko) 2007-03-20
US7599816B2 (en) 2009-10-06
CN1757004A (zh) 2006-04-05
AU2004217110B2 (en) 2008-01-10
EP1600870A4 (en) 2008-09-10
EP1600870A1 (en) 2005-11-30
US20060259832A1 (en) 2006-11-16
CN100451896C (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
US7295896B2 (en) Automated part procurement and service dispatch
US7876231B2 (en) Integrated management system for multi-air conditioner and integrated management method thereof
EP3348925A1 (en) Air-conditioner system and control method
JP4337923B2 (ja) 機器監視装置および遠隔監視システム
EP3358267B1 (en) Air-conditioner system and control method
JP4518208B2 (ja) 空気調和装置の遠隔管理システムおよび遠隔管理方法
JP4550975B2 (ja) 設備機器遠隔監視診断システム
JP2009002651A (ja) 異常診断システム
WO2004079615A1 (ja) 保守情報提供システム
JP6097210B2 (ja) 設備保全支援装置および支援方法
JP2012242982A (ja) プラントの機器維持管理システム
JP4281334B2 (ja) 異常診断システム
JP4052051B2 (ja) 故障診断システム及び診断サーバ
JP5109919B2 (ja) 空調機システム
US20200309400A1 (en) Hvac monitoring method and apparatus
JP4550253B2 (ja) 空調機の遠隔監視システム、および室内機の監視方法
JP2009002650A (ja) 異常診断システム
CN114787562A (zh) 空调装置的异常预兆推测装置、空调装置的异常预兆推测模型学习装置以及空调装置
JP2002132995A (ja) 通信施設の管理システム
JP4530095B2 (ja) 群管理装置
JP7485965B2 (ja) 空気調和機の残価算出システム
KR20180112585A (ko) 공기조화기 시스템 및 그 제어방법
JP2008271474A (ja) 遠隔管理装置
JP2007064499A (ja) 冷凍空調機システム
JP3025819B2 (ja) 故障診断システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057015695

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006259832

Country of ref document: US

Ref document number: 10547380

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004716359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048057818

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004217110

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004217110

Country of ref document: AU

Date of ref document: 20040302

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004217110

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057015695

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004716359

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547380

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004217110

Country of ref document: AU

Date of ref document: 20040302

Kind code of ref document: B