WO2004076032A1 - 乾式同時脱硫脱硝装置 - Google Patents

乾式同時脱硫脱硝装置 Download PDF

Info

Publication number
WO2004076032A1
WO2004076032A1 PCT/JP2003/017025 JP0317025W WO2004076032A1 WO 2004076032 A1 WO2004076032 A1 WO 2004076032A1 JP 0317025 W JP0317025 W JP 0317025W WO 2004076032 A1 WO2004076032 A1 WO 2004076032A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
dry
exhaust gas
desulfurization
denitration
Prior art date
Application number
PCT/JP2003/017025
Other languages
English (en)
French (fr)
Inventor
Masayoshi Sadakata
Mitsuo Koshi
Masateru Nishioka
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP03786375.0A priority Critical patent/EP1600203B1/en
Priority to US10/547,085 priority patent/US7455819B2/en
Publication of WO2004076032A1 publication Critical patent/WO2004076032A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides

Definitions

  • the present invention relates to a dry simultaneous desulfurization and denitration apparatus for removing air pollutants such as nitrogen compounds and sulfur compounds contained in exhaust gas and performing a chain reaction with ⁇ H radicals to simultaneously oxidize nitrogen monoxide and sulfur dioxide.
  • Fossil fuels such as coal
  • Sulfur dioxide contained in exhaust gas is removed by a wet method using a normal scrubber that absorbs and removes sulfur dioxide by contacting the spray of the absorbing solution with the exhaust gas (see, for example, Japanese Patent Application Laid-Open No. H10-202004). No. 9).
  • a dry exhaust gas treatment method in which sulfur dioxide in exhaust gas is passed through a pulsed corona discharge region, oxidized into sulfur dioxide, and adsorbed and removed by fine powder such as oxidizing power of an additive (for example, Japanese Patent No. Kaihei 5—2 283 330 Reference).
  • a technique of converting sulfur dioxide gas to sulfur trioxide gas with vanadium pentoxide as an oxidation catalyst is also known in Japanese Patent Application Laid-Open No. 2001-11041.
  • the wet exhaust gas treatment method requires large capital investment and a large amount of water, so the equipment itself becomes large and it is not easy to use it in places where water resources are scarce.
  • the cost is high because additives and oxidation catalysts are used. Disclosure of the invention
  • the present invention solves such a problem, and can perform dry exhaust gas treatment without using a catalyst or the like, and can efficiently oxidize nitrogen monoxide and sulfur dioxide by performing a chain reaction with 0-radicals.
  • Provide low cost and simultaneous dry desulfurization and denitration equipment The purpose is to:
  • the dry simultaneous desulfurization and denitration apparatus of the present invention is a dry exhaust gas treatment apparatus for treating high-temperature exhaust gas, which is provided with a reactor and a H radical supply device.
  • the present invention is characterized in that either an H radical or a 0 H radical generator is supplied, and either or both of a sulfur compound and a nitrogen compound in the exhaust gas are subjected to exhaust gas treatment by acidification at the same time.
  • the reactor includes an inner tube and an outer tube coaxially with a gap, and a radical supply port for supplying either a H radical or a 0 H radical generator to the inner tube.
  • a plurality of radical supply ports may be provided at predetermined intervals in the inner pipe so that multistage blowing can be performed.
  • the reactor preferably has an injector for supplying the ⁇ H radical and the ⁇ H radical generator. It is advantageous if a plurality of the indicators are provided so as to have different lengths so that multi-stage blowing can be performed.
  • the reaction device may have one or both of a shower pipe and a spray nozzle for supplying either the H radical or the O H radical generator.
  • the reactor may be either vertical or horizontal.
  • the 0 H radical supply device has a radial force generation source and a gas supply system.
  • the ⁇ H radical generator is preferably nitric acid. O H radicals are generated by the thermal decomposition of nitric acid.
  • the sulfur compound in the exhaust gas is sulfur dioxide
  • the nitrogen compound is nitric oxide
  • either one of the 0 H radical and the OH radical generated by the 0 H radical generator serves as an initiator.
  • the oxides formed by simultaneous oxidation are sulfur trioxide and nitrogen dioxide.
  • the supplied ⁇ ⁇ ⁇ ⁇ H radical acts as an initiator to cause a chain reaction, thereby simultaneously oxidizing sulfur dioxide and nitric oxide in the exhaust gas to form sulfur trioxide and nitrogen dioxide. Discharge. Therefore, in the simultaneous dry desulfurization and denitration apparatus of the present invention, the exhaust gas can be treated by a dry method without using a catalyst or the like, and the efficiency and cost are reduced.
  • the dry simultaneous desulfurization and denitration apparatus having the above-mentioned configuration preferably comprises an oxidation treatment of exhaust gas. It has a sulfuric acid recovery unit that recovers sulfur trioxide generated as sulfuric acid and gypsum, or both. Further, the dry simultaneous desulfurization and denitration apparatus preferably has a nitric acid recovery apparatus for recovering nitrogen dioxide generated by oxidizing exhaust gas as nitric acid. Also, ⁇
  • a nitric acid recovery device that recovers the H radical donor as nitric acid may be provided.
  • the recovered nitric acid can be circulated and reused as a 0 H radical supplier.
  • sulfuric acid is recovered from sulfur trioxide generated by oxidizing exhaust gas, so that sulfuric acid or gypsum can be recovered efficiently.
  • nitrogen dioxide generated by oxidizing exhaust gas can be recovered as nitric acid. If nitric acid is supplied as a ⁇ H radical supply agent, nitric acid is recovered and circulated to be reused as a 0H radical supply agent. can do.
  • Figure 1 is a constant HN 0 3, a diagram illustrating the S 0 3 occurs Concentration Temperature dependence of the calculation result of the relative NO amount.
  • FIG. 2 is a table showing the rate constant of the elementary reaction after the addition.
  • FIG. 3 is a view showing a calculated value of a mole fraction of sulfur compound from 400 K to 100 °.
  • Figure 6 is a graph showing the calculation results of the various species of temporal change in the oxidation reaction of S_ ⁇ 2 and NO in FIG.
  • Figure 7 is a graph showing the calculation results of the sensitivity coefficients of major elementary reactions for S_ ⁇ 3 concentration in the calculation conditions of FIG.
  • Figure 8 is a view to view the temperature dependence of the calculation result of S0 3 generation concentration for HNOs amount.
  • FIG. 9 is a system configuration diagram of a dry simultaneous desulfurization and denitration apparatus according to the present invention.
  • FIG. 10 is a partial conceptual cross-sectional view of a reactor and an OH radical supply device according to a preferred embodiment. ⁇
  • FIG. 11 is a partial schematic cross-sectional view of a reaction apparatus and a ⁇ H radical supply apparatus of another embodiment.
  • FIG. 12 is an external view showing an example of an injector.
  • FIG. 13 is a schematic sectional view of a reactor having a shower pipe.
  • FIG. 14 is a schematic sectional view of a vertical reactor having a spray nozzle.
  • FIG. 15 is a schematic sectional view of a horizontal reactor having a shower pipe.
  • FIG. 16 is a schematic sectional view of the scrubber. BEST MODE FOR CARRYING OUT THE INVENTION
  • Oxidation of S0 2 and NO in the exhaust gas from various combustion furnaces used in the present invention i.e., desulfurization and denitration method is configured as a chain reaction proceeds by the chemical formula.
  • HNO3 + M ⁇ H + N ⁇ 2 + M (R4)
  • S ⁇ 2 in exhaust gas And NO are in the left equation of the chemical reaction equation (R1) and the left equation of the chemical reaction equation (R3).
  • ⁇ 2 is oxygen gas contained in the exhaust gas.
  • M is a gas that does not contribute to the reaction, and is, for example, N 2 , C ⁇ 2 or H 2 added simultaneously with N 2 .
  • H_ ⁇ _S0 2 occurred, 0 2 reacts with H_ ⁇ 2 and S_ ⁇ 3 occurs in the exhaust gas (reaction formula (R2) refer).
  • R2 reaction formula (R2) refer).
  • ⁇ 2 concentration in the exhaust gas because a very high than any radical species, the reaction rate of (R2), the OH + HOS ⁇ 2, 0 + H_ ⁇ _S_ ⁇ 2 or H + H_ ⁇ _S0 2 like In addition, it proceeds faster than the reaction of other H ⁇ S O2 by radical species.
  • H_ ⁇ 2 generated by the chemical reaction formula (R2) reacts with NO to generate OH and N0 2 (see the chemical reaction formula (R 3)). In this way, a chain reaction is formed by adding OH.
  • 0 S0 2 and NO in exhaust gas containing 2 is, by ⁇ _H or ⁇ _H radicals generated by thermal decomposition of HN_ ⁇ 3 as shown by the reaction formula (R4), chain reaction to S0 3 and can be oxidized to N0 2.
  • R4 reaction formula
  • HN_ ⁇ 3 is a diagram showing the temperature dependence of the calculation result of S_ ⁇ 3 shots raw concentration versus N_ ⁇ amount.
  • the horizontal axis is temperature (K)
  • the vertical axis represents S0 3 concentration (ppm).
  • the calculation conditions are based on the assumption that the reaction is in an adiabatic state, and the reaction time is 1 second.
  • S_ ⁇ 2 concentration in the exhaust gas is 200 Oppm
  • HN0 3 concentration is 1 0 O ppm.
  • M is composed of N 2 , C ⁇ 2 and H 2 ⁇
  • the combined pressure of ⁇ 2 in the exhaust gas is 1 atm assuming that the S ⁇ 2 and HN ⁇ 3 concentrations are so small that they can be ignored. (1 a tm), and the ratio (%) is
  • FIG. 2 is a table showing the rate constant of the elementary reaction after the addition.
  • the added elementary reaction is, for example, the following chemical reaction formula that inhibits the chemical reaction formula (R4).
  • FIG. 3 is a diagram showing the calculated values of the mole fraction of sulfur compounds from 400 K to 10000 ⁇ .
  • the vertical axis is the mole fraction of the sulfur compound
  • the horizontal axis is the temperature ( ⁇ ).
  • the 6 50 K ⁇ 80 OK, S0 2 can be extrapolated easily oxidized.
  • the vertical axis S_ ⁇ a 3 concentration the horizontal axis represents the NO concentration (ppm). Except that HN0 3 concentration is 100 ppm are the same as the conditions in FIG. S_ ⁇ 3 conversion rate, until the NO concentration of about 200 p pm is increased, it is NO concentration on the following, it can be seen that the decrease in the reverse.
  • the vertical axis Ri S0 3 concentration der, the horizontal axis is HN0 3 concentration (ppm).
  • S0 2 concentration is the 100 Opp m
  • conditions other than NO concentration is 200 p pm is the same as FIG.
  • S 03 conversion rate HN 0 3 concentration is have you to 200 ppm, 300 ppm, 400 ppm, respectively, about 1 5%, about 1 6%, it can be seen that approximately 1-7%.
  • N0 2 conversion rate the conversion rate of NO to N_ ⁇ 2 (hereinafter, referred to as N0 2 conversion rate) is 90% to 80%.
  • FIG. 6 is a diagram showing calculation results of time changes of various chemical species in the oxidation reaction of S 2 and N 2 in FIG.
  • the vertical axis is mole fraction
  • the horizontal axis is time (seconds).
  • the temperature is 750 K :, NO concentration 20 Op pm, S_ ⁇ 2 concentration
  • S_ ⁇ 3 and N_ ⁇ 2 concentration
  • the major oxidation product is S0 3 and N_ ⁇ 2
  • NO is not ho Tondo product, the added NO, mowing that is almost completely oxidized to N0 2 min.
  • Figure 7 is a graph showing the calculation results of the sensitivity coefficients of major elementary reactions for S_ ⁇ 3 concentration in the calculation conditions of FIG.
  • the initial state is the same as in FIG.
  • the vertical axis represents sensitivity coefficient of the main reaction of S0 3 generation
  • the horizontal axis is the time (in seconds).
  • the sensitivity coefficient Si of elementary reaction i to chemical species j is / 5ki.
  • Cj is the concentration of species j
  • ki is the rate constant of elementary reaction i.
  • the most important reactions to S0 3 raw formation is a chemical reaction formula (Rl), (R3), (R4) it is seen that (in FIG. 7 (R 1), (R3), ( R4)).
  • FIG. 8 is a diagram showing a 3 generation concentration temperature dependence of the calculation result of S_ ⁇ for HN0 3 addition amount.
  • the horizontal axis is the temperature (K), the ordinate HS0 3 Concentration (ppm).
  • S_ ⁇ 2 concentration in the exhaust gas is 2000 p pm
  • the HN0 3 concentration 100 ppm
  • 500 p pm other than those to l OO Oppm and Heni spoon condition is the same as FIG.
  • the S_ ⁇ 2 and NO in exhaust gas containing oxygen at a relatively low temperature of 600 K ⁇ 80 OK, 0H by rise to chain reaction by adding radicals, it can be simultaneously oxidized to S_ ⁇ 3 and N_ ⁇ 2.
  • This radical generator is suitable as HN0 3 is a radical generator.
  • N0 2 conversion is HN0 3 concentration 1 00 p pm becomes above as being to that trend decreased, if added HN0 3 of 1 000 ppm if S_ ⁇ 2 in the exhaust gas of about 1 000 p pm SO 2 can be converted to S0 3 up to nearly 20%. This and can, N0 2 conversion rate larger value 4 times 80% 90% and S_ ⁇ 3 conversion is obtained, et al.
  • FIG. 9 is a system configuration diagram of a dry simultaneous desulfurization and denitration apparatus according to the present invention.
  • the dry simultaneous desulfurization and denitration device 10 according to the embodiment of the present invention includes an OH radical supply device 12, a reaction device 14, a sulfuric acid recovery device 16 and a nitric acid recovery device 18. Exhaust gas from the boiler 2 and the like is introduced into the reactor 14.
  • the dry simultaneous desulfurization and denitration apparatus 10 of the present invention is used as an exhaust gas passage for various combustion apparatuses. It may be provided in the flue.
  • FIG. 10 is a conceptual diagram of the reaction device and the 1 H radical supply device of the present embodiment.
  • a reactor 20 includes an inner pipe 22 into which exhaust gas 23 of up to 800 ° C. is introduced from the boiler 2, and a coaxial inner pipe 22.
  • An outer pipe 28 is provided inside and defines a space together with manifolds 24, 26 at both ends.
  • Radical supply ports 21 and 27 are provided at appropriate positions on the inner pipe 22 in the exhaust gas introduction direction. That is, they are provided at symmetrical positions in the coaxial direction.
  • exhaust gas 2 3 is supplied from one end of the inner tube 2 2, S0 2 and NO contained in the exhaust gas 2 3 is simultaneously oxidized, so as to be exhausted from the other end ing.
  • the gap between the inner tube 22 and the outer tube 28 is a line for introducing a ⁇ H radical or an OH radical generator.
  • the inner pipe 22 is provided with the radical supply ports 21 and 27 in four stages, it may be provided in one stage or as many as appropriate according to the scale of the exhaust gas treatment.
  • the arrow 25 in FIG. 10 indicates the flow of the ⁇ H radical or the 0 H radical generator.
  • the inner pipe 22 is further defined by a partition wall for each of the radical supply ports 21 and 27, and a ⁇ H radical or an OH radical generator is blown in multiple stages from the introduction side of the exhaust gas 23 to the exhaust direction. Thereby, a multi-stage reaction may proceed.
  • a multi-stage reaction may proceed.
  • S0 2 and NO are each stage may be approximately 1 0 0% S0 3 and N_ ⁇ 2 conversion rate.
  • OH radical supplier 1 2 As shown in FIG. 1 0, OH radical supplier 1 2, a New 2, 0 2, gas supply system 3 2 such as NO, and a OH radical source 3 1, gas supply system 3 2 shown
  • the gas supply is controlled by a computer with a predetermined flow rate and a reaction process using a mass flow meter and a valve.
  • N 0 can be controlled to about 0 to 20 Oppm.
  • HN_ ⁇ 3 may be the 1 0 0% may be an aqueous solution of a predetermined ratio.
  • the exhaust gas is 6 0 0 ° C ⁇ 8 0 0 ° C, although this HN_ ⁇ 3 radical generator at a temperature region generates a ⁇ _H radicals is thermally decomposed, if any temperature of the exhaust gas is Do low
  • an electric furnace 37 may be provided before introduction into the manifold 24, and the radical generator may be thermally decomposed to surely supply ⁇ ⁇ ⁇ ⁇ H radicals. It is desirable that the temperature of the tank 34 be adjustable depending on the scale.
  • HN_ ⁇ 3 also 1 0 0 0 ppm introduction of similar concentration if for example 1 0 0 a 0 ppm.
  • desulfurization and denitration can be performed simultaneously only by supplying the 0 H radical or the 0 H radical generator to the high-temperature exhaust gas.
  • FIG. 11 shows a reaction apparatus according to another embodiment.
  • the reactor 30 is composed of an outer pipe 42 provided coaxially and closely to the exhaust gas introduction line 41, and an injector 44 provided at an appropriate length and position. , 48, and the ⁇ H radical or 0 H radical generator is supplied to the injectors 44, 46, 48 from the ⁇ H radical supplying device 12. ing.
  • FIG. 12 is an external view showing an example of an injector.
  • the injector 49 shown in Fig. 12 (a) has only one outlet at the tip end, and the injector 55 shown in Fig. 12 (b) blows out to an appropriate location.
  • the ports 51, 52, 53, and 54 are provided, and the size of the outlet is appropriately changed in consideration of the conductance of the injector.
  • the outlet of the injector 1 is provided on only one side surface, but may be provided on both side surfaces. In such an injector, it is located at the center of the reactor and supplies a ⁇ H radical or a 0 H radical generator.
  • ⁇ _H radical supplier 1 2 shown in FIG. 1 1 is obtained by so as to supply steam or HN_ ⁇ 3 of vapor and water vapor HN 0 3, and to supply the droplets of HN_ ⁇ 3 OH It may be a radical supply device. This will be introduced to the reactor HN 0 3 of droplets Injekuta one as a spray nozzle when.
  • FIG. 13 is a schematic view of a reaction apparatus to spray droplets of HN_ ⁇ 3.
  • the reactor 50 has an outer pipe 42 provided in a direction perpendicular to the exhaust gas introduction line 41, and HN ⁇ 3 is collected at the exhaust gas inlet side of the outer pipe 42.
  • An apparatus 62 is provided, and a circulating liquid tank 58 for HN 3 , which is an H radical generator, is provided.
  • shower pipes 56 and 56 are disposed at appropriate positions of the outer pipe 42 of the reactor 50, and the OH radical generator is sprayed from the shower pipes 56 and 56 to form a line. It has become so.
  • 59 in FIG. 13 indicates the spraying of the 0 H radical generator.
  • the reactor 60 shown in FIG. 14 is configured such that the OH radical generator is supplied by a spray nozzle 57 instead of the shower pipe 56 shown in FIG. 13. 9 indicates the spraying of the 0 H radical generator.
  • the reactor 70 is of a horizontal type, and shower pipes 56 and 56 are provided along the outer pipe wall.
  • the reactor described above may be either a vertical type or a horizontal type.
  • FIG 16 shows an example of a sulfuric acid recovery device.
  • Sulfuric acid recovery unit is a scrubber 80, a liquid tank 82, the filling tank 84 for contacting the liquid, and a Shawapa Eve 86 to spray absorption 4 Mataeki, exhaust gas containing the cooled S_ ⁇ 3 gas The gas is introduced from the inlet 87 and exhausted from the gas outlet 88.
  • Absorbing fluid Ri Ah with a small amount of water, in the filling tank 84 contacts the water with S_ ⁇ 3 gas stored is recovered in the liquid tank 82 becomes sulfuric acid.
  • S_ ⁇ 3 is a scrubber where the absorbing liquid water Ru can be recovered as sulfuric acid.
  • S0 3 is from is easily converted to sulfuric acid in the presence of trace amounts of water, is useful as a by-product.
  • carbonated calcium sulfate may be added to sulfuric acid and reacted to recover gypsum.
  • HN0 3 is what is sprayed is recovered by HNO 3 recovery apparatus described above.
  • HNO 3 recovery apparatus after collecting the S0 3 in electrostatic precipitator, to recover the HN ⁇ 3 and the solution absorbed N_ ⁇ 2 scrubber one, may be reused by supplying the HN_ ⁇ 3 recovery apparatus described above.
  • the present invention is not limited to the above embodiments, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that they are also included in the scope of the present invention.
  • the reactor for injecting OH and OH radicals in multiple stages described in the above embodiment can be added to various combustion devices depending on the flow rate of exhaust gas and the concentration of S ⁇ 2 and NO gas to be desulfurized and denitrated. Of course, it can be designed, manufactured and applied as appropriate. Industrial applicability
  • the apparatus for simultaneous dry desulfurization and denitration the chain reaction occurs becomes the supplied OH radicals as an initiator, oxidizing the S_ ⁇ 2 and NO in the exhaust gas simultaneously as S 0 3 and N0 2 Since the exhaust gas is discharged, the exhaust gas can be processed by a dry method that does not use a catalyst and the like, and has the effects of high efficiency and low cost.
  • a simultaneous dry desulfurization and denitration system having either or both of a sulfuric acid recovery unit and a HNO 3 recovery unit, oxidized SO 3 and N 2 are converted to sulfuric acid and HNO 3, and HN0 is used as an OH radical generator. 3 when using has the effect that it is possible to recover the OH radicals onset Namazai as HN 0 3.

Abstract

OHラジカルで連鎖反応し一酸化窒素及び二酸化硫黄を同時酸化することができる高効率かつ低コストの乾式同時脱硫脱硝装置であり、乾式同時脱硫脱硝装置(10)は、OHラジカル供給装置(12)と、反応装置(14)と、硫酸回収装置(16)と、硝酸回収装置(18)とを備える。反応装置(14)にボイラー(2)などからの硫黄化合物を含む600℃~800℃の排ガスを導入し、反応装置(14)にOHラジカル供給装置(12)から硝酸をスプレー供給し、硝酸の熱分解により生じたOHラジカルが開始剤となって二酸化硫黄と一酸化窒素が同時に酸化し、三酸化硫黄と二酸化窒素を生じて排ガス処理する。

Description

明 細 書 乾式同時脱硫脱硝装置 技術分野
この発明は、排ガス中に含まれる窒素化合物、硫黄化合物などの大気汚染物質 の除去に利用し、 〇 Hラジカルで連鎖反応し一酸化窒素及び二酸化硫黄を同時に 酸化する乾式同時脱硫脱硝装置に関する。 ί
Μ
石炭などの化石燃料には不純物として硫黄化合物が含まれているが、 これらの 酸素過剰下における燃焼においては硫黄分のほとんどは二酸化硫黄として排出さ れる。 排ガス中に含まれる二酸化硫黄は、 吸収液の噴霧と排ガスを接触させて二 酸化硫黄を吸収除去する通常スクラバーを用いた湿式法で除去される (例えば、 特開平 1 0 - 2 0 2 0 4 9号公報を参照) 。
また、排ガス中の二酸化硫黄をパルス状のコロナ放電域を通過させ亜硫酸ガス に酸化し、添加剤の酸化力ルシゥムなどの微粉に吸着し除去する乾式排ガス処理 方法も知られている (例えば、 特開平 5— 2 2 8 3 3 0号公報を参照) 。 さらに 酸化触媒の五酸化バナジゥムで二酸化硫黄ガスを三酸化硫黄ガスへ転化する技術 も、特開 2 0 0 1— 1 1 0 4 1号公報などで知られている。
しかしながら、 湿式法の排ガス処理方法では、高額の設備投資が必要であるこ と、大量の水が必要であることなどから装置自体が大型となり、 水資源などの乏 しいところでは利用が容易ではない。 また乾式法の排ガス処理方法では添加剤や 酸化触媒を使用するためコスト高となってしまう。 発明の開示
本発明はこのような課題を解決するものであり、触媒などを利用しない乾式法 の排ガス処理ができ、 0 Ηラジカルで連鎖反応し一酸化窒素及び二酸化硫黄を同 時酸化することができる高効率かつ低コス卜の乾式同時脱硫脱硝装置を提供する ことを目的とする。
上記目的を達成するため、本発明の乾式同時脱硫脱硝装置は、 高温の排ガスを 処理する乾式排ガス処理装置において、 反応装置と〇 Hラジカル供給装置とを備 え、排ガスを導入した反応装置に 0 Hラジカル及ぴ 0 Hラジカル発生剤のいずれ かを供給して排ガス中の硫黄化合物及び窒素化合物のいずれか、 或いは両方を同 時に酸ィヒして排ガス処理することを特徴とするものである。
上記構成に加え、反応装置は、 間隙を有して同軸に内管と外管とを備え、 内管 に〇 Hラジカル及び 0 Hラジカル発生剤のいずれかを供給するラジカル供給口を 備えていてよい。 内管にラジカル供給口が所定間隔に複数段設けられ、 多段吹き 込み可能になっていてもよい。 反応装置は、好ましくは、 〇Hラジカル及び〇H ラジカル発生剤を供給するィンジヱクターを有している。 このィンジヱク夕一は 、 長さの異なるように複数個設けられ、 多段吹き込み可能になっていれば有利で ある。 また、反応装置は、 〇Hラジカル及び O Hラジカル発生剤のいずれかを供 給するシャワーパイプ及びスプレーノズルのいずれか、 或いは両方を有していて もよい。 この反応装置は縦型及び横型のいずれかであつてよい。
また、 0 Hラジカル供給装置はラジ力ル発生源とガス供給系とを有しているこ とが好ましい。 〇 Hラジカル発生剤は好ましくは硝酸である。 O Hラジカルは、 硝酸の熱分解により生じたものである。
上記構成において、排ガス中の硫黄化合物は二酸化硫黄であり、窒素化合物は 一酸化窒素であつて、 0 Hラジカル及び 0 Hラジカル発生剤により生じた O Hラ ジ力ルのいずれかが開始剤となつて二酸化硫黄と一酸化窒素とを同時に酸化する こ +とができる。 この際、 同時に酸化して生じた酸化物は三酸化硫黄と二酸化窒素 である。
このような構成の乾式同時脱硫脱硝装置では、 供給した◦ Hラジカルが開始剤 となつて連鎖反応が生じ、排ガス中の二酸化硫黄と一酸化窒素とを同時に酸化し 、三酸化硫黄と二酸化窒素として排出する。 したがって、本発明の乾式同時脱硫 脱硝装置では、触媒などを使用しない乾式法で排ガス処理をすることができると ともに、 高効率かつ低コストになる。
さらに、 上記構成の乾式同時脱硫脱硝装置は、 好ましくは、 排ガスを酸化処理 して生じた三酸化硫黄を硫酸及び石膏、 或いは両方として回収する硫酸回収装置 を有している。 また上記乾式同時脱硫脱硝装置は、 好ましくは、 排ガスを酸化処 理して生じた二酸化窒素を硝酸として回収する硝酸回収装置を有する。 また、 〇
Hラジカル供給剤を硝酸として回収する硝酸回収装置を有していてもよい。 回収 した硝酸は 0 Hラジカル供給剤として循環させて再利用することができる。 このような構成の乾式同時脱硫脱硝装置では、排ガスを酸化処理して生じた三 酸化硫黄から硫酸を回収するので、硫酸又は石膏を効率よく回収することができ る。 また、 排ガスを酸化処理して生じた二酸化窒素を硝酸として回収することも でき、 さらに硝酸を〇Hラジカル供給剤として供給した場合、 硝酸を回収して循 環させ 0 Hラジカル供給剤として再利用することができる。 図面の簡単な説明
本発明は、以下の詳細な説明及び本発明の幾つかの実施の形態を示す添付図面 に基づいて、 より良く理解されるものとなろう。 なお、 添付図面に示す種々の実 施例は本発明を特定または限定することを意図するものではなく、 単に本発明の 説明及び理解を容易とするためだけのものである。
図 1は、 H N 0 3 を一定として、 N O添加量に対する S 03 発生濃度の温度依 存性の計算結果を示す図である。
図 2は、 追カ卩した素反応の速度定数を示す表である。
図 3は、硫黄化合物の 4 0 0 K〜 1 0 0 0 Κまでのモル分率の計算値を示す図 である。
図 4は、 Τ = 7 5 O Kにおける N O添加濃度に対する S〇3 生成依存性の計算 結果を示す図である。
図 5は、 Ύ = Ί 5 O Kにおける、 S〇3 生成率の H N〇3 添加濃度依存性の計 算結果を示す図である。
図 6は、 図 4の S〇2 と N Oの酸化反応におけるさまざまな化学種の時間変化 の計算結果を示す図である。
図 7は、 図 6の計算条件における S〇3 濃度に対する主要な素反応の感度係数 の計算結果を示す図である。 図 8は、 HNOs 添加量に対する S03 発生濃度の温度依存性の計算結果を示 す図である。
図 9は、本発明に係る乾式同時脱硫脱硝装置のシステム構成図である。
図 10は、好適な実施形態の反応装置と OHラジカル供給装置の一部概念断面 図である。 ·
図 1 1は、 他の実施形態の反応装置と〇Hラジカル供給装置の一部概略断面図 である。
図 12は、 インジヱクタ一の一例を示す外観図である。
図 13は、 シャワーパイプを有する反応装置の概略断面図である。
図 14は、 スプレーノズルを有する縦型反応装置の概略断面図である。
図 1 5は、 シャワーパイプを有する横型反応装置の概略断面図である。
図 16は、 スクラバーの概略断面図である。 発明を実施するための最良の形態
以下、 図 1〜図 16に基づき、実質的に同一又は対応する部材は同一符号を用 いて本発明による好適な実施の形態を説明する。
始めに、本発明の乾式同時脱硫脱硝装置の原理となる乾式同時脱硫脱硝方法に ついて説明する。 本発明者らは、 触媒無しで、,容易に S〇2 と NOを酸化するこ とができる脱硫及び脱硝方法につき研究を重ねた結果、 0 Hや 0 Hラジカルを用 い、各種燃焼炉からの排ガス中に含まれる二酸化硫黄 (S02 ) と一酸化窒素 ( NO) を気相連鎖反応により三酸化硫黄 (S〇3 ) と二酸化窒素 (N〇2 ) に酸 化する効率のよい連鎖化学反応を種々検討し、 計算することにより初めて見出し
7こ (fe光男他、 「し hemi c a l K i ne t i c s o f Homogen e o u s Ox i dat i on of S 02 i n F l ue G a s e s J
、 CREST I nt ernat i ona l S y p o s i um on AD V
ANCED DESOx P R〇 C E S S、科学技術振興事業団、 2002年 1 2月 6曰、 pp. 169— 180 ) 。
本発明に用いた各種燃焼炉からの排ガス中の S02 と NOの酸化、即ち、 脱硫 脱硝方法は、 下記の化学式により連鎖的に反応が進むように構成されている。
Figure imgf000007_0001
H〇S〇2 +02 =H02 +SOs (R2) H02 +N〇 = OH + N02 (R3) HNO3 +M =〇H + N〇2 +M (R4) 排ガス中の S〇2 と NOは、 化学反応式 (R1) の左式と、 化学反応式 (R3 ) の左式にある。 ここで、 〇2 は排ガス中に含まれている酸素ガスである。 また 、 Mは反応に寄与しないガスであり、 例えば N2 や、 N2 と同時に添加される C 〇2 、 H2 などである。
ここで、 上記の化学反応について説明する。 化学反応式 (R4) に示すように 、 HN03 より OHを発生させる。 OHは排ガス中で高温のラジカル状態となつ ている。 〇Hが化学反応式 (R 1) に供給されると、 OHと S〇2 と Mが反応し て、 H〇S〇2 +Mとなる。
ここで、 発生した H〇S02 が、 排ガス中の 02 と反応して H〇2 と S〇3 が 発生する (化学反応式 (R2)参照) 。 この際、 排ガス中における〇2 濃度は、 どのラジカル種よりも極めて高いゆえに、 (R2) の反応速度は、 OH + HOS 〇2 、 0 + H〇S〇2 又は H + H〇S02 のように、 ラジカル種による他の H〇 S O2 の反応よりも速く進行する。
次に、 化学反応式 (R2) で発生した H〇 2 は、 NOと反応して OHと N02 を発生させる (化学反応式 (R 3)参照) 。 このようにして、 OHが加わること で、 連鎖反応が構成されるようになる。
これから、 化学反応式 (R1) 〜 (R3) を足せば、
S〇2 +NO + 02 =S03 +N02 (R5) となり、 排ガス中の S〇2 と NOと〇2 とが反応して、 S03 と N〇2 に酸化さ れることが分かる。
これにより、 02 を含む排ガス中の S02 と NOが、 化学反応式 (R4) で示 されるように HN〇3 の熱分解により生成される〇Hまたは〇Hラジカルにより 、 連鎖反応的に S03 と N02 に酸化することができる。 したがって、 HN〇3 の蒸気圧と熱分解速度は、 H2 02 よりも高く、 また、 その取り扱いも H2 02 に比して簡単であるので、 低コストで、 〇2 を含む排ガス中の S02 と N〇を酸 化することができる。
次に、 上記の化学反応式による S〇2 と N〇の酸化についてのシミュレ一ショ ン結果を説明する。 このシミュレーションは、 Mue 1 1 e rらによって提案さ れている S〇x の反応機構により上記化学反応式 (R 1) 〜 (R4) を計算し、 さらに、 HN〇3 および NO 3 を含むいくつかの素反応を追カ卩して行った (M. A . Mueller, R. A. Yetter, and F. L. Dryer, Int. J. Chem. Kinet., 32, 317
(2000) 参考) 。
最初に、 排ガス中の S〇2 に HN〇3 を添加したときの、 NO添加量の依存性 について説明する。 図 1は HN〇3 を一定として、 N〇添加量に対する S〇3 発 生濃度の温度依存性の計算結果を示す図である。 図において、 横軸は温度 (K) で、縦軸が S03 濃度 (ppm) である。
ここで、計算条件は、 反応が断熱状態であると仮定して行い、 反応時間は 1秒 である。 この際、排ガス中の S〇2 濃度は 200 Oppmであり、 HN03 濃度 は 1 0 O ppmである。 Mは、 N2 と C〇2 と H2 〇からなり、 排ガス中の〇2 を合わせた場合の圧力は、 S〇2 濃度と HN〇3 濃度が微小であるので無視でき るとして、 1気圧 ( 1 a tm) であり、 その割合 (%) は、
N2 : C〇2 : H2 〇 : 02 = 7 1 : 1 6 : 8 : 5、 である。
図 2は、 追カ卩した素反応の速度定数を示す表である。 付け加えた素反応は、例 えば、 化学反応式 (R4) を阻害する以下の化学反応式などである。
OH + HN032 0 + Ν03 (R6)
Figure imgf000008_0001
図 1において、 NO= 0 p pmでも S〇2 から S〇 3 の反応は進むが、 NOを 添加すると反応は著しく増大することが分かる。 NO濃度が 5 Oppmの場合に は、 T= 750 Κ近辺で S02 から S〇3 への転換率 (以下、 S〇3 転換率と呼 ぷ) は最大となり、 約 4%である。 NO濃度が 20 O ppmの場合には、 750 K〜770 Kで S〇3 転換率は最大となり約 6. 3%である。 さらに、 NO濃度 を増加させ 40 O ppmとした場合には、 200 111ょりも3〇3 転換率は低 下し、 T= 700 K〜 820 Kで 1. 5%から 4. 3 %までに徐々に増大する。 これから、排ガスに S02 と共に NOを添カ卩したほうが、 S03 転換率が向上し 、 しかも、最適な NO濃度が存在することが分かる。
図 1において、 HN03 濃度が、 400 pm以外は、 おおよそ 750 K近辺で S〇3 への転換率が最大になっている理由について説明する。
図 3は硫黄化合物の 400 K〜 1 000 Κまでのモル分率の計算値を示す図で ある。 図において、 縦軸が硫黄化合物のモル分率であり、横軸が温度 (Κ) であ る。 これから、 S〇3 は、 600 K:〜 850 Kにおいて、 H2 S〇4 と S〇2 よ りも安定であり、特に 650 K〜80 OKでモル分率が最大値となっていること がわかる。 従って、 6 50 K〜80 OKにおいて、 S02 が酸化され易いと推定 できる。
図 4は、 T=75 OKにおける NO添加濃度に対する S03 生成依存性の計算 結果を示す図である。 図において、縦軸が S〇3 濃度であり、 横軸が NO濃度 ( ppm) である。 HN03 濃度が 100 p p mであること以外は、 図 1の条件と 同じである。 S〇3 転換率は、 NO濃度が約 200 p pmまでは増大し、 それ以 上の NO濃度では、 逆に低下することが分かる。
次に、 排ガス中に NOを 200 ppm添加したときの HN03 濃度に対する S 〇3 転換依存性を示す。 図 5は、 T=75 OKにおける S〇3 生成率の HN〇3 添加濃度依存性の計算結果を示す図である。 図において、縦軸が S03 濃度であ り、横軸が HN03 濃度 (ppm) である。 ここで、 S02 濃度が 100 Opp mであり、 NO濃度が 200 p pmである以外の条件は、 図 1と同じである。 S 03 転換率は、 HN 03 濃度が 200ppm、 300 ppm、 400 p p mにお いて、 それぞれ、約 1 5 %、約 1 6 %、約 1 7%となることが分かる。 HN03 濃度がおおよそ 1 00 ppmまでは、 HN03 濃度の増大に伴い S03 の発生が 増加する。 HN〇3 濃度が約 200 ppmより高い場合には、 S〇3 転換率は H N〇3 濃度に対して飽和する傾向にある。 この転換率は、 図 1に示した NO添カロ をしない場合に比べると著しく増大することが分かる。 この際、 NOから N〇2 への転換率 (以下、 N02 転換率と呼ぶ) は、 80%から 90%となる。
図 6は、 図 5の S〇2 と N〇の酸化反応における種々の化学種の時間変化の計 算結果を示す図である。 図において、 縦軸はモル分率であり、 横軸は時間 (秒) である。 ここで温度は 750 K:、 NO濃度は 20 Op pmであり、 S〇2 濃度が 1000 p pmである以外の条件は、 図 1と同じである。 図から、 HN03 の熱 分解により S02 と NOが酸化し、 S〇3 と N〇2 が約 0. 2秒で生成している ことが分かる。 これから、 主要な酸化生成物は S03 と N〇2 であり、 NOはほ とんど生成せず、添加した NOは、 ほぼ完全に N02 に酸化されていることが分 かる。
図 7は、 図 6の計算条件における S〇3 濃度に対する主要な素反応の感度係数 の計算結果を示す図である。 初期状態は図 6と同様である。 図において、 縦軸は S03 生成の主要な反応の感度係数で、 横軸は時間 (秒) である。 化学種 jに対 する素反応 iの感度係数 Si は、
Figure imgf000010_0001
/5ki で与えられる。 ここで、 Cj は化学種 jの濃度、 ki は素反応 iの速度定数である。 図 7から、 S03 生 成に対してもっとも重要な反応は、化学反応式 (Rl) 、 (R3) 、 (R4) で あることが分かる (図 7の (R 1) 、 (R3) 、 (R4)参照) 。
一方、 下記の化学反応式 (R 8) と (R9) は、 HN03 の熱分解により発生 した 0 Hが反応する化学反応式 (R 1 ) と共に生起する競合連鎖反応であり、 S 03 の生成を阻害する方向の化学反応式である (図 7の (R8) 、 (R9)参照
NO + OH + M = HONO + M (R 8)
HONO + OH = H2 0 + N02 (R9) また、 下記の化学反応式 (R 10) は、 HN〇3 の熱分解により発生した〇H と反応して H2 〇と〇2 になり、 ラジカルを生成しなくなる連鎖停止反応であり 、 この反応も、 S03 の生成を停止させる方向に作用する (図 7の (R 10)参
H02 +OH = H2 0 +〇2 (RI O) 次に、 比較のために、排ガスに N 0を添加しないで S〇 2 だけの条件における HN〇3 添加効果について説明する。 図 8は HN03 添加量に対する S〇3 発生 濃度の温度依存性の計算結果を示す図である。 図において、 横軸は温度 (K) 、 縦軸 hS03 濃度 (ppm) である。 この際、排ガス中の S〇2 濃度は 2000 p pmであり、 HN03 濃度を、 100ppm、 500 p pm, l O O Oppm と変ィ匕させている以外の条件は図 1と同じである。 S〇3 転換率は HN03 濃度の増加とともに増加し、 1 O Oppmの HN〇3 を添加した場合の S〇3 転換率は T=75 OK付近で最大となり、 2%である。 次に、 HN〇3 濃度として 50 O ppmの場合の S03 転換率は、 T= 760 K 付近で最大となり 6. 5%である。 さらに、 ΗΝ〇3 濃度として 1 00 Oppm の場合、 S〇3 転換率は、 T=75 OK付近で最大となり 8%が得られることが 分かる。
このように、排ガス中に N〇を添加しないで HN03 のみによる S02 酸化反 応は効率が低いが、 これは HN03 の熱分解により生成した 0 Hの大部分が H N 03 と N〇3 と反応してしまい、 連鎖反応が機能しないからであると推定される (化学反応式 (R6) 、 (R7) 参照) 。
以上説明したように、本発明に使用する排ガス中の S02 と NOの脱硫脱硝方 法は、 酸素を含む排ガス中の S〇2 と NOを、 600 K〜80 OKの比較的低温 で、 0Hラジカルを加えることにより連鎖反応を生起させて、 S〇3 と N〇2 に 同時に酸化することができる。 この際、 連鎖反応を開始させるためには、 連鎖担 体となる化学種の〇H又は H〇2 を発生させる必要がある。 このラジカル発生に は HN03 がラジカル発生剤として適当である。
排ガスの温度が 750°Cの典型的な場合、 HNOs 濃度を増やすと S03 転換 率は増加する。 N02 転換率は HN03 濃度が 1 00 p pm以上になると減少す る傾向にあるが、 排ガス中の S〇2 が 1 000 p pm程度であれば 1 000 p p mの HN03 を添加すれば SO 2 を 20%近くまで S03 に変換できる。 このと き、 N02 転換率は 80%から 90%と S〇3 転換率の 4倍ほど大きい値が得ら れる。
次に、 上記の脱硫脱硝方法を用いる本発明の乾式同時脱硫脱硝装置について説 明する
図 9は本発明に係る乾式同時脱硫脱硝装置のシステム構成図である。 図 9を参 照すると、 本発明の実施形態による乾式同時脱硫脱硝装置 1 0は、 OHラジカル 供給装置 1 2と、反応装置 14と、硫酸回収装置 1 6と、硝酸回収装置 1 8とを 備え、 ボイラー 2などからの排ガスが反応装置 14に導入されるようになってい る。 本発明の乾式同時脱硫脱硝装置 1 0は、 各種燃焼装置の排ガスの通路となる 煙道に設ければよい。
図 1 0は本実施形態の反応装置と〇 Hラジカル供給装置の概念図である。 図 1 0を参照して、 反応装置 2 0は、 ボイラー 2から 6 0 0°C:〜 80 0°Cの排ガス 2 3が導入される内管 2 2と、 この内管 2 2を同軸に内側に設け、 両端のマ二ホー ルド 24, 2 6とともに空間を画成する外管 2 8とを備え、 内管 2 2には適宜の 位置にラジカル供給口 2 1 , 2 7が排ガス導入方向、 つまり同軸方向に対して対 称な位置に設けられている。 図 1 0に示すように、 内管 2 2の一端側から排ガス 2 3が供給され、 この排ガス 2 3中に含まれる S02 と NOが同時に酸化され、 他端側から排気されるようになっている。
内管 2 2と外管 2 8との間隙は〇Hラジカル又は OHラジカル発生剤の導入ラ ィンである。 内管 2 2にはラジカル供給口 2 1 , 2 7が四段に設けられているが 、 排ガス処理の規模に応じて一段でもよいし、 適宜多く設けても良い。 なお、 図 1 0中の矢印 2 5は◦ Hラジカル又は 0 Hラジカル発生剤の流れを示す。
ここで、 内管 2 2をラジカル供給口 2 1 , 2 7毎にさらに隔壁で画成し、 排ガ ス 2 3の導入側から排出方向へ、 多段に〇Hラジカル又は OHラジカル発生剤を 吹き込むことにより、 多段の反応が進行するようにしてもよい。 これにより、 各 段毎に S02 と NOが処理されので、 S03 と N〇2 の転換率をほぼ 1 0 0%と することができる。
図 1 0に示すように、 OHラジカル供給装置 1 2は、 Ν2 , 02 , NOなどの ガス供給系 3 2と、 OHラジカル発生源 3 1 とを備え、 ガス供給系 3 2は図示し ない質量流量計及びバルブにより所定流量と反応プロセスによりコンピュー夕制 御されてガス供給が可能になつている。
ところで、 排ガス中の S〇2 を酸化して効率的に S03 にするためには、 O の濃度を適性に調整することが重要である。 したがって、 このガス供給系では N 0を 0〜2 0 O p pm程度まで制御可能にしておくことが望ましい。
〇Hラジカル供給装置 1 2には OHラジカル発生剤 3 3、 ここでは HN〇3 が 充填されたタンク 34と、 この HN〇 3 3 3を蒸気として運ぶキャリアガス供給 ライン 3 6と、 〇Hラジカル発生剤供給ライン 3 8が設けられている。 HN〇3 は 1 0 0%であってもよいし、 所定割合の水溶液であってもよい。 なお、 排ガスは 6 0 0 °C〜 8 0 0 °Cであり、 この温度領域ではラジカル発生剤 の H N〇3 は熱分解されて〇Hラジカルを発生させるが、 排ガスの温度が低いな どの場合に備え、 マ二ホールド 2 4への導入前に電気炉 3 7を設け、 確実にラジ 力ル発生剤を熱分解し〇 Hラジカルを供給するようにしてもよい。 またタンク 3 4は規模によるが温度調整可能であることが望ましい。
次に本発明に係る実施形態の乾式同時脱硫脱硝装置の作用について説明する。 図 1 0を参照して、 1 0 0 %H N O 3 を所定温度にし、 図示しない圧力センサ に基づいて蒸気圧制御の下、 ガス供給系 3 2から N 2 ガスでパブリングしてタン ク 3 4からキャリアガスとともに H N〇 3 の蒸気をマユホールド 2 4から導入す る。 6 0 0 °C〜 8 0 0 °Cの排ガス 1 3を導入すると、 H N 03 の熱分解により生 じた O Hラジカルが開始剤となって排ガス 2 3中の S〇2 と N Oとを同時に酸化 し、 S〇3 と N〇2 とが生じ、 反応装置 2 0から排出する。 ここで排ガスの S O 2 濃度が、 例えば 1 0 0 0 p p mであれば H N〇3 も同様の濃度の 1 0 0 0 p p m導入する。 このように本実施形態では 0 Hラジカル又は 0 Hラジカル発生剤を 高温の排ガスに供給するだけで同時に脱硫脱硝ができる。
図 1 1は他の実施形態を示す反応装置である。 図 1 1を参照すると、 反応装置 3 0は、 排ガス導入ライン 4 1と同軸かつ密接に設けられた外管 4 2と、 適宜の 長さ及ぴ位置に設けられたィンジヱクタ一 4 4 , 4 6, 4 8とを備え、, このィン ジェクタ一 4 4 , 4 6 , 4 8には、 〇Hラジカル供糸合装置 1 2から〇Hラジカル 又は 0 Hラジカル発生剤が供給されるようになっている。
図 1 2はィンジェクタ一の一例を示す外観図である。 図 1 2 ( a ) に示すイン ジェク夕一 4 9は先端側に一力所だけ吹き出し口 5 4を設けたものであり、 図 1 2 ( b ) に示すインジェクター 5 5は適宜の箇所に吹き出し口 5 1 , 5 2 , 5 3 , 5 4を設け、 インジェクターのコンダクタンスを考慮して吹き出し口の大きさ が適宜変えられている。 なお、 図 1 2に示した例では、 インジヱクタ一の吹き出 し口が一側面にだけ設けられているが、 両側面に設けてもよい。 このようなィン ジヱクタ一では反応装置の中心に配置され、 〇 Hラジカル又は 0 Hラジカル発生 剤を供給する。
脱硫脱硝を効率的に行うためには、 ィンジヱクタ一の最適な長さを決める必要 があり、 装置の規模に合わせて適宜決定しなければならない。 またインジヱクタ 一はステンレス製のパイプ又は石英製のパイプであつてもよいが、 ステンレス製 の方が N〇及び S〇2 の減少率が高く望ましい。 O Hラジカル又は O Hラジカル 発生剤をィンジェクターにより導入する場合、 排ガス及ぴ排ガス処理装置の規模 に合わせて効率的に脱硫脱硝ができるように、 反応装置内におけるィンジェクタ 一の吹き出し口の位置及び供給量を調整することは容易である。
図 1 1に示す〇Hラジカル供給装置 1 2は H N 03 の蒸気又は H N〇3 の蒸気 と水蒸気を供給するようにしたものであるが、 H N〇3 の液滴を供給するように した O Hラジカル供給装置としてもよい。 このときはィンジェクタ一をスプレー ノズルとして H N 0 3 の液滴を反応装置に導入することになる。
図 1 3は H N〇3 の液滴をスプレーする反応装置の概略図である。 図 1 3を参 照して、 反応装置 5 0は、 排ガス導入ライン 4 1 と垂直方向に設けられた外管 4 2を有し、 この外管 4 2の排ガス導入口側に H N〇3 回収装置 6 2が設けられ、 〇 Hラジカル発生剤である H N〇 3 の循環液槽 5 8が備えられている。 さらに、 反応装置 5 0の外管 4 2の適宜の位置に、 シャワーパイプ 5 6, 5 6が配設され 、 このシャワーパイプ 5 6, 5 6から O Hラジカル発生剤がスプレーされて供,袷 されるようになつている。 なお、 図 1 3中の 5 9は 0 Hラジカル発生剤の噴霧を 示す。 この供給された O Hラジカル発生剤の H N 03 が冷えて循環用液槽 5 8に 貯まると、 ここに貯められた◦ Hラジカル発生剤は、 図示しないポンプでシャヮ 一パイプ 5 6 , 5 6へ循環される。 図 1 4に示した反応装置 6 0は、 図 1 3に示 したシャワーパイプ 5 6に代えてスプレーノズル 5 7で O Hラジカル発生剤を供 給するようにしたもので、 図 1 4中の 5 9は 0 Hラジカル発生剤の噴霧を示す。 図 1 5は反応装置 7 0が横型のものであり、 シャワーパイプ 5 6, 5 6が外管 壁に沿つて設けられている。 以上説明した反応装置は縦型及び横型いずれの夕ィ プでもよい。
このような反応装置に 6 0 0 °C〜 8 0 0 °Cの排ガスを導入すると、 〇Hラジカ ル供給装置から供給した 0 Hラジカル又は 0 Hラジカル発生剤の熱分解により生 じた〇 Hラジカルが上記した連鎖反応の開始剤となつて排ガス中の S〇 2 と N〇 を同時に酸化して、 S 0 3 と N 0 2 として排気する。 次に、 硫酸及び HN〇3 の回収装置について説明する。
図 1 6は硫酸回収装置の一例を示す。 硫酸回収装置はスクラバー 80であり、 液槽 82と、 気液を接触させる充填槽 84と、 吸 4又液をスプレーするシャワーパ イブ 86とを備え、 冷却された S〇3 ガスを含む排ガスがガス入り口 87から導 入され、 ガス出口 88から排気されるようになっている。 吸収液は少量の水であ り、充填槽 84内で水と S〇3 ガスが接触し硫酸となって液槽 82に貯蔵し回収 する。 このように S〇3 は、 水を吸収液としたスクラバーで硫酸として回収でき る。 S03 は極微量の水の存在下でも容易に硫酸に変換されるから、 副生成物と して有用である。 また硫酸に炭酸力ルシゥムを添加して反応させ石膏として回収 してもよい。
HN03 は、 スプレーされたものは上記した HNO 3 回収装置で回収される。 また S03 を電気集塵装置で回収後に、 N〇2 をスクラバ一で溶液吸収して HN ◦ 3 として回収し、 上記した HN〇3 回収装置に供給して再利用してもよい。 本発明は、上記実施例に限定されることなく、 特許請求の範囲に記載した発明 の範囲内で種々の変形が可能であり、 それらも本発明の範囲内に含まれることは いうまでもない。 例えば、上記実施の形態で説明した多段に OHや OHラジカル を吹き込むための反応装置は、 排ガスの流量と脱硫脱硝すべき S〇2 と NOガス の濃度により、 各種の燃焼装置に付加できるように適宜に設計し、 製作し、 適用 し得ることは勿論である。 産業上の利用可能性
以上説明したように、 この乾式同時脱硫脱硝装置は、 供給した OHラジカルが 開始剤となって連鎖反応が生じ、 排ガス中の S〇2 と NOとを同時に酸化し、 S 03 と N02 として排出するので、触媒などを使用しない乾式法で排ガス処理を することができるとともに、 高効率かつ低コストであるという効果を有する。 また、 硫酸回収装置及び HNO 3 回収装置のいずれか、 或いは両方を有する乾 式同時脱硫脱硝装置では、酸化処理した SO 3 と N〇2 を硫酸及び HNO 3 とし て、 さらに OHラジカル発生剤として HN03 を使用した場合は OHラジカル発 生剤を H N 03 として回収することができるという効果を有する。

Claims

' 請 求 の 範 囲
1 . 高温の排ガスを処理する乾式排ガス処理装置において、反応装置と〇 Ηラジカル供給装置とを備え、上記排ガスを導入した反応装置に〇 Ηラジカル及 び〇 Ηラジカル発生剤の何れかを供給して排ガス中の硫黄化合物及び窒素化合物 の何れか、 或いは両方を同時に酸化して排ガス処理することを特徴とする乾式同 時脱硫脱硝装置。
2 . 前記反応装置が間隙を有して同軸に内管と外管とを備え、 内管に〇Η ラジカル及び 0 Ηラジカル発生剤の何れかを供給するラジカル供給口を備えたこ とを特徴とする、 請求項 1に記載の乾式同時脱硫脱硝装置。
3 . 前記内管に前記ラジカル供給口が所定間隔に複数段設けられ、 多段吹 き込み可能になっていることを特徴とする、 請求項 2に記載の乾式同時脱硫脱硝
4 . 前記反応装置が 0 Ηラジカル及び◦ Ηラジカル発生剤を供給するイン ジェクタ一を有していることを特徴とする、請求項 1に記載の乾式同時脱硫脱硝
5 . 前記インジヱクタ一が長さの異なるように複数個設けられ、 多段吹き 込み可能になつていることを特徴とする、 請求項 4に記載の乾式同時脱硫脱硝装
6 . 前記反応装置が◦ Ηラジカル及び 0 Ηラジカル発生剤の何れかを供給 するシャワーパイプ及びスプレーノズルの何れか、 或いは両方を有していること を特徴とする、請求項 1に記載の乾式同時脱硫脱硝装置。
7 . 前記反応装置が縦型及び横型の何れかであることを特徴とする、請求 項 1〜 6の何れかに記載の乾式同時脱硫脱硝装置。
8 . 前記 Ο Ηラジカル供給装置が、 ラジカル発生源とガス供給系とを有す ることを特徴とする、請求項 1〜 7の何れかに記載の乾式同時脱硫脱硝装置。
9 . 前記 Ο Ηラジカル発生剤が硝酸であることを特徴とする、請求項 1 〜 8の何れかに記載の乾式同時脱硫脱硝装置。
1 0 . 前記〇Ηラジカルが硝酸の熱分解により生じたものであることを特 徴とする、請求項 1〜 8の何れかに記載の乾式同時脱硫脱硝装置。
1 1 . 前記排ガス中の硫黄化合物が二酸化硫黄であり、 窒素化合物が一酸 化窒素であつて、 前記 0 Hラジカル及び前記 0 Hラジカル発生剤により生じた〇 Hラジカルの何れかが開始剤となつて上記二酸化硫黄と一酸化窒素とを同時に酸 化することを特徴とする、請求項 1〜 1 0の何れかに記載の乾式同時脱硫脱硝装
1 2 . 前記同時に酸化して生じた酸化物が三酸化硫黄と二酸化窒素である ことを特徴とする、請求項 1〜 1 1の何れかに記載の乾式同時脱硫脱硝装置。
1 3 . 前記乾式同時脱硫脱硝装置が、 排ガスを酸化処理して生じた三酸化 硫黄を硫酸及び石膏、 或いは両方として回収する硫酸回収装置を有していること を特徴とする、 請求項請求項 1〜 1 2の何れかに記載の乾式同時脱硫脱硝装置。
1 4 . 前記乾式同時脱硫脱硝装置が、 排ガスを酸化処理して生じた二酸化 窒素を硝酸として回収する硝酸回収装置を有していることを特徴とする、請求項 1〜 1 2の何れかに記載の乾式同時脱硫脱硝装置。
1 5 . 前記乾式同時脱硫脱硝装置が、 O Hラジカル供給剤を硝酸として回 収する硝酸回収装置を有していることを特徴とする、 請求項 1〜 1 4の何れかに 記載の乾式同時脱硫脱硝装置。
1 6 . 前記回収した硝酸を O Hラジカル供給剤として循環させて再禾拥す ることを特徴とする、 請求項 1 5に記載の乾式同時脱硫脱硝装置。
PCT/JP2003/017025 2003-02-28 2003-12-26 乾式同時脱硫脱硝装置 WO2004076032A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03786375.0A EP1600203B1 (en) 2003-02-28 2003-12-26 Apparatus for simultaneous dry desulfurization/denitrification
US10/547,085 US7455819B2 (en) 2003-02-28 2003-12-26 Apparatus for simultaneous dry desulfurization/denitrification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-054900 2003-02-28
JP2003054900A JP4446269B2 (ja) 2003-02-28 2003-02-28 乾式同時脱硫脱硝装置

Publications (1)

Publication Number Publication Date
WO2004076032A1 true WO2004076032A1 (ja) 2004-09-10

Family

ID=32923478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/017025 WO2004076032A1 (ja) 2003-02-28 2003-12-26 乾式同時脱硫脱硝装置

Country Status (5)

Country Link
US (1) US7455819B2 (ja)
EP (1) EP1600203B1 (ja)
JP (1) JP4446269B2 (ja)
CN (1) CN100396361C (ja)
WO (1) WO2004076032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171070B (zh) * 2005-05-06 2012-10-17 国立大学法人岐阜大学 废气用干式同时脱硫脱硝装置
CN111001279A (zh) * 2019-12-26 2020-04-14 佛山科学技术学院 一种高效干法脱硝剂及其制备方法和脱硝效果的评价方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093205B2 (ja) * 2009-09-30 2012-12-12 株式会社日立製作所 二酸化炭素回収型発電システム
CN101961596A (zh) * 2010-07-19 2011-02-02 大连海事大学 氧活性粒子注入烟道中的羟基自由基氧化脱硫脱硝方法
CN104324610B (zh) * 2014-10-19 2016-07-06 陕西蔚蓝节能环境科技集团有限责任公司 一种脱硫脱硝方法及装置
CN106422722A (zh) * 2016-10-12 2017-02-22 广东佳德环保科技有限公司 一种氧化法烧结烟气脱硝方法
CN115253671A (zh) * 2022-08-13 2022-11-01 嘉兴复翼环保科技有限公司 一种利用可助力no2生成的添加剂来实现scr高效脱硝的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228330A (ja) 1991-08-26 1993-09-07 Sumitomo Heavy Ind Ltd 乾式排ガス処理方法
JPH07323212A (ja) * 1994-05-30 1995-12-12 Tsuyako Nemoto 廃棄物の焼却処理方法および装置
JPH08243340A (ja) * 1995-03-13 1996-09-24 Mitsui Eng & Shipbuild Co Ltd 排ガス処理装置及び方法
JPH10202049A (ja) 1997-01-27 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd 排煙脱硫装置
WO1998035909A1 (fr) * 1997-02-17 1998-08-20 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Melangeur air/ozone et nebulisateur d'ozone
JPH10225613A (ja) * 1997-02-14 1998-08-25 Ishikawajima Harima Heavy Ind Co Ltd オゾン脱臭装置
JPH1182977A (ja) * 1997-09-05 1999-03-26 Kyoueisha:Kk フロンの分解方法及びそれに用いる分解処理装置
JP2001011041A (ja) 1999-06-29 2001-01-16 Lion Corp スルホン化/硫酸化反応における非定常時の三酸化硫黄含有ガスの処理方法及び装置
JP2001120943A (ja) * 1999-10-25 2001-05-08 Kazuyuki Takahata 排ガス脱臭方法及び排ガス脱臭装置
JP2002361034A (ja) 2001-06-01 2002-12-17 Japan Science & Technology Corp Ho2ラジカルをso2酸化のラジカル連鎖反応におけるoh生成反応種とする排ガス中のso2の酸化処理方法および装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670122A (en) * 1994-09-23 1997-09-23 Energy And Environmental Research Corporation Methods for removing air pollutants from combustion flue gas
GB0020287D0 (en) * 2000-08-17 2000-10-04 Aea Technology Plc The catalytic treatment of gases

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228330A (ja) 1991-08-26 1993-09-07 Sumitomo Heavy Ind Ltd 乾式排ガス処理方法
JPH07323212A (ja) * 1994-05-30 1995-12-12 Tsuyako Nemoto 廃棄物の焼却処理方法および装置
JPH08243340A (ja) * 1995-03-13 1996-09-24 Mitsui Eng & Shipbuild Co Ltd 排ガス処理装置及び方法
JPH10202049A (ja) 1997-01-27 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd 排煙脱硫装置
JPH10225613A (ja) * 1997-02-14 1998-08-25 Ishikawajima Harima Heavy Ind Co Ltd オゾン脱臭装置
WO1998035909A1 (fr) * 1997-02-17 1998-08-20 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Melangeur air/ozone et nebulisateur d'ozone
JPH1182977A (ja) * 1997-09-05 1999-03-26 Kyoueisha:Kk フロンの分解方法及びそれに用いる分解処理装置
JP2001011041A (ja) 1999-06-29 2001-01-16 Lion Corp スルホン化/硫酸化反応における非定常時の三酸化硫黄含有ガスの処理方法及び装置
JP2001120943A (ja) * 1999-10-25 2001-05-08 Kazuyuki Takahata 排ガス脱臭方法及び排ガス脱臭装置
JP2002361034A (ja) 2001-06-01 2002-12-17 Japan Science & Technology Corp Ho2ラジカルをso2酸化のラジカル連鎖反応におけるoh生成反応種とする排ガス中のso2の酸化処理方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1600203A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171070B (zh) * 2005-05-06 2012-10-17 国立大学法人岐阜大学 废气用干式同时脱硫脱硝装置
CN111001279A (zh) * 2019-12-26 2020-04-14 佛山科学技术学院 一种高效干法脱硝剂及其制备方法和脱硝效果的评价方法

Also Published As

Publication number Publication date
EP1600203B1 (en) 2014-09-24
EP1600203A4 (en) 2010-03-17
EP1600203A1 (en) 2005-11-30
US7455819B2 (en) 2008-11-25
US20060147356A1 (en) 2006-07-06
JP2004261718A (ja) 2004-09-24
JP4446269B2 (ja) 2010-04-07
CN1756585A (zh) 2006-04-05
CN100396361C (zh) 2008-06-25

Similar Documents

Publication Publication Date Title
US6936231B2 (en) NOx, Hg, and SO2 removal using ammonia
CN106659971B (zh) 用于从排气中除去污染物的方法和装置
US6991771B2 (en) NOx, Hg, and SO2 removal using ammonia
US20170173525A1 (en) Process for the removal of contaminants from flue gas streams
KR20150106000A (ko) 배기 가스로부터 오염 물질을 제거하는 방법
WO2004076032A1 (ja) 乾式同時脱硫脱硝装置
JP4629031B2 (ja) 排ガスの処理方法および装置
KR100818309B1 (ko) 수평형 습식 반응장치를 이용한 질소산화물을 제거방법과장치
CN204619713U (zh) 一种脱除烟气中多种污染物的系统及锅炉
KR101606257B1 (ko) 유동층을 이용한 배가스 탈황탈질장치 및 탈황탈질방법
Jakubiak et al. The effect of ozone feeding mode on the effectiveness of NO oxidation
KR101555087B1 (ko) 배가스에 대한 유해물질 건식제거장치 및 건식제거방법
JP4472638B2 (ja) 排気ガスの処理方法及び装置
KR102407755B1 (ko) 다단 스크러버의 배기가스 처리 장치 및 방법
YAMASAKI et al. Performance evaluation of semi-dry flue gas desulfurization and denitration from flue gas of a glass melt using nonthermal plasma combined process
KR102122253B1 (ko) 배기가스 처리장치
Kordylewski et al. Pilot plant studies on NO x removal via NO ozonation and absorption
JPH11147024A (ja) 排煙処理方法
CN205379785U (zh) 一种烟气脱硝中NOx转化成N2的装置
KR20090076003A (ko) 배기가스의 질소 산화물 저감 장치 및 방법
CN106925095A (zh) 一种烟气脱硝中NOx转化成N2的装置与方法
JP2009028647A (ja) 排ガス処理方法及び装置
KR20210120195A (ko) 오존산화방식의 질소산화물(NOx) 제거공법에 효율적인 개량된 덕트구조
Dors et al. Influence of ammonia on NOx removal in corona discharge-molecular sieve hybrid system
CN204619711U (zh) 一种脱除烟气中多种污染物的系统及锅炉

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2006147356

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038B00115

Country of ref document: CN

Ref document number: 10547085

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003786375

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003786375

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547085

Country of ref document: US